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Abstract

Human’s ability to coordinate stereotyped, alternating movements between the two
legs during bipedal walking is a complex motor behavior that requires precisely timed activities
across multiple nodes of the supraspinal network. Understanding of the neural network
dynamics that underlie natural walking in humans is limited. We investigated cortical and
subthalamic neural activities during overground walking and evaluated spectral biomarkers to
decode the gait cycle in three patients with Parkinson’s disease without gait disturbances.
Patients were implanted with chronic bilateral deep brain stimulation leads in the subthalamic
nucleus (STN) and electrocorticography paddles overlaying the primary motor (M1) and
somatosensory (S1) cortices. Local field potentials (LFP) were recorded from these areas while
the participants performed overground walking and synchronized to external gait kinematic
sensors. We found that the STN displays increased low frequency (4-12 Hz) spectral power
during the period prior to contralateral leg swing. Furthermore, STN shows increased theta
frequency (4-8 Hz) coherence with the primary motor through the initiation and early phase of
contralateral leg swing. Additional analysis revealed that each patient had specific frequency
bands which could detect a significant difference between left and right initial leg-swing. Our
findings indicate that there is alternating spectral changes between the two hemispheres in
accordance with the gait cycle. In addition, we identified patient-specific, gait-related
biomarkers in both the STN and cortical areas at discrete frequency bands that may be used to

drive adaptive DBS to improve gait dysfunction in patients with Parkinson’s disease.
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Significance Statement

By recording from chronically implanted electrodes from the subthalamic nucleus and
sensorimotor cortex in patients with Parkinson's disease, we found power modulations across
multiple frequency bands (4-30 Hz) during specific phases of the gait cycle. The coherence
between subthalamic-cortical areas of each brain hemisphere also increases prior to
contralateral leg swing. The data supports the hypothesis that the basal ganglia and cortex
coordinate alternating power and coherence fluctuations between hemispheres, which may
indicate a mechanism to regulate continuous bipedal locomotion in humans. Lastly, we show
that these putative biomarkers for gait can decode left and right gait events, implicating a

potential use to drive future adaptive DBS algorithms.

Introduction

Human walking is a complex motor task that requires the flexible coordination of
reciprocal left and right leg movements. Natural upright walking consists of each leg alternating
between the stance phase, when the foot is in contact with the ground, and the swing phase,
when the foot is in the air; these two phases make up the “gait cycle,” comprised of a series of

stereotyped events such as left and right heel-strikes and toe-offs.

The subthalamic nucleus (STN) and primary motor cortex are likely key nodes of the
supraspinal network that regulate human gait, given the STN’s projection to the locomotor
regions in the brainstem (Takakusaki, 2017), and its direct connections to the motor cortex via

the hyperdirect pathway (Nambu et al., 2002). Understanding of the cortico-subthalamic
5
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network activities that underlie natural walking in humans is, however, limited due to
methodological constraints. Scalp electroencephalography (EEG) studies have shown that
natural overground walking is associated with fluctuations in the alpha (8-12 Hz), beta (13-30
Hz), and gamma (70-90 Hz) frequency ranges from the sensorimotor regions of healthy subjects
(Gwin et al., 2011; Seeber et al., 2015; Wagner et al., 2012). Although, EEG lacks the spatial
resolution to discern whether these rhythms originate from the motor cortex or represent
sensory feedback during walking, and are prone to movement artifacts. Basal ganglia field
potentials recorded from implanted deep brain stimulation (DBS) leads of patients with
Parkinson’s disease (PD) have also revealed modulation of beta (13-30Hz) oscillations from the
STN while stepping in place (Fischer et al., 2018; Hell et al., 2018; Tan et al., 2018) and during
overground walking throughout the gait cycle (Arnulfo et al., 2018; Canessa et al., 2020; Hell et
al., 2018). However, because aberrant beta oscillatory synchrony in the STN is a hallmark of
akinesia in PD (Hammond et al., 2007; Little and Brown, 2014), and beta oscillations decreases
with movement planning and execution in general, including those of the upper extremity
(Eisinger et al., 2020; Kiihn et al., 2004; Wingeier et al., 2006), whether these subthalamic beta
modulations represent biomarker of specific gait events is unclear. Finally, little is known about

cortical-subthalamic interactions during the natural gait cycle.

Our hypothesis is that the STN interacts with the motor cortex in a temporal-specific
manner to coordinate reciprocal leg movements to generate effective bipedal locomotion. We
investigated the cortical-subthalamic circuit dynamics of natural walking from three patients

with PD without major gait disturbances in the on-mediation state to capture the most

6
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physiological gait possible. Patients were implanted with chronic bilateral STN DBS leads and
sensorimotor cortex electrocorticography (ECoG) paddles. Neural oscillatory activities were
simultaneously and wirelessly streamed from the bilateral primary motor (M1) and
somatosensory (S1) cortices as well as the STN during overground walking, and were
synchronized to external gait kinematic sensors. Our aims were: 1) to characterize the
oscillatory signatures of natural walking from the STN and sensorimotor cortices, 2) to identify
cortico-subthalamic circuit coherence changes throughout the gait cycle, and 3) to determine
accuracy of gait event decoding (i.e., heel-strike or toe-off) based on these cortical and

subthalamic oscillatory signatures.

Materials and methods

Subjects and electrode reconstruction

Three male subjects with idiopathic PD undergoing evaluation for DBS surgery were
enrolled at the University of California - San Francisco. Subjects did not exhibit major gait
impairments, with MDS-UPDRS Il postural instability and gait sub-scores on medication
between 1 (slight) to 2 (mild) (Table 1). All subjects provided written informed consent

(NCT03582891).

All subjects underwent bilateral implantation of quadripolar DBS leads into the STN
(Medtronic model 3389), quadripolar cortical paddle overlying the sensorimotor cortices
(Medtronic model 0913025), connected to bilateral investigational sensing pulse generators

(Medtronic Summit RC+S model B35300R) as previously described (Fig. 1) (Gilron et al., 2021a).
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Each RC+S device was connected to an STN DBS electrode and a cortical paddle from the same

brain hemisphere.

DBS and cortical electrode localization were performed using 2-month postoperative CT
images fused with preoperative T1-weighted MRI images. STN DBS lead reconstruction was
performed using the DISTAL atlas and TRAC/CORE algorithm available within LEAD-DBS, an
open-source MATLAB toolbox (Ewert et al., 2018; Horn and Kiihn, 2015). Intracranial EEG
Anatomical Processing and Electrode Reconstruction Pipeline (https://edden-
gerber.github.io/ecog_recon/) was used for cortical paddle reconstruction. T1 images were
parcellated and converted into a standardized cortical surface mesh using FreeSurfer (Dale et
al., 1999) and AFNI’'s SUMA (Saad et al., 2004). Cortical contacts were then manually identified
on the CT images in Biolmage Suite (Papademetris et al.) and the electrode coordinates were
projected onto the standardized mesh using a gradient descent algorithm in MATLAB.

Postoperative lead localization was performed using

Neural recordings and gait kinematic measurements during natural walking

Subjects walked overground at their preferred speed for 2 minutes in a straight path of
at least 15 feet before turning around. All subjects were on their typical dose of Parkinsonian
medication during the task. In all subjects LFPs were recorded from two STN electrode pairs:
ventral STN (+2-0) and dorsal STN (+3-1), where contact 0 is in the ventral STN, contact 3 just
above the dorsal border, and contacts 1 and 2 in the motor territory based on microelectrode
mapping (Fig. 1A). The two cortical electrode recording configuration were +9-8 (S1) and +11-

8
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10 (M1), based on and imaging reconstruction. LFPs were sampled at 500 Hz and passed
through a pre-amplifier high-pass filter of 0.85 Hz and low-pass filter of 450 Hz. Accelerometry
data from the Summit RC+S system was sampled at 64 Hz. All data from the RC+S system was
extracted and analyzed using open-source code (https://github.com/openmind-

consortium/Analysis-rcs-data).

Gait kinematic data was collected using two wireless sensor systems: Delsys Trigno®
system (Delsys Inc. Natick, MA) and Xsens MVN Analyze (Xsens Technologies, The Netherlands).
The Delsys sensors included two Avanti force sensitive resistor (FSR) adapters, two Avanti
goniometer adapters, and two Trigno surface electromyography (EMG) sensors with a built-in
accelerometer. The Avanti adapters were placed bilaterally on the shank of the leg, and the
EMG sensors were placed on top of both RC+S and used for synchronization (see below). Each
FSR adapter was attached to four FSRs (Delsys DC:FO1) placed under the calcaneus, hallux, 1st
metatarsal (1MT), and 5th metatarsal (5MT). Digital goniometer (SG110/A) was placed next to
the lateral malleolus. The Xsens system is comprised of 14 inertial measurement unit sensors

placed over the entire body and limbs for wireless motion tracking.

Data analysis

LFP and gait kinematic data was synchronized by aligning the acceleration peaks
captured by the RC+S, Delsys Trigno sensors over the RC+S, and Xsens accelerometry. Four
signal processing methods were applied to the LFP signals using built in MATLAB functions:
continuous wavelet transform (CWT; “cwt” function), wavelet coherence (“wcoherence”

9
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function), short-time Fourier transform (STFT; “spectrogram” function), and power spectral
density (PSD; “spectrogram” function with 1 second window, 90% window overlap, and a
transform length of 512 data points). We used wavelet transformation because it has greater
low-frequency resolution. We also used the Fourier transform because this is the on-board

spectral decomposition method used by the RC+S system (Sellers et al., 2021).

Gait kinematic data was used to determine left and right toe-off and heel-strike events
using a custom MATLAB script (Fig. 2). Heel-strike was defined as the time when the calcaneus
or 5MT FSR crosses over a 5% threshold in the positive direction. Toe-off was defined as the
time when the hallux or 1MT FSR crosses over the 5% threshold in the negative direction. For
the Xsens system, toe-off was defined as the time of peak ankle plantarflexion velocity, while
heel-strike was defined as the time of ankle velocity impulse. All gait events were visually
inspected, and erroneous events were manually corrected. Turns were excluded from analysis.

40 gait cycles were included for analysis from subject 1, 67 for subject 2, and 106 for subject 3.

Individual gait cycle epochs were extracted from the CWT and wavelet coherence data
and divided into time bins representing 1% of the gait cycle. Power and magnitude-square
coherence values for each gait cycle were normalized to the average value during the entire
walking period by z-score. Z-cored values for gait cycles were then averaged across subjects to

obtain the grand average spectrogram and coherogram.

To identify frequency bands where power differed between gait events, instantaneous
power at each gait event (left and right toe-off and heel-strike) were extracted. All possible

frequency bands were created between 0-50 Hz, and a Kruskal-Wallis test was used to identify

10
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frequency bands where power differed among the gait events. A Kruskal-Wallis test was used
because the data sets were not normally distributed (Shapiro-Wilk test), but the variances of
the different gait events were equal (Levene’s test). P-values were adjusted using Tukey’s
Honest Significant Difference method. Frequency bands where the multiple comparison test

reached p-values < 0.05 were designated as gait-event-modulated frequency bands.

Gait event classification

A classification model was built to predict gait events from LFP power and the STN-
cortical coherence. The classification model used an ensemble learning approach to enhance
the stability and accuracy (Polikar, 2006; Wolpert, 1992) and consisted of a Random Forest (RF)
feature selection model and a linear discriminant analysis (LDA) model. RF has been shown to
achieve better performance than other feature selection methods (Chen et al., 2020), and is
robust to collinearity (Genuer et al., 2010). The LDA model matched the on-board hardware
classifier of the RC+S. The classifier models were built in R with the “Tidymodel” framework

(Kuhn and Wickham, 2020) and trained for each subject, brain hemisphere, and recording area.

Features used in the RF model were instantaneous power or magnitude-squared
coherence during toe-off events in all possible frequency bands between 2.5-50 Hz. All features
were normalized to a mean of 0 and a standard deviation of 1. Prior to feature selection, RF
hyperparameters, the number of decision tress and number of features a tree considers during

node splitting, were optimized using 10-fold cross-validation with each data set stratified by
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toe-off classes. Once optimized, the RF feature selection model was trained on all normalized

features using the “ranger” (Wright and Ziegler, 2017) package in RStudio (www.rstudio.com).

The top ten features with the largest variable importance value based on “permutation
importance” (Altmann et al., 2010) were used to generate new data sets for each subject and
brain hemisphere. Next, the new data sets were split into 75% for training and 25% for testing.

The accuracy and receiver operator characteristic area under the curve (AUC) were calculated.

Statistical analysis

Linear repeated-measure mixed model was used to determine power or coherence
values that differed from the average during the gait cycle. A single fixed effect was used, and
subjects were added to the model as a random to account for individual baseline neural power
differences. Significance was tested using F-tests with Satterthwaite’s degrees of freedom
method. Statistical analysis of classification models were performed only on models that
achieved greater than chance accuracy (= 50%). Significance was tested by permuting the toe-
off class labels 1000 times and calculating the class accuracy on the permuted data. Models
were determined to be significant if it correctly classified the event in < 5% of total number of

permutations (Herrojo Ruiz et al., 2014).

Results

12
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STN shows coordinated low frequency power modulation during walking

To investigate STN and sensorimotor cortical neural dynamics during the gait cycle, we
extracted and averaged spectral power across all gait cycle epochs and tested whether the
power significantly changes during the gait cycle. We found that the two hemispheres showed
coordinated and reciprocal changes in spectral power within the ventral and dorsal STN during
the gait cycle. Significant changes in power were seen in the alpha to low-gamma frequency
(10-50 Hz) band power in the ventral STN, and in low frequency (5-15 Hz) band power in the
dorsal STN. Increased power occurred during double support phase, the period from ipsilateral
heel-strike to contralateral toe-off (0-10% for the left leg and 50-60% for the right leg) (Fig. 3A
and B, top). The left STN also demonstrated significant alpha-beta (8-30 Hz) power decrease
during right leg swing period, and beta band (13-30 Hz) decrease during right heel-strike (Fig.
3A and B, top). These changes in LFP power were also seen in individual gait cycles across all

subjects (Extended Data Fig. 3-2 A and B).

M1 and S1 also demonstrated power changes throughout the gait cycle, though the
frequency-specific changes between the left and right hemispheres were not reciprocal. The
left M1 showed decreased beta activity during right leg swing (10-30% of gait cycle) and
increased beta power during right leg stance (60-80% of gait cycle) (Fig. 3-1A, top). While the
right M1 does not show significant beta power modulation, it showed theta power changes
during the end of right leg swing and beginning of left leg swing (Fig. 3-1A, bottom). The right
S1 shows a similar pattern of theta modulation during transition from right leg swing to left leg

swing (Fig. 3-1B, bottom).
13
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STN interacts with motor and sensory cortices during different phases of the gait

cycle

Because the STN has direct connections with sensorimotor cortices and plays important
functions in motor control, we examined whether the STN interacts with the cortex during
specific phases of the gait cycle. To determine the nature and degree of this interaction, we
compared the averaged magnitude-squared coherence value between the STN and M1/S1 for
each brain hemisphere during the gait cycle. We found increased STN-M1 theta band
coherence during contralateral toe-off and initial contralateral leg swing, similar to the power
modaulations seen in the STN (Fig. 4A). Interesting, STN-S1 showed greater theta and alpha band
coherence during ipsilateral heel-strike (Fig. 4B). The two brain hemispheres showed reciprocal

coherence modulations.

Patient-specific oscillatory biomarkers of gait

Because our data showed several distinct gait-related frequency bands of modulation
during the gait cycle, we used a data-driven approach to determine individual-specific
frequency bands that are putative biomarkers for heel-strike and toe-off events. We created
frequency bands of varying lengths ranging from 0-50 Hz, extracted power spectral density
values at each gait event, and performed an ANOVA test for each band (Fig. 5-1). We found

that each patient had unique frequency bands where power values differentiated gait events

14
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(Fig. 5). Significant gait-event-modulated frequency bands were found within all canonical
frequency bands, with a majority in the theta and beta bands (Fig. 5A). Frequency ranges of the
gait-event-modulated bands varied by electrode location but were typically a sub-range of the
canonical bands. By comparing the instantaneous power spectral density during each of the
four gait events, we found power differences between gait events that are temporally distinct
(Fig. 5A, inset plots), whereas gait events occurring in temporal proximity have a more similar

power spectra profile (Fig. 5A).

To evaluate how the amplitudes of these gait-specific biomarkers change over the gait
cycle, we the averaged their power over a 1 second period around each gait event and found
them to fluctuate for the duration of the gait cycle (Fig. 5B). Power averages for the left heel-
strike and right toe-off events are offset by half a gait cycle to the right heel-strike and left toe-
off events. In all subjects, the left and right hemispheres showed reciprocal power modulations

across different contacts.

To investigate whether each gait event’s instantaneous powers are distinct from each
other, a multiple comparison test was performed between all possible pairs of gait events.
Significant power differences were found between left and right heel-strikes in subjects 1 and 2
in both hemispheres (Fig. 5C). Other significant differences occurred between toe-off events

(Fig. 5C). Gait events temporally close to each other did not differ in power.
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Decoding gait events based on cortical and subcortical LFPs

Based on finding spectral signatures for specific gait events of the gait cycle, we wanted
to decode gait events using these personalized “gait biomarkers.” Using the linear discriminant
analysis (LDA) model, we were able to classify toe-off events with 261% accuracy (Table 2) in all
subjects from at least one of the recorded contacts (Fig. 6). Significant above-chance accuracy
was achieved from models built using left and right hemisphere data in subjects 2 and 3, but
only from left hemisphere trained models in subject 1. No electrode location outperformed
others consistently but was subject specific. Overall, the median model accuracies were greater
than chance and ranged from 54.4-60.3%. Further analysis of the models showed the maximum
discriminatory value achieved, evaluated by calculating the area under the curve (AUC), ranged

between 0.585-0.763.

We also explored whether coherence between STN to M1/S1 could classify toe-off
events. The subcortical-cortical coherence pair that achieved the highest accuracy was subject
specific, and only subject 2 and 3 had models reach significant above-chance accuracy

(accuracy: 58.9-68.3%, AUC: 0.602-0.786) (Fig.6-1).

Discussion

We used chronic invasive recordings in PD patients to advance our understanding of
dynamic subthalamic and sensorimotor oscillatory changes that underlie natural overground
walking. First, we demonstrate the novel finding that STN displays increased low frequency (4-

12 Hz) activity during the double support period prior to contralateral leg swing. Furthermore,
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STN shows increased theta frequency coherence with the primary motor during initiation of
contralateral leg swing, implicating a potential mechanism for the supraspinal network to scale
and fine tune leg muscle activation during stepping. Our findings support the hypothesis that
oscillations from the basal ganglia and cortex direct alternating power fluctuations between the
two hemispheres in that is offset by half a gait cycle, which may indicate a mechanism to
coordinate and maintain continuous bipedal locomotion in humans. In addition, we identified
patient-specific, gait-related biomarkers in both subcortical and cortical areas at discrete
frequency bands. Exploratory ensemble classification models showed above-chance accuracy in

classifying left and right gait events using oscillatory power features.

Alternating multi-frequency modulations from bilateral STNs during gait

Several groups have described beta power modulations within the STN during the gait
cycle between the left and right hemispheres during seated stepping (Fischer et al., 2018) and
overground walking (Arnulfo et al., 2018; Canessa et al., 2020; Hell et al., 2018) in Parkinson’s
disease patients. Because elevated beta synchrony within the STN is associated with the
akinetic state in Parkinson’s disease, it is logical that beta desynchronization is required for
movement, including gait. We found that these gait-event related alternating power
modulations between the left and right STNs are not limited to the high beta frequency range

but also involve other low frequency bands.
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What are the roles of subthalamic lower frequency (theta and alpha) modulation during
gait? Previous studies on upper extremity movement tasks have shown event-related
theta/alpha frequency synchronization within the STN at the onset and throughout the
duration of a sustained voluntary muscle contraction task (Kato et al., 2016; Tan et al., 2013). In
some cases, the amplitude of these theta/alpha oscillation correlate with the force generated
during hand movement (Anzak et al., 2012). STN theta activity has also been shown to have a
role in the cognitive control of movement, such as during sensorimotor conflict (Aron et al.,
2016; Zavala et al., 2017) and response inhibition (Alegre et al., 2013). We posit that these low
frequency oscillations emerge from the STN during periods of gait that require greater cortical
engagement. Based on increases in STN theta/alpha power we found during the transition from
double support (both feet on the ground) to single support (ipsilateral leg on the ground)
period, we postulate that these low frequency modulations engage multiple motor cortical
areas to generate the appropriate scale and force required during contralateral leg swing to

maintain stable single limb support and bipedal locomotion.

While some suggest that low-frequency modulations during gait may be secondary to
movement-related artifacts (Hell et al., 2018), we believe that these low-frequency oscillations
reflect physiological signals for several reasons. First, spectral activities that change during the
gait cycle are focal in frequency range and are not broadband in nature (Fig. 3). Second, the
spectral power changes in left and right STNs are offset by half a gait cycle, unlike in a previous
study where both STNs showed concurrent spectral power increases during the gait cycle

regardless of laterality (Hell et al., 2018). Finally, the dorsal and ventral STN, as well as M1 and
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S1 contacts connected to the same RC+S show different time-frequency changes from each

other during the gait cycle, and hence less likely to reflect artifacts.

One key question is whether these gait-related oscillatory modulations reflect
physiological or pathological gait patterns. While our patients did not have overt gait
abnormalities such as shuffling gait or freezing of gait, they performed the walking task on
dopaminergic medication, which can affect oscillatory activity (Foffani et al., 2006; Ray et al.,
2008). Pallidal LFP recorded from patients with segmental dystonia without gait disorders has
shown power modulations in the theta, alpha, and beta frequency during gait (Singh et al.,
2011), and demonstrated similar theta/alpha frequency power modulations during early stance
and swing phase of the contralateral leg. While we cannot rule out the presence of
compensatory signals in the disease state, we speculate that our results are an indicator of
physiological gait, rather than pathological. The dynamic changes of oscillations across different
frequency bands may provide a mechanism to coordinate and recruit different cortical and
subcortical areas in response to changes in posture, balance, and forward momentum during

walking.

Cortical-subthalamic interactions during gait

In a study involving simultaneous recording of STN LFPs and scalp EEG during walking in
Parkinson’s disease patients with freezing of gait, the authors found elevated cortical-STN

synchrony in 4-13 Hz during effective gait (Pozzi et al., 2019). The spatiotemporal specificity of
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field potentials captures by the permanently implanted cortical electrodes indicate distinct
interactions between the STN and different cortical areas during gait. We demonstrated
increased STN-S1 coherence in the low frequency ranges (theta-alpha) during the double-
support period between ipsilateral heel-strike and contralateral toe-off. We also found
increased STN-M1 theta frequency coherence during contralateral toe-off and early
contralateral leg swing. These alternations in coherence are offset by half a gait cycle between
the left and right hemispheres. To our knowledge, this is the first report of distinct patterns of
STN-S1 and STN-M1 synchrony during human gait. We speculate that increased STN-S1
coherence during ipsilateral heel-strike to contralateral toe-off may represent sensory
integration during the double support period as one prepares for leg swing. Increases in STN-
M1 theta coherence then follows, during initiation of contralateral leg swing, which may allow
the motor cortex to regulate the force of leg muscle activation required to drive forward
stepping during gait. While these M1-STN interactions may represent normal recruitment of leg
muscles during weight acceptance and transfer phase of the gait cycle, they may also represent
compensatory mechanisms by which greater cortical activity is required to drive and maintain

locomotion in Parkinson’s disease.

Gait event decoding and potential clinical significance

A key finding from our study was that for each patient, a unique range of frequencies
were significantly differentially modulated corresponding to the various gait events. While

these frequency bands often overlap canonical bands, they are usually narrower and span many
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different canonical frequencies. The variations among patients may be due to slight differences
in electrode placement. While our results show greater than chance median accuracy and
acceptable to medium discriminatory ability, the models may be under-optimized for each
subject. By constraining the set of possible hyperparameter values, possible values that would
result in better accuracy and discriminatory ability for different subjects may have been missed.
Additionally, the ratio of features (1770 total) compared to observations during feature
selection can over-fit the model, leading to poor feature selection. Nonetheless, our study

demonstrates the feasibility of distinguishing gait events based on cortical or STN LFP power.

One of the reasons to identify gait-specific biomarkers is to use them as control signals
for closed-loop, also known as adaptive DBS (aDBS). The Summit RC+S system implanted in our
subjects allow for aDBS in real time and utilizes LDA to detect different brain states using
Fourier transform power within a frequency band (Ansé et al., 2022; Sellers et al., 2021). The
aDBS feature of the Summit RC+S device has been successfully tested in PD patients (Gilron et
al., 20213, 2021b) and a cervical dystonia patient (Johnson et al., 2021), with varying timescale
for stimulation changes (from 100s of milliseconds to minutes). Therefore, it is feasible to
implement real time aDBS to rapidly change stimulation parameters to improve gait function in

Parkinson’s disease patients.
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Limitations

Our sample size is small due to invasive nature of these studies with investigational
devices. Patients performed all tasks while on medication, which may affect beta power
modulation. Due to variations in patient anatomy and electrode placement, M1 and S1
electrodes may capture different parts of the homunculus. Our event-related power
modulation from the cortex may be related to arm rather than leg movement. However, in
another study, we have observed that the motor cortex is attuned to different limb movements
in different frequency ranges (i.e., greater beta modulation during arm swing vs. greater theta
modulation during leg movement; unpublished data). Additionally, there is increasing evidence
pointing to the existence of intermixed neural tuning of the whole body, including leg and foot
movement, in the “hand knob” area of the precentral gyrus in humans (Willett et al., 2020;

Zeharia et al., 2012).

Conclusion

This study provides new insights on the role of subthalamic and sensorimotor
oscillations play in human gait. Our data also support the notion that the STN and sensorimotor
cortices contain patient-specific, gait-related frequency modulations that can be used to
distinguish between left and right gait events. This knowledge has the potential to be
integrated into adaptive neuromodulation therapies to improve gait functions in patients with

Parkinson’s disease.
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Figure and legends

Figure 1 DBS and cortical lead localization. (A) 3D reconstructions of all DBS lead locations in
the STN (orange). Individual subject’s leads are shown in by different colors. (B) 3D
reconstructions of cortical electrode paddle location. The two most anterior contacts overlie
the primary motor cortex (M1), while the two most posterior contacts overlie the

somatosensory cortex (S1).

Figure 2 Synchronized gait kinematic data with raw local field potential recordings during
natural walking. (A) Illustration of gait events and phases during a single gait cycle, aligned to
left heel-strike (0% gait cycle). (B) Heel-strike (squares) and toe-off (circles) gait events were
detected from the left (black) and right (gray) force sensitive resistor data. Heel-strikes were
detected when the heel force (solid line) exceeded a threshold (dotted line), and toe-offs were
detected when toe force (dashed line) fell below the threshold. (C) Example local field potential

recordings from both STN and M1 synchronized to a gait cycle.

Figure 3 STN local field potentials show spectral power modulations during the gait cycle.
Grand average z-score spectrograms from the dorsal and ventral STNs normalized to a gait

cycle. (A and B) Significant power increases are seen during weight acceptance of the left leg in
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the left hemisphere (~0-10% gait cycle) and right leg in the right hemisphere (~50-60% gait
cycle). Power increases was observed in a wide frequency band (10-50 Hz) in the ventral STN
and in low frequency band (5-15 Hz) in the dorsal STN. Significant beta (13-30 Hz)
desynchronization was also seen during contralateral leg swing and heel-strikes. (A and B) Gait
cycle percentages and frequencies where power was significantly different compared to the
average power during the entire walking task is outlined by the dashed white lines. A linear
mixed-effect model was used to determine significance with p-value < 0.05. Extended Data
Figure 3-1 shows grand average gait cycles from cortical recorded contacts. Extended Data
Figure 3-2 shows a single gait cycle from all recorded areas from all subjects in the study and

shows alternating left-right power changes throughout the gait cycle.

Figure 3-1 Cortical local field potentials show spectral power modulations during the gait
cycle. (A) Left M1 shows alpha (8-10 Hz) and beta desynchronization during right leg heels
strike and initial right leg swing, respectively. Right M1 shows increased theta-alpha (5-12 Hz)
during initial left leg swing and decreased beta around left heel-strike. (B) Significant decreased
beta power is seen during left leg weight acceptance and initial right leg swing. Increases in
theta-beta power (5-23 Hz) were seen during weight acceptance of the right leg and initial left

leg swing.
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Figure 3-2 Individual gait cycle spectrograms. Spectrograms of a single gait cycle from the STN
and sensorimotor cortices. All subjects show alternating left and right spectral power changes

throughout the gait cycle.

Figure 4 Low frequency STN/Cortical coherence increase during the initiation of contralateral
leg swing. Grand average z-score coherogram from STN-M1 and -S1 normalized to a gait cycle.
Reciprocal coherence modulation was seen in both hemispheres. (A) STN-M1 coherence
showed significant increases in the theta band (5-8 Hz) during the initiation of contralateral leg
swing through mid-swing. Additionally, the left hemisphere showed beta band coherence
increases during initial ipsilateral weight acceptance. (B) STN-S1 coherence modulation was
seen theta/alpha band across both hemispheres during ipsilateral heel-strike. (A and B) Gait
cycle percentages and frequencies where coherence was significantly different from the
average coherence during the entire walking task are outlined by the dashed white lines. A

linear mixed-effect model was used to determine significance with p-value < 0.05.

Figure 5 Unique frequency bands within each subject can differentiate gait events. (A)
Average heel-strike and toe-off PSDs from the STN and M1. Each subject had unique frequency
bands where power during heel-strikes (left heel-strike = green, right heel-strike = orange) and
toe-off (left toe-off = blue, right toe-off = pink) gait events were significantly different (p < 0.05).
The unique frequency bands were mainly found within the canonical frequency ranges (color of

shaded area), but rarely spanned the entire range (width of shaded area). Inset plots show
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power differences between gait events temporally distinct from each other in relation to the
gait cycle. (B) Average power and standard error = 1 second around the gait event. Reciprocal
power modulation, offset by half a gait cycle, is seen between temporally distinct gait events in
all subjects. Furthermore, all left hemisphere data show higher power during left heel-
strike/right toe-off and most of the right hemisphere data show higher power during right heel-
strike/left toe-off. (C) Boxplot of gait event power within the frequency bands from B. Individual
gait event powers are shown as transparent colored dots with outliers shown on the dotted
line. Multiple comparison tests were performed against each pair of gait event within the same
hemisphere. Level of significance is indicated as follows: * = p<0.05 and ** = p<0.005. Extended
Data Figure 5-1 shows a visualization of the arbitrary length frequency bands created and an

ANOVA p-value heat-map.

Figure 5-1 Example arbitrary frequency bands and Kruskal-Wallis testing. Related to Figure 5.
Varying length frequency bands were created between 0-50 Hz. Each frequency is referenced as
a bin. Start and end bin refers to the varying length frequency band’s start and end frequency.
Power during left and right heel-strike and toe-off events were extracted from each frequency
band and an Kruskal-Wallis test was performed. The p-value of the Kruskal-Wallis test was
stored and a heat map was created. Example of the resulting heat map is shown from subject 2
M1 recorded area. Significant Kruskal-Wallis test outcomes can be observed to fall within the

low gamma band (35-45 Hz) frequency.
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Figure 6 Gait event decoding using oscillatory features achieves greater than chance accuracy.
LDA ensemble classifiers were trained on left and right toe-off events for each contact and
hemisphere across all subjects. All subjects had at least one contact where at least one model’s
classification accuracy was 261.1%. Maximum accuracy achieved across all subjects were
between 61.1-69.2%. Maximum discriminatory ability was calculated using the area under the
receiver operator characteristic curve and ranged between 0.585-0.763. Each subject’s models
are shown on each row. The recorded area the LDA model was built from is indicated in color
and follows this order (left to right): red — ventral STN, green — dorsal STN, blue — S1, purple —
M1. Bar pattern indicates brain hemisphere the model was built from: solid — left hemisphere,

“uxn

striped — right hemisphere. Asterisks (“*”) above bar indicates significance: p-val < 0.05 (*),
<0.005 (“**”), <0.0005 (“***”). Extended Data Figure 6-1 shows results from classifier models

built using coherence values between the STN and M1.

Figure 6-1 Toe-off gait event decoding using STN-M1 coherence. LDA ensemble classifiers were
trained using coherence magnitude squared values between the ventral and dorsal STN to M1
and S1. Highest accuracy and discriminatory value achieved were similar to models built from
individual recorded areas. The highest accuracy achieved were between 58.9-68.3% and highest
discriminatory values were between 0.602-0.786. Each subject’s models are shown on each
row. The recorded area the LDA model was built from is indicated in color and follows this
order (left to right): pink — ventral STN, yellow — dorsal STN, brown — S1, orange — M1. Bar

pattern indicates brain hemisphere the model was built from: solid — left hemisphere, striped —
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696  right hemisphere. Asterisks (“*”) above bar indicates significance: p-val < 0.05 (*), <0.005
697  (“**”), <0.0005 (“***”),
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Tables

Table 1

Subject Demographics

ID Age/Sex Disease DBS UPDRS Ill Total UPDRS Il Total UPDRS Il PIGD*
Duration Target Off-meds On-meds On-meds
Subject 1 42/M 06 STN 41 14 2
Subject 2 58/M 09 STN 34 09 1
Subject 3 61/M 05 STN 35 12 1
Table 2
Classification Summary
ID Median Maximum Median Maximum
Accuracy Accuracy AUC AUC
Subject 1 55.8% 69.2% 0.592 0.763
Subject 2 60.3% 68.0% 0.635 0.733
Subject 3 54.4% 61.1% 0.574 0.585

AUC = Area Under the Curve
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