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How do spike collisions affect spike sorting
performance?

Abstract1

Recently, a new generation of devices have been developed to record neural activity simultane-2

ously from hundreds of electrodes with a very high spatial density, both for in vitro and in vivo3

applications. While these advances enable to record from many more cells, they also challenge the4

already complicated process of spike sorting (i.e. extracting isolated single-neuron activity from5

extracellular signals). In this work, we used synthetic ground-truth recordings with controlled lev-6

els of correlations among neurons to quantitatively benchmark the performance of state-of-the-art7

spike sorters focusing specifically on spike collisions. Our results show that while modern template-8

matching based algorithms are more accurate than density-based approaches, all methods, to some9

extent, failed to detect synchronous spike events of neurons with similar extracellular signals. In-10

terestingly, the performance of the sorters is not largely affected by the the spiking activity in11

the recordings, with respect to average firing rates and spike-train correlation levels. Since the12

performances of all modern spike sorting algorithms can be affected as function of the activity of13

the recorded neurons, scientific claims on correlations and synchrony should be carefully assessed14

based on the analysis provided in this paper.15

keywords: spike sorting, spike collision, benchmark, overlapping spikes16

Significance statement17

High-density extracellular recordings allow experimentalists to get access to the spiking activity of18

large neuronal population, via the procedure of spike sorting. It is widely known that spike sorters19

are affected by spike collisions, i.e., the occurrence of spatio-temporally overlapping events, but a20

quantitative benchmark is still lacking. In this contribution, we perform systematic comparisons on21

the performance of many different spike sorters against spike collisions, showing that modern spike22

sorters, to different degrees, are still affected by synchronous events. Our results suggest that scientific23

claims on neuron correlations and synchrony should be carefully assessed as they could result from24

spike sorting errors.25

Introduction26

Accessing the activity of large ensemble of neurons is a crucial challenge in neuroscience. In recent years,27

Multi-Electrode Arrays (MEA) and large silicon probes have been developed to record simultaneously28

from hundreds of electrodes packed with a high spatial density, both in vivo [Angotzi et al., 2019, Jun29

et al., 2017] and in vitro [Berdondini et al., 2009, Frey et al., 2009]. With these devices, each electrode30

records the extracellular field in its vicinity and can detect the action potentials (or spikes) emitted by31

the neighboring neurons in the tissue. In contrast to intracellular recording, extracellular recordings do32

not give a direct and unambiguous access to single neuron activity and one needs to further process the33

recorded signals to extract the spikes emitted by the different cells around the electrodes. This complex34

problem of source separation is termed “spike sorting”. While various solutions for small number of35

channels (tens at max) can be found in the large literature on spike sorting algorithms [Quiroga et al.,36
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2004], these new devices with thousands of channels challenge the classical approach to perform spike37

sorting.38

Recently, a new generation of spike sorting algorithms have been developed to be able to deal with39

hundreds (or even thousands) of channels recorded simultaneously (see [Hennig et al., 2019, Lefebvre40

et al., 2016] for recent reviews). The extent to which these modern spike sorting algorithm recover41

all the spikes from a neuronal population is still under investigations, and might differ depending on42

the species, tissue, cell types, activity level. While most of the real ground truth recordings [Neto43

et al., 2016, Yger et al., 2018] are assessing the performance at the single cell level, in order to obtain44

an exhaustive assessment of the spike sorting performance at the population level, one must turn to45

use fully artificial or hybrid dataset [Buccino and Einevoll, 2020, Magland et al., 2020] to properly46

compare and quantify the performances of the algorithms. But even with such dataset, in most of the47

studies, errors are only measured as False Positive/Negative rates, and the reasons behind failures of48

the algorithms are often overlooked.49

In this study, we focused on a key property of the spike trains, at the core of most of these failures,50

i.e. their fine temporal correlations. Indeed, temporal correlations are ubiquitous in the brain, and the51

higher the number of recorded cells because of the increased density of the probes, the more prominent52

they are. Correlations might have an important role in population coding ([Averbeck et al., 2006] for53

a review), but correlated activity for nearby cells results, in the extracellular signals, in overlapping54

activities and thus are harder to identify than isolated spikes. While pioneering work [Pillow et al.,55

2013] claimed that template-matching based algorithms were more suited to recover overlapping spikes56

(either in space and/or time), the extent to which they are is not properly defined. In this work, our57

aim is to estimate how good (or bad) modern spike sorters are in recovering colliding spikes. What58

are the limits of the sorters, and what are the key parameters of the recordings and/or of the neurons59

that could influence these numbers?60

Materials and Methods61

All the code used to generate the figures is available at https://spikeinterface.github.io/.62

Simulated datasets63

We used the MEArec simulator [Buccino and Einevoll, 2020] to generate 30-minutes long synthetic64

ground truth recordings. In brief, MEArec uses biophysically detailed multicompartment models to65

simulate the extracellular action potentials, or so called “templates". For this study, we used 13 cell66

models from layer 5 of a juvenile rat somatosensory cortex [Markram et al., 2015, Ramaswamy et al.,67

2015] to get a dictionary of biologically plausible templates. Given this database, we took the layout68

of a NeuroNexus probe (A1x32-Poly3-5mm-25s-177-CM32 with 32 electrodes in three columns and69

hexagonal arrangement, a x- and y-pitch of 18 µm and 22 µm, respectively, and an electrode radius of70

7.5 µm), and randomly positioned 20 cells in the vicinity of the probe, so that every simulated neuron71

has a unique template (i.e. average extracellular action potential). Templates are then combined with72

spike trains and slightly modulated in amplitude to add physiological variability. Additive uncorrelated73

Gaussian noise is finally added to the traces. We generated simulated recordings with 20 neurons74

randomly positioned in front of the probe, a noise level of 5 µV and a sampling rate of 32 kHz. To75

obtain more robust results, we generated 5 recording per conditions with various random seeds. The76

spike times were kept unchanged, but the positions and the templates of the 20 neurons were changed77

in each of the individual recording. This allowed us to populate the distribution of cosine similarities78

between pairs.79

Generating spike trains with controlled correlations80

To generate the recordings with various firing rates and correlations levels, we used the mixture pro-81

cess method described in [Brette, 2009]. Since by default the method generates controlled cross-82
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correlograms with a decaying exponential profile, we modified it to generate cross-correlograms with83

a Gaussian profile, in order to have more synchronous firing for small lags. By setting three different84

rate levels (5, 10 and 15 Hz) and three different correlation levels (0, 10 and 20 %) this gave rise to 985

conditions, so to 45 recordings in total (5 recordings per conditions, see above).86

Template similarity87

We define the template for neuron i as Ti ∈ RTxC , with T representing the number of samples and88

C the number of channels. After flattening the template by concatenating the signals from different89

channels (Tf
i ∈ RT ·C), the similarity between two neurons i and j is quantified via the cosine similarity90

defined as follows:91

similarity =
Tf

i · Tf
j

∥Tf
i ∥∥T

f
j ∥

= cos(θ) (1)

where θ is the angle between the two (T ·C)-dimensional vectors Tf
i and Tf

j . The cosine similarity92

is therefore bounded between -1 (templates are anti-parallel) and 1 (templates are parallel). A cosine93

similarity of 0 means that the templates are orthogonal.94

Spike sorters95

All the spike sorters used in this study were run using the SpikeInterface framework [Buccino et al.,96

2020], with default parameters. The following are the exact versions that we used for the different spike97

sorters: Tridesclous (1.6.4), Spyking-circus (1.0.9) [Yger et al., 2018], HerdingSpikes (0.3.7) [Hilgen98

et al., 2017], Kilosort (v1, 2, or 3) [Pachitariu et al., 2016], YASS (2.0) [Lee et al., 2020], IronClust99

(5.9.8) [Chung et al., 2017], HDSort (1.0.3) [Diggelmann et al., 2018]. The desktop machine used has100

36 Intel Xeon(R) Gold 5220 CPU @ 2.20GHz, 200Go of RAM and a Quadro RTX 5000 with 16Gb of101

RAM as a GPU.102

Spike sorting comparison103

All the quantitative metrics between the results of the spike sorting software and the ground-truth104

recording were made via the SpikeInterface toolbox.105

When comparing a spike sorting output to the ground-truth spiking activity, first an agreement106

score between each pair of ground-truth and sorted spike trains is computed as:107

scoreij =
#nmatches

#nigt +#njsorted −#nmatches

where #nigt and #njsorted are the numbers of spikes in the i-th ground-truth spike train and the108

j-th sorted spike trains, respectively. #nmatches is the number of spikes within 0.4 ms between the109

two spike trains.110

Once scores for all pairs are computed, an hungarian assignment is used to match ground-truth111

units to sorted units [Buccino et al., 2020]. All spikes from matched spike trains are then labeled as:112

true positive (TP), if the spike is found both in the ground-truth and the sorted spike train; false113

positive (FP), if the spike is found in the sorted spike train, but not in the ground-truth one; and false114

negative (FN), if the spike is only found in the ground-truth spike train.115

After labeling all matched spikes, we can now define these unit-wise performance metrics for each116

ground-truth unit that has been matched to a sorted unit:117

accuracy =
#TP

#TP +#FP +#FN
(2)

precision =
#TP

#TP +#FP
(3)
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recall =
#TP

#TP +#FN
(4)

The global accuracy, precision, and recall values shown in Figure 2D are the average values of the118

performance metrics computed by unit.119

Using the unit metrics and the output of the matching procedure, we can further classify each120

sorted unit as:121

well detected: sorted units with an accuracy ≥ 0.8122

false positive: sorted units that are not matched to any ground-truth unit and have a score < 0.2123

redundant: sorted units that are not the best match to a ground-truth unit but have a score ≥ 0.2124

overmerged: sorted units with a score ≥ 0.2 with more than one ground-truth unit125

In order to generate the spike lag versus recall figures (e.g. Figures 3-6) we expanded the SpikeIn-126

terface software with several novel comparison methods and visualization widgets. In particular, we127

extended the ground-truth comparison class to the CollisionGTComparison, which computes per-128

formance metrics by spike lag. In addition to the agreement score computation and the matching129

described in the previous paragraphs, this method first detects and flags all “synchronous spike events”130

in the ground-truth spike trains. Two spikes from two separate units are considered to be a “syn-131

chronous spike event” if their spike times occur within a time lag of 2 ms. The synchronous events132

are then binned in 11 bins spanning the [−2, 2] ms interval and the collision recall is computed for133

each bin. With a similar principle, we implemented the CorrelogramGTComparison to compute the134

lag-wise relative errors in cross-correlograms between ground-truth units and spike sorted units.135

Results136

Generation of the ground-truth recordings137

To test how robust the recently developed spike sorting pipelines are against spike collisions [Chung138

et al., 2017, Hilgen et al., 2017, Lee et al., 2020, Pachitariu et al., 2016, Yger et al., 2018], we generated139

synthetic datasets using the MEArec simulator [Buccino and Einevoll, 2020] (see Methods). More140

precisely, we took the layout of a NeuroNexus probe with 32 electrodes in three columns and hexagonal141

arrangement, and randomly positioned 20 cells in the vicinity of the probe (see Figure 1A), so that142

every simulated neuron has a unique template (i.e. average extracellular action potential). Figure 1B143

shows three sample templates with respectively low, almost null, and high similarity. The similarity144

between templates is computed as the cosine similarity of the flattened signals (see Methods) and the145

random generation of the positions and cell types of the simulated neurons (and thus of the templates)146

gives rise to the similarity matrix displayed in see Figure 1C. This similarity, as expected, decreases147

with the distance between the neurons, computed either from the ground-truth positions of the cells148

from the simulation or estimated as the barycenters of the templates (Figure 1D). The more negative149

the similarity is, the more templates are “in opposition”; the more positive it is, the more templates150

are “similar”. A similarity close to 0 means that templates do not overlap and are strongly orthogonal,151

i.e. dissimilar. Importantly, the simulations allowed us to cover rather uniformly the space of cosine152

similarities between templates, which will be used to assess the performance of spike sorters during153

collisions (Figure 1E).154

To generate the spike trains, we first used a simple approach that forced all the neurons to fire as155

independent Poisson sources at a fixed and homogeneous firing rate of 5 Hz. To make the simulation156

more biologically plausible, we pruned all spikes breaking a refractory period violation of 4 ms. The157

resulting auto- and cross-correlograms for three sample units are shown in Figure 1F (auto-correlograms158

are in green on the diagonal), while Figure 1G and H display the average (red line) and standard159
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Figure 1: Generation of the synthetic recordings. A) 20 cells are randomly placed in front of
a 32-channel NeuroNexus probe layout. The plot shows the location of each cell for one recording.
B) Sample templates generated by neurons that are close too each other (#0 and #1) or far apart
(#2 and #3). C) Cosine similarity matrix between all pairs of templates for a sample recording.
D) Cosine similarity as function of the distance between the neurons, either using the real position
from the simulations (orange circles), or the estimated barycenter of the templates (blue circles). E)
Histogram of the cosine similarity distribution from one of the simulated recordings. F) Cross- and
auto- correlograms for three sample spike trains. G) Average auto-correlograms of all units (red line,
gray area represents the standard deviation). H) Average cross-correlogram over all pairs of neurons
(red line, gray area represents the standard deviation around the mean). I) Sample traces from 10
channels of one synthetic recording.

deviation (grey shaded area) auto- and cross-correlation among all units, respectively. A sample160

snippet of the generated traces from one recording is shown in Figure 1I, for a subset of 10 channels161

out of 32. Due to the independence of the Poisson sources, both the average cross-correlograms162

(Figure 1G) and auto-correlograms – outside the ±4 ms used as refractory period – (Figure 1H) are163

flat.164

Global performance of the spike sorters165

In order to assess the global performances of the sorting procedure on our synthetic datasets, we166

generated 5 recordings with various random seeds and averaged the results. Figure 2 summarizes the167

main findings. First, we noticed that, as seen in Figure 2A, the run time was roughly constant across168

sorters, except for HDSort, with its higher run time. The number of well detected units is similar169

among sorters, as shown in Figure 2B, but it is worthwhile noticing that Kilosort 3 is the only sorter170

producing many false positive and redundant units (see Methods for classification of units). Kilosort 2171

and HDSort also identify more false positive then well detected units. Importantly, we did not perform172

any curation of the spike sorting output, but we consider the raw output of each sorter as is.173

To check whether all sorters correctly discovered all templates, we computed the cosine similarity174

between the ground-truth templates from the simulations and the ones found by the sorters, comparing175

such a metric with the accuracy. By doing so, we wanted to rule out the fact that the sources of the176

errors could primarily be due to problems in the clustering. Indeed, if the spike sorting algorithms are177
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properly behaving, they should find templates very similar to the ground-truth ones. As it can be seen178

in Figure 2C, all sorters are on average finding the correct templates, with the notable exception of179

YASS (in grey) and to some less extent HDSort (in red). The average cosine similarity between found180

and ground-truth templates is larger than 0.97 for most template-matching based sorters (Spyking-181

circus, Kilosort 1/2/3, IronClust, Tridesclous), so we can safely assume that most of the errors are182

not due to the clustering step. Moreover, the overall accuracy of most of the spike sorters is relatively183

high (∼0.95), except for HDSort and HerdingSpikes which yield lower scores (Figure 2D). However,184

this averaged number does not tell us anything regarding the nature of these errors. While this error185

rate might seem low, it is likely that it is crucial, since it can potentially originate from the collisions,186

and thus from the correlations among neurons.187

A B

C D
HD HS IC KS KS2

KS3 SC TDC YS

HD HS IC KS KS2
KS3 SC TDC YS

1.00.98
0.9

Figure 2: Spike sorting performance. A) Average run times over 5 different recordings (see
Methods) for all the tested sorters. Errors bars indicate the standard deviation over multiple recordings.
B) Average number of cells found by the sorters that are either well detected, redundant, overmerged
or considered as false positive (see Methods). Error bars indicates standard deviation over multiple
recordings. C) The average cosine similarity between templates found by the sorters and ground-truth
templates, as function of the accuracy for the given neurons. Ellipses shows standard error of the
means in cosine similarity (x-axis) and accuracy (y-axis). D) Average metrics (accuracy, precision,
recall, see Methods) for all the sorters. Error bars show standard deviation over multiple recordings.
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Spike sorting performance is affected by spike collisions188

Using fully synthetic recordings with exhaustive ground truth, we can look at how good individual189

spike sorters perform specifically with respect to spatio-temporal collisions. To do so, we computed190

the collision recall (see Methods) as a function of the lag between two spikes, for a given pair of191

neurons. By averaging over multiple pairs of ground-truth neurons with similar template similarity192

(and over multiple recordings, see Methods), we can obtain a picture of how accurate the sorters193

are specifically with respect to the spike time lags and the similarities between templates. Figure 3194

displays the collision recall per sorter as a function of the lag (x-axis), colored by the similarity between195

templates. Each panel shows the performance of a different spike sorter. One can immediately see196

that only few sorters are able to accurately resolve lag correlations that are close to zero, even when197

templates are strongly orthogonal (low cosine similarity). This is the case for Kilosort 1 and 2, and for198

Spyking-circus, all of which use a template-matching procedure that should theoretically explain this199

behavior. It is worthwhile noting that the decrease in performance for Kilosort 3 is surprising, since the200

authors confirmed the software is using the exact same template-matching procedure than in previous201

versions. This means that errors are likely originating either from subtle variations in the preprocessing202

steps, and/or in the clustering that has been changed and thus might lead to slight differences in the203

templates. However, while performances are still good for Kilosort 1 and 2 even when the average cosine204

similarity between pairs is increased, they slightly degrade for Spyking-circus. Density-based sorters205

(HerdingSpikes and IronClust), on the other hand, do not have a spike collision resolution strategy206

and this is reflected by their overall poorer performance. It is interesting to notice that Tridesclous,207

HDSort, YASS, and Kilsort 3, also using a template-matching based procedure to resolve the spikes,208

are not properly resolving the temporal correlations even for dissimilar templates. Different template-209

matching strategies are probably the cause of the differences among sorters. For example, HDSort and210

HerdingSpikes do not implement any strategy for spike collision resolution [Diggelmann et al., 2018]211

and that is reflected in the quick degradation of performance as template similarity increases. Kilosort212

uses a GPU-based implementation of the k-SVD algorithm [Aharon et al., 2006], used in matching213

learning as a dictionary learning algorithm for creating a dictionary for sparse representations. By214

doing so, it performs a reconstruction of the extracellular traces by optimizing both the templates and215

the spike times, which is an enhancement compared to what is done in Spyking-circus and Tridesclous.216

This might explain the boost in performance especially striking for templates with high similarity217

(similarity > 0.8).218

Generation of controlled spike collision simulated data219

The results shown in the previous section have been obtained only in a particular regime of activity,220

with all neurons firing independently as Poisson sources with an average firing rate of 5 Hz. However,221

neurons usually do not fire independently of each other, but rather have intrinsic correlations, also222

depending on different brain areas, brain states, and species. In addition, the average firing rates can223

also largely vary depending on brain areas. As an example, it is well known that Purkinje cells in the224

cerebellum have a very high firing rate [Sedaghat-Nejad et al., 2021] that networks tends to synchronize225

their activity either in slow waves during sleep [?], or during pathological activity (such as epileptic226

seizures [?]). Therefore, assessing how performances may vary during different conditions is important227

to generalize our observations.228

In order to study how spike sorting is affected by correlations and firing rates, we used a mixture pro-229

cedure [Brette, 2009] that allowed us to control precisely the shape of the auto- and cross-correlograms230

for the injected spike trains. More precisely, we decided to explore in a systematic manner three rate231

levels (5, 10 and 15 Hz), and three correlation levels (0, 10, and 20 %). Note that the 5 Hz firing rate232

with 0 % correlation corresponds to the scenario displayed in Figures 2-3.233

Figure 4 shows the average of cross- and auto-correlograms and the spike trains of a recording where234

cells are firing as independent Poisson sources at 5 Hz in panels A-C (and thus with 0 % correlation,235

as shown by the flat average cross-correlograms in Figure 4A) and at 15 Hz with 20 % correlation236
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Figure 3: Collision recall per sorter. Error (quantified as the collision recall, see Methods) for
various sorters and for all possible lags (between -2 and 2 ms), as function of the similarity between
the pairs of templates (color code). All curves are averaged over multiple pairs and multiple recordings
(see Methods).

(Figure 4D-F). Even though experimental recordings would contain a broader spectrum of firing rates237

and correlations, here we focus on assessing how different firing regimes affect spike sorting performance238

in a controlled setting. By varying these conditions, we wanted to challenge the internal clustering step239

of the spike sorting algorithms and see how generalizable are the results we observed in the previous240

section. One would expect that the increased density of spikes (both in terms of firing rates and of241

synchrony) should degrade the performance of the spike sorters by affecting both the clustering step242

and the template-matching step, which in turn would degrade the resolution of spike collisions. It is243

worthwhile noting that all the rates and correlation levels are homogeneous among neurons and only244

the templates are different.245

Do correlations and firing rates affect spike sorting of spike collisions?246

To assess whether firing rate and spike train correlation affect spike sorting performance, we selected247

all unit pairs with a similarity greater than 0.5. We first averaged the recall curves for all template248

similarities (i.e. we averaged the curves with similarity greater than 0.5 shown in Figure 3).249

In Figure 5A we show the recall with respect to the spike lags averaged over all 9 configurations (3250

firing rates x 3 correlations) for each sorter. The thick line represents the mean recall and the shaded251

area is the standard deviation over different rate-correlation configuration. All sorters, except YASS,252

appear to have a very consistent curve (low standard deviation) over different configurations and do253

not seem affected by changes in average firing rates and correlations in the spike trains. YASS’ large254

standard deviation can be explained by looking at individual recall curves at different rate-correlation255

regimes (Figure 6 - yellow lines): the spike sorting performance degrades with increasing firing rates,256

but it does not seem to be strongly affected by increased correlation rates. However, we should stress257

that since the collision recall is a relative measure, the same value for a larger number of spikes (when258
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A B C

D E F

Figure 4: Controlling spike trains correlations and firing rates. A) Average cross-correlograms
between all pairs of distinct neurons firing as independent Poisson sources at 5Hz (red curve, gray area
represents the standard deviation) B) Same as A, but for auto-correlograms. C) Rater plot showing
the activity of the uncorrelated neurons firing at 5Hz. D-F Same as A-C, but for a rate of 15 Hz and
20 % correlation.

-4 -2 2 4

co
lli

si
on

 re
ca

ll

A B C

cc
 e

rr
or

 (%
)

co
lli

si
on

 re
ca

ll

lag (ms) cosine similarity time (ms)

Figure 5: Spike sorting performance for different conditions. A) Average collision recall over
the 9 conditions shown in Figure 6 (3 firing rate levels and 3 correlation levels) as function of the lag
between spikes, for pairs of cells with cosine similarity higher than 0.5. The shaded area shows the
standard deviation over the conditions. B) Similarly as A, the average collision recall as function of
the cosine similarity between pairs of cells. C) Mean relative error between the ground-truth cross-
correlograms and the estimated ones, for all sorters, averaged over all pairs with a similarity higher
than 0.5
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Figure 6: Average performances of the spike sorters as function of the temporal lags. Each panel shows
the average collision recall for template pairs with a similarity above 0.5 for a different condition, in
terms of firing rate and correlation levels.

firing rate is increased) means that overall, there are more misses for all sorters.259

Similar considerations can be done by looking at the average recall with respect to template simi-260

larity (Figure 5B). To construct this plots, we integrated the curves in Figure 3 over lags for different261

cosine similarities. Also in this case, the curves appear consistent (low standard deviation) with the262

exception of YASS, for which recall is reduced with increased firing rate regimes (Figure 7 - yellow263

lines). It is worth noticing that when the cosine similarity becomes negative, all the sorters perform264

very poorly in properly resolving the overlaps. This could be explained by the fact that when a pair265

of templates is anti-parallel (for example in the left panel of Figure 1A), a subset of electrodes might266

show a negative signal for one template and a positive signal from the other (due to return currents267

in the dendritic signals [Gold et al., 2009]). Effectively, when a spike collision between the two spikes268

occur, this would lower the amplitude of the negative peak, which could reduce the detectability of269

the spike.270

The collision recall metric is mostly useful to obtain a quantitative insight on the behavior of the271

spike sorting algorithms, but how do these errors transpose in practical situations? To assess this, we272

measure the relative error (in percentage) between the ground-truth cross-correlograms and the ones273

computed from the spike sorting outputs. We then averaged these error curves among all recordings274

and experimental conditions (firing rates and synchrony levels). As shown in Figure 5, the error in275

the estimated cross-correlogram can be as large as more than 50% for small lags, and for some spike276

sorting algorithms such as HDSort, HerdingSpikes or IronClust. Moreover, it is also worth noticing277

the baseline error rate is not the uniform across sorters. From this metric, we can again conclude that278

template-matching based spike sorting algorithms such as Kilosort (1, 2, and 3), Spyking-circus or279

Tridesclous are much better to resolve fine temporal correlations among neurons.280
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Figure 7: Average performances of the spike sorters as function of the template similarity. Each panel
shows the average collision recall over all lags in [−2, 2] ms for a different condition, in terms of firing
rate and correlation levels.
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Discussion281

In this study, we showed in a systematic and quantitative manner how spatio-temporal correlations282

can be underestimated during spike sorting. Using synthetic datasets, we compared a large diversity of283

modern spike sorters and showed how they behaved as function of the similarity between the templates284

and the temporal lags between spikes. As expected, the closer the spikes are in time, the harder is285

it, for all sorter, to properly resolve the overlaps. However, more interestingly, the more similar the286

templates are, the higher the failures are. These failures are striking especially for spike sorters that are287

not relying on template-matching based approaches (HerdingSpikes, IronClust). For the ones using a288

template-matching based approach (Kilosort, Spyking-circus, Tridesclous, HDSort), the problem is less289

pronounced (with the exception of HDSort) but still present, and therefore this phenomenon should290

be taken into account when making claims about the synchrony.291

To our surprise, the global behavior of the spike sorters did not depend much on the overall292

firing rate and/or the correlation levels. This allows us to generalize the findings and we think that293

the quantitative results shown here could be translated to various in vitro or in vivo recordings from294

different brain regions and species. As shown in Figure 5, while the variability over different conditions295

is rather high for some algorithms, template-matching based algorithms tend to be rather robust and296

overall better in resolving spike collisions. This is a very encouraging sign towards a unified and297

reproducible automated solution for spike sorting [Buccino et al., 2020, Magland et al., 2020], agnostic298

of the recording conditions.299

The results shown in the paper were obtained with purely artificial recordings, since we need300

exhaustive information on the ground-truth spiking activity of all neurons to quantitatively compare301

and benchmark different spike sorters. However, it would be interesting to generalize these observations302

with real recordings, assuming one would have a proper ground truth at the population level. Indeed,303

such a ground truth is needed to compute the collision recall and see how sorters behave as function304

of lags and similarities between templates. To our knowledge, such a ground truth does not exists305

[Diggelmann et al., 2018, Neto et al., 2016, Yger et al., 2018]. While one could try to generate an306

“approximated" ground truth by combining the output of several spike sorters with an ensemble spike307

sorting approach (as in [Buccino et al., 2020]), the disagreements among sorters are currently so high308

that this process is hard if not impossible, if one want to sample from a large number of pairs.309

While missing spikes for very dissimilar templates and small lags is problematic, the errors made for310

very similar templates may be less frequent depending on the probe layout and neuronal preparation.311

Indeed, such errors strongly depends on the distribution of template similarities between all pairs of312

recorded cells, and this distribution might differ from recording to recording. For example, in the313

retina [Wässle, 2004] one would expect highly synchronous cells, of the same functional type, to be far314

apart from each other because of an intrinsic tiling of the visual space. Such properties are unknown in315

vivo or in cortical structures, but might bias the distribution of template similarities between nearby316

neurons, and thus modify the estimation of collision recalls.317
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