The Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) System of the Central Amygdala Mediates the Detrimental Effects of Chronic Social Defeat Stress in Rats

https://doi.org/10.1523/ENEURO.0260-22.2022

Cite as: eNeuro 2022; 10.1523/ENEURO.0260-22.2022

Received: 27 June 2022
Revised: 28 July 2022
Accepted: 12 August 2022

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2022 Seiglie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
Manuscript Title: The pituitary adenylate cyclase-activating polypeptide (PACAP) system of the central amygdala mediates the detrimental effects of chronic social defeat stress in rats

Abbreviated Title: Central Amygdala PACAP and Social Defeat Stress

Authors and Affiliations: Mariel P. Seiglie, Ph.D.1, Lauren Lepeak, M.S. 1, Clara Velázquez-Sanchez, Ph.D. 1, Antonio Ferragud, Ph.D.1, Teresa Le 1, Pietro Cottone, Ph.D. 1 and Valentina Sabino, Ph.D. 1

1. Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA

Author Contributions: MPS, CVS, PC and VS Designed Research, MPS, LL, CVS, AF, TL Performed Research, MPS, LL, CVS, VS Analyzed Data, MPS, LL, CVS, PC and VS Wrote the Paper.

Correspondence should be addressed to: Prof. Valentina Sabino, Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E Concord St, R-612, Boston, MA 02118. vsabino@bu.edu

Number of Figures: 6 Number of words for Abstract 249
Number of Tables: 0 Number of words for Significance Statement: 52
Number of Multimedia: 0 Number of words for Introduction: 911
Number of words for Discussion: 2,671

Acknowledgments: We thank Hannah Bae, Angela Ho, Carlos Santiago-Medero, Tina Ta, Diane Choun Houy Tang, and Sabrina Zhang for their precious technical help.

Conflict of Interest: Authors report no conflict of interest.

Funding sources: This publication was made possible thanks to grant numbers MH113128 (VS), MH093650 (VS), AA025038 (VS), AA026051 (PC), and AA029495 (PC), from the National Institute on Mental Health (NIMH) and the National Institute on Alcohol and Alcoholism (NIAAA), and the Boston University's Undergraduate Research Opportunities Program (UROP).
ABSTRACT

Many psychiatric diseases stem from an inability to cope with stressful events, as chronic stressors can precipitate or exacerbate psychopathologies. The neurobiological mechanisms underlying the response to chronic stress and the resulting anxiety states remain poorly understood. Stress neuropeptides in the extended amygdala circuitry mediate the behavioral response to stress, and hyperactivity of these systems has been hypothesized to be responsible for the emergence of persistent negative outcomes and for the pathogenesis of anxiety- and trauma-related disorders. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1R are highly expressed within the central amygdala (CeA) and play a key role in stress regulation. Here we used chronic social defeat stress (CSDS), a clinically relevant model of psychosocial stress that produces robust maladaptive behaviors in rodents. We found that 10 days of CSDS cause a significant increase in PACAP levels selectively in the CeA of rats, as well as an increase in PAC1R mRNA. Using a viral vector strategy, we found that PAC1R knockdown in the CeA attenuates the CSDS-induced body weight loss and prevented the CSDS-induced increase in anxiety-like behavior. Notably, CSDS animals displayed reduced basal corticosterone levels and PAC1R knockdown in CeA further reduced them. Finally, the CeA PAC1R knockdown blocked the increase in corticotropin-releasing factor (CRF) immunoreactivity induced by CSDS in CeA. Our findings support the notion that the persistent activation of the PACAP-PAC1R system in the CeA mediates the behavioral outcomes of chronic psychosocial stress independently of the hypothalamic-pituitary-adrenal axis, perhaps via the recruitment of the CRF system.
Significance Statement

Our results identify a key role for the neuropeptide PACAP specifically of the central amygdala in mediating the negative physiological and behavioral consequences of chronic stress, independently of the hypothalamus-pituitary-adrenal axis. This system may, therefore, represent a novel target for the treatment of stress-related psychopathologies such as anxiety-related disorders and PTSD.
Mental disorders are an enormous global health issue due to their high cost to society and their prevalence. In particular, in the United States anxiety disorders represent the most common mental illness, with a lifetime prevalence above 30% (Baxter et al., 2013; Roehrig, 2016; NIMH, 2021; Collaborators, 2022), while the lifetime prevalence of posttraumatic stress disorder (PTSD) is 6.1-9.2% (Goldstein et al., 2016; Koenen et al., 2017). Chronic and traumatic stressors play a large role in the development of psychiatric diseases, as they can precipitate or exacerbate psychopathologies (de Kloet et al., 2005; Juster et al., 2010; Russo et al., 2012). Despite the ongoing and worsening mental health crisis, the neurobiological mechanisms underlying the pathological response to chronic stress remain poorly understood. Multiple neurobiological systems are involved in the response to stress. The brain responds to states of threatened homeostasis by activating adaptive responses intended to maintain the equilibrium and prepare us for immediate or potential harm (Chrousos and Gold, 1992; Tovote et al., 2015). However, when stressors become repeated or chronic, hyperactivation of specific neurotransmitter systems may result in the emergence of persistent negative outcomes (Shin and Liberzon, 2010; Duval et al., 2015; Sapolsky, 2015).

The central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), both part of the extended amygdala, orchestrate the emotional component of the behavioral response to stress (Alheid and Heimer, 1988; Koob and Le Moal, 2005). The CeA integrates sensory information from the environment and projects information to effector regions to trigger appropriate responses to threats (Davis, 1992; Davis and Shi, 2000; Zarrindast et al., 2008). While in a non-pathological state the amygdala signaling is tapered appropriately to the
severity of the present threat (Mathew et al., 2008), this region is instead hyperresponsive in anxiety disorders (Etkin and Wager, 2007; Etkin et al., 2009; Shin and Liberzon, 2010; Fox et al., 2015).

Pituitary adenylate cyclase-activating polypeptide (PACAP) has been proposed to be a master regulator of the stress response (Dore et al., 2013; Hammack and May, 2015; Varodayan et al., 2020; Boucher et al., 2021a). PACAP, a 38-amino acid peptide belonging to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily, exerts its effects mainly via its cognate receptor PAC1 (PAC1R), which binds PACAP with an affinity of 1000-fold greater than VIP (Harmar et al., 1998; Vaudry et al., 2009). Dense PACAP-immunoreactive fibers of non-local origin are found in the capsular and lateral parts of the CeA (CeC, CeL) and in the latero-dorsal BNST (STLD) (Piggins et al., 1996; Hannibal, 2002; Zhang et al., 2021), while PACAP mRNA is highly expressed in hypothalamic and brainstem nuclei (Hannibal et al., 1995; Joo et al., 2004).

In humans, a single nucleotide polymorphism in the PAC1R gene is associated with post-traumatic stress disorder (PTSD) symptoms in women, a mutation which is also associated with increased amygdala activity in response to threatening faces (Ressler et al., 2011; Stevens et al., 2014). In rodents, central administration of PACAP into the ventricles, hypothalamus, and extended amygdala evokes a stress-like response (Agarwal et al., 2005; Hammack et al., 2009; Stroth et al., 2011; Dore et al., 2013; Roman et al., 2014; Seiglie et al., 2015; Meloni et al., 2019). Exposure to acute stressors increases PACAP levels in both CeA and BNST (Seiglie et al., 2019), and chronic variate stress recruits PACAP in the BNST (Hammack et al., 2009; Roman et al., 2014). PACAP knockout mice display an anxiolytic profile and attenuated
endocrine, molecular, and behavioral responses to chronic stress (Hashimoto et al., 2001; Stroth and Eiden, 2010; Gaszner et al., 2012; Lehmann et al., 2013; Kormos et al., 2016). Consistent with PACAP’s ability to mediate stress responses, PACAP-immunoreactive fibers are found in close proximity to corticotropin-releasing factor (CRF) neurons (Hannibal et al., 1995; Legradi et al., 1998; Missig et al., 2014); PACAP acts as an upstream regulator of CRF and many PACAP behavioral effects are prevented by CRF receptor antagonism (Tsukiyama et al., 2011; Dore et al., 2013; Seiglie et al., 2015; Miles et al., 2019). In the CeA, PACAP increases GABA release via PAC1R via a presynaptic mechanism (Varodayan et al., 2020), an action that mimics that of CRF itself (Roberto et al., 2010; Varodayan et al., 2017).

The chronic social defeat stress (CSDS) is a clinically relevant, highly translational model of psychosocial stress based on chronic social subordination, which produces robust maladaptive behaviors (Krishnan et al., 2007; Russo et al., 2012; Hammels et al., 2015). Indeed, defeated animals show a wide range of anxiety-like and depressive-like behaviors, as well as physiological changes, including decreased body weight gain (Berton et al., 2006; Krishnan et al., 2007; Iniguez et al., 2016). Notably, while whole body PACAP gene deletion in mice has been shown to have no significant effects on affective behaviors in non-stressed mice, it instead led to a robust behavioral protection in CSDS animals, suggesting that PACAP may mediate the detrimental effects of CSDS (Lehmann et al., 2013). However, where in the brain PACAP is mediating the detrimental effects of CSDS is currently unknown.

Here, we hypothesized that the CeA PACAP/PAC1R system is recruited by CSDS and that it contributes to the resulting physiological and behavioral outcomes. We first assessed the effects of CSDS on PACAP levels in the CeA and BNST and measured PAC1R expression in
CeA. We then evaluated the functional role of PAC1R by knocking down this receptor in the CeA via an AAV-shRNA and assessing its effects on body weight, anxiety-like behaviors, plasma corticosterone levels, and CeA CRF levels.
MATERIALS AND METHODS

Subjects

The experimental animals (intruders) were male Sprague Dawley rats (Envigo) weighing 301-325 g upon arrival. Rats were single-housed in 10 1/2" x 19" x 8" wire-topped, plastic cages on a 12-hour reverse light cycle (lights off at 11:00 am), in an AAALAC-approved humidity- and temperature-controlled vivarium. Food (Envigo Teklad LM-485 7012 diet) and water were available ad libitum. Male Long-Evans retired breeders, 400-600g upon arrival, were used as residents, and housed in 20" x 16" x 8 1/2" wire-topped, plastic cages with ovariectomized Long-Evans females. Experimental tests were conducted during the rats’ dark cycle. 3 groups of rats were used in the experiments; group sizes were as follow: Group 1 CSDS PACAP immunohistochemistry (IHC) experiment (total 20 rats, 8 controls (Ctrl.) and 12 CSDS): CeA, N= 6-11/group (17 rats); BNST/PVN, N= 8-12/group (20 rats); Group 2 CSDS PACAP quantitative real-time PCR (qPCR) experiment: N= 6-11/group (total 17 rats); Group 3: AAV-PAC1R KD experiment: Body weight, N= 9-12/group (total 43 rats); light-dark test, N= 9-10/group (39 rats); plasma CORT, N= 9-12/group (44 rats); CRF IHC, N= 6-9/group (30 rats).

Procedures adhered to the National Institutes of Health Guide for the Care and Use of Laboratory Animals and the Principles of Laboratory Animal Care and were approved by the Institutional Animal Care and Use Committee.

Social Defeat Stress

The chronic social defeat stress (CSDS) paradigm was modified from the resident-intruder model originally designed by Miczek and colleagues (Miczek, 1979; Tidey and Miczek, 1980).
The CSDS sessions, which occurred once a day on consecutive days between 5:00pm and 7:00pm, consisted of an intruder rat being placed into the home cage territory of an unfamiliar resident, which had previously been trained for high aggression (Fekete et al., 2009). Exposure lasted until the intruder submitted (i.e. assumed a submissive, supine position for >3 sec) or, if submission did not occur, up to 5 min, in which case the intruder was moved to a second resident and the session restarted. Upon submission, the intruder was then placed inside a wire mesh enclosure (7x9x8.5 in) inside the resident cage for the remainder of the 30 min session, which allowed auditory, olfactory, visual and limited physical contact (mouth/nose) but prevented injuries. Control (Ctrl.) rats were picked up, handled, and returned to their home cage for 30 min.

PACAP Immunohistochemistry

Experimental details: A set of Controls (Ctrl) and chronic social defeat stress (10 days, CSDS) rats were anesthetized with isoflurane and then transcardially perfused as previously described (Iemolo et al., 2013), 24 hr after the last (10th) CSDS session. Coronal 30 µm sections were cut on a cryostat, collected, and stored in cryoprotectant at −20 °C. Every sixth section (180 µm apart) for CeA (bregma range: -2.0 to -3.0 mm) and every fourth section (120 µm apart) for BNST (bregma range: 0.24 to -0.24 mm) were selected and processed for immunohistochemistry.

PACAP staining: PACAP immunohistochemistry was performed as in (Seiglie et al., 2019; Ferragud et al., 2021). Free-floating sections were washed in Tris-buffered saline (TBS) after every incubation. Sections were incubated in 0.3% hydrogen peroxide for 10 min to block endogenous peroxidases. Sections were then blocked for 1 hr in 3% normal goat serum, 0.4% Triton X-100 and then transferred into an anti-PACAP primary antibody (Peninsula Labs, San
Carlos, CA, 1: 8,000) in blocking solution for 24 hr at 4 °C. Sections were then incubated in secondary antibody (1: 500, biotinylated anti-rabbit, Vector Laboratories, Burlingame, CA) in blocking solution for 2 hr at room temperature and finally incubated in an avidin–biotin horseradish peroxidase ABC solution (Vector Laboratories, Burlingame, CA) in blocking solution for 1 hr. Sections were then processed using a diaminobenzidine substrate kit (Vector Laboratories, Burlingame, CA) until reaction was complete and mounted onto slides and allowed to dry overnight. The following day, slides were dehydrated and coverslipped using DPX mountant (Electron Microscopy Sciences, Hatfield, PA).

Quantification of PACAP staining: Using the Stereo Investigator software (MicroBrightField, Williston, VT), 10X objective pictures of sections containing either the CeA or the BNST were taken using an Olympus BX-51 microscope equipped with a Retiga 2000R live video camera (QImaging, Surrey, BC), a three-axis MAC6000 XYZ motorized stage (Ludl Electronics, Hawthorne, NY), and a personal computer workstation. Chromogen PACAP pictures were taken in bright field under a preset exposure and gain, in order to standardize the images. For each image, area contours were drawn corresponding to CeC and CeL for CeA and to the latero-dorsal part of the BNST (STLD), where PACAP immunoreactivity is observed. Densitometry analysis was performed using ImageJ software (NIH); mean optical density of signal was calculated by subtracting the background signal and then by normalizing the value to the traced area.

Brain Punching and qPCR

Tissue PAC1R and CRF mRNA levels were determined as previously described (Cottone et al., 2009; Sabino et al., 2011; Dore et al., 2013). Rats were anesthetized with isoflurane and
Brains were quickly removed and coronally sliced in a brain matrix; 1 mm diameter bilateral punches containing the CeA were collected on an ice-cold stage. Total RNA was prepared from tissue using the RNeasy Lipid Mini kit (Qiagen, Valencia, CA); total RNA was quantified by Nanodrop 1000 (Thermo Scientific, Wilmington, DE) and then reverse transcribed with QuantiTect Reverse Transcription kit (Qiagen, Valencia, CA), which includes a DNA removal step. For quantitative real-time PCR, Roche Light Cycler 480 Master-plus Sybr Green mix (Roche Applied Science, Indianapolis, IN) was used. Reactions (10 µl) were carried out in a 96-well plate Realplex2 machine (Eppendorf). The primers (0.5 µM final concentration, Sigma, St. Louis, MO), synthetized with a standard desalting purification, were the following:

- **PAC1R**

 \[\text{CAT GGT CAT CTT GTG CCG CTT CC} \text{ and } \text{GAC TGC TGT CCT GCT CGG CGT ACA (94 °C 15 sec; 70 °C 8 sec);} \]

- **CRF**

 \[\text{TGC TCG GCT GTC CCC CAA CT and CTG CAG CAA CAC GCG GAA AAA (95 °C 10 sec; 59.2 °C 5 sec; 72 °C 10 sec);} \]

- **Cyclophilin A (CypA)**

 \[\text{TAT CTG CAC TGC CAA GAC TGA GTG and CTT CTT GCT GGT CTT GCC ATT CC (95 °C 20 sec; 58 °C 15 sec; 72 °C 20 sec).} \]

Standard curves were constructed using sequenced PCR products. Results were analyzed by second derivative methods and then normalized to CypA expression levels. Standards and samples were run in duplicate. Gene-specific amplification was determined by melting curve analysis as one peak at the expected melting temperature and by agarose gel electrophoresis.

Intracranial AAV microinfusion procedure

Rats (N= 46) were anesthetized with 3-5% isoflurane and placed in a stereotaxic frame (Kopf Instruments, Tujunga, CA) for bilateral AAV microinfusion into the CeA. Briefly, a 2 µl, 22-gauge Hamilton microsyringe was lowered 8.4 mm from skull surface into the CeA (AP -2.64, ML ±4.2) with the incisor bar set at -3.3 mm below the interaural line (flat skull), according
to the Paxino’s and Watson’s rat brain atlas (Paxinos and Watson, 2007). Either a PAC1R knockdown adeno-associated viral vector (AAV1-CAG-GFP-rADCYAP1R1-shRNAmir, “AAV-PAC1R-shRNA”) or a Control virus (AAV1-CAG-GFP, “AAV-GFP”) was infused at a rate of 0.2 µl per minute over the course of 5 min (total volume: 1 µl per side). The needle was kept in place for an additional 10 min following infusion to prevent backflow. The ability of this specific AAV-shRNA construct to knockdown PAC1R expression in rats was previously confirmed (Minnig et al., 2021; Minnig et al., 2022). After surgeries, rats were allowed at least 3 weeks of recovery before the start of the CSDS procedure to allow for maximum transfection. At the end of testing, viral placement and spread were verified in a blind manner as assessed by GFP signal; only rats with correct viral location and satisfactory spread in both sides of the CeA were included in the data analysis (14 rats were excluded). Figure 3A shows a representative viral spread in the CeA. Body weights were recorded before surgery, before the start of the CSDS protocol, and then every 1-2 days during the 10 days of CSDS.

Light-Dark Test

The light–dark transfer test was performed as described previously (Bourin and Hascoet, 2003), 14-18 hours after the 7th CSDS session. The test apparatus was a Plexiglass rectangular box (50 x 50 cm) divided into two unequal compartments by a black partition with a small opening at the base. The smaller compartment (1/3) was kept dark (∼0 lx), while the larger compartment (2/3) was illuminated (20 lx) by a 75W light bulb located above. Rats were placed in the center of the dark compartment facing towards the partition at the beginning of the test, after 7 consecutive defeats. The sessions were recorded and the latency to enter the light compartment as well as the percent (%) of time spent in the light compartment during the 10-min test were scored by individuals blind to the treatments.
Plasma corticosterone measurement

Plasma levels of corticosterone (CORT) were determined as previously described (Cottone et al., 2009; Fekete et al., 2011; Dore et al., 2013; Iemolo et al., 2016). Blood was sampled from the rats’ tails 14-18 hours after the 9th CSDS session and collected in tubes containing 0.5M EDTA pH 8.0 (Gibco, ThermoFisher Scientific, Cambridge, MA). Plasma was obtained after blood centrifugation, and it was stored at −80 °C until levels of CORT-like immunoreactivity were determined using a commercially available radioimmunoassay kit, according to the manufacturer’s instructions (MP Biomedicals, Inc., Santa Ana, CA). Intra- and inter-assay coefficients of variation were <10%.

CRF Immunohistochemistry

Rats from the PAC1R KD experiment were euthanized 24 hr after the last (10th) CSDS session. After transcardial perfusion, coronal 30 μm sections were cut on a cryostat, collected, and stored in cryoprotectant at −20 °C. Every sixth section (180 μm apart) of the CeA (bregma range: -2.0 to -3.0 mm) were processed for immunohistochemistry. Slices were pretreated with 100 mM Urea (pH 9.5) for 10 min at 95 °C followed by 10 min in an iced water bath. Sections were placed for 1 hr in blocking solution (3% normal donkey serum, 0.4% Triton X-100) and subsequently incubated overnight at room temperature with a cocktail of two primary antibodies in blocking solution, an anti-CRF (1:200, Santa Cruz, Dallas, TX) and an anti-GFP (1:1,500, Abcam, Cambridge, MA). Sections were then incubated with the secondary antibodies donkey anti-rabbit Alexa Fluor 488 and donkey anti-goat Cy3 (Jackson Immunoresearch, West Grove, PA) 1:400 in blocking solution for 2 hr at room temperature. Sections were mounted onto glass
slides, coverslipped with Vectashield mounting medium (Vector Laboratories, Burlingame, CA), and stored at 4 °C.

Quantification of staining: Pictures of sections containing the CeL, where CRF immunoreactivity is mostly concentrated in, were taken as described above. CRF immunofluorescence pictures were captured through the Texas Red Filter cube (Olympus, Waltham, MA) under a preset exposure and gain. Densitometry analyses were performed using ImageJ software (NIH); images were converted to 8-bit and adjusted using the auto threshold Triangle algorithm. Once converted, mean density of the tracing for immunohistochemical signal was calculated and normalized based on the size of the tracing area.

Statistical Analysis

Three-way analysis of variance (ANOVA) was used on body weight change data and on light-dark test data, with Defeat and AAV-shRNA as between-subject factors and Time as a within-subject factor. Two-way ANOVAs were used on CRF density data, with Defeat and AAV-shRNA as between-subject factors. Pairwise post-hoc comparisons were made using Newman-Keuls test; Student’s t-test was used when comparing two groups. Significance was set at $p \leq 0.05$. The software/graphic packages used were SigmaPlot 11.0 and Statistica 7.0.
RESULTS

Effects of CSDS on PACAP levels in the CeA and BNST

Rats were subject to 10 daily consecutive sessions of either a chronic social defeat stress (CSDS) procedure or a control procedure, and brains were collected 24 hr after the last session for PACAP immunohistochemistry. As shown in Figure 1A, CSDS caused a significant increase in PACAP levels (immunoreactivity) in the CeA (t(15) = -6.93, \(p \leq 0.001 \)). Indeed, using densitometry, we found that CSDS animals showed a 23.3% increase in PACAP levels in the CeA, compared to non-defeated, control animals. Conversely, chronic social defeat stress did not alter PACAP levels in the BNST (t(18) = 0.05, not significant (n.s.)), as shown in Figure 1C (0.6% increase). Interestingly, CSDS significantly reduced PACAP levels in the PVN (see Fig. 1-1 in Extended Data, t(18) = 3.62, \(p \leq 0.01 \)). Representative images of PACAP immunoreactivity are shown in Figure 1B-C, 1E-F. The PACAP immunoreactivity in the CeA consists of fibers and is restricted to CeC and CeL, while in the BNST fiber staining is restricted to BSTLD, and therefore these were the subdivisions quantified. Interestingly, a single SDS increased PACAP levels in both CeA and BNST (see Fig. 1-2, Extended Data). Briefly, when a cohort of rats (N=8-9/group) was subject to a single social defeat session (Single SDS) or a Control procedure (Ctrl.), and PACAP immunoreactivity assessed 24 hr later, a Single SDS was found to cause a significant increase in PACAP immunoreactivity in both the CeC/CeL (t(15) = -3.98, \(p \leq 0.001, 47.2\% \), Fig 1-2A) and the STLD (t(14) = -2.72, \(p \leq 0.05, 27.5\% \), Fig 1-2B).

Insert Figure 1 about here
Effects of CSDS on PAC1R and CRF mRNA levels in the CeA

A separate set of rats was subject to 10 daily consecutive sessions of either a CSDS procedure or a control procedure, and brain punches containing the CeA were collected 24 hr after the last CSDS session. Using quantitative real-time PCR, we found that CSDS rats display higher levels of PAC1R mRNA in CeA, compared to Control rats (Δ31.9%, t(16)= 2.11, p< 0.05) CRF mRNA in CeA was found to be unaffected by CSDS (t(16)= 0.06, n.s.). We did not quantify the PACAP transcript because PACAP is not synthetized in this region and fibers are of non-local origin.

PAC1R knockdown in the CeA attenuates chronic social defeat-induced reduction in body weight gain

Prior to the beginning of the CSDS paradigm (i.e. 26-33 days after AAV infusion), body weight did not significantly differ between the AAV-GFP and AAV-PAC1R-shRNA group (average ± SEM, AAV-GFP: 376.0 ± 3.4 g, AAV-PAC1R-shRNA: 378.8 ± 3.1 g; t(44)= 0.61, n.s.). As shown in Fig. 3B, in animals infused with a control AAV (GFP groups), CSDS induced a reduction in body weight gain (white squares), compared to non-defeated, control (Ctrl.) animals (white circles) (CSDS: F(1,39)= 100.98, p≤ 0.001). Knocking down PAC1R in the CeA 3 weeks before the start of the CSDS procedure was able to significantly attenuate the CSDS-induced reduction in body weight across the entire 10 day defeat period (red squares, CSDS + 16.
AAV-PAC1R-shRNA) compared to CSDS-GFP, without affecting body weight change in non-
defeated, control animals (red circles, Ctrl + AAV-PAC1R) (AAV Type * CSDS: F(1,39)= 5.38,
$p \leq 0.05$; AAV Type: F(1,39)= 7.57, $p \leq 0.01$). Fig. 3C shows the cumulative body weight gain of
the 4 groups of animals in the 10-day period.

Effects of PAC1R knockdown in the CeA on CSDS-induced anxiety-like behavior

CSDS induced anxiety-like behavior, as measured by a reduction in time spent in the
light compartment of a light-dark test box in CSDS-GFP animals compared to Ctrl-GFP animals,
as shown in the time-course in Fig. 4A. Knockdown of PAC1R in the CeA was able to reverse
this heightened anxiety across the 10 min of the test (AAV Type * CSDS: F(1,35)= 4.65, $p \leq
0.05$). Indeed, CSDS + AAV-PAC1R-shRNA animals spent significantly more time in the light
compartment compared to CSDS + AAV-GFP animals and were no different than the Ctrl +
AAV-GFP group. Fig. 4B shows the time spent in the light compartment by the 4 groups of
animals in the cumulative 10 min.

Furthermore, knockdown of PAC1R in the CeA significantly decreased the latency to
first exit the dark compartment of the box induced by chronic social defeat, as shown in Fig. 4C,
(AAV Type * CSDS: F(1,35)= 8.65, $p \leq 0.01$).
Effects of PAC1R knockdown in the CeA on plasma Corticosterone levels

CSDS induced a pronounced reduction in plasma circulating CORT levels (CSDS: \(F(1,40) = 14.74, p \leq 0.001\)) and knockdown of PAC1R in the CeA caused a further reduction in CORT levels (AAV Type: \(F(1,40) = 4.43, p \leq 0.05\)). PAC1R knockdown did not differentially affect CORT levels in the Ctrl. and CSDS group regardless of CSDS exposure (AAV Type x CSDS: \(F(1,40) = 0.75, \text{n.s.}\)). Indeed, the plasma CORT concentration for the Ctrl + AAV-GFP group was 42.1 ± 6.3 ng/ml, this value was 25.1 ± 5.1 ng/ml in the CSDS + AAV-GFP group and the lowest (8.1 ± 1.2 ng/ml) in the CSDS + AAV-PAC1R-shRNA group.

Insert Figure 5 about here

Effects of PAC1R knockdown in the CeA on CSDS-induced increases in CRF

Rats infused with either AAV-GFP or AAV-PAC1R-shRNA and subject to either CSDS or a control procedure were euthanized 24 hr after the last CSDS session and the brains collected for CRF immunohistochemistry. As shown in Fig. 6A, CSDS caused an increase in CRF immunoreactivity in the CeA (Defeat: \(F(1,26) = 7.30, p \leq 0.05\)). However, the knockdown of PAC1R in the CeA significantly attenuated social defeat-induced increase in CRF (AAV-PAC1R x CSDS: \(F(1,26) = 4.12, p \leq 0.05\)). Representative images of CRF immunohistochemistry in the CeA are shown for the CSDS-GFP (Fig. 6B) and the CSDS-AAV-PAC1R group (Fig. 6C).
Insert Figure 6 about here
DISCUSSION

Our findings were the following: i) PACAP levels were increased in the CeA, but not the BNST, following CSDS; ii) Reducing PAC1R levels in the CeA via a viral vector containing a short hairpin RNA significantly attenuated CSDS-included body weight loss; iii) CeA PAC1R knockdown abolished CSDS-induced heightened anxiety-like behavior; iv) CeA PAC1R knockdown prevented CSDS-induced local increase in CRF levels. Collectively, the results of the present study reveal an important role for PACAP and PAC1R of the CeA in regulating the physiological and behavioral responses to chronic psychosocial stress.

The finding that PACAP immunoreactivity levels is higher in the CeA, but not in the BNST, of CSDS rats is a significant one as, to our knowledge, selective increases in CeA PACAP levels as a result of any type of chronic stress have not been reported before. This increase was observed 24 hr after the last social defeat session, suggesting that the effect does not dissipate shortly after the end of the defeat session. Notably, a single SDS session caused an elevation in PACAP levels in both CeA and BNST (see Extended Data), in line with previous reports showing that a single 10 min footshock session increases PACAP immunoreactivity in both brain regions (Seiglie et al., 2019). While the PACAP increase in BNST following acute SDS appears, therefore, to be transitory in nature and to undergo habituation with repeated sessions, the PACAP increase in CeA is instead persistent, suggesting that CeA PACAP recruitment could mediate the effects of CSDS. In this study, PACAP immunoreactivity in both the CeA and BNST appeared as fibers and cell bodies positive for the peptide were not visible, as reported before (Koves et al., 1991; Piggins et al., 1996; Hannibal, 2002; Seiglie et al., 2019). In line with the lack of PACAP mRNA in these regions, the majority of these fibers have been
proposed to represent afferent projections from other brain areas, and in particular the lateral parabrachial nucleus (LPBn), a critical source of the peptide in CeA and BNST (Missig et al., 2014; Missig et al., 2017). Interestingly, the chemogenetic activation LPBn-BNST PACAP projection has recently been shown to enhance anxiety-like behavior (Boucher et al., 2021b), while the effects of the direct stimulation of the LPBn-CeA PACAP pathway has not yet been reported. Importantly, we found using qRT-PCR that CSDS significantly increased PAC1R levels in the CeA, suggesting that chronic exposure to this psychosocial stress also upregulate the receptor.

To test the functional relevance of CSDS-induced increase PACAP levels and increase in PAC1R expression in CeA, a viral vector approach was used to test the effects of knocking down PACAP selective receptor PAC1R, which is highly expressed in this area (Joo et al., 2004), on the outcomes of CSDS. Stress can have profound effects on body weight. Acute and chronic stressors inhibit food intake and cause significant weight loss (Krahn et al., 1990; Marti et al., 1994). In this study, CSDS reduced body weight gain throughout the stress exposure period, consistent with previous findings (Bhatnagar et al., 2006; Krishnan et al., 2007; Becker et al., 2008; Pulliam et al., 2010; Venzala et al., 2012). We found that CeA PAC1R knockdown significantly attenuated the stress-induced reduction in body weight gain, suggesting that the PACAP released in CeA following CSDS contributes to the reduced body weight gain. Notably, the PAC1R knockdown had no effect on body weight gain in control, unstressed rats, indicating that the role of the PAC1R system in this specific brain region in the regulation of body weight is specific to changes due to the stressors, rather than pure ingestive behavior/metabolism. Even though we did not measure food intake in this study, previous studies have shown that, in models of chronic stress, the reduction in body weight gain is a result of stress-induced hypophagia (Iio
et al., 2012; Iio et al., 2014). Our data showing a role of PACAP in stress-induced body weight changes are in line with a previous study showing that chronic administration of the PAC1R/VPAC2R antagonist PACAP(6-38) is able to block chronic variable stress-induced changes in weight gain (Roman et al., 2014), as well as with another study showing that PACAP knockout mice are significantly protected from the effects of chronic restraint stress on weight loss (Mustafa et al., 2015). The induction of anorexia is a well-documented effect of PACAP (Mounien et al., 2009; Dore et al., 2013; Resch et al., 2013; Kocho-Schellenberg et al., 2014); our results are consistent in particular with previous report that intra-CeA infusion of PACAP causes anorexia and reduced body weight gain (Iemolo et al., 2015).

The mechanism by which PAC1R blockade counteracts body weight loss is not completely clear. Exogenous CRF administration suppresses food intake and its release during stress contributes to stress-induced hypophagia via activation of CRFR1, as shown by the ability of CRFR1 antagonists to block stress-induced inhibition of feeding behavior (Smagin et al., 1999; Griebel et al., 2002; Chotiwat and Harris, 2008). Based on these actions of CRF, and considering that PACAP has been shown to be upstream of CRF for several of its actions (Tachibana et al., 2003; Maruyama et al., 2006; Dore et al., 2013), we can speculate that the effect of PAC1R knockdown on CSDS-induced body weight change may involve the inhibition of the CRF/CRFR1 system. However, it is worth noting that the anorexigenic effect of PACAP in non-stressed conditions does not appear to involve CRF (Dore et al., 2013; Iemolo et al., 2015). Another possible mechanism could be the inhibition of the melanocortin and BDNF systems, as PACAP’s anorectic effects have been shown to involve the activation of MC4R and TrkB in the CeA (Iemolo et al., 2015). PAC1R knockdown in the CeA did not, however, completely block the effects of chronic social defeat stress on body weight change, suggesting
that other brain areas and/or other systems are likely also involved in this phenomenon, or that
the degree of PAC1R knockdown attained in CeA was insufficient to observe a full reversal.

CSDS has large effects on behavior. In general, defeated animals show signs of lower
wellbeing, including a heightened anxiety-like state, as measured with a variety of tests (Kinsey
et al., 2007; Bailey et al., 2009; Wohleb et al., 2011; Hanke et al., 2012; Iniguez et al., 2014;
Macedo et al., 2018). Here, we observed that CSDS induced anxiety-like behavior, as evidenced
by reduced time spent in the light compartment of a light-dark box and of the increased latency
to first exit the dark compartment. The light-dark test is based on an approach-avoidance
conflict between exploration of a novel environment and avoidance of brightly lit, open spaces
and it is sensitive to states of stress as well as anxiogenic/anxiolytic drugs (Crawley and
Goodwin, 1980; Crawley, 1985; Merlo Pich and Samanin, 1989; Young and Johnson, 1991;
Chaouloff et al., 1997). PAC1R knockdown in the CeA was able to prevent this CSDS-induced
anxiety-like behavior, suggesting that CeA PAC1R activation mediates this behavioral effect of
CSDS. Our results are in line with previous observations with whole body PACAP deletion,
showing that CSDS-exposed PACAP knockout mice have markedly attenuated CSDS-induced
emotional deficits, compared to wild-type control mice (Lehmann et al., 2013). PAC1R
knockdown in the CeA had no effect on anxiety-like behavior in control, unstressed rats. This
result is consistent with the profile observed with PAC1R antagonists in previous studies (Seiglie
et al., 2019) and suggest that endogenous PACAP is not released in CeA under basal, unstressed
condition, and that instead this system becomes activated in response to a high-intensity or
chronic stress. This profile shows similarities with CRFR1 antagonists, which display efficacy in
exploration-based models of anxiety under stressed, but not in non-stressed testing conditions
(Okuyama et al., 1999; Gilligan et al., 2000; Griebel et al., 2002; Heinrichs et al., 2002; Zorrilla
et al., 2002; Lelas et al., 2004; Ising et al., 2007; Zorrilla and Koob, 2010). The viral vector approach has clear advantages over the classical pharmacological approach in this specific case, in that it allows to skip the issue of poor selectivity of available PAC1R antagonists and allows to reach a constant blockade of PAC1R during the course of the CSDS exposure, without the need for repeated intracranial injections.

We also assessed the effect of CeA PAC1R knockdown on plasma CORT levels in both unstressed and CSDS animals. We found lower basal CORT levels in CSDS rats compared to controls, is in line with previous preclinical reports showing reduced baseline CORT levels and blunted HPA axis reactivity following CSDS, predator exposure models, and immobilization paradigms (Liberzon et al., 1997; Beitia et al., 2005; Harvey et al., 2006; Arndt et al., 2009; Zoladz et al., 2015), and consistent with what observed clinically in PTSD patients (Yehuda et al., 1993; Yehuda, 2001). The hyporeactive HPA axis characteristic of PTSD is thought to be due to enhanced negative feedback sensitivity via increased glucocorticoid receptor responsiveness (Yehuda et al., 2009; Hartmann et al., 2012; Schoner et al., 2017). Notably, the reduced basal CORT levels in CSDS rats may be in agreement with the reduced PACAP levels we found in the PVN; since PACAP in this brain region has been shown to mediate stress-induced activation of the HPA axis as well as elevations in CRF mRNA (Stroth and Eiden, 2010; Lehmann et al., 2013), PACAP reductions in PVN by CSDS may be responsible for the lower basal CORT levels. Interestingly, CeA PAC1R knockdown further decreased basal CORT levels, in both unstressed and CSDS rats. While this is in line with previous report that exogenous intra-

CeA administration of PACAP elevates plasma CORT levels (Iemolo et al., 2016), it also suggests that the reversal of the CSDS-induced heightened anxiety-like behavior is not a consequence of its effects on the HPA axis, as PAC1R knockdown did not “normalize” CORT
levels in CSDS animals, but rather a cumulative effect of CSDS and CeA PAC1R knockdown was observed. These results are in agreement with the notion that the behavioral response to stress is mediated by the extended amygdala and occurs independently of HPA axis activation (Britton et al., 1986; Dunn and Berridge, 1990; Menzaghi et al., 1994; Koob and Heinrichs, 1999) and with previous findings that the anxiogenic and the HPA activating effects of PACAP administration involve different mechanisms (Dore et al., 2013).

The CeA is a very heterogeneous structure with a rich diversity of cell types and complex circuitry (Ciocchi et al., 2010; Haubensak et al., 2010; Ahrens et al., 2018; McCullough et al., 2018), and the PACAP neurocircuit mechanisms in the CeA are so far not well understood. Using immunohistochemistry, we found that CSDS resulted in a significant increase in CRF levels in the CeA. This observation is in line with previous findings showing elevated CRF and elevated CRF receptor binding in the CeA following chronic psychosocial stress (Fuchs and Flugge, 1995; Albeck et al., 1997). PAC1R knockdown in the CeA was able to significantly prevent the increases in CRF levels caused by CSDS, suggesting that CRF activation may be the downstream mechanism mediating the detrimental effect of PAC1R upregulation and hyperactivity. While CSDS-GFP animals had about a 75% increase in CeA CRF compared to their non-stressed counterparts, CSDS-PAC1R knockdown rats had only a 10% increase from their non-stressed counterparts and, most striking, 45% less CRF in the CeA compared to the defeated-GFP rats. CeA PAC1R knockdown had no effect on CeA CRF levels in non-stressed controls. CRF in the CeA is expressed both in neuronal cell bodies made locally as well as in terminals originating also from afferent brain regions; since our data showed that CSDS does not affect CeA CRF mRNA, we focused on CRF terminals and used densitometry to quantify CRF staining, as fiber staining is very evident and limited CRF-immunoreactive neurons can be
detected unless animals are previously treated with an axonal transport blocker (Wang et al., 2011). Central administration of PACAP has been shown to augment CRF expression and CRF neuronal activation in the hypothalamus (Grinevich et al., 1997; Li and Sawchenko, 1998; Agarwal et al., 2005; Norrholm et al., 2005) as well as CRF peptide levels in the CeA (Dore et al., 2013); whole body PACAP deletion prevents the increase of CRF expression by prolonged stress (Stroth and Eiden, 2010). We speculate that PACAP may affect local CRF release via a presynaptic action on CRF terminals in the CeA. In support of the former hypothesis, Varodayan et al. (Varodayan et al., 2020) found that, in the medial subdivision of CeA (CeM), PACAP increases CeM GABA signaling via a presynaptic mechanism of action on PAC1R which, in microcircuits containing multiple GABAergic neurons, can result in a disinhibition of inhibitory neurons and an increase in net CeM stimulatory output. Interestingly, a similar presynaptic increase in GABA release has been shown for CRF in the same model (Cottone et al., 2009; Roberto et al., 2010; Cruz et al., 2012; Varodayan et al., 2017). Therefore, our results are in line with a proposed involvement of the local CRF system in the effects of PACAP in the CeA, although future experiments will need to test this hypothesis directly. Another hypothesis that could be tested in future studies is that PACAP released in CeA during stress may activate the PKC delta (PKCδ) neuronal population, whose activation elicits aversion, anxiety, and nociception (Cai et al., 2014; Botta et al., 2015; Wilson et al., 2019; Chen et al., 2021). Future experiments will be needed to determine the cell-types and circuits activated by PACAP, to better understand how this neuropeptide fits into this structural and functional complexity.

These results point to a key role of CeA, and not BNST, in the effect of this specific type of chronic stressor. Although the areas activated following social defeat have been described, the role of specific brain areas in CSDS-induced emotional dysregulation remains unclear.
Specifically in the context of the extended amygdala, it has been proposed that chronic stress, and the anxiety-related behaviors resulting from it, is related more to the functioning of the BNST than the amygdala (Davis et al., 1997; Walker et al., 2009; Ressler, 2010). Our data suggest instead that this notion that CeA is involved in short-term, phasic fear while the BNST would mediate sustained fear may not always be accurate, perhaps depending on the specific type and pattern of stress (and, accordingly, while here CSDS selectively increases PACAP in CeA, chronic variable stress has been shown to selectively increase PACAP in BNST (Hammack et al., 2009; Lezak et al., 2014)). Our results are consistent with the extensive preclinical and human literature suggesting that a hyperreactive amygdala is key to an exaggerated perception of the threat, and to anxiety and mood disorders in general (Roozendaal et al., 1997; Whalen et al., 2001; Davidson et al., 2002; Frodl et al., 2008; Admon et al., 2009; Pitman et al., 2012). In addition, circuits mediating anxiety/aversion vs. fear conditioning are recently beginning to be differentiated, which may have played a role in the apparent discrepancy (Ciocchi et al., 2010; Haubensak et al., 2010; Cai et al., 2014; Meloni et al., 2019; Wilson et al., 2019; Chen et al., 2021). In addition, our data are a further demonstration that while the magnitude of the hypothalamic pituitary adrenal (HPA) stress response is limited by negative feedback mechanisms, the enhanced amygdala activity following chronic stress can trigger a positive feedback loop which potentiates anxiety and avoidance, therefore potentially promoting the development of stress-related pathologies (McEwen, 2017). A limitation of this study is that it was performed exclusively in male subjects because historically the CSDS model was developed in males; future studies will be needed to determine either the generalizability or the selectivity of the effects using female animals.
Altogether, these results suggest that chronic psychosocial stress recruits the PACAP/PAC1R system of the CeA in rats and that it mediates its negative physiological and behavioral consequences, independently of the HPA axis. Perturbations of the CeA PACAP-PAC1R system may, therefore, mediate the aberrant stress responses characteristic of anxiety-related disorders and PTSD, perhaps via a modulation of CRF release. PACAP and PAC1R represent potential important therapeutic targets for these psychopathologies.

(3-fluoro-4-methylphenyl)ethyl][5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301:333-345.

Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW,
penetrance, receptor occupancy and antistress in vivo efficacy of a small molecule
corticotropin releasing factor type I receptor selective antagonist.
Neuropsychopharmacology : official publication of the American College of
Peptide in the Central Amygdala Causes Anorexia and Body Weight Loss via the
Melanocortin and the TrkB Systems. Neuropsychopharmacology : official publication of
the American College of Neuropsychopharmacology 40:1846-1855.
Iemolo A, Seiglie M, Blasio A, Cottone P, Sabino V (2016) Pituitary adenylate cyclase-
activating polypeptide (PACAP) in the central nucleus of the amygdala induces anxiety
Iemolo A, Blasio A, St Cyr SA, Jiang F, Rice KC, Sabino V, Cottone P (2013) CRF-CRF1
receptor system in the central and basolateral nuclei of the amygdala differentially
mediates excessive eating of palatable food. Neuropsychopharmacology 38:2456-2466.
behavior and elevation of hypothalamic malonyl-CoA in socially defeated rats. Biochem
Biophys Res Commun 421:301-304.
defeat stress on peripheral leptin and its hypothalamic actions. BMC Neurosci 15:72.

Li HY, Sawchenko PE (1998) Hypothalamic effector neurons and extended circuitries activated in "neurogenic" stress: a comparison of footshock effects exerted acutely, chronically, and in animals with controlled glucocorticoid levels. The Journal of comparative neurology 393:244-266.

Zarrindast MR, Babapoor-Farrokhran S, Babapoor-Farrokhran S, Rezayof A (2008) Involvement of opioidergic system of the ventral hippocampus, the nucleus accumbens or the central amygdala in anxiety-related behavior. Life sciences 82:1175-1181.

Figure Legends

Fig. 1. Rats were subject to 10 daily consecutive sessions of either a CSDS procedure or a control (Ctrl.) procedure, and brains were collected 24 hr after the last session for PACAP immunohistochemistry in ((A), (B), (C)) CeA (CeC/CeL) and (D), (E), (F)) BNST (STLD). N= 6-11/group. Representative 10x images of the staining in the (B) CeA and (E) BNST of Ctrl. and CSDS animals. 20x (left) and 40x (right) images of a representative PACAP staining in (C) CeA and (F) BNST. Bars represent Mean ± SEM. *** p < 0.001 vs. Ctrl. CeA; CeC, capsular part, CeL, lateral part, CeM, medial part of the Central nucleus of the Amygdala. BNST; STLP, lateral division posterior part, STLD, lateral division dorsal part of the Bed Nucleus of the Stria Terminalis. Fig. 1-1 shows the effects of 10 days of CSDS on PACAP immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN). Fig. 1-2 shows the effects of a single SDS session on PACAP immunoreactivity in the CeA and BNST.

Fig. 2 Rats were subject to 10 daily consecutive sessions of either a CSDS procedure or a control (Ctrl.) procedure, and brain punches containing the CeA were collected 24 hr after the last session for assessment of gene expression using quantitative real-time PCR: (A) PAC1R and (B) CRF mRNA levels in the CeA. N= 6-11/group for PAC1R, 8-12/group for CRF. Bars represent Mean ± SEM. ** p < 0.01 vs. Ctrl.

Fig. 3. Rats were bilaterally microinfused into the CeA either a PAC1R knockdown adeno-associated viral vector (AAV-PAC1R-shRNA) or a Control virus (AAV-GFP) and body weight was recorded every 1-2 days over the course of the CSDS (or Ctrl.) paradigm. (A) Representative image of viral spread in CeA (GFP). Effect of bilateral CeA PAC1R knockdown...
on (B) body weight change across days and (C) cumulative 10-day body weight change. N = 9-12/group. Bars represent Mean ± SEM. ** p ≤ 0.01, *** p ≤ 0.001 vs. Ctrl + AAV-GFP. # p ≤ 0.05, ## p ≤ 0.01 vs. CSDS + AAV-GFP.

Fig. 4. AAV-GFP and AAV-PAC1R-shRNA rats were subject to either CSDS or a Ctrl. procedure to assess the effects of bilateral CeA PAC1R knockdown on anxiety-like behavior in the light-dark box test on (A) time spent in the light compartment across time, (B) total time spent in the light compartment in the 10-min test, and (C) latency to first leave the dark compartment. N = 9-10/group. Bars represent Mean ± SEM. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 vs. Ctrl + AAV-GFP. # p ≤ 0.05 vs. CSDS + AAV-GFP.

Fig. 5. AAV-GFP and AAV-PAC1R-shRNA rats were subject to either CSDS or a Ctrl. procedure to assess the effects of bilateral CeA PAC1R knockdown on plasma Corticosterone (CORT) levels. N = 9-12/group. Bars represent Mean ± SEM. ** p ≤ 0.01 vs. Ctrl + AAV-GFP. # p ≤ 0.05 vs. CSDS + AAV-GFP.

Fig. 6. AAV-GFP and AAV-PAC1R-shRNA rats were subject to either CSDS or a Ctrl. procedure and were then euthanized to assess the effects of bilateral CeA PAC1R knockdown on (A) CRF immunoreactivity in the CeL (optical density). N = 6-9/group. Representative CRF staining in the CSDS + AAV-GFP and CSDS + AAV-PAC1R groups (B, C). Bars represent Mean ± SEM. ** p ≤ 0.01 vs. Ctrl +AAV-GFP. # p ≤ 0.05 vs. CSDS + AAV-GFP. CeC, capsular part, CeL, lateral part, CeM, medial part of the CeA.