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Abstract

Alcohol use, reported by 85% of adults in the United States, is highly comorbid with mood
disorders, like generalized anxiety disorder and major depression. The basolateral amygdala
(BLA) is an area of the brain that is heavily implicated in both mood disorders and alcohol use
disorder. Importantly, modulation of BLA network/oscillatory states via parvalbumin-positive
(PV) GABAergic interneurons has been shown to control the behavioral expression of fear and
anxiety. Further, PV interneurons express a high density of 3-subunit-containing GABA
receptors (GABAARs), which are sensitive to low concentrations of alcohol. Therefore, we
hypothesized that the effects of alcohol may modulate BLA network states that have been
associated with fear and anxiety behaviors via -GABAARs on PV interneurons in the BLA.
Given the impact of ovarian hormones on the expression of 3-GABAaRs, we also examined the
ability of alcohol to modulate local field potentials (LFPs) in the BLA from male and female
C57BL/6J and Gabrd’™ mice after acute and repeated exposure to alcohol. Here, we demonstrate
that acute and repeated alcohol can differentially modulate oscillatory states in male and female
C57BL/6J mice, a process which involves -GABARs. This is the first study to demonstrate
that alcohol is capable of altering network states implicated in both anxiety and alcohol use

disorders.

Significance Statement

Alcohol use disorder and mood disorders are highly comorbid. The basolateral amygdala (BLA)
is implicated in both disorders, but the mechanisms contributing to their shared pathophysiology

remain uncertain. Here we demonstrate that acute and repeated alcohol exposure can alter
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network oscillations in the BLA which control the behavioral expression of fear and anxiety.
These data suggest that alcohol may directly influence network states associated with mood.
Further, we demonstrate sex differences in alcohol’s ability to modulate BLA network states, an
effect involving 3-GABA 4 receptors, which may contribute to sex differences in alcohol intake
and comorbid mood disorders. These data potentially point to a novel mechanism mediating the

effects of alcohol on affective states.

Keywords: alcohol use disorder, basolateral amygdala; local field potentials; network states,
oscillations, sex differences; GABA, extrasynaptic receptors

Introduction

Alcohol is the most widely used drug in the United States, with approximately 85% of adults
reporting alcohol use in their lifetime. Despite this high rate of use, only about 5% will go on to
develop an alcohol use disorder while most adults continue to drink without reaching this
diagnostic criterion (SAMHSA, 2020). The transition from first drink to alcohol dependence is
encouraged by both the positive and negative reinforcing effects of alcohol, each with
corresponding neurobiological frameworks (Gilpin and Koob, 2008). Comorbid mood disorders,
such as major depression and anxiety disorders, contribute to the reinforcing effects of alcohol
by pushing individuals to drink to relieve tension in high stress or high anxiety situations
(Kushner et al., 2011). The basolateral amygdala (BLA) has been identified as a brain region
contributing to both alcohol use disorder and anxiety disorders (Silberman et al., 2009; Tye et al.,

2011; Agoglia and Herman, 2018).

Accumulating evidence demonstrates a critical role for oscillatory states in the BLA in
modulating fear and anxiety-like behaviors (Likhtik et al., 2013; Stujenske et al., 2014; Davis et
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al., 2017; Antonoudiou et al., 2021). However, the impact of alcohol on these network states has
not been explored. Network oscillations within and between brain areas represent a mechanism
for the transition between brain and behavioral states. Specifically, particular oscillation
frequencies within and between the BLA and mPFC are associated with either a fear (3-6 Hz) or
safety (6-12 Hz) state (Davis et al., 2017). This circuit, along with other regions like the
hippocampus, has also been shown to contribute to high and low anxiety states in mice (Likhtik

etal., 2013).

It is well established that the anxiolytic properties of alcohol can motivate consumption and
contribute to the high comorbidity of alcohol use disorders and mood disorders (Thomas et al.,
2003; Smith and Randall, 2012; Mason et al., 2018). However, it is unclear how alcohol impacts
network states underlying modulation of anxiety states. Here we examine the ability of acute,
low dose alcohol to modulate BLA network activity in alcohol naive mice, using local field
potentials (LFPs) to measure network oscillations in the BLA in male and female C57BL/6J

mice during acute and repeated exposures to alcohol.

The generation of oscillations is thought to involve the ability of GABAergic interneurons,
particularly parvalbumin (PV) expressing interneurons, to synchronize populations of principal
neurons (Bartos et al., 2007; Sohal et al., 2009; Fuchs et al., 2017). Somatic-targeting, fast-
spiking PV interneurons exert powerful control over a large network of excitatory principal cells,
and as such, are capable of generating and synchronizing oscillations to orchestrate network
communication (Mcdonald, 1992; Bocchio and Capogna, 2014). There is a critical role for PV
interneurons in oscillation generation within the BLA both ex vivo and in vivo, where PV
interneurons can shift oscillatory frequencies and drive behavioral states (Antonoudiou et al.,

2021; Ozawa et al., 2020; Davis et al., 2017).
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PV interneurons in the BLA express a high density of extrasynaptic & subunit-containing
GABARs, which are uniquely sensitive to alcohol and play a role in regulating both alcohol
consumption and anxiety-like behaviors, including anxiety associated with alcohol withdrawal
(Glykys et al., 2007; Melon et al., 2018; Antonoudiou et al., 2021). Tonic inhibition mediated by
3-GABAARSs has been shown to control hippocampal oscillations (Mann and Mody, 2010;
Pavlov et al., 2014) and loss of the & subunit in PV interneurons alters y oscillations in the CA3
region of the hippocampus (Ferando and Mody, 2013, 2014). Given the evidence that PV
interneurons, which modulate oscillations in the BLA, have a high density of & subunit
expression, we further hypothesized that alcohol acts through 3-GABAARs in the BLA to
modulate oscillations associated with the network communication of fear and anxiety. To test
this, we examined the ability of alcohol to alter oscillatory states in the BLA of male and female
Gabrd’ mice. Our findings suggest that the ability of alcohol to modulate network states
involves & subunit-containing GABAARs. We conclude that alcohol can modulate BLA
oscillatory states in a sex-specific manner, a process which, in part, involves d subunit-

containing GABAARs.
Materials and Methods
Animals

Adult male and female C57BL/6J mice, aged 8-12 weeks old, were purchased from The Jackson
Laboratory (stock #000664) and group housed in temperature and humidity-controlled housing
rooms on a 12-hour light-dark cycle (lights on at 7AM) with ad libitum food and water. Animals
were handled according to protocols and procedures approved by the Tufts University

Institutional Animal Care and Use Committee (IACUC). Female mice are maintained in an
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acyclic state without exposure to males. Global Gabrd ” knockout mice were bred in house
(Mihalek et al., 1999, 2001). Mice were single housed and habituated to new cages for 24 hours

before the start of experiments.
Stereotaxic Surgery

All mice undergoing surgery were anesthetized with ketamine/xylazine (90 mg/kg and 5-10
mg/kg, respectively, i.p.) and treated with sustained release buprenorphine (0.5-1.0 mg/kg, s.c.).
A lengthwise incision was made to expose the skull and a unilateral craniotomy was performed
to lower a depth electrode (PFA-coated stainless-steel wire, A-M systems) into the BLA (AP -
1.50 mm, ML 3.30 mm, DV -5 mm), affixed to a head mount (Pinnacle #8201) with stainless
steel screws as ground, reference, and frontal cortex EEG (AP +0.75 mm, ML = 0.3 mm, DV -

2.1 mm) electrodes. EMG wires were positioned in the neck muscles.
LFP Recordings

LFP recordings were performed in male and female C57BL/6J and Gabrd " mice after a week of
recovery from implant surgery. LFP recordings were acquired using Lab Chart software (AD
Instruments) collected at 4 KHz and amplified 100X. Spectral analysis was performed in
MATLAB (Antonoudiou et al., 2021) using MatWAND

(https://github.com/pantelisantonoudiou/MatWAND) which utilizes the fast Fourier transform

similar to previous reports (Kruse and Eckhorn, 1996; Frigo and Johnson, 1998; Pape et al.,
1998; Freeman et al., 2000). Briefly, recordings were divided into 5 second overlapping
segments and the power spectral density for a range of frequencies was obtained (Oppenheim et

al., 1999). LFP power was quantified as power area.
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Acute & Repeated Alcohol Exposure

Mice were habituated to new cages with ad libitum food and water for 24 hours before starting
the experimental paradigm. All injections were performed 2-3 hours into the light cycle (on at 7
AM) at the same time each day across all cohorts. A dose-response of four doses (0.5, 1.0, 1.5,
and 2.0 g/kg i.p.) was completed in a group of male C57BL/6J mice to determine the appropriate
dose to use in our experiments. The acute exposure consisted of a 60-minute baseline period
followed by a saline injection (0.9% NaCl i.p.) and a subsequent 1 g/kg ethanol injection (20%
v/v 1.p.). The repeated exposure consisted of a 60-minute baseline period followed by an i.p.
injection of either saline or 1 g/kg ethanol (20% v/v) for five consecutive days. For the females,

the acute ethanol exposure was calculated from the first day of the repeated exposure paradigm.

Blood Ethanol Concentration (BEC) Measurements

Blood from the submandibular vein was collected from a separate cohort of male and female
C57BL/6J mice 15 minutes after exposure to alcohol (1 g/kg i.p.) on days 1, 2, and 5 of repeated
alcohol exposure. Blood was spun down at 1.8xg for 15 minutes at 4°C and serum was stored at -
80°C until BEC measurements were performed using the BioAssay Systems EnzyChrom Ethanol
Assay Kit (ECET-100) according to the manufacturing protocol. Measurements are reported in

mg/dl.

Immunohistochemistry

Immunohistochemistry was performed as previously reported (Melon et al., 2018) in a separate
cohort of C57BL/6J mice 30 minutes following repeated exposure to vehicle or alcohol for five

days. Mice were anesthetized with isoflurane, transcradially perfused with 0.9% saline and 4%
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paraformaldehyde (PFA), the brains were rapidly excised, fixed in 4% PFA overnight, and
subsequently cryoprotected in 10% and 30% sucrose. The brains were then flash frozen using
isopentane and stored at -80°C until cryosectioning. Free floating 40 pm coronal slices were co-
stained for PV and $ using universal antigen retrieval buffer (R&D systems CTS015) and
primary antibodies against 3-GABAaR (1:100, Phosphosolutions 868 A-GDN) and PV (1:1000,
Sigma P3088) for 72 hours at 4°C. The slices were then incubated with a biotinylated goat anti-
rabbit (1:1000, Vector Laboratories BA1000) and Alexa-Fluor 647 conjugated goat anti-mouse
(1:200, ThermoFisher Scientific A28181) for two hours at room temperature and streptavidin
conjugated Alexa-Fluor 488 (1:200, ThermoFisher Scientific S32354) for two hours at room
temperature. Slices were mounted and cover slipped with antifade hard set mounting medium
with DAPI (Vectashield H1500). Fluorescent labeling in the BLA was imaged on a Nikon A1R
confocal microscope and z-stacks were acquired using a 20X objective. Camera settings were
kept consistent across samples and cohorts. The images were analyzed using Image J software by
outlining PV-positive interneurons using the ROI manager and measuring the integrated density
of PV and & expression on the outlined PV-positive interneurons. Each cell was considered its

own data point within each animal.

Statistical Analysis

Data were analyzed using Prism 8 software (GraphPad) and MatWAND in MATLAB
(Mathworks). To ensure a consistent time period for analysis across cohorts, we analyzed the
first 40 minutes of baseline and the first 35 minutes of each injection period. Repeated measures
two-way ANOVAs were performed to detect significance of frequency, treatment, sex, or
genotype. A Greenhouse-Geisser correction was applied where necessary. A mixed effects

model was used if values were missing across days. A post-hoc Sidak's multiple comparisons test

6
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was performed to identify significant differences of specific frequency ranges. ANOVA results
are reported in Extended Data Table 1-1, 2-1, and 3-1. Multiple comparisons are reported in
Extended Data Table 1-2, 2-2, and 3-2. P values < than 0.05 were considered significant. All n

values for each treatment group are shown in the figure legends.

Results

Alcohol modulates BLA network states

To characterize the effect of acute alcohol on BLA oscillations in wild type mice, we recorded
LFPs in the BLA of C57BL/6J mice in response to either a vehicle (0.9% saline i.p.) or alcohol
(1 g/kg i.p.) injection (Figure 1A, B). We found that vehicle injections in male C57BL/6J mice
significantly decreased high 6 power (6-12 Hz) (p = 0.0117, 95% C.I = [0.04658, 0.4029]), while
increasing the low y (40-70 Hz) (p = 0.0027, 95% C.I =[-0.9799, -0.2066]), and high y power
(80-120 Hz) (»=0.0103, 95% C.I =[-0.6491, -0.08079]) as compared to baseline (Figure 1-
1A). However, we did not find any difference between the two vehicle injections, indicating
there was no sensitization or adaptation to the second injection. We have previously observed the
impact of vehicle injections on oscillatory states in the BLA (Antonoudiou et al., 2021), which
likely reflects the network response to the stress of the injection. Therefore, all results are

compared to the first vehicle injection within the treatment paradigm.

We performed a dose-response examining changes in network activity in response to four
different doses of alcohol (0.5, 1.0, 1.5, 2.0 g/kg i.p.; Figure 1-2). These experiments determined
that the 1.0 g/kg dose was capable of significantly altering relevant BLA network state
frequencies without producing lethargy or sedation in the mice (6-12 Hz: p = 0.030, 95% C.I=
[0.024, 0.450; Figure 1-2A-C). Therefore, we chose this concentration for our experiments

7
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throughout this study. In response to alcohol treatment in male C57BL/6J mice, the power in the
B frequency range (15-30 Hz) is decreased compared to vehicle (p = 0.034, 95% C.I=[0.01033,
0.2925]; Figure 1C, E, G; Figure 1-1C). This indicates that alcohol can modulate specific

oscillatory frequencies within the BLA that are implicated both in addiction and mood disorders

(Jurado-Barba et al., 2020).

Alcohol modulates BLA network states in a sex-dependent manner

Because of the well documented sex differences in alcohol related behaviors (Melon et al., 2013;
Barkley-Levenson and Crabbe, 2015; Becker and Koob, 2016; Sneddon et al., 2019), we treated
female C57BL/6] to the same acute alcohol paradigm as described in males (Figure 1B). Similar
to the males, we did not find any significant differences between the two vehicle injections in the
vehicle/vehicle control experiments in females (Figure 1-1B). We did find that vehicle
significantly decreased high 6 power as compared to baseline (p = 0.0273, 95% C.I=[0.2699,
0.4296]; Figure 1H), similar to what we observed in the males. Additionally, there was no
significant difference between the male and female C57BL/6J BLA LFP response to the vehicle

injection (figure not shown).

In response to acute alcohol exposure, we found that alcohol significantly decreased the y band
power in female C57BL/6J mice as compared to vehicle (p = 0.0014, 95% C.I =[0.2955,
0.9441]; Figure 1D, F, H; Figure 1-1D), a unique signature from the males. Interestingly, this
reduction in y power represents a blunting of the increase in power exhibited by the vehicle
injection (Figure 1F). Although alcohol decreased BLA power in different frequency bands in

males and females, there were no direct significant differences between groups (figure not
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shown). Collectively, these data suggest that acute ethanol modulates the BLA network

differently in male and female mice.
Alcohol modulation of BLA network states involves 6 subunit-containing GABA.Rs

Previous literature has supported the role of -GABAaRs in mediating the effects of alcohol on
tonic inhibition, drinking and withdrawal behaviors (Wallner et al., 2003; Santhakumar et al.,
2007; Meldn et al., 2018; Darnieder et al., 2019). Therefore, to test whether alcohol is mediating
its effects on BLA network states through 6-GABAaRs, we repeated the same procedure in male
and female Gabrd’™ mice. We found that vehicle injections significantly increased BLA power at
low y frequencies only in the vehicle/alcohol condition in male Gabrd” mice as compared to
baseline (p = 0.0121, 95% C.1 =[-1.062, -0.1299]; Figure 2A-B). In both Gabrd" males and

females, we did not find any significant difference between vehicle injections (Figure 2-1).

Unlike C57BL/6J males, acute alcohol significantly decreased the low y band of Gabrd”™ males
(» =0.020, 95% C.I=10.07, 0.78]; Figure 2A-B) and Gabrd’" females (»=0.0012,95% C.I=
[0.1731, 0.5352]; Figure 2C-D) as compared to vehicle. This effect was similar to, but not as
robust an effect, as in C57BL/6] females. However, direct comparisons between male C57BL/6]
and male Gabrd”™ mice or between C57BL/6] females and Gabrd ™ females did not detect
significant differences in the ability of alcohol to modulate oscillatory states (figure not shown).
Collectively, these data suggest that the loss of the GABAR 6 subunit impacts the network
effect of alcohol more profoundly in males and induces a similar network effect as observed in

C57BL/6] females.

Ability of repeated alcohol exposure to modulate BLA network states is dependent on 6 subunit-

containing GABA.Rs
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Since we established that acute alcohol could modulate specific oscillatory frequencies in the
BLA, we were interested in how BLA LFPs changed over time in response to repeated doses of
alcohol. Male C57BL/6J and Gabrd”™ mice received vehicle (0.9% saline) or low dose (1 g/kg
1.p.) alcohol for five consecutive days (Figure 3A). We did not find significant effects of repeated
vehicle injections across days in either the male C57BL/6J or male Gabrd’™ mice (Figure 3-1A,

Q).

Interestingly, in response to repeated alcohol treatment, we found a change in the baseline low y
power from the first to last day (BASE2-BASE1) in male C57BL/6J mice (p = 0.0252, 95% C.1
=10.03785, 0.6384]; Figure 3-2A), which may be an anticipatory change associated with
repeated alcohol administration. In response to alcohol treatment, we observed a significant
increase in low y power from the first to last day of exposure (EtOH-BASE?2) (p = 0.0305, 95%
C.I=[-0.7087, -0.03272]; Figure 3C) along with an increase in BEC (first: 161.4 mg/dl, last:
189.8 mg/dl; p <0.0001, 95% C.I =[-160.4, -95.81]; Figure 3A). In contrast, we did not observe
significant effects of repeated alcohol on baseline or treatment in male Gabrd”™ mice (Figure 3D;

Figure 3-2C).

Direct comparison between male C57BL/6J and Gabrd"™ mice on the first day of alcohol
exposure does not reveal any significant changes within baseline (Figure 4-1A), but did find that
male C57BL/6J mice had significantly decreased high 6 (p = 0.0138, 95% C.I=[-1.061, -
0.1088]) and B (p = 0.0022, 95% C.I =[-0.7193, -0.1659]) BLA power as compared to male
Gabrd mice in response to alcohol exposure (Figure 4A). By the last day, there were significant
decreases within the baseline period specifically in the low (p = 0.0343, 95% C.I =[-0.9892, -
0.03576]) and high vy (p = 0.0062, 95% C.I =[-0.5908, -0.09553]) BLA power in male C57BL/6J

mice as compared to male Gabrd " mice (Figure 4-1B), again likely attributed to the role of the

10
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GABAAR 6 subunit in the anticipatory effects of repeated alcohol exposure. In response to
repeated alcohol administration, we observed a significant increase in the high y frequency range
in male C57BL/6J mice compared to male Gabrd” mice (p = 0.0203, 95% C.I =[0.02211,
0.2899]; Figure 4B). Overall, these results suggest a blunted impact of acute and repeated
alcohol exposure on BLA oscillatory states in mice lacking the GABAAR 6 subunit. Further,
these data indicate a role for 5-GABAARs in adapting to alcohol exposure over time, as well as
anticipating alcohol treatment as shown by the changes in baseline in male C57BL/6J mice, but

not Gabrd’ mice.
Sex differences in BLA network states in response to repeated alcohol exposure

Repeated alcohol exposure in female C57BL/6J and Gabrd’™ mice involved acute alcohol or
vehicle exposure on day one and the repeated alcohol exposure days two to five (Figure 3B). We
will be using their second day of exposure in our repeated alcohol comparisons, which were not
significantly different in female C57BL/6J mice (Figure 3-3A). Neither day one nor day two
were significantly different from day five in female Gabrd " mice (Figure 3-3B-C). Therefore,

we continued to use day two as the first day of repeated exposure in our analysis.

We did not observe significant effects of vehicle exposure across days in female C57BL/6J
(Figure 3-1B) or female Gabrd’ mice (Figure 3-1D). Interestingly, unlike the males, we did not
observe any significant effect of repeated alcohol in C57BL/6J female and Gabrd " females
across days (Figure 3D, F; Figure 3-2B, D) despite an increase in BEC in female C57BL/6J mice
from the first to last day of exposure (first: 151.1 mg/dl, last: 257.3 mg/dl; p = 0.0072, 95% C.1

=[-166.0, -46.32; Figure 3B).
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Direct comparison between C57BL/6J males and females did not reveal significant differences at
any frequency range within the baseline period (Figure 4-1C) or in the effect of alcohol from
baseline (Figure 4C) on the first day of exposure. However, by the last day, we found an increase
in high 0 (p = 0.0435, 95% C.I=[0.01858, 1.216]) and a decrease in high y power within the
baseline of males, but not in the females (p = 0.0122, 95% C.I =[-0.5198, -0.06395]; Figure 4-
1D). In response to repeated alcohol exposure, males exhibited a significantly reduced power in
the high 0 frequency range in C57BL/6J males with no effect in females (p = 0.0433, 95% C.I1=
[-1.085, -0.01596]; Figure 4D). There was no significant difference between male and female
BECs on day one or day five suggesting the same level of alcohol intoxication modulates BLA
LFPs differentially in the two sexes. Collectively, these data suggest that male C57BL/6J mice
are becoming more sensitive to the sedative effects of alcohol as demonstrated by the significant
effects of repeated alcohol administration on y frequency ranges, an effect that involves the

GABAAR 6 subunit (Pian et al, 2008).

Repeated alcohol exposure alters o expression on PV interneurons in the BLA

Alcohol exposure can change the expression of GABAAR subunits (Liang et al., 2004; Olsen et
al., 2012; Lindemeyer et al., 2014; Follesa et al., 2015) and sex differences in GABAAR 6
subunit expression has been reported (Maguire et al., 2005). Changes in the expression of the
GABAAR & subunit, whether through genetic deletions or hormone fluctuations during
pregnancy, can alter specific oscillation frequencies in the hippocampus (Ferando and Mody,
2013, 2015). Therefore, we hypothesized that altered expression of the GABAR & subunit on
PV interneurons in the BLA may contribute to our observed sex differences in BLA network
states. Thus, we examined whether there were any potential sex differences in GABAAR &

subunit expression in the BLA or in § expression associated with alcohol exposure. We observed
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a higher 6 expression on PV interneurons in naive female C57BL/6J mice (M = 1002542, SEM =
45011) as compared to naive male C57BL/6] mice (M = 538252, SEM = 12440, t [424] = 10.39,
p <0.0001; Figure 5B) with no change to PV immunoreactivity (female: M = 1464808, SEM =
51507; male: M = 1448517, SEM = 97320; Figure 5A). Interestingly, vehicle treatment alone
reduced PV immunoreactivity in females compared to males (p < 0.0001, 95% C.I=[267746,
621366]; Figure 5D) and also reduced 6 expression on PV neurons in females as compared to
males (p <0.0001, 95% C.I =[35568, 126727]; Figure SE). These data demonstrate baseline sex
differences in the expression and lability of GABAR 6 expression on PV interneurons in the

BLA.

Repeated alcohol treatment reduced PV immunoreactivity in males as compared to vehicle (p <
0.0001, 95% C.I=[147380, 518402]; Figure 5D). In contrast, repeated alcohol exposure in
females did not alter PV immunoreactivity but did significantly reduce GABAAR 6 expression
on PV interneurons compared to vehicle (p = 0.0018, 95% C.I =[15583, 98517]; Figure SE), an

effect that was not observed in males.

Comparing males and females exposed to repeated alcohol, PV immunoreactivity (p = 0.0195,
95% C.I=[22163, 362911]; Figure 5D) and 6 expression on PV interneurons are reduced in
females as compared to males (p < 0.0001, 95% C.I =[54848, 142689; Figure 5E). These data
implicate that changes in GABAAR 6 expression on PV interneurons may mediate sex

differences and the response to repeated alcohol exposure.

Discussion

Network states have been shown to correlate with behavioral states and accumulating evidence
demonstrates that signature oscillatory states in the BLA are associated with fear and anxiety
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states (Likhtik et al., 2013; Stujenske et al., 2014; Davis et al., 2017; Antonoudiou et al., 2021).
In fact, optogenetically driving specific oscillatory states influences the behavioral expression of
fear (Ozawa et al., 2020) and learned helplessness (Antonoudiou et al., 2021). However, limited
studies have examined the physiological, pathological, or pharmacological mechanisms
mediating transitions between network and behavioral states. Recent work has demonstrated that
chronic stress can perturb oscillations in the BLA and a clinically effective antidepressant
treatment can restore the “healthy” network state (Antonoudiou et al., 2021). Here, we examine
the impact of alcohol on BLA network states. Given the anxiolytic effects of alcohol, we posited
that alcohol may be capable of shifting the network state towards the anxiolytic state. We
demonstrate that acute alcohol exposure is capable of altering BLA network states and that there
are sex differences in the effect of alcohol on BLA network states, affecting different frequencies
in males and females. These data are the first to demonstrate that alcohol is capable of

modulating network states associated with affective states.

It has been demonstrated that PV interneurons are critical in orchestrating oscillatory states in the
BLA (Antonoudiou et al., 2021). PV interneurons in the BLA express a high density of 6-
GABAARs, which have been suggested to be a target for low dose alcohol (Sundstrom-Poromaa
et al., 2002; Wallner et al., 2003; Hanchar et al., 2006; Santhakumar et al., 2007). However, the
actions of alcohol directly on these receptors remains somewhat controversial (Borghese et al.,
2006; Korpi et al., 2007). It is important to note that the majority of these studies focus solely on
principal neurons; GABAergic interneurons, on the other hand, have a unique receptor subunit
composition in which the d subunit has been shown to partner with the ol subunit, and have been
demonstrated to generate tonic GABAergic currents which are highly sensitive to low

concentrations of ethanol (Glykys et al., 2007). Thus, we proposed that the high expression of &
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subunit-containing GABAARs on PV interneurons in the BLA may confer unique sensitivity to
the effects of alcohol and, given the role of these interneurons in coordinating oscillations, may
mediate the effects of alcohol on BLA network states. Here we demonstrate that 3-GABAARs
influence the ability of alcohol to alter specific oscillatory states in the BLA, blunting the ability
to shift network states. Specifically, we observed a reduction of § power from acute ethanol in
male wild-type mice that was blunted in mice lacking 8-GABAxRs (Figure 1, 2). Others have
found reductions of  power in the nucleus accumbens shell during alcohol relapse related to
reduced synchrony of the local network, suggesting this reduction we find in response to alcohol
may also be from reduced synchrony (Hadar et al., 2016). This power detected in the j frequency
may arise from the neighboring high 0 oscillator, given the lack of a clear B peak (Figure 1-1C).
Regardless, these data suggest that 6 subunit-containing GABAARs are important players in
mediating the effects of alcohol on oscillatory states related to mood/anxiety; although, it is also
possible that other GABAAR subtypes are involved. Previous studies demonstrated that 6 has a
specific role in lower frequencies as compared to higher frequencies (Antonoudiou et al., 2021),
which may be true for the effects of alcohol as well. Further studies are required to investigate
the impact of other GABAAR subtypes in mediating the ability of alcohol to modulate BLA
network states given that previous studies have implicated other GABAAR subtypes, such as the
v2 subunit, in anxiety-like behavior (Chandra et al., 2005) and alcohol withdrawal severity (Buck
and Hood, 1998). It is also possible that alcohol’s indirect effects on receptor expression,
neurotransmitter availability, and other neuromodulators could account for the changes in BLA
oscillations observed here (Morrow et al., 2001; Fleming et al., 2009; Olsen and Liang, 2017).
For example, the effects of alcohol have been suggested to be mediated through the action of

neuroactive steroids (Morrow et al., 2001; Finn et al., 2009; Finn and Jimenez, 2018) and given
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recent evidence that allopregnanolone can alter BLA network states (Antonoudiou et al., 2021),
this may be an indirect mechanism whereby alcohol could modulate BLA network states.
Arguing against this indirect mechanism is the evidence that alcohol exerts unique effects on

BLA network states compared to allopregnanolone (Antonoudiou et al., 2021).

Since expression of & subunit-containing GABAARSs have been shown to be sensitive to ovarian
steroid hormone modulation and are implicated in sex differences in alcohol intake (Darnieder et
al, 2019), we hypothesized that there may be sex differences in the ability of alcohol to modulate
BLA network states through actions on these receptors. In fact, we do observe sex differences in
the modulation of BLA network states by alcohol even though both male and female C57BL/6J
mice reach similar BEC levels after alcohol exposure (Figure 3A, B). Interestingly, the loss of
the GABAAR & subunit in males shifts the alcohol modulation of the BLA network state towards
the signature that we observe for female C57BL/6J mice (Figure 1, 3) and we believe that the
observed sex differences in the expression of & subunit-containing GABAARs in the BLA
(Figure 5) may underlie these differences. Further, there are well-documented sex differences in
responses to alcohol, alcohol related anxiety-like behavior, and estrous-cycle dependent &
expression (Maguire et al., 2005; Rhodes et al., 2005; Barkley-Levenson and Crabbe, 2015),
consistent with our observations of sex differences in the alcohol-induced modulation of network
states. Additionally, sex differences have been reported in neural oscillations in major depressive
disorder with oscillatory signatures of susceptibility (Thériault et al., 2021). Future studies are
required to evaluate the relationship between the capacity of alcohol to modulate network states
and voluntary alcohol consumption, the anxiolytic effects of alcohol, and the anxiogenic effects

of alcohol withdrawal.
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To investigate whether the effect of alcohol on network states may be altered after repeated
exposure, we treated mice with low dose alcohol for up to five days. Interestingly, we found that
BLA network states changed before alcohol exposure. Given the evidence that the amygdala is
involved in valence encoding and assignment, it is possible that network state changes before the
alcohol exposure is reflective of the anticipation or expectation of the event, which has been
demonstrated in a Pavlovian conditioning paradigm (Pignatelli and Beyeler, 2019; Tallot et al.,
2020). We found robust effects of repeated alcohol exposure on the BLA LFP response of male
C57BL/6] mice which was significantly different from the male Gabrd”™ and female C57BL/6J
mice. In fact, we found no differences in the extent of the effect of repeated alcohol on network
states in female C57BL/6J or Gabrd” mice despite similar BEC levels between male and female
C57BL/6J mice. It is possible that the change in BLA power in male C57BL/6J mice across
repeated alcohol exposure is due to the increase in BEC rather than an adaptation to the
injections. Indeed, our dose response data shows that higher doses of alcohol do have larger
effects on BLA network states. Alcohol administration prominently affected y band oscillations
in the BLA, a network activity that has been associated with local network synchrony, affective
learning and memory consolidation, (Bocchio et al., 2017; Antonodiou et al., 2021; Headley et
al., 2021). Given the critical role of PV interneurons in the generation of BLA vy oscillations
(Antonodiou et al., 2021; Headley et al., 2021), alcohol may directly modulate PV interneuron
signaling. It’s possible that reduction in tonic inhibition of PV interneurons in female and Gabrd
" mice makes PV interneurons more susceptible to the effects of acute ethanol leading to

disruption in the generation of y network oscillations in BLA.

Since the downregulation of the & subunit has been thought to confer tolerance to alcohol (Olsen

and Liang, 2017), the reduction of & subunit in female, but not male, C57BL/6J mice could
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400  explain the lack of effects on LFPs after repeated alcohol exposure. Further, GABAAR agonists
401  and positive allosteric modulators, like neurosteroids which exert effects through the 6 subunit,
402  can block tolerance to the sedative effects of alcohol (Debatin and Barbosa, 2006; Barbosa and
403  Morato, 2007). This could explain why alcohol does not change the BLA network in female

404  C57BL/6) and Gabrd’™ mice, who have reductions in 5-GABAAR expression, after repeated

405  administration like it does in male C57BL/6J mice. However, this study did not directly measure
406  sensitization or tolerance to the effects of alcohol and future studies could link network and

407  behavioral changes. Lastly, we found that & expression on PV interneurons is increased in naive
408  female C57BL/6] mice compared to males. Because we did not see any baseline differences in
409  BLA network states between male and female C57BL/6J mice, this difference in expression may
410 not impact BLA oscillations, but expression of 6 in females does influence the response to

411 alcohol exposure.

412 The literature and recent findings demonstrate a strong role for PV interneurons in oscillation
413 generation (Antonoudiou et al., 2021) giving support to the likely fact that alcohol’s effects on
414 PV interneurons are influencing the oscillations. However, due to the heterogeneity of the

415  interneuron population in the BLA, it is possible other interneuron types, like somatostatin,
416  cholecystokinin, or PKC-3 expressing cells may be involved in effecting oscillations

417  (Klausberger et al., 2005). Furthermore, another major influence on BLA oscillations are other
418  brain areas with strong network connections to the BLA, such as the medial prefrontal cortex
419  (mPFC), which is heavily implicated in addiction (Goldstein and Volkow, 2011; Davis et al.,

420  2017; Ozawa et al., 2020).

421  Forced alcohol injections or alcohol induced aversion can cause stress to mice which may
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designed to dissociate any stressful or unpleasant effects of the infusion from the effects of
alcohol. Although we observed significant effects of vehicle injections on BLA LFP responses
compared to baseline (Figure 1-1), we did not find any sensitization or tolerance to the injections
in the acute alcohol experiment or across days in the repeated alcohol experiment (Figure 1-1, 2-
1, 3-1), similar to what has been reported previously (Antonoudiou et al., 2021). Thus, we are
confident that the observed effects of alcohol on BLA oscillatory states is due to the effects of
alcohol rather than an aversive experience related to the route of administration. Further, our data
suggest that the effects of alcohol may mitigate the stress-induced effects on the BLA network
state.

To our knowledge, this is the first demonstration that alcohol can modulate oscillations in the
BLA, which have been implicated in governing behavioral states. Numerous studies have
investigated the relationship of BLA network states to behavioral states; however, few studies
have investigated mechanisms mediating transitions between BLA network states. The current
study demonstrates that alcohol can induce a transition between network states associated with
fear and anxiety, which may mediate the impact of alcohol on anxiety states. Future work is
required to investigate how changes in the BLA relate to other connected areas implicated in
alcohol use and anxiety, such as the central amygdala, mPFC, nucleus accumbens, BNST, and
ventral striatum (Janak and Tye, 2015). Recordings of oscillations are stable over long periods of
time and thus can be examined throughout the addiction cycle from intoxication to withdrawal to
preoccupation in specific brain areas to understand how alcohol changes communication
between these areas. Thus, this novel approach may demonstrate utility in understanding the
trajectory from first exposure to alcohol dependence and the contribution of both the positive and

negative reinforcing effects of alcohol.
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Figure Legends

Figure 1. Acute alcohol alters BLA network activity differently in male and female C57BL/6J
mice. A Representative targeting of BLA LFP recordings. B, Acute alcohol exposure paradigm
consisted of LFP recordings during baseline (60 minutes), vehicle injection (0.9% saline i.p.; 60
minutes), and a treatment injection (0.9% saline or 1 g/kg alcohol i.p.; 60 minutes). This dose
was determined through a dose response (Figure 1-2). C, Representative male spectrogram of
normalized § power (15-30 Hz) and D, representative female spectrogram of normalized y power
(40-70 Hz) from acute alcohol exposure. E, Average normalized  power in males and F,
average normalized y power in females during acute injections of vehicle and alcohol (1 g/kg
1.p.; dose response shown in Figure 1-2). Dots represent the mean and the shaded region
represents SEM. G, Normalized power area for vehicle/alcohol acute exposure in males (n = 11)
and H, females (n = 8). #p < 0.05 vs. baseline, *p < 0.05, **p < 0.01 vs. vehicle. Acute vehicle
exposure does not alter BLA network activity in C57BL/6] mice (Extended Data Figure 1-1).

Summaries of ANOVA and multiple comparison tests can be found in Table 1-1 and 1-2.

Figure 1-1. Acute vehicle exposure does not alter BLA network activity in C57BL/6J mice. A,
Normalized power area for vehicle/vehicle acute exposure in male (n = 13) and B, female (n = 6)
mice. C, Power spectral density of baseline, vehicle, and 1 g/kg alcohol injection over 0-80 Hz in

male and D, female mice. #p < 0.05, ##p < 0.01 vs. baseline.

Figure 1-2. Effects of an alcohol dose response on BLA network states. A, Power area
difference of 2-5, 6-12, and 15-30 Hz frequency ranges across alcohol doses in male C57BL/6J

mice (0.57=28; 1.0 n=28; 1.5 n=4;2.0 n="7). Shaded region indicates doses that caused high
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immobility in mice. Normalized power area for vehicle/alcohol exposure across doses for B, 2-5

Hz, C, 6-12 Hz, D, 15-30 Hz, E, 40-70 Hz, F 80-120 Hz. *p < 0.05, **p < 0.01 vs. vehicle.

Figure 2. Acute alcohol produces similar effects in Gabrd” " mice as female C57BL/6J mice. A,
Representative male and C, female spectrogram of normalized y power from acute alcohol
exposure. B, Normalized power area for vehicle/alcohol acute exposure in male (n = 9) and D,
female Gabrd” mice (n=28). #p <0.05 vs. baseline, *p < 0.05, **p <0.01 vs. vehicle. Acute
vehicle exposure does not alter BLA network activity in Gabrd”™ mice (Extended Data Figure 2-

1). Summaries of ANOVA and multiple comparison tests can be found in Table 2-1 and 2-2.

Figure 2-1. Acute vehicle exposure does not alter BLA network activity in Gabrd” mice. A,

Normalized power area for vehicle/vehicle exposure in male (n = 8) and B, female mice (n = 7).

Figure 3. Repeated alcohol exposure exaggerates BLA network modulation in male C57BL/6J
mice. A, Experimental paradigm (left) of the repeated alcohol exposure procedure in male
C57BL/6] and Gabrd” mice of BLA LFP recordings during baseline (60 minutes) and vehicle or
alcohol injections (0.9% saline or 1 g/kg alcohol i.p.; 60 minutes) over five days. BEC
measurements (right) of male C57BL/6J mice (n = 6) taken 15 minutes after alcohol exposure (1
g/kg i.p.) on day one, two, and five of exposure. ***p < (0.0001. B, Repeated alcohol paradigm
(left) for female C57BL/6J and Gabrd” mice which includes the acute alcohol exposure and the
repeated alcohol exposure as day two (first day) to five (last day). Justification for using day two
instead of day one is in Extended Data Figure 3-3. BEC measurements (right) of female
C57BL/6J mice (n = 5) taken 15 minutes after alcohol exposure (1 g/kg i.p.) on day one, two,
and five of exposure. C, Change in effect of alcohol on the first and last day of exposure in male

(first day n = 8; last day n = 6) and D, female (first day n = 10; last day n = 8) C57BL/6J mice
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and E, male (first day n = 8; last day n = 8) and F, female (first day n = 8; last day n = 7) Gabrd a
mice. *p < 0.05 vs first exposure. Repeated vehicle exposure does not change BLA network
activity (Extended Data Figure 3-1). Baseline network activity is modulated by repeated alcohol
in male C57BL/6J mice (Extended Data Figure 3-2). Summaries of ANOVA and multiple

comparison tests can be found in Table 3-1 and 3-2.

Figure 3-1. Repeated vehicle exposure does not change BLA network activity in C57BL6/J and
Gabrd” mice. A, Power area difference between vehicle and baseline for the first and last day of
exposure in male (first day n = 4; last day » = 3) and B, female (first day n = 5; last day n = 6)
C57BL/6J mice and C, male (first day n = 4; last day n = 4) and D, female (first day n = 7; last

day n ="7) Gabrd”" mice.

Figure 3-2. Repeated alcohol modulates baseline network activity in male C57BL/6J mice. A,
Change in baseline on the first and last day of alcohol exposure in male and B, female C57BL/6J

mice and C, male and D, female Gabrd " mice. *p <0.05.

Figure 3-3. Effects of acute alcohol on day one (acute) and day five do not differ in female
Gabrd” mice. A, Normalized power area of alcohol injections during the acute alcohol injection
and day two in female C57BL/6J mice (n = 10). B, Normalized power area of alcohol injections
during the acute alcohol injection and day two in female Gabrd” mice. B, Normalized power
area of alcohol injections during acute alcohol injection and day five in female Gabrd” mice.

#%p < 0.01.

Figure 4. 3-GABAAR and sex dependent effects of repeated alcohol on BLA network activity.
A, Comparison between male C57BL/6J and Gabrd”™ mice in the response to alcohol on the first

and B, last day of exposure. C, Comparison between male and female C57BL/6J mice in the
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response to alcohol on the first and D, the last day of exposure. *p < 0.05, **p < 0.01. Repeated
alcohol has 6-GABA4R and sex dependent effects on baseline network activity (Extended Data

Figure 4-1).

Figure 4-1. 5-GABAsRs and sex dependent effects of baseline network modulation after
repeated alcohol. A, Comparison between male C57BL/6J and Gabrd” mice in the change in
baseline on the first and B, last day of exposure. C, Comparison between male and female

C57BL/6J mice in the change in baseline on the first and D, last day of exposure. *p < 0.05.

Figure 5. Repeated alcohol reduces 3-GABAR expression on PV interneurons in female
C57BL/6J mice. Integrated density of A, PV immunoreactivity and B, 6 expression on PV
interneurons in naive male (cell n =224, animal n = 4) and female (cell n = 202, animal n = 4)
C57BL/6J mice. C, Representative images from male and female C57BL/6J mice who received
repeated vehicle or alcohol. Integrated density of D, PV immunoreactivity and E,  expression
on PV interneurons in the BLA of male (vehicle: cell n =112, animal n = 3; alcohol: cell n =97,
animal » = 3) and female (vehicle: cell n = 117, animal n = 3; alcohol: cell n = 169, animal n =
3) C57BL/6J mice who received repeated vehicle or alcohol. *p < 0.05, **p < 0.01, ¥***p <

0.0001.
Table 1-1. Summary of ANOVA tests for acute alcohol experiments in C57BL/6J mice.

Table 1-2. Summary of multiple comparisons tests for acute alcohol experiments in C57BL/6J

mice.

Table 2-1. Summary of ANOVA tests for acute alcohol experiments in Gabrd” mice.
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Table 2-2. Summary of multiple comparisons tests for acute alcohol experiments in Gabrd -

mice.
Table 3-1. Summary of ANOVA tests for repeated alcohol experiments.

Table 3-2. Summary of multiple comparisons tests for repeated alcohol experiments.
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