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Abstract 27 

Reaching movements are known to have large condition-independent neural activity and cyclic 28 

neural dynamics.  A new precision center-out task was performed by rhesus macaques to test the 29 

hypothesis that cyclic, condition-independent neural activity in the primary motor cortex (M1) occurs not 30 

only during initial reaching movements but also during subsequent corrective movements.  Corrective 31 

movements were observed to be discrete with time courses and bell-shaped speed profiles similar to the 32 

initial movements.  Condition-independent cyclic neural trajectories were similar and repeated for initial 33 

and each additional corrective submovement.  The phase of the cyclic condition-independent neural 34 

activity predicted the time of peak movement speed more accurately than regression of instantaneous 35 

firing rate, even when the subject made multiple corrective movements.  Rather than being controlled as 36 

continuations of the initial reach, a discrete cycle of motor cortex activity encodes each corrective 37 

submovement. 38 

Significance Statement 39 

During a precision center-out task, initial and subsequent corrective movements occur as discrete 40 

submovements with bell-shaped speed profiles.  A cycle of condition-independent activity in primary 41 

motor cortex neuron populations corresponds to each submovement, such that the phase of this cyclic 42 

activity predicts the time of peak speeds—both initial and corrective.  These submovements accompanied 43 

by cyclic neural activity offer important clues into how we successfully execute precise, corrective 44 

reaching movements and may have implications for optimizing control of brain-computer interfaces. 45 

Introduction 46 

Corrective movements based on sensorimotor feedback are critical for elegant motor control.  47 

While a single, discrete movement like a pointing gesture may be mostly ballistic, more precise aiming 48 

movements typically require an error correction phase (Woodworth, 1899; Craik, 1947; Abrams et al., 49 

1990; Sainburg et al., 1999; Elliott et al., 2010).  In making an online correction, the brain must respond 50 
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to updated sensory information about the current position relative to the desired target.  Yet the way 51 

neurons in motor areas of the brain encode and generate corrective movements to achieve movement 52 

precision is relatively unexplored.  When examining populations of neurons in primary motor cortex 53 

during instructed movements, predictable dynamics of neural spiking occur with a progression from 54 

initiation to completion of a movement (Maynard et al., 1999; Jackson et al., 2003; Truccolo et al., 2005; 55 

Sarma et al., 2010). Yet behaving animals also respond to updated sensorimotor information, as happens 56 

in tasks that require precision.  For corrective movements with new sensory information, does the neural 57 

activity update within a current active neural state as a continuation of the initial reach or does it repeat 58 

and cycle again through the same series of neural dimensions for each additional submovement?   59 

We investigated the neural dynamics underlying corrective movements, focusing on two key 60 

features of neural activity in primary motor cortex that have been previously described during reaching: i) 61 

condition-independent neural activity and ii) rotations in neural dynamics.  Although individual neurons 62 

in primary motor cortex encode a variety of condition-dependent movement features (Evarts, 1968; 63 

Thach, 1978; Georgopoulos et al., 1982; Kalaska et al., 1989; Kakei et al., 1999), there is also a large 64 

condition-independent component in the firing rate of neurons in motor cortex (Kaufman et al., 2016; 65 

Rouse and Schieber, 2018).  Condition-independent neural activity is the change in a neuron’s firing rate 66 

from baseline over time that happens regardless of the instructed movement for any given trial within a 67 

given task.  Condition-independent activity presumably carries information on the timing of movement as 68 

opposed to specific, condition-dependent features.   Techniques like demixed principal component 69 

analysis can partition a neural population’s activity  into condition-independent modulation and the more 70 

classically described condition-dependent tuning to task conditions (Kobak et al., 2016).  In addition to 71 

being condition-independent or -dependent, changes in firing rate in theory might be temporally 72 

synchronous across a population.  But in practice, primary motor cortex neurons have an asynchronous 73 

range of onset latencies before movement, with latencies for most corticomotoneuronal (CM) cells 74 

ranging from 120ms to 0ms (Cheney and Fetz, 1980) while other motor cortex neurons can lead 75 
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movement by up to 200ms  (Moran and Schwartz, 1999).  Because the increases and decreases in firing 76 

rates are not synchronous, the population activity forms a more complex trajectory in neural state space  77 

(Yu et al., 2007; Cunningham and Yu, 2014).  These time-varying dynamics can either be dependent on 78 

specific task conditions or independent of task conditions. While the precise meaning of these features of 79 

neural dynamics under different conditions remains debated (Churchland et al., 2012; Hall et al., 2014; 80 

Michaels et al., 2016; Lebedev et al., 2019), these shifts between different combinations of active neurons 81 

leads to changing dimensions of the neural space.  82 

We hypothesized that if the primary motor cortex handles online corrections as ongoing 83 

adjustments to a single reach, then one cycle of the neural trajectory would include both the initial and the 84 

corrective submovements.  In contrast, if the primary motor cortex handles each correction as a distinct 85 

(albeit smaller) movement, then each corrective submovement would correspond to its own cycle 86 

repeating the series of neural dimensions that are traversed.  We used a precision center-out task that 87 

required moving to small targets (either narrow or shallow) to elicit visuomotor corrections.  We 88 

examined whether corrective movements in this task were simple adjustments in the ongoing reach or 89 

discrete submovements, behaviorally similar to initial movements.  We then ask whether condition-90 

independent activity—representing the time course of movement irrespective of its direction or 91 

amplitude—is similar for both initial and corrective submovements.  Finally, we ask whether cyclic 92 

neural dynamics improve our predictions of when initial and corrective movements occur. 93 

Materials and Methods 94 

Non-human primates 95 

Two male rhesus monkeys, P and Q (weight 11 and 10 kg, ages 7 and 6 years old, respectively), 96 

were subjects in the present study. All procedures for the care and use of these nonhuman primates 97 

followed the Guide for the Care and Use of Laboratory Animals and were approved by the University 98 

Committee on Animal Resources at the University of Rochester Medical Center, Rochester, NY. 99 
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Experimental Design 100 

A precision center-out task was performed by the monkey, using an 18 cm handle attached to a 101 

commercial joystick (M212 series joystick, PQ Controls Inc.) to control a cursor on a 24” LCD display.  102 

The joystick handle moved freely with minimal resistance as the spring mechanism for providing 103 

centering, restorative force was removed.  The end of the joystick could move approximately 9.3 cm in 104 

both the forward/backward and left/right directions.  Motion of the joystick was transduced linearly by 105 

two Hall effect sensors sliding in both the backward/forward and left/right directions.  The cursor viewed 106 

by the monkey directly represented the planar position of these two sensors scaled to fit within a 1000 107 

horizontal x 1000 vertical pixel workspace in the center of the LCD display.  The limits of the cursor 108 

workspace were slightly within the physical limits of the joystick, with 110 pixels corresponded to 109 

approximately 1 cm of movement at the end of the joystick.  The cursor appeared on the display as a 110 

small cross centered on a single pixel in the workspace.  Custom software for task control sampled the 111 

joystick data, updated the scene, and stored the cursor position (equivalent to joystick position) and trial 112 

event times at 100 Hz.    113 

The precision center-out task consisted of three sets of eight peripheral targets located 114 

equidistance and equally spaced in 45˚ intervals around a center, home target (see Figure 2).  The center 115 

target had a radius of 75 pixels.  Each center-out target—defined in polar coordinates—was one of three 116 

different sizes i) large targets spanning 45˚ of the workspace and covering 250-450 pixels from the center, 117 

ii) shallow targets spanning 45˚ but covering a width of only 325-375 pixels from the center, and iii) 118 

narrow targets spanning 15˚ covering 250-450 pixels from the center.  All 24 targets (3 sizes x 8 119 

locations) were presented pseudo-randomly in equal amounts throughout a session.  120 

For each trial, following the subject acquiring the home target and performing a required initial 121 

hold ranging from 300-500 ms, the instruction occurred with the given trial’s correct target changing from 122 

black to green.  Following this instruction, the monkey could move the cursor immediately to contact the 123 

correct target.  At contact, the outline of all targets changed colors from white to black providing visual 124 
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feedback that the cursor was within the target boundaries.  After contacting the desired target, the cursor 125 

was required to remain within the target for a variable hold time of 500-600 ms.  If the cursor left the 126 

target during this hold, the monkey was allowed to enter the target again and complete a final hold.  Once 127 

a successful final hold of 500-600 ms was completed, the animal received a liquid reward.  Both the 128 

required initial and final hold times for each trial were randomly sampled from a uniform distribution.   129 

Neural Recordings 130 

Floating microelectrode arrays (MicroProbes for Life Science) were implanted in the anterior lip 131 

and bank of the central sulcus to record from primary motor cortex (M1) in each monkey, using methods 132 

described in detail previously (Mollazadeh et al., 2011; Rouse and Schieber, 2016).  For monkey P, 133 

recordings were collected from six 16-channel arrays implanted in M1.  For monkey Q, two 32-channel 134 

arrays and one 16-channel array in M1 were used.  The location of the implanted arrays, spanning the 135 

forelimb representation in M1, have been previously reported (Fig. 2 of (Liu and Schieber, 2020)) and 136 

spanned the forelimb area of M1.  Intracortical microstimulation on single electrodes with a current up to 137 

a maximum of 100 µA (12 biphasic pulses, 0.2ms pulse width per phase, 3ms interpulse interval) with the 138 

animal lightly anesthetized with ketamine evoked a variety of forelimb movements.  Of the 96 electrodes 139 

for monkey P, stimulation of 11 sites elicited proximal arm movements, 6 sites elicited wrist movements, 140 

and 21 sites elicited movement of the digits.  Of the 80 electrodes for monkey Q, 34 sites were proximal, 141 

9 sites were wrist, and 25 were digits. During recording sessions, channels with spiking activity were 142 

thresholded manually online, and spike-waveform snippets and spike times were collected with Plexon 143 

MAP (Plexon, Inc.) and Cerebus (Blackrock Microsystems, LLC.) data acquisition systems.  The spike 144 

snippets were sorted off-line with a custom, semi-automated algorithm.  Chronic multielectrode arrays do 145 

not always yield well-isolated single-unit recordings.  To define likely single units, we utilized the signal 146 

to noise ratio of the sorted spike waveforms and the percent of true single unit spikes estimated from a 147 

formula using the number of interspike interval (ISI) violations less than 1ms (Hill et al., 2011; Rouse and 148 

Schieber, 2016). Using a signal to noise ratio of SNR > 3 and 100% true single unit spikes (no ISI 149 
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violations) to define definite single units and SNR > 2.5 and >90% true single unit spikes to define 150 

probable single units, 543 (monkey P) and 304 (monkey Q) of sorted spike waveforms were classified as 151 

definite single units while 268 (P) and 208 (Q) additional units were probable single units.  Thus, 152 

811/1293=63% (monkey P) and 512/1185 = 43% (monkey Q) of all spiking units were classified as likely 153 

single units.  Because the estimation of neural population states from multi-unit activity has previously 154 

been shown to be quite similar to that from well isolated single units (Trautmann et al., 2019) and because 155 

including multi-units would be unlikely to provide results more significant than similar numbers of 156 

single-units, we included both single- and multi-unit recordings in our analyses.  157 

Behavior Analyses 158 

A peak finding algorithm to identify local maxima was used for analysis of the timing of cursor 159 

speed peaks.  Off-line, cursor speed was calculated by filtering the cursor position with a 10-Hz low-pass 160 

1st-order Butterworth filter (bidirectionally for zero phase lag) and then calculating the first derivative 161 

using the 5-point central difference.  Local maxima of cursor speeds (identified with findpeaks function in 162 

Matlab (Mathworks, 2020)) were identified as peaks if they met the following criteria: i) the peak speed 163 

was greater than 250 pixels/s and ii) the peak’s prominence— the height difference between the peak and 164 

the larger of the two adjacent troughs (minimum speed before encountering a larger peak)—was at least 165 

50% of the absolute height of the peak. All such cursor speed peaks with their surrounding ±200 ms time 166 

windows were considered submovements within a trial.  Initial peaks were identified as the first 167 

submovement that ended at least 150 pixels from the center (approximately halfway to the peripheral 168 

target).  Any small movements before the initial speed peak—506 (4.6% of trials) for P and 616 (7.0% of 169 

trials) for Q—were discarded from further analysis.  Speed peaks following the initial speed peak were 170 

defined as corrective submovements.  To focus analysis on submovements made to successfully acquire 171 

the target, corrective submovements were only included if some portion of the acceleration phase—time 172 

from preceding speed trough to speed peak—occurred outside the peripheral target.   173 



 

 8 

The speed profiles for individual submovements were analyzed between -200 and 200 ms relative 174 

to peak speed.  As a measure of similarity between speed profiles, the Pearson’s correlation between these 175 

speed profiles for pairs of submovements was calculated, yielding a similarity score between -1 and 1.  To 176 

measure how similar corrective submovements were to initial submovements, the correlation of each 177 

initial submovement to a randomly selected corrective submovement was calculated.  As a ceiling 178 

comparison, each initial submovement was also compared to another randomly selected initial 179 

submovement. Thus, the distribution of correlations for initial-corrective submovement pairs was 180 

compared to the distribution of initial-initial pairs. 181 

Identifying condition-independent, rotational neural activity 182 

We focused our neural population analysis on the neural dimensions that contained the most 183 

condition-independent, rotational activity.  A schematic illustration of these two features—i) condition-184 

independent vs. -dependent, and ii) synchronous vs. rotational/asynchronous is shown in Figure 1.  The 185 

condition-independent activity is the time-varying average of firing rate across all trials regardless of 186 

condition while the condition-dependent is the specific tuning to task condition like target direction.  187 

Synchronous, time-locked activity represents changes in firing rate that happen simultaneously across the 188 

neural population, while asynchronous activity of varying time course in different neurons can lead to 189 

patterns of traveling waves or oscillations in the population with a predictable progression in time.   190 

Firing rates of the neural population can be visualized as either: i) a function of time (Fig. 1B) or 191 

ii) neural trajectories in a Cartesian neural space where each neuron’s firing rate is plotted on an 192 

orthogonal dimension (Fig. 1C).  For a complex task with variable corrective submovements such as our 193 

precision center-out task, the condition-independent activity provides a useful analysis to identify the 194 

neural activity underlying a submovement.  Although a synchronous rise and fall of firing rate across the 195 

neural population—a single neural dimension--may provide some information, utilizing additional neural 196 

dimensions of the condition-independent signal may help improve our prediction of the timing and phase 197 

of submovements. The simplest is to consider two-dimensions of condition-independent activity in which 198 
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the rotational activity resulting from sequential firing rate changes across different neurons produces a 199 

cycle in a neural plane.  This approach has the potential to improve identification of corrective 200 

submovements.   201 

<Insert Figure 1 near here> 202 

Dynamical Systems Model  203 

Traditionally, condition-independent signals are identified by aligning neural data to behavioral 204 

cues and time averaging with methods like dPCA (Kaufman et al., 2016; Ames and Churchland, 2019).  205 

However, our precision center-out task consisted of corrective movements that were highly variable in 206 

their timing relative to any experimental controlled behavioral event. We therefore employed dynamical 207 

system modeling to characterize repeated changes in firing rates across our recorded neural population. 208 

To identify and analyze potential repeatable temporal dynamics of the neural population that correlated 209 

with movement, our neural data was modeled as a linear, time-invariant system using a system of coupled 210 

first-order ordinary differential equation defined by a transform matrix.  This model was built using only 211 

the condition-independent activity by averaging the firing rates for individual spiking units across all 212 

trials regardless of the movement condition (i.e. target location).   213 

The condition-independent activity was then submitted to jPCA (Churchland et al., 2012) to 214 

identify the two-dimensional neural plane with the most rotational/cyclic activity.  In this model, the 215 

changes in firing rate can grow/shrink along a single dimension (synchronous) as well as rotate across 216 

dimensions (asynchronous).  The eigen decomposition of the transform matrix yields eigenvalues with the 217 

real part representing growing or shrinking away from the origin while the imaginary part represents 218 

rotations. Note, this utilization of the jPCA algorithm on only the condition-independent activity is 219 

different than the typical application of jPCA to data containing the condition-dependent activity.  220 

Additionally, we find the results of the dynamical system are more stable when the firing rates are square-221 

root transformed to equalize variance between high and low firing rates (Kihlberg et al., 1972; Snedecor 222 
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and Cochran, 1980; Ashe and Georgopoulos, 1994) and thus performed this transform before submitting 223 

firing rates to jPCA.   224 

We call the plane with the most rotation the condition-independent (CI) plane and define the two 225 

neural dimensions that define this plane as CIx and CIy.  To consistently define CIx and CIy across 226 

recording sessions and monkeys, we defined the +CIx direction as the neural dimension that had the 227 

maximum average firing rate.  This was performed by calculating the population averaged firing rate at 228 

all angles in the plane and rotating the CIx and CIy axes so that +CIx aligned with the largest firing rate.  229 

Having identified this jPC neural plane, our work introduces a new analytic variable—condition-230 

independent phase (CIφ)—which estimates the instantaneous phase angle within this two-dimensional 231 

plane of the projected population firing rates.  We calculate CIφ using the Hilbert transform applied to the 232 

two signals, CIx and CIy, generating a complex, analytical representation of the population signal.  The 233 

angle of this complex signal is then used to calculate the instantaneous phase.   234 

Since our task consisted of highly variable trial lengths and timing, the identification of 235 

condition-independent activity by time averaging based upon behavioral events was challenging. To be 236 

less constrained in identifying the plane with condition-independent rotational activity, we used an 237 

iterative approach alternating between identifying the CIφ for each time point and then averaging the 238 

condition-independent neural activity for each CIφ value.  We first time-averaged the activity aligned on 239 

speed peaks, and then initially performed jPCA on the time-averaged data. After identifying the rotational 240 

plane, we then binned and averaged the firing rates based on its phase in the plane (rather than time) and 241 

performed jPCA on this new phase-averaged neural activity.  This calculation of the jPCA plane and 242 

phase averaging was repeated for three iterations to ensure convergence.  The Matlab code and additional 243 

documentation about the calculation of CIφ as described in the paper is freely available online at 244 

https://github.com/arouseKUMC/CIphase. The code is also available as Extended Data 1.  245 

The calculation of the jPC plane and the CIφ was performed using 5-fold cross-validation.  Each 246 

recording session was divided into 5 testing sets of trials each containing 20% of the data.  The jPC plane 247 
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was calculated by training on the other 80% of the data and then tested on each test set.  All presented 248 

results for CIφ are using the test data projected into the jPC dimensions identified by the separate training 249 

set. 250 

Firing Rate vs. Speed Model  251 

For comparison with our two-dimensional CI plane and phase analysis, we wanted to examine 252 

how well a linear predictor of speed using a single neural dimension could perform.  We therefore 253 

performed linear regression to predict speed from the recorded neural firing rates.  For this estimate, we 254 

regressed the firing rates for all recorded units to peak speed for all submovements. We utilized the firing 255 

rates for each recorded unit averaged across a time window from 300 ms before to 100 ms after each peak 256 

speed. We chose this method to identify a neural dimension that correlated with speed without using 257 

separate time lags for each individual neuron.  For motor cortex, the neural signal in this dimension would 258 

be expected to increase and peak before each peak in movement speed.  We identify and report the time at 259 

which the peaks in this neural signal occurred to quantify how accurately the timing of peaks in 260 

movement speed was predicted.   261 

Statistics 262 

Several statistical analyses (Table 1) were used to assess how similar corrective submovements 263 

were to initial submovements and whether there were repeated cycles of neural activity and if these cycles 264 

corresponded to behavior.  For correlations between submovement speed profiles, movement times, and 265 

average spike times, non-parametric tests were used. Since CIφ values represent an angle ranging from -π 266 

to π, circular distribution statistics—mean, variance, correlation, and Rayleigh test for non-uniformity—267 

were used.  All circular statistics were calculated with CircStat, a Circular Statistics Toolbox for Matlab 268 

(Berens, 2009). 269 

Table 1. Statistical tests and confidence intervals reported throughout this study referenced with letter 270 

superscripts. 271 
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 Data Structure Type of test Confidence 
intervals 

a Correlation between 
speed profiles from -
-200 to 200 ms 
relative to peak 
speed, 
nonparametric 

Wilcoxon rank sum 
test 

[25th, 75 th] 
percentiles 
 

b Initial vs. Corrective 
movement times, 
nonparametric 

Two-sided 
Wilcoxon rank sum 
test 

Percentage of 
submovements 
within 100-350 
ms 

c Initial vs. Corrective 
Average spike times 
between -200 to 
100ms, 
nonparametric 

Spearman’s rank 
correlation 

95% confidence 
interval by 
bootstrapping 
(1000 
repetitions) 

d Circular distribution 
of phase 

Rayleigh test Circular 
standard 
deviation 

e CIφ-angle 

Speed – linear 

random variable 

Circular correlation 
between angle and 
linear variable 

Minimum and 
maximum 
across 12 
recording 
sessions 

f Ratio of Standard 
deviations of times 
estimated with CIφ 
and Firing rate 
model 

F-test 95% confidence 
interval 

 272 

Results 273 

Motor behavior – initial and corrective submovements 274 

Movement speed was analyzed throughout the center-out task from instruction until successful 275 

completion of the final target hold.   The two monkeys successfully completed 10,963 (monkey P) and 276 

8,737 (monkey Q) trials across 12 recording sessions each.  In addition to the peaks in speed with the 277 

initial reach after instruction, additional peaks in speed were observed and labeled as corrective 278 

submovements.  There were 6478 and 3912 corrective submovements identified for monkeys P and Q, 279 

respectively.   Across all trials, 68.3% (P) and 71.1% (Q) were completed in a single initial movement, 280 
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17.5% (P) and 20.3% (Q) of trials were completed with one additional corrective submovement, and 281 

14.2% (P) and 8.6% (Q) of trials required two or more corrective submovements.  The location of the 282 

identified speed peaks within example trials and the speed profiles for monkey P are shown in Figure 2A 283 

and 2B, respectively.   The speed peaks tended to be distinct with nearly zero velocity between most 284 

peaks.  As shown in Figure 2C, 99.0% (P) and 97.7% (Q) of the minimum speed trough following the 285 

initial speed peak were less than 20% of the peak.  Similarly, 82.4% (P) and 85.8% (Q) of the troughs 286 

were less than 20% of the preceding peak between sequential corrective speed peaks.  The mean peak 287 

speeds for initial submovements were 1533 (P) and 1182 (Q) pixels/s while corrective submovement peak 288 

speeds were 460 (P) and 400 (Q) pixels/s.  Thus, the average peaks for corrective submovements were 289 

30.0% and 33.8% of initial submovements, and a low-speed trough almost always occurred between two 290 

speed peaks making it reasonable to analyze submovements defined by their peak speeds. 291 

<Insert Figure 2 near here> 292 

The speed profiles were time aligned to peak speed to better examine the identified 293 

submovements (Figure 3A).  Almost all submovements show a clear bell-shaped profile for both the 294 

initial and corrective movements.  The similarity between initial and corrective speed profiles was 295 

assessed by using the correlation between randomly selected pairs of movements.  For random pairs 296 

(irrespective of trial) of one initial and one corrective submovement, the median correlation was 0.78 297 

[0.58 0.89] (monkey P) and 0.83 [0.70, 0.90] (monkey Q).  Thus, the shape of corrective submovements 298 

was significantly correlated with the shape of initial submovements (p<0.001a ). As a ceiling comparison, 299 

the correlation between randomly selected pairs of initial submovements was observed to be 0.93 [0.86 300 

0.96] (P) and 0.91 [0.80, 0.96] (Q).   Even though the shape of initial-corrective pairs was significantly 301 

less correlated than the initial-initial pairs, corrective submovements still had a similarity measure that 302 

was a large percentage—84% (0.78/0.93) and 91% (0.82/0.91) —of that observed for initial-initial pairs.   303 

The time duration and timing of submovements was also examined. The onset and offset of 304 

submovements were defined as the time points when speed was one-half of the maximum speed both 305 
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before and after the speed peak.  As shown in Figure 3B, the movement duration at half maximum speed 306 

was similar and close to symmetric for both initial and corrective submovements.  The initial 307 

submovements were slightly longer having a median time of 220ms (P) and 270ms (Q) compared to 308 

corrective submovements with medians of 180ms (P) and 220ms (Q).  This difference in median 309 

movement times was statistically significant (p<0.001b) but the difference of 40 and 50ms was small, 310 

especially given the peak speed was only one-third the magnitude for the smaller corrective movements.  311 

Overall, all submovement durations, as measured by the full width at half maximum, occurred within a 312 

similar range with 96.7%/88.0% (P/Q) of all initial and 96.3%/93.0% (P/Q) corrective submovements 313 

between 100-350 ms.   The time between speed peaks—either initial to first corrective submovements or 314 

between subsequent corrective submovements—is plotted in Figure 3C.  The median time between peaks 315 

were 570 ms for monkey P and 700 ms for monkey Q with the mode time between peaks being 450ms (P) 316 

and 550ms (Q).  Only 3.2% (P) and 0.1% (Q) of speed peaks had a time between peaks less than 200ms 317 

and 6.1% (P) and 10.0% (Q) of speed peak pairs had times greater than 1200 ms.  These observations 318 

suggest the movement behavior could be divided into submovements with similar bell-shaped velocity 319 

profiles and similar time durations.  320 

<Insert Figure 3 near here> 321 

 322 

Consistent Timing of Neural Firing Rates for Initial and Corrective Submovements 323 

Single target acquisition movements thus often consisted of initial and corrective submovements 324 

with similar temporal characteristics.  Did neural activity in the primary motor cortex control such target-325 

acquisition movements as a single movement, or as a series of discrete submovements?  The neural firing 326 

rates across the recorded population were time aligned to the submovement speed peaks to examine the 327 

firing rates from 500 ms before until 300 ms after the peak speed.  The average firing rate (smoothed with 328 

a Gaussian window, σ=30ms) for all analyzed units aligned to the peak speed for initial and corrective 329 

submovements are shown in Figure 4A.  A clear peak occurs before the peak speed for both initial and 330 
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corrective submovements in both monkeys.  Monkey P’s peak firing rates occurred 170 ms and 120 ms 331 

before initial and corrective submovements, respectively, while monkey Q’s occurred at 160 and 160 ms 332 

before for both initial and corrective submovements.  Thus, firing rates increased and peaked globally for 333 

corrective submovements in addition to the initial reach.   334 

If all neurons had the same time lag preceding the upcoming peak in movement speed, there 335 

would be a synchronized increase and decrease of all condition-independent firing rates simultaneously.  336 

However, when examining average firing rates from 10 example neurons from one recording session 337 

from monkey P, all aligned to peak speed, we see heterogenous timing of firing rates relative to the peak 338 

speed (Figure 4B).  This relationship tended to be conserved across initial and corrective movements, 339 

with the purple spiking units tending to fire earlier and the orange units later for both initial and corrective 340 

submovements.  This suggests that the condition-independent neural activity across the neurons might 341 

form a repeatable temporal structure—a neural trajectory—that is more than a simple simultaneous rise 342 

and fall in firing rate across the population 343 

To quantify the early versus late consistency of spiking units, we calculated the average time of 344 

all spikes that occurred within a window from -200ms before to 100ms after peak speed to determine 345 

whether a unit tended to increase its firing rate earlier (negative time) or later (positive time) relative to 346 

peak speed.  We then compared these average spike times for initial versus corrective submovements for 347 

each spiking unit.  As shown in Figure 4C, earlier firing units (more negative) for initial submovements 348 

tended to fire earlier for corrective submovements, while units later (more positive) for initial 349 

submovements also tended to fire later for corrective submovements.  This correlation was significant for 350 

all spiking units with Spearman correlations of ρ = 0.40 [0.35, 0.45] (P) and ρ = 0.58 [0.53, 0.62] (Q), 351 

p<0.001c.  Using only single units, the Spearman correlations were ρ = 0.37 [0.31, 0.44] (P) and ρ = 0.61 352 

[0.54, 0.68] (Q), p<0.001c.  Thus, a significant portion of the ordered timing of units was conserved 353 

relative to peaks in movement speed for both initial and corrective submovements. 354 

 <Insert Figure 4 near here> 355 
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Consistent Neural Dynamics for Initial and Corrective Submovements 356 

We next wanted to examine whether these repeatable neural patterns that occurred on average 357 

across all movements could be used to identify submovements on individual trials.  Despite the smaller 358 

magnitude of the condition-independent neural activity during corrective movements, the repeated 359 

oscillations in speed and repeated neural dynamics suggested a portion of neural activity was repeatable 360 

and common to initial and corrective submovements.  To examine this, we built a simple linear dynamical 361 

system model using the neural firing rates from the entire trial—including both initial and corrective 362 

submovements—to characterize common temporal dynamics that might be present.  The neural firing 363 

rates were again averaged across all conditions, i.e. movement directions, and both initial and corrective 364 

portions of the trials so the dynamical system model would identify common condition-independent 365 

activity.  Using the jPCA algorithm described in Churchland et al. (2012),  i) the first six principal 366 

components of the neural space and ii) the two dimension plane within the space of those six principal 367 

components that captured the most rotational neural activity were identified.  We labeled the two neural 368 

dimensions of the plane with the most rotational condition-independent activity as CIx and CIy.  To 369 

consistently define CIx and CIy across recording sessions and monkeys, we aligned the +CIx direction 370 

with the neural dimension that had the maximum average firing rate in the plane.  This was performed by 371 

calculating the average firing rate across all spiking units for neural activity based on each timepoint’s 372 

angle in the CIx/CIy plane (binned in 100 angle intervals) and rotating the CIx and CIy axes so that +CIx 373 

aligned with the angle with largest firing rate.  This alignment results in the +CIx dimension closely 374 

aligning with the time course of the global average firing rate across the population (shown in Fig 4A) 375 

while CIy is an orthogonal neural dimension that oscillates with a phase lag of π/2 compared to CIx.   376 

The average firing rates projected in our identified CI plane for all initial and corrective 377 

submovements are shown in Figure 5, where the neural data was again aligned relative to peak speed for 378 

initial and corrective submovements separately.  The neural trajectory in the 2-dimensional CIx/CIy plane 379 

are shown in Figure 5A, while the same CIx and CIy dimensions are plotted as a function of time in 380 
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Figure 5B. The initial and corrective neural trajectories (Fig. 5A) are very similar in their shape and 381 

direction of rotation within the plane, with the trajectories for corrective submovements appearing as an 382 

additional cycle resembling a smaller, scaled version of the larger trajectories for initial submovements 383 

moving from the -CIy to +CIx to +CIy to -CIx dimensions.  The time courses of CIx (solid) and CIy 384 

(dashed) (Fig. 5B) were similar for initial (blue) and corrective (red) submovements, though they differed 385 

in magnitude.  The peak in the CIx dimension (denoted with an X)—defined as the dimension in the plane 386 

that best correlated with the global average firing rate of the population—occurred approximately 150 ms 387 

before peak speed for initial and corrective submovements, whereas the peak in the CIy dimension (also 388 

denoted with an X) occurred near the time of peak speed for both submovement types. 389 

<Insert Figure 5 near here> 390 

Neural cycles improve predictions of behavioral timing 391 

Since the population firing rates in the CI plane appeared to cycle across the two dimensions with 392 

similar timing for initial and corrective submovements, despite different magnitudes, we next chose to 393 

examine the instantaneous phases of CIx and CIy activity to see if it was a statistically significant marker 394 

of the neural state of motor cortex and its relationship with upcoming movement.  We used a Hilbert 395 

transform to create an analytic representation of the CIx and CIy signals and then calculated the 396 

instantaneous phase by taking the angle between the real component and the Hilbert transformed 397 

imaginary component. The average phase of CIx and CIy for both initial and corrective submovements—398 

time aligned to peak speed—is shown in Figure 6A.  The phase of CIx (solid lines) and that of CIy 399 

(dashed lines) each were similar for initial and corrective submovements, with the zero phase of CIx 400 

occurring about 150 ms before the peak speed while CIy lagged CIx with an approximately π/2 phase lag, 401 

with the zero crossing occurring around peak speed.  The slope of the phase for corrective movements 402 

was slightly steeper indicating that neural activity cycled slightly faster for corrective movements than 403 

initial.  Histograms of the phase of CIx and of CIy at peak speed on individual trials are shown in Figure 404 

6B.  The distributions of phases of CIx and CIy were significantly non-uniform for both monkeys and the 405 
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means and standard deviations are given in Table 2.  Thus, there was a clear relationship between peak 406 

speed and the phase of condition-independent activity that occurred with almost all submovements, both 407 

initial and corrective, and had similar timing.   408 

<Insert Figure 6 near here> 409 

Table 2.  Means and standard deviations of the phase of CIx and CIy.  All circular distributions of the 410 

phase of CIx and CIy were non-uniform (all p < 0.001d).   411 

Monkey P CIx Mean CIx Std. dev CIy Mean CIy Std. dev 

Initial 0.35 π 0.26 π -0.14 π 0.23 π 

Corrective 0.43 π 0.33 π -0.15 π 0.36 π 

Monkey Q     

Initial 0.31 π 0.22 π -0.15 π 0.30 π 

Corrective 0.45 π 0.31 π -0.05 π 0.37 π 

 412 

Because the phase in the CI plane appeared to define the neural dynamics and predict upcoming 413 

speed peaks, we created a metric we call the condition-independent phase (CIφ) by averaging the phase of 414 

CIx and phase of CIy + π/2 to calculate the current phase in the CI plane.  We then examined the 415 

continuous relationship between cursor speed and neural CIφ.  In figure 7A, we have plotted the cursor 416 

speed as a function of CIφ.  While the CIφ is an angle that ranges between +/-π radians when calculated, 417 

for purposes of display here we have incremented CIφ in steps of 2π to show how successive cycles of 418 

neural activity (abscissa) were related to movement speed (ordinate) as individual trials progressed 419 

through both initial and subsequent corrective submovements. The individual trials for monkey P in 420 

Figure 7A are the same as the trials shown in Figure 2B.  However, the speed traces have now been 421 

stretched or condensed in time based on the current brain state measured with the CIφ. This plot now 422 

shows that the speed of movement varied with the cyclic neural activity with the cursor speeds for most 423 
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trials rising and falling in 2π cycles of CIφ.  Both the speed averaged across all trials (white) and the non-424 

uniform occurrence of peak speeds in individual trials (black) demonstrate that movement speed was 425 

consistently correlated with the cycles of condition-independent neural activity.  The statistically 426 

significant circular correlation between speed and CIφ was 0.44 [0.39,0.53] and 0.42 [0.35,0.50] 427 

(p<0.001e for both animals) with the largest speeds occurring at CIφ = 0.32π and 0.31π (+2kπ) for 428 

monkeys P and Q, respectively.   429 

Finally, we examined the predictive power of  CIφ  for estimating when the peak speed occurred. 430 

Figure 7B illustrates the distribution of the time at which CIφ =0 relative to the time of peak speed for 431 

initial submovements (top) and corrective submovements (bottom).  These distributions consistently 432 

peaked 100-150 ms before the speed peak for both initial and corrective submovements.  Corrective 433 

movements had CIφ =0 at times slightly closer to peak speed indicating that the time delay to peak speed 434 

was slightly less for corrective movements.  A relatively consistent relationship between neural activity in 435 

the CIx/CIy plane and peak speed was present for both initial and corrective submovements across all 436 

trials regardless of target size or reach direction.  437 

To examine if incorporating neural dynamics significantly improved prediction, we compared our 438 

CIφ predictions with these population dynamics to predictions using a standard approach of using the 439 

instantaneous firing rate of all units to predict peak speeds.  For predictions with the instantaneous firing 440 

rates, we built a linear regression model to estimate speed with a weighted sum of the instantaneous firing 441 

rate (a single neural dimension) of all spiking units (see Methods).  Using this model, we estimated the 442 

time when the peak in firing rate in the neural dimension occurred that predicted the upcoming speed 443 

peak.   Figure 7C shows the temporal distributions of these peak firing rates relative to peak speed for 444 

both initial and corrective submovements.  Like the distributions using the dynamical model above 445 

(Figure 7B), the firing rate model peaked 150 to 100 ms before peak speed. The peaks were broader by 446 

10-20 ms, however, as characterized by the greater standard deviations (σ) given for each distribution. 447 

The standard deviations were significantly different in all cases—initial and corrective for both monkeys 448 
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(Table 2).  Furthermore, although ≥ 84% of submovements were included in each of these distributions 449 

(percentages given in Fig. 7), a small fraction of submovements could not be aligned, lacking a CIφ=0 in 450 

the dynamical systems model and/or a peak in the firing rate model within the -300 to 100 ms time 451 

window examined.  The percentage of these unaligned trials was consistently smaller for the dynamical 452 

systems model.  Compared to using only the instantaneous/synchronous firing rates in a single neural 453 

dimension, using the cyclic/asynchronous dynamics of the neural population significantly improved the 454 

accuracy and consistency with which the time of peak speed could be predicted.   455 

<Insert Figure 7 near here> 456 

Table 3.  Comparison of predication accuracy as measured with standard deviation in predictions using 457 

the dynamical system CIφ model vs. an instantaneous firing rate model.  458 

 σ1,  

CIφ, 

(ms) 

σ2, 

Firing 

Rate 

(ms) 

F-stat, 

 

95% 

Confid. 

interval 

Data 

Comparison 

Statistical 

Test 

   Initial All 

submovements 

with a 

prediction 

between  

-300:100 ms, 
assuming 
normal 
distribution 

F-testf, all 
p<0.001 Monkey 

P 

66.1 84.4 0.61 [0.59, 

0.64] 

Monkey 

Q 

75.1 91.1 0.69 [0.65, 

0.71] 

Corrective 

Monkey 

P 

88.0 104.2 0.71 [0.68, 

0.75] 

Monkey 

Q 

87.0 98.7 2.06 [0.73, 

0.83] 

 459 

 460 

Discussion 461 

Our precision center-out task utilized small targets to elicit one or more corrective submovements 462 

in many trials. We found a temporal relationship for both initial and corrective reaching movements with 463 

cyclic, condition-independent neural activity.  Rather than a single cycle of neural activity in the primary 464 
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motor cortex occurring during each trial, the speed profiles of initial and corrective submovements each 465 

aligned with a cycle of neural activity, providing a useful neural marker encoding the series of 466 

submovements.   467 

In our precision center-out task, the monkeys’ movements showed consistent bell-shaped speed 468 

profiles.  These speed profiles were evident for both the larger initial movement from the center toward 469 

the peripheral target as well as for each subsequent corrective movement.   A large majority of both initial 470 

and corrective submovements had durations of 100-350 ms, with a low-speed trough separating almost all 471 

submovements.  Discrete submovements defined by multiple speed peaks have previously been  described 472 

in behavioral studies of reaching (Pratt et al., 1994; Lee et al., 1997; Hatsopoulos et al., 2007; Polyakov et 473 

al., 2009), turning a knob (Novak et al., 2000), isometric contractions (Massey et al., 1992; Hall et al., 474 

2014), and object manipulation for tactile discrimination (Pruszynski et al., 2018).  The experimental 475 

results and analysis presented here provide new evidence of a relationship between condition-independent 476 

neural dynamics and such behaviorally observed submovements.   477 

Condition-independent phase predictive of cursor speed 478 

Churchland et al. (2012) originally described a single cycle of condition-dependent rotational 479 

dynamics in the activity of neurons in the primary motor and premotor cortex during both straight reaches 480 

and curved reaches around obstacles.  More recently, Zimnik and Churchland (2021) demonstrated two 481 

repeated cycles of neural activity, each shortened in time, when a pair of movements were simultaneously 482 

instructed to be performed in rapid succession.  Here, by focusing on the shifting dimensions of 483 

condition-independent neural activity with time, we identified that cycles of neural activity appear not 484 

only for initially planned reaches but also for the highly variable, corrective submovements that are made 485 

online with visual feedback.  Our results highlight that the various time lags between individual cortical 486 

neurons’ firing and the upcoming reaching movements are conserved, whether large and instructed or 487 

small and made online with feedback.   488 
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Similar but smaller cyclic, condition-independent activity for corrective movements  489 

Although the orientation and direction of rotation through the identified condition-independent 490 

neural dimensions was similar for initial and corrective submovements, the magnitude of the condition-491 

independent neural activity that occurred for corrective submovements was approximately one-third to 492 

one-half the magnitude of that for the initial submovements (both in average firing rate, Fig. 4A, and 493 

within our identified rotational CI plane, Fig. 5).  On average, the encoding of movement speed is clearly 494 

present in primary motor cortex (Moran and Schwartz, 1999; Paninski et al., 2004), and the smaller 495 

change in average firing rate observed here during corrective movements reflected the lower movement 496 

speed for the corrective compared to the initial submovements, suggesting speed tuning in the magnitude 497 

of the condition-independent activity.  This does not imply, however, that each individual trial and each 498 

individual neuron have proportionally smaller changes of firing rate during smaller amplitude 499 

movements. Examination of small, instructed movements has shown that a fraction of primary motor 500 

cortex neurons have similar firing rates for small, precise and for larger wrist movements while others are 501 

selective for only larger movements (Fromm and Evarts, 1981).  We too observed similar large changes in 502 

firing rate on individual corrective submovements for certain neurons (data not shown). Only when 503 

averaging firing rates—time aligned to the peak movement speed or the decoded condition-independent 504 

phase—were the population differences in firing rate modulation between initial and corrective 505 

movements readily apparent.   Precisely identifying encoded speed on a trial-by-trial basis with the neural 506 

activity remains challenging as there are often large changes of firing rates for individual neurons that are 507 

variable and idiosyncratic during any particular corrective submovement. 508 

Our results highlight that condition-independent neural signals can evolve in time along with the 509 

neural dynamics that are related to task conditions.  Adding condition-independent activity to condition-510 

dependent activity has been suggested to make brain dynamics more robust to noise by increasing the 511 

differences in neural signals even when the muscle activation pattern at certain time points are very 512 

similar (Russo et al., 2018). In the context of precise, corrective movements, we speculate cyclic brain 513 
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dynamics can be used to organize neural activity that creates distinct submovements with time-varying 514 

neural and musculoskeletal dynamics that are more reliable for motor control.   Previous reports of neural 515 

activity defining submovements linked together have used the term movement fragments (Hatsopoulos et 516 

al., 2007).  In the context of precise movements, we hypothesize that organizing movement into 517 

submovements or movement fragments might allow the control of particular submovements to have 518 

different encoding features, neural processing, or control policies, for instance, allowing the large initial 519 

movements to be larger amplitude and less precise while the corrective submovements are smaller and 520 

more precise.   Further studies will be needed to understand the condition-dependent differences that 521 

accompany the condition-independent neural features presented here. 522 

Though various time lags in different neurons seem likely to be present across many tasks, cyclic, 523 

condition-independent neural dynamics may not be similar for all upper extremity movements.  For 524 

instance, whereas during combined reach-and-grasp movements cyclic condition-independent activity 525 

occurs along with more complex condition-dependent dynamics (Rouse and Schieber, 2018), during 526 

separate reaching movements and grasping movements condition-dependent activity was cyclic during 527 

reaching, but was more complex during grasping (Suresh et al., 2020).  The neural signals in a given 528 

hemisphere for cyclic movements of the contra- and ipsilateral arms have also have been reported to be in 529 

orthogonal subspaces (Ames and Churchland, 2019).  Cyclic neural activity may not be due only to 530 

intrinsic neural dynamics in M1, but also the result of sensorimotor feedback control and/or a cognitive 531 

strategy.  With sufficient time delay between each submovement, the neural activity could fit both 532 

descriptions.  Observations of additional submovements defined by second or third speed peaks do not 533 

necessarily require a feedback controller with discrete updates.  A single, continuous optimal feedback 534 

controller with appropriate delays and signal dependent noise can generate additional submovements with 535 

multiple, sequential speed peaks (Li et al., 2018).  Results by Susilaradeya et al. (2019) argue that 536 

extrinsic effects of a task interact with the intrinsic dynamics of the brain in a manner consistent with an 537 

optimal feedback controller, possibly providing a framework for assessing these effects across a variety of 538 
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tasks including our precision center-out task.  Further work examining neural activity in various tasks 539 

and/or additional sensorimotor brain areas will be needed to advance our understanding of the neural 540 

dynamics of the sensory processing, cognitive planning, and motor execution for precise, corrective 541 

movements. 542 

The cyclic dynamics of corrective movements have important implications for brain-computer 543 

interfaces (BCIs).  To date, most BCI decoders are time-invariant, not recognizing when submovements 544 

occur.  Decoders are typically first constructed from observed or imagined movements that assume single, 545 

straight-line movements.   When algorithms for updating BCI decoders consider the change in movement 546 

direction for corrective movements, it typically has been assumed the intended path is updated 547 

continuously (Gilja et al., 2012; Shanechi et al., 2016).  Experiments have suggested that BCI control can 548 

be improved with two states: active control and rest (Kim et al., 2011; Williams et al., 2013, 2016; Sachs 549 

et al., 2016).  Our results suggest that computing the phase of cyclic, condition-independent neural 550 

activity with CIφ (Fig. 7B) can provide better prediction of the timing of corrective submovements than 551 

using the instantaneous firing rates alone (Fig. 7C).  This may lead to BCIs that allow the subject to better 552 

signal when they intend to make a corrective movement. With additional information about the typical 553 

neural dynamics and kinematics of submovements, BCI decoders may better estimate natural kinematics 554 

from noisy neural signals.  Taking into account the cyclic dynamics of the condition-independent neural 555 

activity may also lead to better descriptions of the condition-dependent activity that encodes task features. 556 

For example, direction encoding has been shown to shift progressively during a single movement (Sergio 557 

and Kalaska, 1998; Churchland and Shenoy, 2007; Suminski et al., 2015; Suway et al., 2017). Accounting 558 

for the phase of a movement with its cyclic, condition-independent activity (i.e. CIφ) could enable 559 

decoders of movement direction that shift progressive during a single movement.  Such improvements 560 

could lead to a more robust description of the neural encoding of precise and corrective movements.   561 

562 
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 563 

Figure 1.  Idealized representation of both the synchronous and rotational components of condition-564 

independent and -dependent changes in neuronal firing rate.  A) The firing rates for four neurons (blue, 565 

orange, yellow, and purple) are shown for reaches to four target directions (light to dark grayscale).  The 566 

overall firing rates differ for both the four neurons and the four target condition.  By time averaging 567 

across the four conditions, the condition-independent firing rates and the residual condition-dependent 568 

firing rates are both identified.  B) Next, averaging across the population reveals that firing rates are i) 569 

synchronous activity across all neurons at each time point and ii) the remaining, asynchronous/rotational 570 

firing rate changes specific for each neuron.  C) The neural space visualizes the population activity by 571 

showing each neuron’s firing rate as a point along an orthogonal dimension with time represented as a 572 

trajectory through this space.  In this representation, the difference between synchronous and rotational 573 

activity is better appreciated.  Synchronous activity is movement along a single neural dimension while 574 

rotational activity is movement between dimensions. Note, the dimensions defined by individual neurons 575 

are shown projected in a 2D plane.  Only the given component (synchronous/rotational and condition-576 

independent/-dependent) are shown for these four example neurons for visualization purposes.  In a much 577 

higher dimensional space when recording from a large number of neurons, the possibility of finding 578 

dimensions with little overlap between components is much greater. 579 

 580 

Figure 2.  The precision center-out task.  A) Cursor paths for four example trials to each target for the 581 

three target sizes: regular (top), narrow (middle), shallow (bottom).  Initial submovements from 200ms 582 

before to 200ms after speed peaks are plotted in blue with the point when peak speed occurred shown 583 

with a blue dot.  Corrective movements are similarly identified in red with a red dot.  Grey lines connect 584 

the rest of a trial before, between, or after submovements with a speed peak.  B)  Cursor speed plotted 585 

versus time for a subset of trials.  Initial (blue) and corrective (red) submovement speed peaks are 586 

identified with squares. Gray squares identify speed peaks that were thrown out because they i) were 587 

small initial movements that did not move outside the center or ii) occurred entirely within the peripheral 588 
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target. C) Top) Distribution of peak speeds for initial (blue) and corrective (red) submovements. Bottom) 589 

Distribution of the trough-to-peak ratio for the troughs following an initial submovement before a 590 

corrective submovements and following a corrective submovement before another corrective 591 

submovement.  Data is shown for monkey P. Data for monkey Q, which had similar results, is not shown. 592 

 593 

Figure 3. Time course of submovements.  A) The cursor speeds are plotted aligned to speed peaks for 594 

initial (blue) and corrective (red) submovements.  N.B. The cursor speeds shown are before the bandpass 595 

filter used for identifying peaks displayed in Figure 1B.  Thus, the maximum of each trace may not align 596 

exactly with the plotted peak speed.  B)  Histogram of the time at half-maximum speed before and after 597 

peak speed for all initial (blue) and corrective (red) submovements.  C)  The time duration between speed 598 

peaks including the times from initial submovement to first corrective submovement as well as between 599 

any consecutive pairs of corrective submovements.    600 

 601 

Figure 4.  Neural firing relative to initial and corrective submovements.  A) The firing rate for all spiking 602 

units was averaged for all initial (blue) and corrective (red) submovements.  The shaded region interval 603 

shows the 95% confidence interval of the calculated mean for all spiking units.  Circles indicate the time 604 

of peak firing rate for each condition. B) Average condition-independent firing rates for 10 example 605 

spiking units recorded simultaneously from monkey P time-aligned relative to peak speed for all initial 606 

(left) and corrective (right) submovements.  Firing rates are shown relative to the average firing rate 607 

within the given time window (initial or corrective) for each spiking unit.  The weighted timing of spikes 608 

(in ms) within the -200ms to 100ms window is given for each unit.  Units are colored based on the initial 609 

movement by whether their firing rates were greater early (purple) or late (orange).  C) Weighted timing 610 

of spiking relative to peak speed for each unit for initial (abscissa) and corrective (ordinate) 611 

submovements.  More negative times represent spiking earlier relative to the peak speed of each 612 
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submovement.  Single units are shown with filled circles while all other spiking multi-units are shown 613 

with open circles.   614 

 615 

Figure 5. Cyclic neural dynamics related to initial and corrective submovements.  A) The average 616 

population firing rates for initial (blue) and corrective (red) submovements are projected in the CIx/CIy 617 

plane identified with jPCA.  The trajectories start at the triangles and end at the squares.  Each filled circle 618 

is a 150 ms time step and the open corresponds to peak speed.  C).  Average CIx (solid lines) and CIy 619 

(dashed lines) plotted as a function of time relative to average cursor speed (dotted lines). 620 

 621 

Figure 6.  Phase of CIx and CIy relative to peak cursor speed.  A)  Phase of CIx (solid lines) and CIy 622 

(dashed lines) time-aligned to peak speed (Time = 0) and averaged for all initial (blue) and corrective 623 

(red) submovements.  B) Histograms of the phase of CIx and Ciy at the time of peak speed for initial 624 

(blue) and corrective (red) submovements.   Means and standard deviations are given in Table 2. 625 

Figure 7. Relationship between CIφ and cursor speed.  A)  Cursor speed is plotted as a function of CIφ for 626 

200 trials with at least one corrective submovement.  The average speed of all trials as a function of CIφ 627 

is shown in white, illustrating the oscillation in cursor speed depending on the phase of neural activity.  628 

The circular correlations between CIφ and cursor speed for all corrective trials were 0.44 [0.39, 0.53] and 629 

0.43 [0.36, 0.50] for monkeys P and Q, respectively, p<0.001e in both cases.  Note, the unwrapped CIφ is 630 

not always a monotonically increasing value as occasionally the neural activity could reverse and move 631 

clockwise rather than counter-clockwise in the neural plane shown in Figure 6B. 632 

B & C) Identifying the times of peak speeds with a dynamical systems model (B) or with an 633 

instantaneous firing rates (C).  The time point when CIφ = 0 (B) or peak firing rate (C) was used as a 634 

prediction of the upcoming submovement.  Each histogram shows only those submovements for which 635 

the neural data aligned with the movement data, i.e.  CIφ = 0 (B) or maximum firing rate (C) occurred 636 

within the time range examined (-300 to 100 ms relative to submovement peak speed). The percentage of 637 
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total aligned trials is shown for each distribution as well as the standard deviation (σ) for the aligned 638 

trials.  In all cases, the dynamical systems model predictions were more precise, with a narrower standard 639 

deviation (statistics in Table 3) and fewer unaligned trials.   640 

641 
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 642 

Extended Data 1. Matlab code to calculate the CIφ is available on Github.  643 

Since the trial data contains corrective movements in addition to the large initial movements that 644 

were not precisely time aligned to trial events for averaging condition-independent neural activity, we 645 

developed a novel algorithm to iteratively average the firing rates, calculate CIφ, then average the firing 646 

rates again based on the CIφ. This iterative process involves three steps:   i) Each unit’s firing rate is 647 

averaged across all trials to determine its condition-independent firing rate.  ii) Dimensionality reduction 648 

is performed using PCA and jPCA on the condition-independent firing rates to identify the neural plane 649 

with the most rotational/cyclic condition-independent activity.  iii) The instantaneous phase is calculated 650 

using the Hilbert transform on the first two jPC dimensions for all data points.  Matlab code is available 651 

on GitHub.  Further details are available in the Readme document attached to the code.   652 

 653 

654 
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