
Copyright © 2022 Sadaphal et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution
4.0 International license, which permits unrestricted use, distribution and reproduction in any
medium provided that the original work is properly attributed.

Research Article: New Research | Sensory and Motor Systems

Sensorimotor learning in response to errors in
task performance

https://doi.org/10.1523/ENEURO.0371-21.2022

Cite as: eNeuro 2022; 10.1523/ENEURO.0371-21.2022

Received: 13 September 2021
Revised: 18 January 2022
Accepted: 23 January 2022

This Early Release article has been peer-reviewed and accepted, but has not been through
the composition and copyediting processes. The final version may differ slightly in style or
formatting and will contain links to any extended data.

Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully
formatted version of this article is published.



 

 1 

Sensorimotor learning in response to errors in task performance. 1 

 2 

Dhwani P. Sadaphal1, Adarsh Kumar1,2 and Pratik K. Mutha1,3 3 

 4 

1Center for Cognitive and Brain Sciences, 2Department of Mechanical Engineering, 5 

and 3Department of Biological Engineering, Indian Institute of Technology 6 

Gandhinagar, India. 7 

 8 

Abbreviated Title: Strategic compensation of task errors 9 

 10 

Author Contributions: DPS, AK and PKM designed the study, DPS collected the 11 

data, DPS, AK and PKM authors analyzed the data, DPS and PKM wrote the paper. 12 

 13 

Correspondence should be addressed to:  14 

Pratik K. Mutha 15 
Block 5, Room 316A 16 
Indian Institute of Technology Gandhinagar 17 
Palaj, Gandhinagar – 382355 18 
Gujarat, India 19 
Email: pm@iitgn.ac.in 20 
 21 

Number of Figures: 5        22 

Number of Tables: 0      23 

Number of Multimedia: 0  24 

Number of words for Abstract: 209           25 

Number of words for Significance Statement: 120 26 

Number of words for Introduction: 750  27 

Number of words for Discussion: 1721       28 

Acknowledgements: We thank Gaurav Panthi for helpful discussions. 29 

Conflict of Interest: Authors report no conflict of interest 30 

Funding sources: This work was partially supported by grants from the Department 31 

of Science and Technology, Government of India to PKM. We also acknowledge 32 

support from IIT Gandhinagar. 33 

  34 



 

 2 

ABSTRACT 35 

 36 

The human sensorimotor system is sensitive to both limb-related prediction errors 37 

and task-related performance errors. Prediction error signals are believed to drive 38 

implicit refinements to motor plans. However, an understanding of the mechanisms 39 

that performance errors stimulate has remained unclear largely because their effects 40 

have not been probed in isolation from prediction errors. Diverging from past work, 41 

we induced performance errors independent of prediction errors by shifting the 42 

location of a reach target but keeping the intended and actual kinematic 43 

consequences of the motion matched. Our first two experiments revealed that rather 44 

than implicit learning, motor adjustments in response to performance errors reflect 45 

the use of deliberative, volitional strategies. Our third experiment revealed a potential 46 

dissociation of performance-error-driven strategies based on error size. Specifically, 47 

behavioral changes following large errors were consistent with goal-directed or 48 

model-based control, known to be supported by connections between prefrontal 49 

cortex and associative striatum. In contrast, motor changes following smaller 50 

performance errors carried signatures of model-free stimulus-response learning, of 51 

the kind underpinned by pathways between motor cortical areas and sensorimotor 52 

striatum. Across all experiments, we also found remarkably faster re-learning, 53 

advocating that such “savings” is associated with retrieval of previously learned 54 

strategic error compensation and may not require a history of exposure to limb-55 

related errors.  56 
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SIGNIFICANCE STATEMENT 57 

 58 

Humans adjust their actions if they do not produce desired limb-related sensory 59 

consequences or task-related outcomes. We probed whether task-related 60 

performance errors induce implicit changes to motor plans at all, or simply trigger the 61 

deliberate selection of different actions. We induced performance errors in isolation, 62 

and found that they were compensated entirely via intentional, strategic mechanisms 63 

consistent with improved action selection. Strategies also appeared to be sensitive to 64 

error size, and transitioned from stimulus-response associative behavior to goal-65 

directed control as error magnitude increased. Across all experiments, we also found 66 

faster re-learning or “savings”, substantiating the view that savings is associated with 67 

strategy-use, and does not depend on experience of limb-related prediction errors 68 

that bring about implicit adjustments to action plans.   69 
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INTRODUCTION 70 

 71 

Studies of motor adaptation, the capacity to recalibrate our actions to changing body 72 

and environmental conditions, have been instrumental in characterizing many 73 

fundamental principles of sensorimotor learning. Adaptation paradigms have typically 74 

employed different visual (Morehead et al., 2017; Scheidt et al., 2005) or dynamic 75 

(Lefumat et al., 2015; Sainburg et al., 1999; Shadmehr and Mussa-Ivaldi, 1994) 76 

perturbations that produce discrepancies in the actual versus expected limb-related 77 

sensory feedback. It is generally believed that such sensory prediction errors (SPEs) 78 

are compensated by implicitly recalibrating motor plans (Mazzoni and Krakauer, 79 

2006; Morehead et al., 2017; Oza et al., 2020). SPE-driven changes in motor output 80 

are dependent on cerebellar (Flament et al., 1996; Martin et al., 1996; Morehead et 81 

al., 2017) and posterior parietal networks (Clower et al., 1996; Della-Maggiore et al., 82 

2004; Kumar et al., 2020); disruption in these regions, either naturally due to Stroke 83 

or degeneration, or artificially using brain stimulation techniques, produces clear 84 

deficits in SPE-based learning.  85 

 86 

Perturbations applied to moving effectors produce not just SPEs, but can also result 87 

in task performance errors (TPEs). In goal-directed motion, TPEs could arise from a 88 

failure to achieve the movement goal (missing a spatial target, for instance), or when 89 

a target moves to a different location while the action is being performed. Learning to 90 

compensate TPEs plausibly requires intact cortico-striatal circuits (Anguera et al., 91 

2010; Taylor and Ivry, 2012), although a measure of the TPE itself could come from 92 

the simple spike discharge of cerebellar Purkinje neurons (Popa et al., 2017). 93 

However, a clear understanding of the computational and psychological mechanisms 94 

that drive changes in motor behavior upon exposure to recurring TPEs, has 95 

remained elusive. While early work hinted that TPEs may not induce an implicit 96 

adaptive response, it did not elaborate on the algorithms employed (Diedrichsen et 97 

al., 2005). Later studies suggested that TPEs could provoke use of deliberative 98 

movement re-aiming strategies (McDougle and Taylor, 2019; Taylor et al., 2014), but 99 

an alternative proposition has been put forth in more recent work. This latter set of 100 

studies, which have probed the influence of binary TPEs on learning, suggests that 101 

like SPEs, TPEs can drive implicit learning, and net adaptation reflects the sum of 102 

two implicit processes, one driven by SPE and the other by TPE (Kim et al., 2019; 103 
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Leow et al., 2018; Van der Kooij et al., 2018). These two views thus differ in terms of 104 

how TPEs contribute: one suggests that they drive the formulation of an explicit 105 

strategy, while the other invokes implicit recalibration.  106 

 107 

This debate arises primarily because TPEs have rarely been elicited independent of 108 

SPEs. When these errors co-occur, it is likely that they interact, which, 109 

neuroanatomically, could be facilitated via connections between the basal ganglia 110 

and the cerebellum (Bostan and Strick, 2018). Furthermore, this interaction may be 111 

competitive, with SPEs dominating the adaptative response (Wang et al., 2019). This 112 

is supported by findings in healthy individuals who adapt to SPEs even if it amplifies 113 

TPEs (Mazzoni and Krakauer, 2006), or who cannot correct for TPEs due to task 114 

constraints (Tseng et al., 2007). Likewise, Stroke patients with lesions circumscribed 115 

to right inferior frontal cortex show complete adaptation to SPEs despite failing to 116 

correct for TPEs (Mutha et al., 2011). Given this overwhelming influence of SPEs 117 

when imposed concurrently with TPEs, it is perhaps not surprising that mechanisms 118 

through which TPEs alone are compensated have remained unclear.  119 

 120 

Resolving the mechanisms underlying TPE-mediated changes in motor behavior 121 

also has implications for understanding the formation of long-term motor memories. 122 

Such latent memories enable faster learning upon re-exposure to the perturbation, a 123 

phenomenon termed “savings”. While there is evidence that savings is promoted via 124 

strategic re-aiming (Haith et al., 2015; Huberdeau et al., 2015; Morehead et al., 125 

2015), some studies have linked it to other processes including implicit mechanisms 126 

(Coltman et al., 2019; Yin and Wei, 2020), action repetition (Huang et al., 2011) and 127 

a memory of the experienced errors that in turn modulates error sensitivity (Herzfeld 128 

et al., 2014). Based on these diverse results, one cannot be certain whether it is 129 

improved action selection (mediated by TPEs) or improved action execution 130 

(mediated by SPEs) or a combination of the two that contributes to long-term motor 131 

memory formation that facilitates savings. 132 

 133 

Here we examined how humans learn to compensate consistent TPEs imposed in 134 

isolation from SPEs, and if they express as savings the acquired memory when re-135 

exposed to the learning environment. We also probed whether and how the 136 

magnitude of the TPE influences the ensuing changes in motor output. 137 
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 138 

MATERIALS AND METHODS 139 

 140 

Subjects 141 

We recruited 76 healthy, right-handed individuals between the age 18 and 30 years 142 

across 3 different experiments. Handedness was assessed using the Edinburgh 143 

Handedness Inventory. All subjects were naïve to the expected outcomes of the 144 

experiment, provided written informed consent before participating, and were paid for 145 

their time. The study was approved by our Institute Ethics Committee. One subject 146 

was excluded (see below), resulting in a total of 75 subjects (mean age = 22.640.34 147 

years, 27 females) whose data were analyzed.  148 

 149 

Experimental setup 150 

Subjects sat on a height-adjustable chair facing a large, horizontally placed digitizing 151 

tablet and used a hand-held stylus to make planar, targeted reaching movements on 152 

it (Figure 1A). All movements were made with the right hand. Subjects received 153 

visual feedback of their hand (stylus) position on a mirror that reflected a high-154 

definition display placed directly above it. The mirror was aligned parallel to the 155 

screen and the digitizing tablet, and prevented direct view of the moving limb. Hand 156 

position was displayed as a circular cursor (0.5 cm diameter) along with a circular 157 

start position (1 cm diameter) and targets (1.5 cm diameter) for the reach.  158 

 159 

To begin a trial, subjects first brought the cursor into the start circle. After a delay of 160 

500 ms, a target appeared at one of four locations (45°, 135°, 225° or 315°) along 161 

with an audio beep that indicated to subjects that they should start moving. Across 162 

all experiments, the distance between the start position and the target was fixed at 163 

10 cm, and subjects were encouraged to move as quickly as possible, but no 164 

specific constraints were imposed on either reaction time or movement time. Further, 165 

cursor feedback was provided during the entire reach and was always veridical with 166 

the actual position of the hand. 167 

 168 

 169 

 170 
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Experimental blocks 171 

In all 3 experiments of this study, subjects performed 4 blocks of trials: baseline, 172 

learning, washout and savings. Baseline trials comprised of reaches to fixed, 173 

stationary targets. This was followed by the learning block in which the target 174 

location was shifted, or “jumped”, counterclockwise on each trial. The shift was 175 

achieved by extinguishing the originally displayed target (“original” target) and 176 

immediately displaying a new one (“new” target). The magnitude of the target-shift 177 

was 45° in experiments 1 and 2, while it was 15°, 30° or 60° for the different groups 178 

of experiment 3 (Figures 1B and 1D, also see below). The shift was initiated as soon 179 

as subjects breached the start circle boundary (moved 3 mm from the center of the 180 

start circle), and enabled us to impose a TPE. The learning block, in which subjects 181 

learned to predictively account for the TPE (Figure 1C), was followed by washout 182 

trials that were similar to baseline in that there was no target-shift, and the original 183 

target remained on the screen for the entire trial. After washout, we probed for 184 

“savings” by exposing subjects to target-shifts as in the earlier learning block. 185 

Specific task instructions were given prior to the onset of each block (see below).  186 

 187 

To gain some familiarity with the setup and the task display, subjects first performed 188 

10 no-shift trials and then 2 target-shift trials; these 12 practice trials were not 189 

analyzed. Before they attempted the no-shift practice trials, subjects were explained 190 

what they would see on the screen and told that they should reach from the start 191 

circle to the target. Prior to the practice target-shift trials, they were told that they 192 

might experience trials in the task where the target would jump to a different location. 193 

They then performed 2 such trials as practice. Throughout the experiment including 194 

practice trials, at the end of each trial, subjects were given points (10, 5, 3 or none) 195 

depending on the accuracy of their movement. Accuracy was calculated relative to 196 

the original target on baseline and washout trials, and the new target for the learning 197 

and savings trials. Points were not analyzed.   198 

 199 

Experiment 1 200 

In our first experiment (n = 30), subjects performed 56 baseline, 112 learning, 112 201 

washout and 112 savings trials. As described earlier, baseline and washout trials 202 

comprised of reaches to stationary targets, while the target was jumped 45° 203 

counterclockwise during the learning and savings blocks. Additionally, interspersed 204 
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within the learning and savings blocks were 3 sub-blocks of 4 trials each on which 205 

the target was not shifted; these trials were thus similar to baseline (Figure 1B) and 206 

did not induce a TPE. Each of the no-shift sub-blocks occurred after every 28 target-207 

shift trials. In all, subjects performed 416 trials in this first experiment. 208 

 209 

Subjects were given verbal instructions before each of the main experimental blocks 210 

and also before each no-shift sub-block embedded within the learning and savings 211 

blocks. Prior to the baseline block, subjects were told to reach to the target that 212 

would be displayed on the screen, and were also informed that its position would not 213 

change. Following baseline and prior to the onset of the learning block, subjects 214 

were told that the target would now start “jumping”, and that they should reach to the 215 

new target. Further, before each no-shift sub-block, they were told that the target 216 

would now stop jumping and they should move to the original target. Similarly, at the 217 

end of each no-shift sub-block, subjects were informed that the target would start 218 

jumping again and they should go to the new target. Instructions before the washout 219 

block were similar to those given before the no-shift sub-blocks. Instructions 220 

provided before the savings block were the same as those given prior to the learning 221 

block. In sum, verbal instructions were given every time the target-shift conditions 222 

were about to change. 223 

 224 

Experiment 2 225 

The design of our second experiment (n = 10) was motivated by the work of Taylor 226 

et al. (2014), who used verbal reports of subjects’ intended aiming direction to 227 

estimate their use of cognitive strategies. The setup and general task environment 228 

remained similar to that of experiment 1. Subjects performed 40 baseline, 112 229 

learning, 40 washout and 112 savings trials. The reach target remained stationary on 230 

the baseline and washout trials, while 45° counterclockwise target jumps were 231 

introduced on each trial of the learning and savings blocks (Figure 1D). Target 232 

presentation and timing of the jump remained similar to experiment 1. The no-shift 233 

sub-blocks were not employed in this experiment.  234 

 235 

In addition to the start circle and the target, a ring of 72 numerical landmarks 236 

(numbered from 0 to 71, increasing counterclockwise) placed at 5° intervals along 237 

the periphery of a virtual circle of 10 cm diameter (corresponding to the target 238 
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distance) was also presented on each trial of all 4 blocks (Figure 1D). Since the 239 

target could appear at any one of four different locations, the ring was rotated such 240 

that landmark “0” always coincided with the location of the original target for that trial 241 

while landmark “9” always corresponded to the location of the new target displayed 242 

on learning and savings trials (45° counterclockwise). The ring was presented 243 

simultaneous with the original target and it disappeared once the subjects crossed 244 

the edge of the start circle. Importantly, on every trial, before they initiated their 245 

movement, subjects were required to verbally report their aiming direction by stating 246 

the approximate numerical landmark they intended to move to. This number was 247 

recorded by the experimenter.  248 

 249 

As in experiment 1, subjects were also informed about target behavior prior to each 250 

block. Briefly, before baseline trials, subjects were told that they should move to the 251 

target that would be displayed on the screen, and that its location would not change 252 

during the trial. Prior to the learning block, subjects were informed that the target 253 

would now start “jumping” during the trial and they should reach to the new target. 254 

Before washout, they were again informed that the target would stop jumping and 255 

they should move to the original target. Finally, before the savings block, they were 256 

told that the targets would start jumping again and they should go to the new target.  257 

 258 

Experiment 3 259 

In Experiment 3 (n = 36, one subject was excluded from the analysis, so final n = 260 

35), we aimed to understand the influence of TPE magnitude on changes in motor 261 

behavior. Subjects were assigned to three different groups, that differed in terms of 262 

the magnitude of the target-shift experienced [15° (n = 11), 30° (n = 12), or 60° (n = 263 

12)]. All jumps were counterclockwise as before, and all other aspects of this 264 

experiment were identical to experiment 1 (Figure 1B). Thus, subjects performed 4 265 

blocks: baseline (56 trials), learning (112 trials), washout (112 trials) and savings 266 

(112 trials). Targets remained stationary during the baseline and washout blocks, 267 

while they were shifted on learning and savings trials. Three no-shift sub-blocks (4 268 

trials each) were also embedded within the learning and savings blocks. Instructions 269 

to subjects and their schedule remained the same as in experiment 1. 270 

 271 

 272 
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Data Analysis 273 

Variables 274 

Data were analyzed using custom Matlab scripts. Hand X and Y position data were 275 

filtered using a low-pass Butterworth filter with 10 Hz cutoff. Position data were 276 

differentiated to obtain the speed profile. Movement onset was defined as the point 277 

at which hand speed first crossed 5% of maximum movement speed. Reaction time 278 

(RT), a variable of interest in experiments 1 and 3, was calculated as the difference 279 

between the time of movement onset and the time of target presentation. Our other 280 

key measure was the deviation in hand movement direction relative to the direction 281 

of the original target. This was calculated as the angle between two lines: the line 282 

joining the center of the start circle and the original target, and the line joining the 283 

center of the start circle and the hand position at peak speed. On a few trials, more 284 

than one peak could occur. For example, on the early learning trials (Figure 1C), 285 

subjects could make an initial outward movement to the original target and then 286 

correct it online to go to the new target, resulting in two peaks in the speed profile. In 287 

such cases, hand position at the first large (>15 cm/s) peak, corresponding to the 288 

outward movement to the original target, was chosen for the calculation of hand 289 

deviation since this would serve as a more appropriate indicator of the subjects’ 290 

initial movement plan. Counterclockwise and clockwise deviations relative to the 291 

original target were treated as positive and negative respectively. 292 

 293 

Outlier removal 294 

Firstly, trials on which subjects did not move, or moved but lifted the stylus off the 295 

digitizing tablet leading to data loss, were marked as bad trials. Second, outliers 296 

were identified based on the hand deviation data. For the baseline and washout 297 

blocks, we first calculated the mean hand deviation across all trials of that block, and 298 

then labeled as an outlier any trial on which the hand deviation was more than ±3 299 

standard deviations from the corresponding mean. For the learning and savings 300 

blocks, outliers were marked as those trials on which the hand deviation was more 301 

than ±3 times the magnitude of the target-shift. Following this procedure, one subject 302 

from the 15° jump group of experiment 3 ended up with 136 bad/outlier trials (out of 303 

416 trials performed); this subject was excluded entirely. Across all the remaining 75 304 

subjects, 1.34% of the trials were labeled as bad trials or outliers and removed from 305 

the analysis. 306 
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 307 

Further analyses and statistics:  308 

Following outlier removal, potential baseline biases in reach direction were 309 

eliminated by subtracting the mean baseline hand deviation from the hand deviation 310 

on each trial; these baseline-subtracted values were used for further analyses. 311 

Average hand deviation and RT on the last twelve baseline trials were taken as an 312 

indicator of late baseline behavior. We also computed the mean hand deviation and 313 

RT on the first and last unique reaches to each target (four trials) of the learning, 314 

washout and savings blocks. This provided a measure of early and late-stage 315 

performance in each of these blocks. Performance on the no-shift sub-blocks was 316 

assessed by averaging hand deviation and RT across all four trials of each sub-317 

block.      318 

 319 

We typically used parametric tests (analysis of variance (ANOVA) or t-tests) to 320 

compare across different stages or groups after checking the underlying 321 

assumptions. Wilcoxon signed rank tests were used in place of t-tests if the data 322 

were found to deviate from normality (assessed via Shapiro-Wilk tests). Levene’s 323 

test was used to assess homogeneity of variance required for ANOVA. If this was 324 

violated, Welch’s ANOVA was used. Sphericity violations in repeated measures 325 

ANOVAs were accounted for via Greenhouse-Geisser corrections. Cohen’s d, 326 

matched ranked biserial correlation and 2 were used as measures of effect size for 327 

the t-test, Wilcoxon signed rank test and ANOVA respectively. The significance level 328 

was set at p = 0.05 for all tests. Further, given the known issues with RT distributions 329 

(Wagenmakers and Brown, 2007), RT comparisons were also made using 330 

estimation statistics, which focus on the effect size and its precision. Bayesian 331 

inference methods were also used when warranted. Statistical analyses were carried 332 

out using R (version 4.0.0) and JASP (version 0.13.1). 333 

 334 

RESULTS 335 

 336 

In experiment 1, subjects reached to 1 of 4 visual targets under veridical feedback 337 

provided by means of a cursor representing hand position (Figure 1A). On learning 338 

trials, the target was “jumped” counterclockwise by 45°, thereby inducing a TPE 339 
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(Figure 1B). Subjects were informed about the occurrence of the target-shift and 340 

instructed to reach to the new target. Interspersed within the learning block were 3 341 

no-shift sub-blocks of 4 trials each wherein the target location was not changed and 342 

the original target stayed on the screen (no TPE). Before each of these sub-blocks, 343 

subjects were so informed and were instructed to reach to the original target. At the 344 

end of the sub-block, subjects were once again told that the target would start 345 

“jumping” and they should reach to the new target as before (Figure 1C). 346 

 347 

TPEs stimulated intentional changes in reach direction 348 

 We first examined the deviation in hand angle from the original target direction 349 

across the learning trials. These changes were quite idiosyncratic, with some 350 

subjects showing a rapid (within a few learning trials) shift of hand direction towards 351 

the new target while others continuing to aim towards the original target for a number 352 

of trials before abruptly switching their aim towards the new target (Figure 2A). 353 

Hardly any subject showed a gradual, progressive change in hand direction. The 354 

more steady trial-by-trial change in the group mean (Figure 2B, blue), therefore, 355 

resulted from averaging. Differences in subject performance during the initial 356 

learning phase were also evident as highly variable hand deviations (Figure 2C). 357 

Despite these early differences, all subjects learned to aim directly towards the new 358 

target location by the end of the learning block (Figure 2C, mean hand deviation 359 

during the late learning stage = 44.651.13°). Thus, subjects were able to account 360 

for the TPE and adjust their reach direction accordingly.  361 

 362 

Performance on the no-shift sub-blocks allowed us to probe the mechanism through 363 

which subjects learned to cancel the TPE. On these trials, subjects aimed directly 364 

towards the original target as instructed, and hand deviation fell to near zero on each 365 

of the sub-blocks (Figure 2D, first: 0.9470.633°, 99%CI = [-0.797, 2.691], second: 366 

0.9450.576°, 99%CI = [-0.643, 2.533], third: 1.7111°, 99%CI = [-1.044, 4.466]). 367 

Post-learning after-effects were also absent with near zero hand deviation 368 

(meanSE = 1.0220.497°, 99%CI = [-0.349, 2.393]) on early washout trials Figure 369 

2D). Statistically, there was no difference between the late baseline trials, no-shift 370 

sub-blocks and early washout trials (F(2.656, 77.022) = 1.219, p = 0.307). This 371 

immediate unlearning indicated that the change in hand angle on the target-shift 372 
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trials of the learning block was due to the use of an intentional strategy that could be 373 

“turned off” upon instruction.  374 

 375 

We next predicted that if subjects were using a deliberative strategy to aim towards 376 

the displaced target on the learning trials, their reaction times (RT) would be higher 377 

on those trials. We observed (Figures 2E, 2F) that while baseline RT was close to 378 

400 ms (meanSE = 39711 ms), it increased to about 550 ms on the target-shift 379 

trials (meanSE = 55621 ms), a change that was clearly statistically significant 380 

(Wilcoxon signed-rank test, W = 0, p < 0.001, matched ranked biserial correlation = -381 

1.000; estimation statistics: 95%CI of paired mean difference = [0.127, 0.203], p < 382 

0.001 for two-sided permutation t-test with 5000 bootstrap samples). Critically, on the 383 

no-shift sub-blocks, when subjects were informed that the target would not jump, 384 

their RT dropped considerably compared to the immediately prior learning trials 385 

(Figures 2E, 2G). Likewise, RT on the early washout trials also smaller than the late 386 

learning trials. There was no difference in the magnitude of RT reduction across the 387 

3 no-shift sub-blocks and the early washout trials (Figure 2G, F(3, 87) = 0.1314, p = 388 

0.941, 2 = 0). This pattern – an increase in RT when the target location shifted, but 389 

an immediate reduction when it did not – bolstered the view that the TPE-mediated 390 

learning on the target-shift trials was deliberate in nature.  391 

 392 

Savings occurred upon re-exposure to TPEs 393 

We next probed for savings, and posited that if savings reflects the recall of learned 394 

strategies, it should occur when subjects are re-exposed to the TPEs. We found that 395 

hand angle changes from the original to the new target direction occurred over far 396 

fewer trials than initial learning, suggesting savings from prior learning (Figure 2B, 397 

pink). Hand deviation was much larger during the early phase of the savings block 398 

than the learning block (Figure 3A, Wilcoxon signed rank test, W = 9, p < 0.001, 399 

matched ranked biserial correlation = -0.961). Additionally, on the no-shift sub-400 

blocks, subjects again demonstrated rapid disengagement of learning. Hand 401 

deviation was now close to zero again (Figure 3B), and there were no significant 402 

differences relative to the late washout trials (F(3, 87) = 1.167, p = 0.327, 2 = 403 

0.003). As was the case during learning, RT increased on the target-shift trials of the 404 

savings block, but also dropped to late washout levels on the no-shift sub-blocks 405 
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(Figure 3C). Collectively, the results of this first experiment indicated that in the 406 

absence of SPEs, TPEs are compensated via intentional mechanisms that are 407 

responsive to verbal instruction. The use of such strategies also promotes savings, 408 

suggesting that exposure to SPEs may not be necessary for this purpose.  409 

 410 

TPE-mediated changes in movement direction were verbalizable 411 

In our second experiment (Figure 1D), we sought to directly analyze how subjects 412 

explicitly formulate their reaching strategy while adapting to TPEs. Unlike Experiment 413 

1, which used an indirect, exclusion method, in Experiment 2 we asked subjects to 414 

directly report their aiming angle on each trial with the help of a ring of equiangular 415 

numerical landmarks concentric to the start position (Taylor et al., 2014). Subjects 416 

performed reaches to targets that “jumped” 45° counterclockwise on learning trials; 417 

they were also informed about the occurrence of the jumps and instructed to reach to 418 

the new target location. On washout trials, they were again informed that the targets 419 

would not jump and they should reach to the original target. 420 

 421 

Subjects started the learning block typically by reporting landmark number “0”, which 422 

corresponded to the original target. All subjects eventually began reporting, and 423 

persisted with, their reports of the angle corresponding to the new location of the 424 

target, i.e., landmark number “9” (Figure 4A, yellow). These verbal reports appeared 425 

to show higher variance during the early phase of learning, and low variance towards 426 

the end, consistent prior observations (Taylor et al., 2014). We further quantified this 427 

behavior by calculating the probability of aim change across trials of the learning 428 

block (Figure 4B). This probability was much greater during the early phase of 429 

learning (reaching a peak value of ~70% on the sixth learning trial), and dropped to 430 

approximately 0 by the end of the learning block. This was also statistically 431 

confirmed as a significant difference in the aim change probability values of the early 432 

and late learning phases (Wilcoxon signed rank test, W = 40.5, p = 0.025, matched 433 

ranked biserial correlation = 0.8)  434 

 435 

Critically, the actual hand angle closely mirrored the reported aim. Subjects started 436 

aiming their hand (Figure 4A, blue) towards the new target early on and attained 437 

complete compensation by the end of the learning block (meanSE = 46.1940. 438 
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913°); this change was statistically robust (t(9) = -12.116, p < 0.001, Cohen’s d = -439 

3.831). More importantly however, there was no significant difference between the 440 

reported aiming angle and the actual hand angle at the beginning (t(9) = 0.723, p = 441 

0.488, Cohen’s d = 0.229) or at the end (t(9) = 1.541, p = 0.158, Cohen’s d = 0.487) 442 

of the learning block, indicating that subjects actually aimed in the direction that they 443 

reported they would.  444 

 445 

The difference between the reported aim and the actual hand angle provides a 446 

marker for implicit learning. We computed average implicit learning (Figure 4A, 447 

green), and found that it was near zero during the early (meanSE = 2.7443.793°, 448 

99% CI = [-9.581, 15.069]) as well as late (meanSE = 1.3190.856°, 99% CI = [-449 

1.463, 4.101]) phases of the learning block. This indicated that subjects did not learn 450 

implicitly at all, and were using explicit strategies to compensate for the error that the 451 

target-shift induced. To confirm this, we also examined after-effects in the washout 452 

block (Figure 4A). We again found that subjects were able to immediately “unlearn” 453 

when informed that the target position would not change. Subjects not only reported 454 

landmark number “0” (corresponding to the original target location) right away, but 455 

their hand deviation on early washout trials also dropped to near zero 2.0230.858° 456 

(99%CI = [-0.765, 4.811]). All in all, these results advocated that subjects primarily 457 

relied on the use of consciously accessible, volitional strategies to compensate for 458 

the target-shift-induced TPE.  459 

 460 

Finally, we observed clear savings when subjects were re-exposed to the target 461 

jumps following washout. Subjects reported the new target location and also moved 462 

their hand towards it earlier (Figure 4C, pink) than in the training block (Figure 4C, 463 

blue). The variability in hand angle in the savings block was also low, suggesting that 464 

all subjects were able to successfully employ the previous strategy quite quickly. The 465 

change in the reported (t(9) = -12.142, p < 0.001, Cohen’s d = -3.84) as well as 466 

actual hand angles (t(9) = -13.223, p < 0.001, Cohen’s d = -4.182) during the early 467 

phase of the savings block were much larger compared to initial learning, indicating 468 

clearly that savings was present (Figure 4D). This result once again indicated that 469 

savings does not require experience of an SPE, and is likely driven by the recall of 470 

previously employed re-aiming processes. 471 
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  472 

Changes in reach direction were sensitive to TPE magnitude. 473 

Recent work suggests that while implicit learning is relatively rigid and insensitive to 474 

perturbation size, strategy use engenders greater flexibility (Bond and Taylor, 2015). 475 

We therefore hypothesized that the change in hand angle would scale with the size 476 

of the TPE rather than simply have a binary effect. We tested this idea in our third 477 

experiment by adopting a design similar to experiment 1 (Figure 1C) but assigning 478 

subjects to 3 groups that differed based on TPE size (15°, 30°, or 60°). Task 479 

instructions and their schedule remained identical to experiment 1. All three groups 480 

changed their reach direction to account for the shift in target location. While hand 481 

deviation during early learning was not different between the groups (F(2, 32) = 482 

2.609, p = 0.09, 2 = 0.084), it was clearly so at the end of learning (15° group: 483 

12.0322.076°, 30° group: = 29.4581.426°, 60° group: 54.2392.261°, F(2, 32) = 484 

117.274, p < 0.001, 2 = 0.869, compare asymptote phase of Figures 5A, 5B and 485 

5C). This scaling indicated that the adaptive response was indeed sensitive to the 486 

size of the TPE.  487 

 488 

Strategies for compensating small versus large TPEs were dissociable. 489 

Interestingly, we observed that for the 15° group, the average compensation was 490 

less complete than the other groups. By the end of learning, this group had 491 

compensated only ~80% of the TPE (meanSE = 80.2113.84%), while the 30° and 492 

60° groups had compensated more than 90% (meanSE = 98.194.75% and 493 

90.43.77% for the 30° and 60° groups respectively). Importantly, this was not 494 

because subjects in the 15° group had achieved a “good enough” solution, i.e., they 495 

were able to hit the shifted target without having to fully compensate for the TPE. 496 

Considering that the target diameter was 1.5 cm, the cursor would hit the target if the 497 

hand angle changed by 12.11° for a 15° shift. However, we found that even at the 498 

end of learning, subjects did not reach this threshold on more than 50% of the trials 499 

(mean = 52.27%). This indicated that compensation indeed remained incomplete in 500 

this group. We additionally observed that the average variance in (normalized) hand 501 

direction during the learning block was greater following the 15° TPE (Figure 5D). 502 

These patterns in the data motivated a finer analysis, wherein we probed whether 503 
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the manner in which subjects responded to the small TPE (15°) differed from the 504 

larger ones (30° and 60°).  505 

 506 

We first focused on the RT data. While RT increased on the learning trials for all 507 

groups relative to baseline, this increase was not uniform (Figure 5E). We observed 508 

a dichotomous response: a small increase for the 15° group (meanSE RT = 6321 509 

ms), but larger increases for the 30° (17238 ms) and 60° (16314 ms) groups. This 510 

was statistically confirmed via a significant group difference in a Welch’s ANOVA 511 

(F(2, 19.144) = 7.702, p = 0.004, 2 = 0.18). Post-hoc tests revealed not only that 512 

the RT increase was much more for the 30° (p = 0.022) and 60° (p = 0.037) groups 513 

relative to the 15° group, but also that these two larger TPE groups did not differ 514 

from each other (p = 0.97). RT differences between the 15° and 60° groups were 515 

confirmed using estimation statistics (95%CI of unpaired mean difference = [0.024, 516 

0.188], p = 0.026 for two-sided permutation t-test with 5000 bootstrap samples), as 517 

were the differences between the 30° and 60° groups (95%CI of unpaired mean 518 

difference = [0.048, 0.144], p = 0.001 for two-sided permutation t-test with 5000 519 

bootstrap samples). Likewise, a Bayesian independent samples t-test, which yielded 520 

a BF10 value of 0.38, provided support to the hypothesis that RTs of the 30° and 60° 521 

groups were not different from each other; the same was confirmed using estimation 522 

methods (95%CI of unpaired mean difference = [-0.1, 0.061], p = 0.663 for two-sided 523 

permutation t-test with 5000 bootstrap samples). In sum, these patterns indicated 524 

that RT did not scale uniformly with error size.  525 

 526 

Another hint supporting a potential dissociation in strategies for compensating small 527 

versus large TPEs came from the hand angle data of the no-shift sub-blocks, 528 

although, admittedly, this was less clear than the variability, amount of learning and 529 

RT results reported above. Consider the behavior of the 15° group first. For these 530 

subjects, we observed that the mean hand deviation on the first no-shift sub-block 531 

was close to zero (-0.2220.845°, 99%CI = [-2.901, 2.456]). However, hand 532 

deviation on the subsequent no-shift sub-blocks did not return to these levels (Figure 533 

5F). Specifically, hand deviation on the third no-shift sub-block was larger than that 534 

on the first such sub-block (t(10) = -2.6651, p = 0.0237, Cohen’s d = -0.8036). 535 

Furthermore, the deviation on the early washout trials remained (marginally) 536 
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elevated relative to the first no-shift sub-block (paired t-test, t(10) = -2.2265, p = 537 

0.0501, Cohen’s d = -0.6713), but was not different from that on the last such sub-538 

block (paired t-test, t(10) = 1.3732, p = 0.1997, Cohen’s d = 0.414). This suggested 539 

that there was some tendency for the learned behavior to persist even after the 540 

perturbation had been removed. Notably, this was also the case when we used 541 

baseline uncorrected data for our analyses, suggesting that this result was not an 542 

artifact of baseline bias elimination. It is however possible that some of these results 543 

were influenced by a potential outlier who showed a hand deviation of approximately 544 

-7° on the first no-shift sub-block. When this subject was excluded, the the difference 545 

in hand deviation on the first and last no-shift sub-block was borderline significant 546 

with a medium-large effect size (t(9) =  -2.262, p = 0.05, Cohen’s d = -0.7154). In the 547 

Bayesian realm, the same comparison (without the outlier) yielded a BF10 value of 548 

1.7627 (error = 0.0018%), which provided anecdotal evidence in favor of the 549 

hypothesis that hand deviation on the last no-shift sub-block was greater than that on 550 

the first such sub-block in this group. This difference may therefore be interpreted 551 

with some caution.  552 

 553 

In contrast, there was clearly no difference in hand deviation between the first and 554 

last no-shift sub-blocks for the 30° (Figure 5G, t(11) = -1.8882, p = 0.0856, Cohen’s 555 

d = -0.5451) or 60° (Figure 5H, t(11) = 0.1659, p = 0.8713, Cohen’s d = 0.0479) 556 

groups. Likewise, we found no difference between the early washout trials and the 557 

first no-shift sub-block for the 30° group (t(11) =  -1.3371, p = 0.2082, Cohen’s d = -558 

0.386). This was also the case for the 60° group (t(11) = 1.2449, p = 0.239, Cohen’s 559 

d = 0.3594). This suggested that these subjects immediately and consistently 560 

returned to earlier performance levels across all no-shift sub-blocks as well as the 561 

washout block. Collectively, the distinct trends in variability, fraction of TPE 562 

compensated, and RT and hand deviation data suggested that smaller TPEs (15° in 563 

our case) might be compensated differently relative to larger ones (30°, 45° 564 

(experiment 1) and 60°). 565 

 566 

Finally, we observed that when re-exposed to target-shifts after washout, subjects in 567 

all groups exhibited savings, as was the case in experiments 1 and 2. Subjects 568 

compensated for the imposed TPE by directing their hand towards the new target 569 

faster than they did in the training block. This expression of savings was also reliably 570 
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captured via our statistical comparisons: mean hand angle was clearly larger on the 571 

early savings trials compared to the early learning trials for each group (Figure 5I, 572 

15° group: t(10) =  -5.226, p < 0.001, Cohen’s d = -1.576; 30° group: t(11) =  -6.952, 573 

p < 0.001, Cohen’s d = -2.007; 60° group: t(11) =  -7.545, p < 0.001, Cohen’s d = -574 

2.178). 575 

 576 

Taken together, our results indicate that: 1) in the absence of an SPE, adaptive 577 

responses to consistently presented TPEs occur in the form of volitional strategies, 578 

2) these strategies could be sensitive to the size of the TPE, and 3) strategy use 579 

facilitates savings; a history of exposure to SPEs is not needed for savings to occur. 580 

 581 

DISCUSSION 582 

 583 

In a series of experiments, we probed how the motor system responds to recurring 584 

TPEs. We demonstrate that TPEs are compensated entirely via intentional, explicitly-585 

accessible strategies, reflecting enhanced action selection. A fundamental question 586 

is whether such compensation constitutes “adaptive” behavior at all. Insofar as 587 

adaptation is defined as a change in motor behavior following exposure to a 588 

perturbing environment, the answer is yes. However, if it is viewed more narrowly as 589 

a performance change set in motion specifically by SPEs, then perhaps no. We 590 

imposed no SPE, and the change in motor output was potentiated by a TPE elicited 591 

via a target shift.  592 

 593 

There are many reasons to believe that this change was explicitly driven. In 594 

Experiment 1, individual-level changes in hand direction were quite idiosyncratic and 595 

the group-level exponential trend emerged only as an artifact of averaging. This is 596 

not observed with implicit learning, wherein individual subjects also typically 597 

demonstrate exponential changes. Further, there was a substantial RT increase on 598 

target-shift trials, suggesting the engagement of time-consuming and deliberative 599 

mental processes (Fernandez-Ruiz et al., 2011; Haith et al., 2015; McDougle and 600 

Taylor, 2019). Subjects also disengaged from the “learned” behavior immediately 601 

upon instruction, with a concomitant drop in RT; such flexibility is a hallmark of 602 

explicit but not implicit learning (Bond and Taylor, 2015). Relatedly, no after-effects 603 

were evident on washout trials. In Experiment 2, subjects were able to precisely 604 
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report the aiming location and also reach there, without any implicit change in their 605 

reach direction. Finally, Experiment 3 revealed that the asymptotic level of hand 606 

deviation was sensitive to TPE magnitude, unlike what has been observed with 607 

implicit learning (Kasuga et al., 2013; Morehead et al., 2017; Wei and Körding, 608 

2009). Collectively, these observations reject the possibility that TPEs, at least as 609 

imposed through shifts in target location, are compensated implicitly. Rather, our 610 

results strongly indicate that they set in motion explicitly accessible, intentional 611 

aiming strategies. 612 

 613 

Experiment 3 suggested the intriguing possibility that strategies employed to 614 

compensate small versus large TPEs could be distinct. Large target-shifts could be 615 

compensated in two ways. First, subjects could mentally rotate reach plans for 616 

moving to the initially presented target (Fernandez-Ruiz et al., 2011; McDougle and 617 

Taylor, 2019), underpinned by premotor and M1 circuits (Georgopoulos et al., 1989; 618 

Kosslyn et al., 1998). A key prediction of this hypothesis however is that RT should 619 

scale with perturbation magnitude, which did not bear out in our data. Additionally, 620 

mental rotation can lead to incomplete learning (McDougle and Taylor, 2019) 621 

whereas we observed more complete compensation for larger errors.  622 

 623 

A compelling alternative then is that subjects learn to re-aim by actually learning the 624 

task structure and using it to deliberatively evaluate potential actions by mentally 625 

simulating their consequences. Specifically, actions are guided by representations of 626 

outcomes they produce given the state of the environment and what these outcomes 627 

are worth, as in model-based reinforcement learning (Daw et al., 2005; Dickinson 628 

and Balleine, 1994; Doll et al., 2012; Doya, 2000). It is known that despite being 629 

time-consuming, such goal-directed algorithms are highly flexible and can be 630 

adjusted to account for changes induced via outcome revaluation, and environment 631 

and goal changes. The longer RTs on the shift trials and the rapid, instruction-driven 632 

disengagement of the strategy on the no-shift trials, are highly in line with this notion. 633 

 634 

In contrast to model-based control, small TPEs likely set in motion different 635 

mechanisms. When the target-shifts were small, we observed greater variability 636 

during early learning, a small undershoot during the asymptotic phase, a smaller RT 637 

increase on shift trials, and persistence of the learned behavior during the late no-638 
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shift trials (though this last result was not as clear-cut as the others). We suggest 639 

that this occurs because subjects might employ a “model-free” strategy (Kaelbling et 640 

al., 1996; Sutton and Barto, 1998) to counter small TPEs. That is, they explore the 641 

solution space for a movement that cancels the TPE and then repeat it as it leads to 642 

successful or rewarding outcomes. Such a strategy engenders higher variability 643 

initially, including a few trials on which subjects move away from the direction of the 644 

shift (Figure 2A, first few learning trials). Furthermore, repetition yields robust 645 

stimulus-response associations, leading to the execution of the successful action 646 

whenever a (small) target-shift occurs. Such responses are computationally frugal, 647 

but they are also inflexible, leading to a continued expression of the learned, 648 

“habitual” behavior (Graybiel, 2008), a hint of which was seen on the late no-shift 649 

and early washout trials in the 15° shift group.  650 

 651 

Could it rather be that adaptive responses to small TPEs (15° in our case) are driven 652 

by some kind of implicit process, like for SPEs? We posit that this is not the case. 653 

Diedrichsen et al. (2005) examined changes in motor output following exposure to a 654 

12° error elicited either via a target-shift (TPE) or a visuomotor rotation (SPE). They 655 

reported that unlike the SPE, the TPE-mediated change did not carry signatures of 656 

implicit learning. Additionally, recent work (Oza et al., 2020) has shown that when 657 

explicitly instructed to ignore a consistently occurring 10° shift in target location, 658 

subjects are able to do so quite well. A similar sensitivity to instruction has been 659 

reported by for even smaller TPEs (Tsay et al., 2021). This would not be expected 660 

from a system undergoing implicit recalibration (Mazzoni and Krakauer, 2006; 661 

Morehead et al., 2017). Finally, it has been proposed that re-exposure to a 662 

perturbing environment produces an attenuation in the implicit response, and an 663 

enhancement of the strategic component that ultimately produces savings (Avraham 664 

et al., 2021). Savings was evident in our 15° target-shift group as well; since we did 665 

not induce SPEs, this could be attributed only to a strategic process. As such, we 666 

suggest that when TPEs are small, subjects choose to aim to the new target location 667 

that gets cached or memorized with practice.  668 

 669 

Why might strategies differ for learning from small versus large TPEs? One reason 670 

could be that model-free motor exploration can be very slow in terms of the number 671 

of attempts needed to arrive at the solution, even when the task structure is simple to 672 
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learn. This strategy may therefore be functionally quite limited. When the limits of 673 

exploration are reached (i.e., when TPE magnitude is beyond tolerable levels), the 674 

sensorimotor system might abandon this strategy in favor of a new one that involves 675 

extracting as much information about the environment as possible, and selecting 676 

actions that account for changes in it. Notably, a dissociation for dealing with small 677 

versus large TPEs has been shown in studies of the behavioral (Day and Lyon, 678 

2000; Desmurget et al., 2004; Mutha et al., 2008) and neural (Day and Brown, 2001; 679 

Desmurget et al., 2001) correlates of online, feedback-mediated motor corrections. 680 

Our results suggest that a similar dichotomy could hold for feedforward processes as 681 

well. 682 

 683 

Our experiments also clearly brought forth savings when subjects were re-exposed 684 

to the target-shift following washout. Since we never imposed an SPE, this result 685 

indicates that a history of exposure to SPEs is likely not needed for a latent memory 686 

that facilitates faster re-learning to be expressed. This nicely converges with recent 687 

work (Leow et al., 2020) demonstrating savings even when subjects never adapt to 688 

an SPE, but are exposed to a TPE before the SPE (and the solution to cancel both is 689 

the same in hand space). Our experimental design allowed us to isolate the TPE, 690 

and its disentanglement from the SPE enabled greater certainty about the 691 

determinants of latent memories in sensorimotor learning. We suggest, in 692 

conjunction with other results (Haith et al., 2015; Huberdeau et al., 2015; Morehead 693 

et al., 2015), that SPE-specific implicit mechanisms are not a significant contributor 694 

to savings.  695 

 696 

How do strategic processes foster savings? First, stimulus-response associations 697 

such as those formed for smaller target-shifts, could get directly cached in memory 698 

and retrieved when appropriate. Such retrieval requires less time and little cognitive 699 

effort (Logan, 1988). It is not clear whether model-based simulations of action 700 

outcomes employed to counter larger target-shifts are also cached and later 701 

retrieved without any additional planning. But, another way in which savings could 702 

emerge from model-based control is that mental simulations could be used to train a 703 

model-free process to reduce computational cost in the long run; the possibility for 704 

such an interaction has been raised before (Daw et al., 2011). This is essentially a 705 

practice-mediated transition from goal-directed to automatic, habitual behavior. Such 706 
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a deliberate-to-automatic change likely explains why savings occurs even when 707 

preparation time is constrained but subjects are overtrained (Huberdeau et al., 708 

2019). 709 

 710 

Model-based and model-free mechanisms set in motion by large and small TPEs 711 

respectively could be supported by distinct neural networks. Numerous rodent 712 

studies have shown that model-free learning relies on dorsolateral striatum (posterior 713 

putamen in primates). This region is richly irrigated by inputs from sensorimotor 714 

cortex, and is essential for the formation and expression of stimulus-response 715 

associations (Devan et al., 2011; Graybiel, 2008; Yin and Knowlton, 2006). In 716 

contrast, goal-directed, model-based actions require intact processing in 717 

dorsomedial striatum (caudate and rostral putamen in primates), which receives 718 

abundant inputs from prefrontal cortical areas (Redgrave et al., 2010; Yin et al., 719 

2005). This dissociation is evident in humans as well, with greater activation in the 720 

anterior caudate for model-based control (Tanaka et al., 2008), and caudal putamen 721 

for stimulus-response mediated behavior (Tricomi et al., 2009). Importantly, it has 722 

been shown that repeated practice leading to a shift from goal-directed to more 723 

direct stimulus-response control, is also associated with a transition in activation in 724 

rostromedial (associative) to caudolateral (sensorimotor) striatum (Jueptner et al., 725 

1997; Lehéricy et al., 2005). In our case, such a shift towards striatal circuits 726 

supporting automaticity could occur when large TPEs are repeatedly countered. This 727 

activity could support long-term motor memories that eventually give rise to savings. 728 

Strengthening this view is the finding that Parkinson’s disease patients, who show 729 

impaired stimulus-response learning (Frank et al., 2004; Rutledge et al., 2009; 730 

Shohamy et al., 2006), also show deficient savings (Bédard and Sanes, 2011; Leow 731 

et al., 2013). When a TPE is accompanied by a limb-related SPE, a parallel network 732 

involving the cerebellum and parietal cortex is likely activated to recalibrate an 733 

internal model of the physics of the limb. How these two neural systems cooperate 734 

(or compete) to forge overall adaptive behavior should be an exciting area for future 735 

investigation.  736 
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FIGURE LEGENDS 737 

 738 

Figure 1. Experimental setup and tasks (A) Subjects performed reaching 739 

movements on a digitizing tablet using a handheld stylus while looking into a mirror 740 

placed between the tablet and a horizontally mounted display. Start positions, 741 

targets, and a feedback cursor displayed on the screen were reflected in the mirror. 742 

(B) Target locations and sample hand trajectories on early (solid) and late (dotted) 743 

learning trials. The original target has been blurred, while the new, shifted target is 744 

shown in solid colors. (C) Task protocol for experiments 1 and 3. The baseline block 745 

was followed by learning trials on which the target-shift created a TPE. This was 746 

followed by washout and a final “savings” block on which subjects re-experienced 747 

the target-shifts. In Experiment 1, the target-shift was 45° (solid line), while in 748 

Experiment 3, it was 15°, 30° or 60° (dotted lines) for different groups. In both 749 

experiments, 3 “no-shift” sub-blocks of 4 trials each were embedded during learning 750 

and savings trials; their location is shown using black bars. Verbal instructions were 751 

given every time the target conditions were about to change. (D) In Experiment 2, 752 

subjects again performed 4 blocks of trials, but without the no-shift sub-blocks. 753 

Additionally, the original target was presented with a ring of numbers as shown on 754 

the right. Before each trial, subjects reported the approximate number they would 755 

reach to. The original target location always corresponded to number “0”, while the 756 

shifted target corresponded to “9”. The ring appeared with the original target and 757 

disappeared with the presentation of the new target. 758 

  759 

Figure 2. TPEs are compensated through intentional strategies (A) Hand 760 

deviation (relative to the original target) on the late baseline and first 28 learning 761 

trials (each subject shown using a different color). The profile of two subjects is 762 

bolded to highlight the variability across subjects. One of them changed movement 763 

direction quite early during learning while the other did so quite late. (B) Group-764 

averaged hand deviation across trials. Shaded regions denote SEM. Learning (blue) 765 

and savings (pink) data are superimposed for ease of comparison; trial 1 766 

corresponds to the first learning trial (or the first savings trial). No-shift trials are 767 

highlighted using grey bands. Hand deviation on late baseline, no-shift and early 768 

washout trials is shown using open circles. (C) Mean hand deviation during early and 769 

late learning. Dots represent individual subjects. Error bars are SEM. (D) Mean hand 770 
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deviation on the no-shift sub-blocks and early washout trials. Dots are individual 771 

subjects. Error bars are SEM. (E) Group-averaged RT across trials. Shaded regions 772 

denote SEM. No-shift sub-blocks are highlighted in grey. RT on no-shift trials as well 773 

as late baseline and early washout trials, is shown in open circles. (F) Mean RT in 774 

the baseline and learning blocks. Dots represent individual subjects. Error bars are 775 

SEM (G) Change in RT on the no-shift and early washout trials relative to the 776 

immediately prior learning trial. Dots represent individual subjects. Error bars are 777 

SEM.  778 

 779 

Figure 3. Strategy-use results in savings. (A) Mean hand angle during the early 780 

learning (blue) and early savings (pink) phase. Dots represent individual subjects. 781 

Error bars are SEM. (B) Mean hand angle on late washout and no-shift trials of the 782 

savings block. Dots represent individual subjects. Error bars are SEM. (C) Average 783 

RT on late washout and no-shift trials of the savings block. Dots are individual 784 

subjects. Error bars are SEM. 785 

 786 

Figure 4. Directional changes in response to TPEs are verbalizable. (A) Group-787 

averaged hand deviation (blue), reported aiming direction (yellow), and the implicit 788 

component (green) across trials. Shaded regions denote SEM. (B) Mean trial-wise 789 

probability of aim change across learning trials. Shaded regions are SEM. (C) 790 

Group-averaged hand deviation across trials. Shaded regions denote SEM. Learning 791 

(blue, same as in A) and savings (pink) data are superimposed for ease of 792 

comparison; trial 1 corresponds to the first learning trial (or first savings trial). Late 793 

baseline and early washout trials are shown using open circles. (D) Mean hand 794 

deviation on early learning and early savings trials. Dots represent individual 795 

subjects. Error bars are SEM. 796 

 797 

Figure 5. Strategies employed to compensate small versus large TPEs are 798 

likely dissociable. Group-averaged baseline-corrected hand deviation across trials 799 

for the (A) 15°, (B) 30°, and (C) 60° target-shift groups. Shaded regions denote 800 

SEM. Remaining details are same as Figure 2A. (D) Mean variance in normalized 801 

hand deviation for the 3 groups. No error bars are shown since this measure was 802 

calculated for the entire group, not individual subjects. (E) Mean RT on baseline and 803 

learning trials. Dots are individual subjects. Error bars are SEM. (F, G, H) Mean 804 
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baseline-corrected hand angle on the no-shift sub-blocks embedded within the 805 

learning block, early washout trials, and no-shift sub-blocks of the savings block for 806 

the (F) 15°, (G) 30°, and (H) 60° target-shift groups. (I) Mean hand deviation on the 807 

early learning and early savings trials for the three groups. Dots represent individual 808 

subjects. Error bars are SEM.  809 
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