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Abstract 39 

 40 

 41 

Collaboration in neuroscience is impeded by the difficulty of sharing primary data, results, 42 

and software across labs. Here we introduce Neuroscience Data Interface (NDI), a platform-43 

independent standard that allows an analyst to use and create software that functions 44 

independently from the format of the raw data or the manner in which the data is organized 45 

into files. The interface is rooted in a simple vocabulary that describes common apparatus 46 

and storage devices used in neuroscience experiments. Results of analyses – and analyses of 47 

analyses – are stored as documents in a scalable, queryable database that stores the 48 

relationships and history among the experiment elements and documents. The interface 49 

allows the development of an application ecosystem where applications can focus on 50 

calculation rather than data format or organization. This tool can be used by individual labs 51 

to exchange and analyze data, and it can serve to curate neuroscience data for searchable 52 

archives. 53 

 54 

Significance Statement 55 

 56 

Neuroscience experiments generate heterogeneous data, and each lab typically stores its data 57 

and analyses in their own idiosyncratic formats and organizations. We introduce an interface 58 

standard - the Neuroscience Data Interface - that allows the user to specify these formats and 59 
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organizations so that data and analyses can easily be shared among labs or posted to journals 60 

and archives.  61 
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Introduction 62 

 63 

Despite its importance, collaboration and sharing of data and primary results is very difficult 64 

in the neurosciences, particularly for physiology experiments. At present, physiology 65 

experiments are usually performed on custom experimental rigs that acquire data in unique, 66 

creative, and idiosyncratic ways. Neurophysiology or neuroimaging rigs often employ several 67 

pieces of equipment from different eras of time and with vastly different degrees of 68 

engineering refinement. Each data acquisition (DAQ) device on a rig usually has its own 69 

sampling rate, clock, and means of storing data to disk. On top of this physical heterogeneity 70 

are at least 2 types of digital heterogeneity: the digital format of the data, that typically varies 71 

from device to device, and the organization of data and metadata into files or folders, that 72 

differs greatly from device to device and from lab to lab.  73 

 74 

While the current state of affairs allows for significant creativity on the measurement side of 75 

experiments, it presents substantial challenges for data analysis and its reproducibility. Most 76 

laboratories cannot analyze the data of other laboratories without perhaps a month or more 77 

of effort writing conversion software (Teeters et al., 2008; Garcia et al., 2014; Wiener et al., 78 

2016; Rübel et al., 2019; Sprenger et al., 2019). This barrier has meant that most labs or 79 

investigators write their own analysis software that they test themselves in only a limited 80 

manner. Further, this barrier impedes the development and utility of common, best-of-breed 81 

analysis packages that are dedicated to analyzing certain classes of data (Wiener et al., 2016). 82 

There are some important efforts to develop file format standards (Teeters et al., 2015; Rübel 83 

et al., 2019) that, if followed, would allow for the development of these packages. However, 84 

these standards typically require users to first convert their data into the common format, 85 

which is itself a barrier to adoption. Heretofore, these packages have been used by relatively 86 

few labs, although this situation is improving. It would be ideal to have a tool that allows an 87 
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analyst to quickly read and analyze data regardless of whether it is organized 88 

idiosyncratically or stored in standardized container formats. 89 

 90 

Here, we introduce a new approach that allows the development of common analysis tools 91 

without requiring a common file format: a Neuroscience Data Interface (NDI). The interface 92 

provides a standard means of specifying and addressing the data that are collected in 93 

neuroscience experiments. At the highest level, the interface provides a vocabulary and 94 

conceptual framework for specifying recordings and analyses. At the implementation level, 95 

the interface contains an extendable set of open source code and interface standards for 96 

reading from a variety of data formats and for specifying the manner in which the 97 

experimental data is organized on disk. The interface is platform- and computing language-98 

independent. The interface includes a scalable database for storing results of calculations on 99 

the raw data, and user-designed or commercial applications can read and write from the 100 

database in order to build complex, layered analyses. These database entries are specified 101 

using platform-independent metadata that is human- and machine-readable, and database 102 

entries can exist on a user’s computer or in the cloud. NDI is designed to serve analysts who 103 

want to be able to quickly read data from a variety of collaborators; if it were widely adopted 104 

by the community, it also has the capability to act as a data curation and archive system for 105 

neuroscience data.  106 

 107 

In this article, we demonstrate the interface in a Matlab prototype. Our purpose here is not 108 

to showcase a completed system that works at scale, but is instead to propose a solution to 109 

the scientific problem about the level of abstraction that is most useful for wide scale 110 

curation and sharing of neuroscience data that allows for the development of common tools. 111 

We view this as an important scientific problem at the boundaries of computer science, 112 

library science, and neuroscience. 113 

 114 
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Materials and Methods 115 

 116 

Design of the interface 117 

 118 

The neural data interface in its current form was designed and revised over the course of 5 119 

years. The conceptual framework of the system was developed through discussions with 120 

Brandeis neuroscience and computer science graduate and undergraduate students. The 121 

system began from a Lab Information Management System (LIMS) in the Van Hooser lab, 122 

and was rebuilt twice from scratch to incorporate necessary features and simplify the 123 

interface and external concepts.  124 

 125 

The interface was prototyped in Matlab (The MathWorks) and is available at 126 

https://neurodatainterface.org. The website provides installation instructions and several 127 

tutorials that demonstrate how to use NDI. NDI was used extensively to analyze the data of 128 

Roy et al. (2020), and NDI was revised and debugged as necessary to allow a full pipeline 129 

analysis. In addition, the process of developing tutorials for user feedback also identified 130 

unnecessary complexity and bugs that were revised or simplified. Third party libraries such 131 

as sigTOOL (Lidierth, 2009) (https://sourceforge.net/projects/sigtool/) are extensively used to 132 

read a variety of data formats. Functions in NDI also depend on the VH Lab toolbox 133 

http://github.com/VH-Lab/vhlab-toolbox-matlab and a set of third-party tools: 134 

http://github.com/VH-Lab/vhlab-thirdparty-matlab.  135 

 136 

 137 

The code for reading data from the Marder, Angelluci, and Katz labs is included in the 138 

distribution in the ndi.setups package. 139 

 140 

 141 
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Table 1: Key resources table 142 

 143 

Reagent type Designation Source or reference Identifiers Additional 

information 

Software Matlab The MathWorks, 

Natick, MA 
RRID:SCR_001622 Software language 

Software GitHub GitHub RRID:SCR_002630 Software repository 

Software Python3 www.python.org RRID:SCR_008394 Software language 

Software sigTool https://sourceforge.

net/projects/sigtool/ 

Lidierth, 2009 Open source 

software product 

Software Neo http://neuralensemb

le.org/neo/ 

RRID:SCR_000634 Open source 

software product 

 144 

145 
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Results 146 

 147 

Concepts and vocabulary – probes, subjects, elements, DAQ systems, and epochs 148 

 149 

Before designing a software interface to experiments, we first sought to codify the elements 150 

of an experiment using easy concepts and defined terms, in an effort to take inspiration from 151 

the graphical user interfaces developed by Xerox PARC and Apple. We define a probe to be 152 

any instrument that makes a measurement of or produces a stimulus for a subject. Probes are 153 

part of a broader class of experiment items that we term elements, which include concrete 154 

physical objects like probes but also inferred objects that are not observed directly, such as 155 

neurons in an extracellular recording experiment, or abstract quantities, such as simulated 156 

data, or a model of the information that an animal has about a stimulus at a given time. Each 157 

element must have a subject, which can be an experimental subject or an inanimate object 158 

like a test resister. We define a DAQ system as an instrument or a set of instruments that 159 

digitally records the measurements or the stimulus history of a probe. These DAQ systems 160 

record data from probes each time the DAQ systems are switched into record mode, and we 161 

use the term epoch to signify each of these recording periods. 162 

 163 

The conceptual framework of the interface is applied to a simple experimental situation in 164 

Figure 1. Here, a probe (an extracellular electrode) is used to record activity in the cerebral 165 

cortex of a subject, a ferret. The probe is wired to a DAQ system (data acquisition system, 166 

DAQ), that is turned on and off 3 times, resulting in 3 epochs of sampled probe data that is 167 

saved to disk. The probe has been given the name cortex and a reference number of 1 in 168 

metadata, in this case provided by the user.  169 

 170 

In this framework, a large variety of experimental apparatus are considered probes. Examples 171 

of probes that make measurements include a whole cell pipette, a sharp electrode, a single 172 
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channel extracellular electrode, multichannel electrodes with either known or unknown 173 

geometries, cameras, 2-photon microscopes, fMRI machines, nose-poke detectors, EMG 174 

electrodes, and EEG electrodes. Examples of probes that provide stimulation are odor ports, 175 

valve-driven interaural cannulae, food reward dispensers, visual stimulus monitors, audio 176 

speakers, and stimulating electrodes. 177 

 178 

In an experiment, we also deal with items that we do not observe directly, or abstract items, 179 

or simulated data. We term all of these items as experiment elements (avoiding the term 180 

“object” to minimize confusion with the software objects in the implementation). An 181 

example of an inferred element is the activity of a neuron derived from an extracellular 182 

recording. We do not observe the neuron directly, so while we have some certainty that it 183 

corresponds to a physical entity, this is really an inference, and different analysts may 184 

disagree as to whether it exists. Another type of quantity that we may wish to use in our 185 

analysis is a model, such as a calculation of the information that the animal has about a 186 

stimulus at a given time. Moreover, we may wish to generate artificial data or simulated data 187 

that will go through the same pipelines as experimental data. Thus, experiment elements 188 

encompass a broad class of items, including probes.  189 

 190 

To read the data generated by a probe, NDI must access data from the data acquisition device 191 

or devices that recorded the probe, which we term a DAQ system. A DAQ system can either 192 

be a single data acquisition system, such as a data acquisition device made by a major 193 

company, or it can describe the collective recordings of a set of these systems, such as a 194 

home-brew system that might use a few data acquisition devices at a time. In our own lab, 195 

our visual stimulation system relies on data from 2 data acquisition systems (our stimulus 196 

computer and a multifunction data acquisition system that records digital triggers), but 197 

logically these are treated together as a single DAQ system in NDI (Figure 1). 198 

 199 
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Each time a DAQ system is switched on and off, an epoch of data is logged. The epochs are 200 

numbered (1, 2, etc) and assigned a unique identifier that never changes, so that the epoch 201 

can be unambiguously referenced even if other epochs are added or deleted later. It is also 202 

necessary to specify, for each epoch, the mapping between any probes that are present and 203 

the channels of the DAQ system that correspond to the probes. Commonly, this information 204 

must be specified manually using a data type that we have created, but some multifunction 205 

data acquisition systems (such as SpikeGadgets MFDAQs) and file formats include this epoch 206 

metadata in their native file formats, and this metadata can be processed from the files 207 

directly. 208 

 209 

With a vocabulary to describe the real-world items in an experimental session, we can 210 

describe the necessary computational features of the interface (Figure 2). While the 211 

specification of the probes, subjects, elements, DAQ systems, and epochs is sufficient to allow 212 

the interface to read the data from the probes in the experiment, it would be useful to the 213 

analyst and his/her collaborators to have a space to store the results of analyses of this data. 214 

This space is provided by the database (Figure 2), which allows the user to store any type of 215 

text or binary data related to the experiment in entries called documents. For example, one 216 

may have a document that stores the responses of a neuron to a family of stimuli, and 217 

another document that stores the results of a model fit of that neuron’s responses to the 218 

stimulus family. Still another document might store the aggregate statistics of the responses 219 

to all the neurons in a given study. Documents in NDI have a human-readable portion and 220 

the option of a binary blob, so that they can be understood easily by humans and programs. 221 

 222 

The interface with the database allows the creation of an application ecosystem (Figure 2) 223 

that can read the raw data and read and write to the database. For example, one common set 224 

of early analyses that must be performed by physiologists examining extracellular data is to 225 

identify spike waveforms from the raw data and to make an inference as to which spike 226 
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waveforms arise from the same neuron(s). The NDI document schema specifies a document 227 

type that includes common spike detection parameters, including threshold algorithm, filter 228 

frequencies, the amount of time around each spike to extract, refractory period, etc. These 229 

parameters can be used by a variety of spike extraction applications, including the example 230 

“spikeExtractor” app shown in Figure 2 but also other related applications that may be 231 

developed. There is also a document schema for storing extracted spike waveforms and the 232 

spike times, and another schema for spike shape features. These documents can be used by 233 

spike sorting applications, such as the example “spikeCluster”, to produce assignments of 234 

spikes to clusters. One can imagine another application that automatically performs neuron 235 

assignment from these clusters (“autoSpikeSort”), and so on. The document schemas are 236 

flexible and expandable, but must contain certain fields that applications can count on being 237 

present. In this way, developers and scientists can write applications that perform a 238 

particular job well, and mix and match their desired applications. The database and 239 

document schema allows for powerful collaboration across applications, and allows for a 240 

healthy competition and interchangeability among applications that perform similar jobs. 241 

 242 

The database is also designed to allow for the curation and examination of neuroscience data 243 

and computations at scale. Because each database document contains the identifier of the 244 

experimental session, the documents can be combined and searched across the cloud so that 245 

data and analyses from multiple experiments can be queried, allowing third parties to easily 246 

perform analyses or meta analyses of a wide variety of experimental data. 247 

 248 

The interface is also meant to be used in a similar manner during on-line evaluation of data 249 

and off-line evaluation of data. The data is addressed in the same manner regardless of 250 

whether it has been acquired in the last few seconds or a long time ago. This design choice 251 

has the advantage that all applications can be used on-line or off-line, and removes the 252 
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necessity of any second “curation” step before making data available to the world on a data 253 

archive. The data can be curated live, during the experiment. 254 

 255 

Implementation - high level 256 

 257 

The Neuroscience Data Interface is both an idea, as described above, and an evolving open-258 

source software product that implements the concepts. The current software implementation 259 

of NDI has two layers: a high-level layer of core objects that are described here, and a low-260 

level of objects that implement the details of the high-level objects. The separation between 261 

the high-level and low-level objects has been made so that the external interface of NDI can 262 

be stable, while the open-source products that implement file reading or the database can be 263 

switched in and out over time without greatly impacting the user/analyst’s use of the 264 

interface. The high-level interface is intended as a sort of “neural data operating system” on 265 

which GUIs and other programs can build, but the core of NDI does not define any particular 266 

graphical user interface or stipulate the use of any particular underlying database product. 267 

 268 

The goal of this paper is to describe the high-level objects in brief so that the ideas of the 269 

interface can be discussed or criticized. This paper is not meant to serve as a software 270 

tutorial. For tutorials on using the software with neuroscience data, please see the repository 271 

of our current software at http://github.com/VH-Lab/NDI-matlab.  272 

 273 

Reading from data acquisition systems: ndi.daq.system 274 

 275 

An ndi.daq.system object is a means of addressing and reading the files that are stored 276 

by the DAQ devices that comprise a DAQ system. Different high-level subclasses of 277 

ndi.daq.system allow the user to read from multifunction data acquisition systems (with 278 

analog and/or digital channels and sampling rates: ndi.daq.system_mfdaq), from 279 
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imaging systems (with image channels and frames: ndi.daq.system.image), or from 280 

stimulus systems (with events and parameters: ndi.daq.system.stimulus).  281 

 282 

All ndi.daq.system objects rely on 2 key software objects that determine the 283 

ndi.daq.system object’s input and output. The first of these is an 284 

ndi.file.navigator object, which allows the user to specify, with a few parameters, 285 

how the system should search for the files that correspond to each recording epoch. Figure 3 286 

shows how different parameters and subclasses of the ndi.file.navigator class can be 287 

used to navigate the different file organization schemas of different labs. Once the files are 288 

found, another software object, the ndi.daq.reader, provides the services for reading 289 

data from the particular file formats that comprise the epochs.   290 

 291 

Reading from probes: ndi.element and ndi.probe 292 

 293 

When an analyst thinks of a probe such as an electrode, he or she might think of the probe as 294 

having the properties of the data acquisition system that records it. For example, we may 295 

want to talk about the channels of the electrode, and even casually speak of the “sampling 296 

rate” of an electrode despite the fact that it is the DAQ system that directly has a sampling 297 

rate, not the electrode. The ndi.element class, of which ndi.probe is a member, allows 298 

one to address the probe or element directly, without regard to the DAQ system that 299 

acquired it, which is handled behind the scenes by NDI. In order to define a probe, it is 300 

necessary to functionally define, for each recording epoch, a map between the channels of 301 

the ndi.daq.system and the ndi.probe object. This can be done manually with the 302 

class ndi.epoch.epochprobemap, or can be specified in the data files directly if the 303 

DAQ system allows it. As shown in Figure 4, probes can be read by analysis programs 304 

without any direct concern about the underlying DAQ systems that were employed. 305 

 306 
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The ndi.element class allows many types of data to be treated similarly by software 307 

programs. For example, all time series in NDI are members of a subclass called 308 

ndi.element.timeseries, which can include artificial (test) data, modeled data, 309 

filtered data, and so on. In Figure 5, the user has created 2 ndi.element.timeseries 310 

objects from a recording from a sharp electrode: 1 of these elements represents the 311 

membrane voltage where the spikes have been removed by a median filter, and the other 312 

represents the the spiking activity of the cell that is recorded by the sharp electrode. These 313 

ndi.element.timeseries objects can be passed along to an analysis application (here, 314 

our built-in applications ndi.app.tuning_response and ndi.app.oridirtuning). 315 

The epochs of both of these element objects are linked back to epochs in the probe, which 316 

are in turn linked to the epochs of the DAQ system, so that time relationships between other 317 

systems, such as the visual stimulus system, are automatically understood for all of the 318 

element objects derived from probes.  319 

 320 

Clocks and time: ndi.time.clocktype, ndi.time.timereference, 321 

ndi.time.syncgraph, ndi.time.syncrule 322 

 323 

One of the biggest challenges in experiments that involve multiple DAQ systems is 324 

synchronizing time across devices that have different clocks. In general, data acquisition 325 

devices do not share the same clocks: the current time reported by each device will differ 326 

from others at any given time, and the drift rate of these clocks differs very slightly in a 327 

matter that may alter the timing of samples in long recordings. Many current data 328 

standardization schemas sidestep this issue and simply insist that the user must convert all 329 

times into a standard clock, and NDI is rare in building clocks and synchronization into the 330 

interface. 331 

 332 
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NDI defines several types of clocks (ndi.time.clocktype). The most common type of 333 

clock is “device local time” (dev_local_time), which means that a DAQ system has a 334 

local clock that, for each epoch, starts a time t0 and ends at a time t1. In most cases, t0 is 0, and 335 

t1 is the duration of the recording. Some devices may further keep a “device global” time, so 336 

that the device has a sub-millisecond record of the relationship between the t0 of a given 337 

recording epoch and the t0 of a second recording epoch on the same device, but this is 338 

unusual. We also define the possibility that a device has a record of some “global 339 

experimental time” or that it keeps “universal controlled time” (UTC).  340 

 341 

As analysts, we’d like to be able to refer unambiguously to a time t on the clock of a given 342 

DAQ system, and effortlessly know the corresponding time t' on the clock of another DAQ 343 

system. Therefore, built into every call to the function readtimeseries, which reads data 344 

from a time ti to a time  tj from an ndi.element, ndi.probe, or ndi.daqsystem, is an 345 

input that specifies the time reference (ndi.time.timereference) being used. 346 

ndi.time.timereference objects include the referent (the ndi.element, 347 

ndi.probe, or ndi.daqsystem being referred to), the clock type, an epoch id (if the 348 

ndi.clocktype is dev_local_time, which is most common), and an offset time. 349 

 350 

The system is illustrated in Figure 4. Here, the user reads samples from a sharp electrode 351 

probe using readtimeseries, which returns the time reference that was used. Next, the 352 

user wants to extract stimulus times from the visual stimulus probe, which has a different 353 

clock. The user simply passes the time reference object that was returned from the sharp 354 

electrode probe to the readtimeseries call to the visual stimulus probe, and NDI 355 

converts the input and output times appropriately so that the output returned is relative to 356 

the sharp electrode probe’s clock. 357 

 358 
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The interface solves these conversions from a given clock to another clock by computing 359 

paths through a directed graph that contains all recorded epochs as nodes and the mappings 360 

between epochs as edges. The object that performs this computation is called 361 

ndi.time.syncgraph. The mappings across epochs recorded on different DAQ systems 362 

are typically calculated by examining recordings of the same signal (such as a set of digital 363 

triggers) on both DAQ systems. One can also specify rules of synchronization 364 

(ndi.time.syncrule) among devices, and ndi.time.syncgraph will automatically 365 

calculate possible mappings from its set of ndi.time.syncrule objects and solve the 366 

paths through the graph. An ndi.time.syncrule might specify the channels of 2 DAQ 367 

systems that record digital triggers in common, or might specify that 2 DAQ systems have 368 

the same clock if one of their data files is shared between the 2 systems (such that the same 369 

DAQ hardware is being used in service of 2 DAQ systems). Sometimes, if DAQ systems were 370 

not used simultaneously, or if there is no ndi.time.syncrule, there is no known 371 

mapping between different epochs. For example, if a DAQ system only has a local clock, 372 

then we usually do not understand the time relationship between subsequent epochs of that 373 

system (and usually there is no need to understand this relationship). Example cases of 374 

synchronization relationships are shown in Figure 6 and Figure 7, and a demo of using 375 

ndi.time.syncgraphis shown online in Tutorials 2.1-2.5. 376 

 377 

Database, documents: ndi.database and ndi.document 378 

 379 

All of the interface that we have described so far is necessary for reading raw 380 

electrophysiology or imaging files, but does not allow the user to store the results of analysis 381 

in a convenient and well-documented manner. For this purpose, each experiment is linked to 382 

a database that can, in principle, be running on the local computer or in the cloud. The 383 

database class ndi.database provides standardized methods for adding documents to the 384 

database that conform to a validated, open schema, searching the database, and removing 385 



 

 NDI 18 

documents from the database. As of this writing, the online version of NDI-matlab offers a 386 

database using a file system on the local computer, and subclass implementations of 387 

ndi.database that allow cloud access using Postgres and MonogDB are in early testing. 388 

 389 

The fundamental unit of the database is the document, which is implemented by the 390 

software class ndi.document. All documents include a core structure of fields that 391 

describe the unique identifier of the experiment session, the unique identifier of the 392 

document, the time of creation, the schema of the document, and a history of how the 393 

document was created so that the calculation can be traced back to the raw data or 394 

antecedent computations in other documents. Document schemas are specified in a platform 395 

independent, human-readable format so they can be read and interpreted on any platform 396 

and be read and understood by human readers easily. Document classes can be composed so 397 

that one can build documents that refer to common elements (such as epoch ids or app 398 

properties) in a consistent manner across documents (Figure 8). Dependencies among 399 

documents can also be expressed so that relationships among documents in a pipeline are 400 

clear. Finally, each document has its own binary stream that can be used to store large binary 401 

data.  402 

 403 

Note that the idea for an extendable, local- or cloud-based database of this type is not new. 404 

For example, the open-source program DataJoint (Yatsenko et al., 2015) uses a similar design, 405 

although the underlying data are organized into smaller units called tables rather than 406 

documents. The tables in DataJoint are similar to the substructures of NDI documents. 407 

 408 

Analysis pipelines: ndi.app and ndi.query 409 

 410 

To understand the power of the interface and the potential app ecosystem, it is useful to 411 

examine a simple analysis pipeline. In this pipeline, we will use a simple spike detection app 412 
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that is included in the base distribution of NDI called ndi.app.spikeextractor to 413 

detect spikes in sharp electrode data, and then user code to plot the spike shapes. 414 

 415 

The steps of the code that produces the pipeline are illustrated in Figure 9, along with the 416 

database documents that are produced at each step. First, the user opens an experiment 417 

session and identifies the sharp electrode data for each epoch. The data here has been 418 

normalized by subtraction so that the voltage activity during the preceding interstimulus 419 

interval (blank screen) is 0. Then, the user creates an instance of the application 420 

ndi.app.spikeextractor (Step 1), builds a document that has a set of parameters that 421 

the app will use in identifying spikes, and adds this document to the database (Step 2). Next, 422 

the user calls the app’s extract method to find and extract the spike data from the element; 423 

the results of the extraction, including spike times and spike shapes for each epoch, are added 424 

to the database as a document (Step 3).  425 

 426 

To see what results have been computed, it is necessary to search the database for the 427 

analysis documents that currently exist. The database documents can be queried with a 428 

search object called ndi.query, which allows the user to perform many types of searches. 429 

For example, the user can search any text field for several types of matches (exact, partial, 430 

regular expression match) or search any number field for several types of matches (equal to, 431 

greater than, less than, etc). The user can also search for documents of specific types, 432 

membership in a particular session, and search for documents that “depend on" specific other 433 

documents. Figure 10 shows a short example of the user using ndi.query to check for the 434 

existence of a spike extraction document for a particular ndi.element object, and then, if 435 

one is found, plotting the spike waveforms. 436 

 437 

Developing pipelines in NDI becomes a task of writing small programs that read raw data 438 

and/or existing database documents, perform computation, and write results back to the 439 
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database in the form of new documents. The documents exhibit a beautiful structure when 440 

plotted as a graph with nodes corresponding to documents and edges corresponding to 441 

dependencies among documents. A representative graph from an experimental session in the 442 

study by Roy et al. (2020) is shown in Figure 11. Online tutorials at 443 

https://neurodatainterface.org showcase 4 applications and how to use them with NDI.  444 

 445 

 446 

Implementation - lower level 447 

 448 

The software product implementation of the interface is currently released in Matlab (see 449 

Materials and Methods). The low-level database implementation is only a slow prototype, 450 

and is currently being modified to use external SQL databases to allow the system to be used 451 

at a larger scale. Database documents in the prototype are JSON-based (with a binary blob) 452 

but will have stricter typing as the external database options come online. The system has 453 

been used to analyze data for a paper (Roy et al., 2020) and will be tested with data from 454 

other labs in 2021. The software product is continuously updated on GitHub (see Materials 455 

and Methods). 456 

 457 

Case studies – reading data from many labs 458 

 459 

How easy or difficult is it to read data from other labs in NDI? We present in Figure 12 an 460 

example of reading data from 3 laboratories: the Marder Lab at Brandeis (Hamood et al., 461 

2015), the Angelucci Lab at the University of Utah (unpublished data), and the Katz Lab at 462 

Brandeis (Mukherjee et al., 2019). 463 

 464 

The Marder lab recorded signals from the stomatogastric ganglion of the crab Cancer 465 

borealis. The lab used a common data acquisition system (Spike2 software from Cambridge 466 

Electronic Design), and the data can be specified by creating an ndi.daq.system with the 467 
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ndi.daq.reader.mfdaq.cedspike2 reader and describing where the files for 468 

different epochs are found on disk using an ndi.file.navigator object. It requires only 469 

3 instructions (Figure 12a) to create the ndi.daq.system once, and this 470 

ndi.daq.system can be used over and over again to access all the data from the 471 

experiments in the Hamood et al. study (2015) and many current and past experimental 472 

sessions in the Marder lab. 473 

 474 

The Angelucci lab recorded 96-channel data from a Utah array in the marmoset 475 

(unpublished data courtesy Alessandra Angelucci and Andrew M. Clark). The Angelucci lab 476 

used a commercial data acquisition system (from Blackrock Microsystems) and, like many 477 

visual labs, use their own visual stimulus system. The Angelucci stimulus system stores its 478 

files in Matlab with a time clock that matches the Blackrock Microsystems time clock. For 479 

this data, we had to follow a template to make a customized stimulus metadata reader (15 480 

lines of code from a template), and it took 6 instructions to specify the 2 ndi.daq.system 481 

objects needed to access the Utah array data and visual stimulus parameters and timing data 482 

(Figure 12B). 483 

 The Mukherjee data (2019) included several probes in rat, including dual 32-channel 484 

electrode arrays that recorded gustatory cortex bilaterally, dual optical fibers that 485 

ontogenetically manipulated activity in gustatory cortex bilaterally, dual EMG electrodes for 486 

observing licks and gapes, and intraoral cannulae for delivering tastants directly to the 487 

tongue. The Katz lab used a commercial Intan Technologies multifunction data acquisition 488 

system, and the code that specifies the ndi.daq.system takes just 6 instructions. Again, 489 

this ndi.daq.system is made once and can be re-used by other members of the Katz lab 490 

(Figure 12C). 491 

 Thus, an analyst who receives data from another lab, regardless of whether that data 492 

is packaged in a standard format such as NWB or in custom formats, can gain easy access to 493 

the data of other researchers and begin analyses the same day using software that follows the 494 
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NDI conventions, including apps and custom code. Data that is passed on as an 495 

ndi.session can be immediately read by other researchers. 496 

 497 

Discussion 498 

 499 

We have designed a neuroscience data interface (NDI) that greatly reduces the burden of 500 

analyzing datasets from other labs. The interface allows an analyst to quickly address data 501 

that is acquired in a variety of formats and stored with a variety of organization schemes on 502 

disk. It provides tools for time synchronization across data acquisition systems, and allows 503 

experimental probes to be addressed directly by the analyst, while the interface performs the 504 

necessary reading from underlying DAQ systems. The interface contains a database that 505 

allows experiment objects, analyses, and analyses of analyses to be stored as documents, 506 

enabling the development of an application ecosystem that performs analysis independently 507 

of the format or organization of the underlying data. The results of the dataset can be 508 

accessed widely by anyone using the interface, such that the dataset and its analyses are 509 

curated for wide distribution. 510 

 511 

An interface with low barriers for curation and exchange 512 

 513 

This neuroscience data interface offers several advantages relative to the current 514 

neurophysiological data standardization approaches of which we are aware. 1) NDI is 515 

grounded in concepts and a vocabulary that is easy for non-coders and coders to grasp. 2) 516 

NDI reads data in its native formats, so there are no restrictions for experimental data 517 

collection other than a requirement for using a logically consistent scheme and, once, 518 

locating or writing an open-source reader for each data type. 3) Reading native formats also 519 

offers the significant advantage that the interface can be used regardless of whether the lab 520 

performing the data collection wishes or has the expertise to explicitly convert and curate 521 
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their own data for analysis by others: an experienced data analyst will be able to quickly 522 

analyze data using the tools provided by NDI. 4) Reading native formats does not preclude 523 

the development of excellent file formats, and implementations of NDI can take partial 524 

advantage of fast code created for existing or future formats. 5) There is a database document 525 

framework so that users and applications can create and abide by document templates for 526 

saved analyses, so that other users and applications can read and interpret the results of 527 

classes of data analyses in a consistent manner. 6) The database is scalable and can exist on a 528 

user’s computer or in the cloud, and data from multiple experiments can easily be combined 529 

in the cloud to form large, searchable databases of neuroscience data and analyses. 7) The 530 

database offers methods for auditing computations and analyses, such that the code and raw 531 

data that underlie computations and analyses can be fully tracked and reconstructed. Finally, 532 

like many standardization efforts, we aim for the development of an ecosystem of 533 

neuroscience analysis apps that will improve reliability, reproducibility, and ease of 534 

discovery through re-analysis of data by scientists or amateurs.  535 

 536 

Why not simply a file format? 537 

 538 

Why not simply require users to convert their data into a common, standard file format? A 539 

standard file format provides several advantages. It provides a common target for 540 

development for device manufacturers and for companies and scientists writing analysis 541 

software. As the number of channels on some devices become larger, it may be prudent to 542 

include hardware in analysis, and a common format facilitates this process. Converting to a 543 

common file format also puts the burden of solving the synchronization of different devices 544 

outside the scope of the file format, as common file formats such as Neurodata Without 545 

Borders (Teeters et al., 2015; Rübel et al., 2019) require the user to import data from various 546 

devices into the format, and the scientist performing data analysis is freed from considering 547 

these problems.  548 
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 549 

However, there are many reasons why, in our opinion, a common file format should not be 550 

the only tool in our toolbox. The first set of arguments against a common file format is 551 

technical in nature. We take it as a given that the most appropriate way to store raw data 552 

from an acquisition device (or simulation) will vary according to the particular 553 

computational and hardware needs of the device, and these needs may evolve in ways that 554 

we cannot imagine at present. For example, the optimal way to compress and store full 3-d 555 

voxel images from a calcium imaging experiment involving a major portion of the macaque 556 

brain (which may be possible in the future) may be very different from those required to 557 

store 3-d voxel images from a 500 µm x 500 µm x 10µm cube. By specifying a common 558 

interface standard but leaving the implementation to vary from DAQ system to DAQ system, 559 

we gain most of the benefits of a common file format without the liabilities of imposing a 560 

particular storage structure. One may suggest that one could always export the data from a 561 

device’s native format to a common file format, but one must remember that a) this is an 562 

extra step for the experimenter, and b) this step could be prohibitively expensive (in time) 563 

for experiments that require somewhat “online” access to neural responses. Having direct 564 

read access via a common reader interface allows the data to be examined “in place” in any 565 

file format. Our own experience waiting an hour to convert a few minutes of 1000-channel 566 

recordings from a prototype acquisition system in order to perform “online” analysis makes 567 

us very enthusiastic about “in place” analysis. 568 

 569 

A second set of arguments against a common file format relates to the ease of workflow for 570 

the scientists. Our goal was to create a system that can be used at the time of data acquisition. 571 

There should be no forced separation between on-line and off-line analysis, so that one can 572 

develop best-of-breed tools for either application that do not depend strongly upon the 573 

platform or devices being used.  574 

 575 
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Finally, data curation is clearly a major burden, as there exist file formats that could be used 576 

for exchange but very few people use them, although this is improving. The requirement of 577 

an extra step at the conclusion of analysis to “export” the data is a barrier to adoption. In 578 

NDI, there is no curation step, it is an inherent part of using the data interface. 579 

 580 

An interface can bring on board some of the best benefits of an excellent file format, because 581 

an interface can read from any file format. As excellent file formats (such as Neurodata 582 

Without Borders) are developed, interfaces such as NDI can still read them, and these 583 

formats can be used as a target for future development of hardware and software. The NDI 584 

approach allows data from these sources to be integrated easily with data from older devices, 585 

or newer devices that use a different format for whatever reason (technical, creative, or 586 

historical/idiosyncratic). NDI also allows arbitrary time relationships among epochs to be 587 

specified and navigated by the interface (local or global), so there are no limits on the data 588 

that can be easily included and referenced. 589 

 590 

Stress points: the first DAQ system, ndi.daq.reader, ndi.file.navigator 591 

 592 

NDI was designed so that an experienced analyst can specify only a few parameters about the 593 

file format (ndi.daq.reader) and data organization (ndi.file.navigator) in order 594 

to get started (Figure 3). For most labs, this will entail a small time investment by a user with 595 

coding experience to set up the initial DAQ system for a lab, or less if the lab uses file formats 596 

for which ndi.daq.reader objects are already available. After this initial setup, a DAQ 597 

system definition can be re-used as often as necessary, so a majority of lab users will not need 598 

this initial expertise. 599 

 600 

Comparisons and synergies with other efforts 601 

 602 
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This work builds on the experience and expertise of past and current efforts to ease the 603 

sharing of data in the neurosciences. A scholarly list of efforts to organize and share 604 

neuroscience data is presented in Table 1 of Teeters et al. (2015), and we won’t attempt to 605 

enumerate a list of all such projects here. Instead, we will draw comparisons with a few 606 

ongoing efforts. 607 

 608 

The idea of an open-source system that can read a variety of file formats is not new. The 609 

Matlab project sigTOOL (Lidierth, 2009) and the Python-based projects Neo (Garcia et al., 610 

2014) and SpikeInterface (Buccino et al., 2020) are already capable of reading a wide variety 611 

of data formats, and we are using the open source libraries of sigTOOL, Neo, and 612 

SpikeInterface extensively in our construction of the Matlab- and Python-based versions of 613 

NDI. On top of reading different file formats, NDI adds the ability to deal with different file 614 

organizations and explicit management of different timebases on top of managing different 615 

file formats or collections. That is, in NDI, you specify a rule that describes the arrangements 616 

of the files without explicitly instructing the software where each file is located. Neo and 617 

SpikeInterface manage their raw data output in terms of quantities that are similar to NDI’s 618 

epochs. 619 

 620 

Neurodata Without Borders (NWB) is an ongoing effort to devise a file format for 621 

neuroscience data and analyses (Teeters et al., 2015; Rübel et al., 2019). At present, it 622 

requires users to use or write conversion software to save data into a single file that is 623 

organized in HDF5 format and that employs a consistent data schema. In NWB, there is no 624 

equivalent of the NDI daq system; instead, users save what NDI calls probe and element data 625 

directly to the file. The system also offers spaces to save results of “processing” and “analysis”. 626 

NWB does not allow for multiple time bases, which simplifies the format greatly for the 627 

analyst, but it means that it is difficult to specify situations where probes or other elements 628 

have time bases that can be only partially mapped to each other (such as multiple 629 
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synchronized devices that have only local clocks and no way of mapping to a global time). 630 

The format is at present very tied to a file system (1 file per session), although it can be used 631 

in conjunction with databases like DataJoint. NWB continues to evolve to broaden its 632 

functions and extension capability. 633 

 634 

NWB and many other efforts use an HDF5 file format, which offers some advantages but the 635 

notable disadvantages that controlling versions is relatively difficult as is accessing partial 636 

datasets in the cloud. Some of these disadvantages can be overcome with approaches like 637 

Exdir (Dragly et al., 2018), which offers all of the advantages of HDF5 but without using a 638 

single file to store all information. 639 

 640 

Expipe (Lepperod et al., 2020) is another data model that uses the easy object concepts of 641 

Projects, Actions, and Entities to organize experimental data. It is a lightweight approach 642 

that is highly customizable. 643 

 644 

The document space of the NDI database has commonalities with the tables in the database 645 

DataJoint (Yatsenko et al., 2015). For example, the document in Figure 8 can be built by 5 646 

related tables in DataJoint (document classes ndi_document, ndi_epochid, ndi_app, 647 

spikewaves, document_class). Different users may prefer the table arrangement of 648 

DataJoint or the documents of NDI. We designed our documents independently of DataJoint 649 

and noticed the similarities later. We think that the document structure of NDI might be 650 

easier for non-programmers to grasp and no more difficult for programmers to query, but the 651 

database forms share similar forms, including the ability to have dependencies across table 652 

entries or documents. Both DataJoint and NDI lend themselves to the creation of exploration 653 

tools that allow users to examine the analyses that have been run and the creation of 654 

pipelines – compositions of analyses – that can speed analyses and improve reliability and 655 

reproducibility. 656 
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 657 

At the other extreme of these approach is a curation-free (or non-curated) database, such as 658 

that proposed in an article by Cannon and colleagues (Cannon et al., 2002). In such an 659 

implementation, there is minimal standardization and the data is downloaded from the 660 

original investigators. While this approach has the advantage of nearly eliminating the 661 

“curation” step, it does not easily allow an app ecosystem. NDI allows the user to flexibly 662 

specify the organization and format of their raw data, but it is accessed through a fixed API. 663 

 664 

Big challenge: A culture of digital annotation 665 

 666 

Although NDI was designed to tackle the heterogeneity of the digital organization of data, 667 

our own experience and several colleagues have commented that another barrier to 668 

analyzing the data of others is the lack of any consistent digital annotation of data (Teeters et 669 

al., 2008; Grewe et al., 2011; Wiener et al., 2016; Sprenger et al., 2019). Often, the only copy 670 

of important metadata is written in a physical notebook and is not expressed digitally. 671 

Hopefully, as investigators see the utility of common analysis tools, the need to have 672 

consistent digital annotations of data and metadata will become clearer and more ingrained 673 

in experimental culture. 674 

 675 

Big challenge: Common database schemas for analyses, analyses of analyses 676 

 677 

As data interfaces allow more streamlined access to data formats, a new problem arises: how 678 

do we read analyses or analyses of analyses from other labs? The database’s flexibility in 679 

creating new schemas and document types is a double-edged sword. Imagine that one lab 680 

develops a set of database documents that describes several responses indexes that 681 

characterize the response of a neuron to a class of stimuli. Now, imagine that another lab 682 

develops its own set of database documents for the same purpose, but gives the fields 683 
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different names and organizes these indexes into a different document set. Someone doing a 684 

meta-analysis of data from the different labs would either have to recompute the index 685 

values from the raw activity of the neurons, or write analysis code that would search the 686 

database for the document schemas of both labs. For example, users are free to design their 687 

own schemas in DataJoint, NWB, NDI, odML, or NeuroSys (Pittendrigh and Jacobs, 2003; 688 

Grewe et al., 2011; Sobolev et al., 2014; Sprenger et al., 2019), but there is no requirement 689 

that these schemas be similar or be able to exchange with one another.  690 

 691 

Efforts to standardize schemas for certain sub disciplines (such as visual physiologists, or 692 

cellular physiologists) could be quite useful, but will take time (Wiener et al., 2016). In our 693 

opinions, the development of these schemas have the best chance for broad adoption if they 694 

are created independently of software implementation and are not tied to any specific 695 

software product. Each software tool may have its own particular advantages for certain 696 

applications, and it would be very powerful if users could form queries that make sense 697 

across multiple tools. If there were a standard list of metadata for common data types, an 698 

interface or file format or database could say it was “ACME 12345”-compliant (where ACME 699 

is the name of the organization making the standard, and 12345 was the version of the 700 

standard), and users could make common searches across these systems. 701 

 702 

The field of fMRI is several years ahead of the physiology and imaging communities in the 703 

development of these systems (Cox, 1996; Saad et al., 2006; Gorgolewski et al., 2016; Farber, 704 

2017; Gorgolewski et al., 2017; Nichols et al., 2017; Poldrack and Gorgolewski, 2017; 705 

Markiewicz et al., 2021). Some of these approaches have been extended to support human 706 

EEG data in a similar manner (Holdgraf et al., 2019; Pernet et al., 2019). 707 

 708 

Summary:  709 

 710 
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As experimentalists and theorists in neuroscience enter the era of big data, it is necessary to 711 

lower barriers of data exchange and to increase access and the ability to search and aggregate 712 

data across labs and studies. Some labs have already developed pipelines and tools for 713 

exchange of neurophysiology and imaging data (Teeters et al., 2008; Teeters et al., 2015; 714 

Yatsenko et al., 2015; Rübel et al., 2019), while the great majority of labs and investigators 715 

still use custom or idiosyncratic schemas. Data interfaces allow analysts to quickly work with 716 

both types of data, greatly speeding collaborations that might otherwise be too cumbersome. 717 

Data interfaces also allow the development of best-of-breed tools that focus on analysis 718 

rather than being burdened with the format or organization of the underlying digital data. 719 

As more neuroscientists gravitate towards sharing data, utility and ease of use will be 720 

important determining factors in adoption and the degree to which users with different 721 

levels of computer expertise (users, novice programmers, advanced programmers) can do 722 

science with each system. NDI was designed to address all these considerations through 723 

conceptual design first, and implementation second, using an interface framework that can 724 

reach back into the data of the past and into the data of the future. 725 

 726 

 727 

 728 

Figure Captions 729 

 730 
Figure 1. A vocabulary for neuroscience experiments that forms the basis of the Neuroscience Data Interface (NDI). Top-731 

left) An example experiment. A probe is any instrument that can make a measurement from or provide stimulation to a 732 

subject. In this case, an electrode with an amplifier is monitoring signals in cerebral cortex of a ferret and the electrode is a 733 

probe and the ferret is a subject. A DAQ system is an instrument that digitally logs the measurements or stimulus history of 734 

a probe. In this case, a data acquisition system (DAQ) is logging the voltage values produced by the electrode’s amplifier and 735 

storing the results in a file on a computer. An epoch is an interval of time during which a DAQ system is switched on and 736 

then off to make a recording. In this case, 3 epochs have been sampled. The experiment has additional experiment elements. 737 

One of these elements is a filtered version of the electrode data. A second element is a neuron, whose existence and spike 738 

times have been inferred by a spike analysis application and recorded in the experiment. Bottom) In NDI, a wide variety of 739 

experiment items are called elements, of which probes are a subset. Examples of probes include multi-channel extracellular 740 

electrodes, reward wells, 2-photon microscopes, intrinsic signal imaging systems, intracellular or extracellular single 741 
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electrodes, and visual stimulus monitors. Other elements include items that are directly linked to probes, such as filtered 742 

versions of signals, or inferred objects like neurons whose activity are inferred from extracellular recordings or images. Still 743 

other elements have no physical derivation, such as artificial data or purely simulated data; nevertheless, we want to be able 744 

to treat these items identically in analysis pipelines. Finally, elements might be the result of complex modeling that depends 745 

on many other experiment elements, such as an inferred phenomenological model of the amount of information that an 746 

animal has about whether a stimulus is a grating. Top-Right) DAQ systems digitally record probe measurements or histories 747 

of stimulator activity. In NDI, DAQ systems are logical entities, which could correspond physically to a single DAQ device 748 

made by a particular company (top), or a collection of home-brewed devices that operate together to have the behavior of a 749 

single DAQ device (bottom). In the bottom example, information from an electrode probe and digital triggers from a visual 750 

stimulation probe are acquired on a single DAQ device, but digital information from both systems (in separate files) is 751 

needed to fully describe the activity in each epoch.  752 

 753 

Figure 2. An overview of the Neuroscience Data Interface (NDI). Top-left) The physical experiment from Figure 1. A probe 754 

(electrode) is used to sample data from the visual cortex of a subject ferret. A DAQ system digitally logs the measurements. 3 755 

epochs of data have been recorded by the DAQ system. Top-right) An experiment session is contained in a software object 756 

that has a link to the raw data (red), an internal set of NDI objects that have information about DAQ systems and 757 

synchronization methods (green), and link to a database (dark blue). Upon creation, each ndi.daq.system object is provided 758 

with an ndi.file.navigator object, which is a parameterized set of instructions for locating the raw files or links that contain 759 

the data for a given epoch. Therefore, the same ndi.daq.system can manage data that is organized into epochs on disk according 760 

to different schemas. Metadata associated with each epoch, in a type called ndi.epoch.epochprobemap, specifies the probes 761 

that are present in each recorded epoch and indicates the probe’s name, a unique reference, and the channel mapping between 762 

the ndi.daq.system and the probe. This data can be added manually by the user or analyst, or can be read from the epoch data 763 

files if the ndi.daq.system’s data format or a Laboratory Information Management System (LIMS) encodes this information. 764 

The database stores documents, which are platform-independent representations of analyses, analyses of analyses, and NDI 765 

internal objects. Bottom-right) Applications can use NDI to read raw data and read the results of previous analyses from the 766 

database and write the results of new analyses back to the database as documents. The database and documents therefore 767 

support the construction of pipelines that may be linear or integrated. Applications are free to focus on single analysis problems 768 

instead of the raw data format or organization of their input. 769 

 770 

Figure 3. DAQ systems allow an analyst to read data in a variety of formats and with a variety of file organizations on disk 771 

or in the cloud. All labs begin by initializing the main data management object, an ndi.session. A) In lab 1, data from an 772 

ACME DAQ device (.acme files) is organized in a single, flat directory. With a search parameter (the regular expression 773 

.*\.acme\>), an ndi.file.navigator object is instructed how to find the data for each epoch. The file for epoch 2 is 774 

requested and shown. B) In lab 2, data from a home-brewed configuration using an ACME DAQ device that writes .acme 775 

files and a custom stimulation system that writes .stim files are organized in a single DAQ system. In this lab, data from 776 

individual epochs are contained in subdirectories. A subclass ndi.file.navigator.epochdir is used to restrict 777 
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epochs to the contents of subdirectories, and the search parameters indicate that an epoch must have both a .acme file and 778 

.stim file to be valid. C) Lab 3 uses an integrated file format, such as that from SpikeGadgets. D) After setting up the DAQ 779 

systems, data for all the labs is read using the same code, which is independent of the file format or the organization on the 780 

disk or server. 781 

 782 

Figure 4. Probes. A) When probes are defined by providing B) a mapping between the channels of the probe and the 783 

channels of the DAQ system, the data can be read through direct calls, and NDI manages the necessary calls to the DAQ 784 

systems. C) Code snippet that loads probe objects for a visual stimulus system and a sharp electrode, and reads time series 785 

data from the sharp electrode probe. The code returns a time reference for the sharp probe’s epoch, and that reference is 786 

used to request a time series with the corresponding time intervals from the visual stimulus system (even though the 787 

systems likely do not have the same clocks). D) The raw data and stimulus information are plotted together. 788 

 789 

Figure 5. ndi.element objects allow different types of data to go through identical analysis pipelines. A) Code that reads 790 

and B) plots time series data from 2 ndi.element objects derived from a single sharp electrode probe: voltage membrane 791 

data where spikes have been “chopped” out with a median filter (top) and thresholded spike data (bottom). C) The objects 792 

can be sent through analysis applications identically and the same type of summary data generated and plotted. D) 793 

Orientation and direction tuning curves for the subthreshold membrane voltage and spiking activity of the same cell. Note 794 

that filtered data, modeled data, or artificial test data can be sent through the same analysis pipelines with ndi.element. 795 

 796 

Figure 6. Epochs and ndi.time.syncgraph.  Illustration of an example experiment with 2 797 

ndi.daq.system objects (elec_mfdaq and vis_stim_daq) that are each connected to a probe 798 

(elec_probe and vis_stim_probe, respectively). The DAQ systems have their own clocks that are not 799 

linked to any global time system. 3 epochs have been recorded by each DAQ system. The electrode probe has 800 

been analyzed and an ndi.element object (a neuron, elec_neuron) has been created from it. The clock 801 

and time of each of the epochs for the neuron is inherited from its underlying probe, which is in turn inherited 802 

from the underlying DAQ system. The 2 DAQ systems each record the same set of digital triggers, and 803 

ndi.time.syncgraph has used its list of ndi.time.syncrule objects to compute a mapping 804 

(ndi.time.timemapping) between epochs of those DAQ systems. Time can be converted between epochs 805 

that are recorded simultaneously on the 2 DAQ systems, but we do not know how the other epochs are related 806 

to each other, or how any epoch is related to a global time system like universal controlled time (UTC), shown 807 

below. 808 

 809 

 810 
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Figure 7. Epochs and ndi.time.syncgraph.  Illustration of an example experiment similar to that in Figure 811 

6, except that the vis_stim_daq DAQ system also keeps UTC time in addition to its own local clock. Here, 812 

time can be converted among any epoch because there is a mapping between the epochs of vis_stim_daq 813 

and UTC, and there are ndi.time.timemapping mappings between the DAQ system. The time in any 814 

epoch can be computed according to the clock of any other epoch, by solving the transformations in the 815 

syncgraph. The mappings shown are ndi.time.timemapping objects built by a) an 816 

ndi.time.syncrule, b) inheritance (e.g., a probe inherits the epoch information of the DAQ system that 817 

acquired it); and c) same units (UTC is a global time system). 818 

 819 

Figure 8. Illustration of ndi_documents and the creation of new classes of ndi_documents by composition. Top panel) 820 

Document definitions, with fields. Several document classes are created by composition: for example, the spikewaves 821 

type has its own fields plus those of document classes ndi_document, ndi_epochid, and ndi_app. Bottom panel) A 822 

specific spikewaves document from a database. The document includes a description of the document definition, a unique 823 

ID and timestamp, the app that created it, the parameters that were used, a link to the ndi.element that was analyzed 824 

and other parameters. 825 

 826 

Figure 9. Analysis pipelines build database documents. A) Code snippet that creates an instance of the NDI spike extractor 827 

app (Step 1), creates a document that contains the parameters to be used for spike waveform extraction (Step 2), and extracts 828 

the spikes (Step 3). B) The database documents that are present at each Step. Initially, the experiment has an 829 

ndi.daq.system, 2 probes (a visual stimulus system and a sharp electrode), and an ndi.element that is a normalized 830 

version of the spiking activity. At Step 2, a document describing the parameters to be used for spike waveform extraction is 831 

added. At Step 3, a document describing the extracted spikes is added. 832 

 833 

Figure 10. Accessing analysis results involves querying the database with ndi_query. A) Code that uses a composition of 834 

ndi.query objects to look for a document that meets the following criteria: 1) it is of ndi.document type 835 

‘spike_extraction’; AND 2) it depends on the ndi_element variable named element_vmcorrected; and 3) it is from 836 

the session S. If it finds such a document, then it calls the spike extractor’s method to return the spike waveforms w and the 837 

parameters wp, and spike times t. All spikes that have an inter-spike-interval of 100 milliseconds or greater are plotted, as 838 

shown in panel B. 839 

 840 

 841 

Figure 11. Graph structure of the database documents of an example experiment in NDI. A) Full graph of documents from 842 

an experimental session from Roy et al. (2020). Documents are denoted by nodes (blue or green circles), and arrows point 843 

from dependent documents to the documents that they depend upon. In this graph, a is a visual stimulus monitor probe, and 844 
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b and c are stimulus presentation documents that describe the presentation of sinusoidal gratings in different directions. d 845 

and e are sharp electrode probes corresponding to 2 recordings of different impaled cells. f and g are documents describing 846 

the ndi.element objects of probe e where spikes are removed (f) and where spike times are extracted (g). h is a document 847 

containing the stimulus responses of the spikes in g to the stimulus presentation in c. In i, these stimulus responses have 848 

been collated into a tuning curve. Finally, these responses have been examined to extract orientation and direction index 849 

values and to perform a double Gaussian fit, which are all stored in document j. B) Zoomed in view of the document 850 

pipeline a-j.  851 

 852 

 853 

Figure 12. With NDI daq readers and a few parameters, one can read many different types of experiments quickly and 854 

directly, without file conversion. Subjects (green boxes), probes (blue boxes), and daq systems (red boxes) are shown. Wires 855 

and terminals indicate connections of probes to subjects and daq systems. A) Activity of a central pattern generator 856 

measured in Eve Marder’s lab (stomatogastric ganglion (STG) of the crab Cancer borealis) (Hamood et al., 2015). Electrodes 857 

on different nerves indicate the pyloric rhythm that controls the movement of food into the crab’s stomach. The 3 858 

instructions of code needed to specify the daq system, modified on a template, are shown at right. Acquisition system was by 859 

Cambridge Electronic Design. B) Unpublished data snippet from Alessandra Angelluci’s lab showing responses to visual 860 

stimulation that were recorded on a 96-channel Utah array implanted in a marmoset. Traces show spikes and numbers, and 861 

tick marks are visual stimulus identifier numbers. The 6 instructions needed to set up the 2 daq systems are shown; another 862 

15 lines were needed to build a custom stimulus reader (modified from a similar reader). Acquisition system was by 863 

Blackrock Microsystems. C) An experiment by Don Katz’s lab (Mukherjee et al., 2019) that explored the relationship 864 

between activity in gustatory cortex and whether a rat would choose to consume or expel a taste stimulus delivered through 865 

interoral cannulae. The experiment also included optical fibers to optogenetically inhibit neurons projecting to the gustatory 866 

cortex from the amygdala. Graph shows EMG recordings (green) indicating licking following sucrose delivery and gaping 867 

following quinine delivery. Some inputs to gustatory cortex were inhibited just after quinine was delivered. The 6 868 

instructions needed to express the daq system are at right. Acquisition system was by Intan Technologies. This figure shows 869 

how diverse experiments, with different formats and different file organizations, can be read through NDI by specifying 870 

only a few parameters. Additional experiments of these types can be read with no new code. 871 
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stimulator_epoch2.stim
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epoch_2
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Today at 14:03

Date Modified

lab_2_experiment

S = ndi.experiment(dirname);

fnav=ndi.file.navigator.epochdir(…

    S,{’.*\.acme\>’,’.*\.stim\>’};

dr=ndi.daqreader.mfdaq.visstim();

ds=ndi.daqsystem.mfdaq(...

   ’my_vis_stim_Daq’,dr,fnav);

S.daqsystem_add(ds);

f = fnav.getepochfiles(2)

% f = {’epoch_2_file.acme’,...

%       ‘stimulator_epoch2.stim’}

Name

integrated_datafile.acme_int Today at 14:53

Date Modified

lab_3_experiment

S = ndi.experiment(dirname);

fnav = ndi.file.navigator(…

    S,’.*\.acme_int\>’);

dr = …

  ndi.daq.reader.mfdaq.acmeint();

ds = ndi.daq.system.mfdaq( ...

    ’acmeInt_Daq’,dr,fnav);

S.daqsystem_add(ds);

f = fnav.getepochfiles(2)

%f = {...

%  ’integrated_datafile.acme_int’}
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ds = S.daqsystem_load(’name’, …

    ‘(.*)Daq’);

channel = [ 1 ];

epochnum = 1; t0 = 0; t1 = 21;

data = readchannels(ds{1}, …

    {’analog_in’}, channel, …

    epochnum, t0, t1);

time = readchannels(ds{1}, …

    {’timestamp’}, 1, …

    epochnum, t0, t1);

plot(time,data);
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Name

epoch_1_file.acme Today at 14:03

epoch_2_file.acme Today at 14:27

epoch_3_file.acme Today at 14:35

Date Modified

lab_1_experiment

S = ndi.session.dir(dirname);

fnav = ndi.file.navigator(…

    S, {’.*\.acme\>’};

dr = ndi.daq.reader.mfdaq.acme();

ds = ndi.daq.system.mfdaq(...

   ’my_acme_Daq’,dr,fnav);

S.daqsystem_add(ds);

f=fnav.getepochfiles(2)

% f = {’epoch_2_file.acme’}
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ndi.file.navigator
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Job: given search parameters

and epoch number/id,

return the files of the epoch.

Job: given epoch files and

channel(s) to read, return

the data in the epoch.
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stimprobe = S.getprobes(‘name’, ...

   ‘visStim’, ’type’,’vh_visstim’);

sharpprobe = S.getprobes(’type‘, ...

   ‘sharp-Vm’);

stimprobe = stimprobe{1};

sharpprobe = sharpprobe{1};

[data,t,timeref] = sharpprobe....

    readtimeseries(epochnum,t0,t1);

% read stim data, converting to sharp

% probe time reference

[ds,ts] = stimprobe.readtimeseries(…

    timeref, t(1), t(end));

plot_stimulus_timeseries(0,ts.stimon…

    ,ts.stimoff,’stimid’,ds.stimid);

hold on;

plot(t,data,’b’);
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myelement_vm = S.getelements(...

 'element.type','Vm_without_spikes');

myelement_spike = S.getelements(...

 'element.type','spikes');

[data_vm, t_vm] = myelement_vm{1}...

    .readtimeseries(1, t(1), t(end));

[data_sp, t_sp]=myelement_spike{1}...

    .readtimeseries(1, t(1), t(end));

plot(t_vm,data_vm,’b’);

hold on;

spiketimes_plot(t_sp);

% use tuning_response app with things

tapp = ndi.app.tuning_response(S);

oapp = ndi.app.oridirtuning(S);

sp_resp = tapp.find_tuningcurve_document(...

    myelement_spike,1,’mean’);

vm_resp = tapp.find_tuningcurve_document(...

    myelement_vm,1,’mean’);

oriprop_sp = oapp.calculate_oridir(sp_resp);

oriprop_vm = oapp.calculate_oridir(vm_resp);

oapp.plot_oridir_response(sp_resp);

oapp.plot_oridir_response(vm_resp);

5 spikes/s

10 mV

V
m

w
/o

 s
p

ik
e

s
S

p
ik

e
s

A B

C D



elec_mfdaq

elec_probe

elec_neuron

vis_stim_daq

vis_stim_probe

UTC time

(unsampled)

ndi.time.syncrule

inheritance

ndi object:

ndi.time.syncgraph

epochs:

ndi.time.timemapping:

Time (sec, relative to 2020-04-22 T20:26:51.839Z)
0

0 63

300

dev_local_time

epoch_id: …0c7d…

0 80dev_local_time

epoch_id: …ba7b…

0 65dev_local_time

epoch_id: …07b7…

0 55dev_local_time

epoch_id: …9024…

0 80dev_local_time

epoch_id: …ba7b…

0 65dev_local_time

epoch_id: …07b7…

0 55dev_local_time

epoch_id: …9024…

0 80dev_local_time

epoch_id: …ba7b…

0 65dev_local_time

epoch_id: …07b7…

0 55dev_local_time

epoch_id: …9024…

0 70dev_local_time

epoch_id: …56bf…

0 72dev_local_time

epoch_id: …d4c0…

0 63dev_local_time

epoch_id: …0c7d…

0 70dev_local_time

epoch_id: …56bf…

0 72dev_local_time

epoch_id: …d4c0…



elec_mfdaq

elec_probe

elec_neuron

vis_stim_daq

vis_stim_probe

UTC time

inheritance

same units
ndi object:

ndi.time.syncgraph

epochs:

Time (sec, relative to 2020-04-22 T20:26:51.839Z)
0

0 63

300

dev_local_time

epoch_id: …0c7d…

0 80dev_local_time

epoch_id: …ba7b…

0 65dev_local_time

epoch_id: …07b7…

0 55dev_local_time

epoch_id: …9024…

0 80dev_local_time

epoch_id: …ba7b…

0 65dev_local_time

epoch_id: …07b7…

0 55dev_local_time

epoch_id: …9024…

0 80dev_local_time

epoch_id: …ba7b…

0 65dev_local_time

epoch_id: …07b7…

0 55dev_local_time

epoch_id: …9024…

0 70dev_local_time

epoch_id: …56bf…

0 72dev_local_time

epoch_id: …d4c0…

t
a

t
b

t
c

t
d

t
e

t
f

t
a

t
b

t
c

t
d

t
e

t
f

UTC UTC UTC

t
a

t
b

0 63dev_local_time

epoch_id: …0c7d…

UTC t
c

t
d

0 70dev_local_time

epoch_id: …56bf…

UTC t
e

t
f

0 72dev_local_time

epoch_id: …d4c0…

UTC

ndi.time.syncrule

inheritancendi.time.timemapping:



A

B

ndi_document, with fields:

    "id":   % unique identifier

    "experiment_id": % unique identifier

    "name": % name field

    "type": % type field

    "datestamp": %utc date stamp

    "database_version": % version

ndi_epochid = ndi_document + fields:

    "epochid": % unique epoch id

ndi_app = ndi_document + fields:

    "name":    % name of app

    "version": % version of app

    "OS": % operating system

    "OS_version": % OS version

    "interpreter": % Matlab, Python3, etc

    "interpreter_version": % version

spikewaves = ndi_document + ndi_app +

  ndi_epochid + fields:

    "depends_on": [

      "extraction_parameters_id":%paramdoc

      "element_id": % element id number

    ]

    "sample_rate": % sample rate of epoch

    "s0": % time of first sample (peak:=0)

    "s1": % time of last sample (peak:=0)

    + binary data

mydoc = S.database_search(ndi.query('','isa','spikewaves',''));

mydoc{1}.document_properties.document_class:

  definition: '$NDIDOCUMENTPATH/apps/spikeextractor/spikewaves.json'

  validation: '$NDISCHEMAPATH/apps/spikeextractor/spikewaves_schema.json'

  class_name: 'ndi_document_apps_spikeextractor_spikeextractor_spikewaves'

  class_version: 1

  superclasses(1).definition: '$NDIDOCUMENTPATH/ndi_document.json'

  superclasses(2).definition: '$NDIDOCUMENTPATH/ndi_document_app.json'

  superclasses(3).definition: '$NDIDOCUMENTPATH/ndi_document_epochid.json'

mydoc{1}.document_properties.ndi_document:

  id: '41268449b95781fc_3fe0bf23a68a90a2'

  experiment_id: '2014-05-09_412684472cf40177_3feddc959c9bd904'

  name: 'manually_selected 412684472cf75018_3fe5dc9aac1a7ef0.t00012'

  type: ''

  datestamp: '2020-02-08T01:41:16.434Z'

  database_version: 1

mydoc{1}.document_properties.depends_on(1):

  name: 'extraction_parameters_id'  % parameters document

  value: '41268449b92c5644_3fe16609b1bfa8f8'

mydoc{1}.document_properties.depends_on(2):

  name: 'element_id'  % ndi_element that is being extracted

  value: ‘4126844732658ffe_3fe647147e14e1ff'

mydoc{1}.document_properties.ndi_app:

  name: 'ndi_app_spikeextractor' % our included simple spike extractor 

  version: '768849c6e5a4e4b8bdfa2aef065d135222e4a93f' % git commit

  OS: 'MacOS'  

  OS_version: '10.14.6 Build: 18G4032' 

  Interpreter: 'Matlab'

  Interpreter_version: '9.6.0.1174912 (R2019a) Update 5'

mydoc{1}.document_properties.epochid:

  epochid: ‘t00012’

mydoc{1}.document_properties.spikewaves:

  sample_rate: 11111 % sample rate, Hz

  s0: -0.004  % 4ms before peak

  s1:  0.004  % 4ms after peak

DATA

DATA
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APP



% Job: Given a probe sharpprobe, epochid eid, and

%    threshold T, extract spikes

% Step 1: set up and load objects

%   make an instance of our spike extractor

sapp = ndi.app.spikeextractor(S);

%   load our normalized Vm trace

element_vmcorrected = S.getelements(...

   'element.type','Vm_corrected',...

   'element.reference',sharpprobe.reference);

% Step 2: make a spike extractor parameter

%   document

extract_doc = ndi.document( ...

     'spike_extraction_parameters');

se_parameters = extract_doc.document_properties...

     .spike_extraction_parameters;

se__parameters.dofilter = 0;

se__parameters.threshold_method = 'absolute';

se__parameters.threshold_parameter = T;

se__parameters.threshold_sign = 1;

se__parameters.spike_start_time = -0.004;

se__parameters.spike_end_time = 0.004;

se__parameters.center_range_time = 0.0015;

se__parameters.read_time = 1000; % long time is faster

extract_p_name = ['manually_selected ' ...

    sharpprobe.id() '.' eid];

sapp.add_extraction_doc(extract_p_name,se_parameters);

% Step 3: do the extraction

sapp.extract(element_vmcorrected,eid,extract_p_name,1); 

Database:

At Step 1:

PARAM

After Step 2:

PARAM DATA

After Step 3:

CodeA B

DAQSYS PROBE PROBE ELEMENT

DAQSYS PROBE PROBE ELEMENT

DAQSYS PROBE PROBE ELEMENT



% prepare search queries

q_e = ndi.query(S.searchquery());

q_t = ndi.query('','depends_on',...

  'element_id', ...

   element_vmcorrected .id());

q_sw = ndi.query('','isa', ...

  'spike_extraction','');

% is there a document that matches

% all of these criteria?

doc = S.database_search(q_e & ...

   q_t & q_sw);

% if so, load and plot ISIs > 100ms 

if ~isempty(doc), 

  [w,wp]=sapp.load_appdoc(’spikewaves’,...

     element_vmcorrected,1,'manual');

  t = sapp.load_spiketimes_epoch(...

     element_vmcorrected,1,'manual');

  z = squeeze(w);

  indexes = 1+find(diff(t)>0.100);

  plot([wp.S0:wp.S1]/wp.sample_rate, ...

     z(:,indexes));

end;
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properties:

  app

  depends_on

  ndi_document

  orientation_direction_tuning

     properties

        coordinates: “compass”

        response_units: “Spikes/sec”

        response_type: “mean”        

     tuning_curve

     significance

     vector

     fit




