Deciphering spinal endogenous dopaminergic mechanisms that modulate micturition reflexes in rats with spinal cord injury

https://doi.org/10.1523/ENEURO.0157-21.2021

Cite as: eNeuro 2021; 10.1523/ENEURO.0157-21.2021

Received: 12 April 2021
Revised: 3 June 2021
Accepted: 30 June 2021

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.
Title: Deciphering spinal endogenous dopaminergic mechanisms that modulate micturition reflexes in rats with spinal cord injury

Abbreviated Title: Dopaminergic mechanisms in urinary function after SCI

Authors: Shaoping Hou¹, Jaclyn H. DeFinis¹, Stephanie L. Daugherty², Chuanxi Tang¹, Jeremy Weinberger¹, William C. de Groat²

Author Affiliations:

¹Marion Murray Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA.
²Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA

Author Contributions:

*To whom correspondence should be addressed:

Shaoping Hou, PhD
Marion Murray Spinal Cord Research Center
Dept. of Neurobiology & Anatomy
Drexel University College of Medicine
2900 Queen Lane
Philadelphia, PA 19129
Phone: 215-991-8411
Fax: 215-843-9082
E-mail: sh698@drexel.edu

Number of Figures: 11 Number of Tables: 2
Words: Abstract 249 Introduction 700 Discussion 3309

Acknowledgements
The support of this project was provided by NIH NINDS R01NS099076 to S. Hou, NIDDK F31DK123840-01 to J. H. DeFinis, and NIDDK PO1DK093424 to W. C. de Groat.

Conflicts of Interest: The authors declare no competing financial interests.
Abstract

Spinal neuronal mechanisms regulate recovered involuntary micturition after spinal cord injury (SCI). It is recently discovered that dopamine (DA) is synthesized in the rat injured spinal cord and is involved in lower urinary tract (LUT) activity. To fully understand the role of spinal DA-ergic machinery in micturition, we examined urodynamic responses in female rats during pharmacological modulation of the DA pathway. Three to four weeks after complete thoracic SCI, L-DOPA administered intravenously during bladder cystometrogram and external urethral sphincter (EUS) electromyography reduced bladder overactivity and increased the duration of EUS bursting, leading to remarkably improved voiding efficiency. Apomorphine, a non-selective dopamine receptor (DR) agonist, or quinpirole, a selective DR₂ agonist, induced similar responses whereas a specific DR₂ antagonist remoxipride alone only had minimal effects. Meanwhile, administration of SCH 23390, a DR₁ antagonist, reduced voiding efficiency by increasing tonic EUS activity and shortening the EUS bursting period. Unexpectedly, SKF 38393, a selective DR₁ agonist, increased EUS tonic activity, implying a complicated role of DR₁ in LUT function. In metabolic cage assays, subcutaneous administration of quinpirole decreased spontaneous voiding frequency and increased voiding volumes; while L-DOPA and apomorphine were inactive possibly due to slow entry into the CNS. Collectively, tonically active DR₁ in SCI rats inhibits urine storage and enhances voiding by differentially modulating the EUS tonic and bursting patterns, respectively; while pharmacologic activation of DR₂ which are normally silent improves voiding by enhancing EUS bursting. Thus, enhancing DA signaling achieves better detrusor-sphincter coordination to facilitate micturition function in SCI rats.

Key words: detrusor-sphincter dyssynergia, bladder overactivity, dopamine receptor, bursting, tonic activity
Significance Statement

We employed pharmacological interventions of spinal endogenous dopaminergic (DA-ergic) pathways to decode the machinery of the bladder and sphincter reflexes in female rats with spinal cord injury (SCI). Consequently, tonically active D$_1$-like receptor (DR$_1$) in SCI rats inhibits urine storage and enhances voiding by differentially modulating the external urethral sphincter (EUS) tonic and bursting patterns, respectively; while pharmacologic activation of DR$_2$ which are normally silent improves voiding by increasing EUS bursting. Enhancing DA signaling with L-DOPA or apomorphine achieves better detrusor-sphincter coordination to facilitate micturition function in SCI rats. Therefore, spinal DA-ergic mechanisms play an important role in the recovered micturition function and may serve as a novel therapeutic target after SCI.
Introduction

Traumatic spinal cord injury (SCI) often interrupts the spinobulbospinal micturition reflex pathway and immediately produces an areflexic bladder. Over time, lower urinary function spontaneously recovers due to the emergence of a spinal micturition reflex, which takes approximately 2-3 weeks in rats or a few months in humans (de Groat, 1995; Fowler et al., 2008). However, the occurrence of bladder hyperactivity and detrusor-sphincter dyssynergia (DSD) causes incontinence and inefficient emptying, resulting in recurrent lower urinary tract (LUT) infections. Furthermore, persistent urinary retention and high intravesical pressure give rise to vesicoureteral reflux that may lead to upper urinary tract deterioration and even renal failure (Zinck and Downie, 2006). Currently, there is no effective drug to treat these disorders in SCI patients.

Multiple neurotransmitters are related to the control of micturition function. Patients with Parkinson’s disease who have an impaired dopamine (DA) system in the midbrain often experience irritable hyperactive bladder symptoms (Winge and Fowler, 2006), suggesting a role of DA in the modulation of LUT activity by an action at the level of the pontine micturition center (Ogawa et al., 2006) or in the spinal cord. In mammalian spinal cord DA is expressed in diencephalospinal pathways originating in the A11 cell group (Skagerberg and Lindvall, 1985). Although there is no systemic study to show the relation between these descending projections and lower urinary tract function, sporadic pieces of evidence suggest this possibility (Ozawa et al., 2017; Koblinger et al., 2018). Previous studies revealed strong expression of various DA receptors (DR) in autonomic regions of the mammalian spinal cord as well as in sexually dimorphic spinal motor nuclei (van Dijken et al., 1996). Apomorphine (APO), a non-selective DR agonist, was demonstrated to enable erection in SCI rats (Ishizuka et al., 2002) and increase bladder activity in SCI patients (Steers et al., 2000). It was recently reported that a subpopulation of tyrosine hydroxylase (TH)* and/or dopamine decarboxylase (DDC)* cells residing in the rat caudal spinal cord may be the source of spinally-derived DA (Hou et al., 2016). These spinal interneurons undergo plasticity following SCI to produce a low level of DA that may influence spinal bladder reflex circuits. These findings raise the possibility that there are endogenous DA-ergic mechanisms in the spinal cord regulating urogenital activity after SCI.

During postnatal development, synaptic reorganization within the spinal cord contributes to the maturation of neural regulation of lower urinary function. In this process spinal micturition reflex mechanisms are gradually downregulated and replaced by supraspinal reflexes (Maggi et al., 1986; Araki and de Groat, 1997; de Groat, 2002). This can explain the elimination of spinally-mediated involuntary urination in neonates and the establishment of supraspinal control of urination in the adult. Likewise, the emergence of a spinal micturition reflex when SCI interrupts spinobulbospinal micturition reflex pathways is attributable to synaptic reorganization (de Groat et al., 1998) within distinct
populations of interneurons involved in the spinal micturition reflex circuitry. Coincidently, it appears that the dynamic change in the source of DA in the spinal cord from diencephalospinal to intraspinal DA-ergic pathways, maintains the regulation of the micturition function after SCI. This change may reflect the shift of DA-ergic modulation in different life stages or conditions ranging from the neonate, adult to the adult with SCI (Fig. 1).

As preliminary findings revealed the involvement of spinal DA-ergic mechanisms in the bladder control, it is particularly pivotal to elucidate how the coordination of detrusor and sphincter activity is regulated by the recovered spinal micturition reflex. Though previous studies showed that stimulating certain types of spinal DR increased the voided volume (Hou et al., 2016), they did not measure bladder capacity and postvoid residual bladder volume to determine if improved voiding is caused by changes in urethral sphincter activity and increased voiding efficiency. Although administration of the DA precursor, L-DOPA, or the non-selective DR agonist, APO, can enhance voiding function in the spinal intact subjects (Aranda and Cramer, 1993), it is unknown if these strategies of enhancing DA-ergic mechanisms have similar effects on the recovered micturition function after SCI. In the present study, we employed pharmacological interventions not only to answer these questions but also to test the possibility that manipulating this DA-ergic machinery can improve spontaneous urination in SCI rats.

Materials and Methods

Animals

A total of 89 adult female Wistar rats (weighing 200-250 g) were used. Institutional Animal Care and Use Committee and Society for Neuroscience guidelines on animal care were strictly followed to minimize potential suffering and the number of animals used.

Spinal cord surgery

Animals were anesthetized with 2% isoflurane. A partial laminectomy was performed at T8/9 vertebra to expose the dorsal spinal cord. To completely remove supraspinal control and the possibility of formation of descending propriospinal projections post-injury, animals underwent a complete spinal cord transection at the 10th thoracic (T10) level using a No. 11 blade. Lesion completeness was verified visually at the time of surgery. After active bleeding stopped, overlying musculature and skin were closed; and then Lactated Ringer’s solution (3 ml, Baxter Healthcare), cefazolin (10 mg/kg), and buprenex (0.1 mg/kg; Reckitt Benckiser) were subcutaneously (s. c.) administered. Bladders were manually expressed at least 3 times daily until sacrifice.

Bladder cystometrogram (CMG) and external urethral sphincter (EUS) electromyography (EMG) recordings
Under extensive and careful bladder care, the spontaneous spinal micturition reflex was usually reestablished in approximately 2-3 weeks following SCI. Accordingly, bladder CMG and EUS EMG recordings were performed to assess the recovered bladder and sphincter reflexes 3-4 weeks after SCI. All rats were anesthetized with isoflurane and placed in a supine position. A skin incision was made in the lower abdomen and muscles were separated to expose the urinary bladder. For bladder catheterization, the apex of the bladder dome was punctured using an 18-gauge needle. One collar-shaped end of a polyethylene catheter (PE-60; Clay Adams) was inserted into the bladder and sutured in place with a 6-0 silk thread (Mitsui et al., 2005a; Chang et al., 2007). Two Teflon-insulated platinum fine-wire electrodes (Astro-Med System, 50 μm in diameter) were percutaneously inserted on both sides of EUS via the vagina (Peng et al., 2006; Peng et al., 2008; Jiang et al., 2010). This was performed using a 30 G needle with the tip of the electrode hooked at the needle tip. The needle-guided electrode was inserted into the sphincter and then the needle was withdrawn to leave the wire embedded in the EUS muscle. As an alternative, two internal electrodes were also directly inserted into the EUS through the abdominal opening. The abdominal wall was then sutured closed with a 4-0 thread.

To intravenously deliver pharmacological agents, a separate cannula (PE-10) filled with sterile saline was implanted in the right femoral vein. The peripheral end was connected to a 1 ml syringe. In neuroaxis intact rats that were used to compare basal parameters of CMG and EMG reflexes with SCI rats (n = 6 per group), urethane (1.2 mg/kg) was s. c. injected before the surgery and following recordings were conducted under the lightly anesthetized state (Chang et al., 2007).

Immediately after removal of isoflurane, rats were placed in a restraining cage (KN-326, Natsume). The bladder catheter was connected to a pressure transducer and then to an amplifier (Transbridge, WPI) to record the bladder pressure and to a microinjection syringe pump (4M, WPI) for saline infusion by means of a four-way stopcock. For bladder CMG room temperature saline was slowly infused into the bladder (0.1 ml/min) to mimic urine production by the kidney. To record EUS EMG activity, the inserted electrode was connected to an alternating current amplifier (Model 1700; Astro-Med System) with low- and high-cut off at 300 and 500 Hz (Lee et al., 2013). CMG and EMG output were recorded and converted with a data acquisition starter kit (DI-1100, DataQ Instruments) on a computer system at a sampling rate of 1 kHz. After rats recovered from anesthesia within 10-15 min, we started infusing saline into the bladder but waited approximately 1 h before starting the pharmacological experiments to allow for ample adaptation time. At least 3-4 continuous stable micturition cycles were collected pre- and post-drug delivery per rat. The urodynamic parameters measured included the voiding amplitude (VA) defined as the difference between pressure at initiation of bladder contraction and the peak intravesical pressure at the start of voiding (i.e., opening pressure), the voiding interval (VI) between two sequential voiding events, and the number of non-voiding contractions (NVCs) during the period of
filling. Non-voiding contractions were defined as rhythmic intravesical pressure increases 5 mmHg from baseline without a release of fluid from the urethra (Mitsu et al., 2005b). Various EUS EMG parameters were also evaluated, such as EUS tonic activity in the filling phase before voiding and bursting period (BP) during voiding. Approximately 60-70% of untreated SCI rats exhibited sphincter bursting during voiding while the remainder exhibited increased amplitude tonic activity. The duration of the BP was therefore measured in 3-4 animals in each group. To quantify EUS tonic activity, the root mean square (RMS) and maximum amplitude of EMG activity were evaluated. The RMS represents the square root of the average power of the EMG signal for a given period of time to determine degree of activation (Falla et al., 2003). These two computer calculated parameters were examined during 5 seconds of a recording right before a void. Values were then calculated using the automatic function of the software. For each rat, the measurements in 3-4 voiding cycles before and after administration of vehicle or each drug were averaged to determine the mean value for statistical analysis. Animals were sacrificed by injection of overdosed Euthasol at the end of the experiment.

Evaluation of voiding efficiency during bladder CMG

To accurately measure voiding efficiency, the bladder had to be completely emptied before infusing saline. Because emptying the bladder may interfere with the activity of the organ and sphincter in continuous CMG and EMG recordings, we thus used a different cohort of SCI rats whose bladder and right femoral vein were catheterized for CMG or drug delivery, respectively, but electrodes were not inserted into the EUS for EMG recording (Kadewa et al., 2016). Various parameters were measured including: 1) voiding volume, 2) residual volume, 3) bladder capacity (volume threshold), and 4) voiding efficiency. Animals were restrained as described above. After the voiding cycle was stable, the bladder was emptied by withdrawing the content through the catheter with a syringe. Then, saline was infused into the bladder (0.1 ml/min) until a void was induced. The pump was stopped immediately after voiding. The expelled saline and urine were manually collected into a small cup and the volume was measured. The residual volume in the bladder was withdrawn via the catheter and measured. Bladder capacity was calculated as the sum of voided and residual volumes; whereas voiding efficiency was calculated as the ratio of voided volume divided by bladder capacity. Drugs tested were L-DOPA (with carbidopa), carbidopa (n = 3), APO, remoxipride, quinpirole, SCH 23390 and SKF 38393 (n = 4 experiments per drug except carbidopa). For each drug, the range of doses was the same as that in micturition reflex assessments. The order for reagent delivery was the baseline, vehicle, drug from low to high concentrations, with intervals of at least 30 min. After injecting vehicle or drug, the 1st void was not measured to eliminate potential artifacts from injection. The voiding and residual volumes in the ensuing 3-4 voids after each drug dose were measured and averaged for statistics.
Pharmacological interventions

Drugs were dissolved in 0.9% saline and administered intravenously (i.v.) after recording baseline urodynamic and EUS EMG activity and injection of 100 μl of vehicle. The doses of the drugs used were chosen on the basis of previously published data (Yoshimura et al., 1998; Seki et al., 2001; Ogawa et al., 2006). All drugs were prepared in three concentrations to examine the effects of low, middle and high doses administered sequentially at an interval of at least 30 min (Table 1). The half-life information of each drug except SKF 38393 (Setler et al., 1978) was available in the literature: 1.5 h for L-DOPA (Calabrese et al., 2007; Contin and Martinelli, 2010), 1.8 h for carbidopa (Brooks, 2008), 33 min for APO (Gancher, 1995), 4.8 h for remoxipride (King et al., 1990; Movin-Osswald and Hammarlund-Udenaes, 1991), 9.5 h for quinpirole (Ballester Gonzalez et al., 2015; Pertile et al., 2017), and 30 min for SCH 23390 (Hietala et al., 1992; Giorgi et al., 1993). When L-DOPA was tested, rats also received carbidopa (in a 1:10 ratio to the dose of L-DOPA) in the solution to inhibit peripheral effects of L-DOPA, as described below. Based on the observation that the bladder and sphincter retained proper responses for more than 5-6 h, the general protocol for drug testing was mainly conducted by administration of one drug in each rat, including D2-like receptor (DR2) antagonist remoxipride (n = 6), DR2 agonist quinpirole (n = 6), DR1 antagonist SCH 23390 (n = 5), DR1 agonist SKF 38393 (n = 5), and APO (n = 6), whereas in one group carbidopa was administered alone followed by L-DOPA with carbidopa (n = 6). To further verify the effect mediated via specific receptors, a middle dose of the selective DR antagonists, including SCH 23390 or remoxipride, was administered after injection of L-DOPA or DR agonists to determine if the antagonists could reverse the effect of the latter agents.

Metabolic cage assays

Three weeks after SCI, rats were placed into metabolic cages (Nalgene) to examine the spontaneous micturition pattern. The bladder was emptied by manual expression and then before the beginning of recording, a 3-h equilibration period was allowed so that rats could acclimate to the cage environment. Ample food pellets were provided. A total of 200 ml of water was supplied in cages and consumption was measured after testing. Based on preliminary observations in CMG and EMG experiments, drugs including the DA precursor L-DOPA (30 mg/kg, n = 7), apomorphine (0.1 mg/kg, n = 7), and specific D2-like receptor (DR2) agonist quinpirole (0.3 mg/kg, n = 6) were chosen for metabolic cage assays. When L-DOPA was administered, a decarboxylase inhibitor carbidopa (3.0 mg/kg, 1:10 to the dose of L-DOPA) was simultaneously injected to inhibit peripheral production of catecholamines (Celesia and Wanamaker, 1976; Pahwa and Koller, 1996; Stocchi et al., 2015). Saline vehicle or drug solution (300 μl) was subcutaneously administered before testing. During the metabolic cage recording, the urine in each void was collected into a small cup, filled with 5 ml mineral oil to prevent urine evaporation, which
was resting on a sensor coupled to a force transducer and connected to a computer system. The output of the transducer was recorded and converted to the volume with a data acquisition starter kit (DI-159HS, DataQ Instruments) on a computer system for 12 h during daytime. Similarly, the recorded data were later opened in Browser software to calculate the volume per void, voiding interval, voiding frequency and total voided volume. For each rat, each parameter was averaged for statistics. Data was separated into 6-hour and 12-hour increments to determine efficacy of the drugs over time.

Statistics

Statistical analyses were performed in Prism 7. Because animals exhibited differences in the recovery of bladder and sphincter function after SCI, as well as considerable inter-animal variations in the urodynamic and EUS EMG parameters, the data from CMG and EMG recordings except the number of NVCs were normalized to the baseline in each animal to reduce the variability for statistics. Normalized data were analyzed using a Friedman test followed by Dunn’s multiple comparisons. A Paired t-test was used for metabolic cage data. Significance throughout all experiments was set at $p < 0.05$. Data are represented as mean ± SEM.

Results

To specifically identify spinal lumbosacral DA-ergic mechanisms regulating urinary function, we used an adult rat model with complete SCI at T10 level to remove descending control. Interruption of supraspinal micturition pathways causes acute areflexic bladder paralysis. However, there is usually a partial recovery of urinary function via involuntary bladder and urethral reflexes due to reestablishment of spinal neuronal circuitry over 2-3 weeks. As the neuronal control of the micturition reflex is restricted within lumbosacral spinal segments, the central neural effects on urination elicited by manipulating DA signaling are likely to originate solely through an action on the spinal endogenous DA-ergic system. Overall, we observed robust changes in the micturition reflex in response to pharmacological blockade or activation of DR.

Prior to drug administration the most prominent CMG changes detected after SCI were a higher VA in intravesical pressure (Intact 21.4 ± 1.5 vs. SCI 48.7 ± 1.9 cmH$_2$O, $p < 0.0001$, Unpaired t-test, $n = 6$ per group) during voiding contractions and the emergence of bladder hyperactivity evident as NVCs during bladder filling, compared to spinal intact rats. Additionally, bursting EUS activity during voiding, which consisted of a repeating pattern of active periods (APs) and silent periods (SPs), was often absent (2 of 6 SCI rats) or shortened (4 of 6 SCI rats, Intact 5.1 ± 0.4 s vs. SCI 1.2 ± 0.3 s, $p < 0.001$), indicating disorganized coordination of bladder and sphincter activity or detrusor-sphincter dyssynergia (DSD) (Fig. 2). These findings are similar to what has been reported previously in urethane-anesthetized SCI rats (Cheng and de Groat, 2004; Chang et al., 2007).
L-DOPA suppresses bladder overactivity and improves detrusor-sphincter coordination

In the CNS, the enzyme DDC can convert systemically delivered L-DOPA to DA (Wachtel and Abercrombie, 1994; Soares-da-Silva et al., 1997; Park et al., 2014). To observe if increasing DA synthesis in the caudal spinal cord improves LUT recovery, the DA precursor L-DOPA was administered i.v during bladder CMG and EUS EMG recordings in rats 3 weeks after T10-transection. A decarboxylase inhibitor, carbidopa, was simultaneously injected i.v. to inhibit peripheral production of catecholamines. The effect of L-DOPA appeared approximately 5-10 min after administration, and continued for about 25, 60 and > 120 min in three doses, respectively.

Injection of saline vehicle or carbidopa alone did not elicit significant changes in bladder CMG and EUS EMG. However, the three doses of L-DOPA induced a trend of increased VI and the high dose significantly reduced the VA of intravesical pressure (p < 0.05, Friedman test followed by Dunn's) (Fig. 3A, Table 1). The low dose of L-DOPA (1.0 mg/kg) triggered bursting EUS activity during voiding when it was initially absent, and also caused a non-significant prolongation of EUS bursting activity if it was present before the drug delivery. The middle and high doses of L-DOPA (10 and 30 mg/kg) significantly reduced the maximum amplitude (both p < 0.05) and RMS level (mid dose p < 0.05, high dose p < 0.001) of EUS tonic activity, and the high dose significantly increased the duration of bursting activity during voiding and the associated bladder HFOs (Fig. 3B). Consequently, APs and SPs were more regular during bursting (Fig. 3B) similar to that seen in intact rats (Chang et al., 2007), indicating better coordinated detrusor-sphincter activity. In addition, the number of bladder NVCs per voiding cycle was decreased after drug administration which was significant in the high dose (p < 0.05) (Fig. 3A, B).

To verify that the effects of L-DOPA were mediated via spinal DR, two specific DR1 antagonists were administered following the high dose of L-DOPA. When SCH 23390, a DR1 antagonist (0.1 mg/kg, 100 µl, i.v.), was injected (n = 3), the VA of bladder contractions increased 2.1-fold and the frequency of NVCs was also enhanced 2.7-fold (both p < 0.05, Paired t-test). The drug enhanced the EUS tonic activity during the filling phase (Fig. 4A), producing a 3.3-fold increase in the EUS RMS level (p < 0.001), suppressed the L-DOPA enhancement of bladder HFOs and EUS bursting that occurred during voiding, resulting in the re-emergence of DSD (Fig. 4B). Injection of remoxipride (3.0 mg/kg, 100 µl), a DR2 antagonist, in L-DOPA treated rats slightly increased the RMS level of EUS tonic activity 1.35-fold (p > 0.05, n = 3), but did not obviously influence the bladder VA, detrusor HFO or EUS bursting during voiding (Fig. 4C, D) (Table 2). This indicates that enhancing spinal DA signaling with L-DOPA can inhibit bladder hyperactivity and reduce DSD to achieve better coordinated bladder-sphincter activity, thereby improving LUT performance following SCI.

APO improves bladder and EUS voiding reflexes
The non-selective DR agonist APO which was administered i.v. in three increasing doses sequentially (5-100 µg/kg, n = 6 experiments, Table 1) during bladder CMG and sphincter EMG assessments elicited rapid onset effects that continued for about 20, 45 and > 100 min after the three doses, respectively. On average the low dose (5.0 µg/kg) in two rats which did not exhibit EUS bursting in the control recording unmasked the bursting and significantly increased VA in intravesical pressure (p < 0.05, Friedman test followed by Dunn’s). However, neither the middle nor high dose increased VA but the high dose significantly decreased the number of NVCs (Table 1). Meanwhile, the middle dose (10 µg/kg) decreased the RMS value of EUS tonic activity in the filling phase (p < 0.01) whereas the high dose (0.1 mg/kg) caused a reduction of RMS value (p < 0.05) and maximum amplitude (p < 0.01) of EUS tonic activity. Notably, the duration of bursting EUS activity and accompanied bladder HFOs during voiding were significantly (p < 0.05) prolonged after the high dose of APO, indicating the facilitation of voiding reflexes (Fig. 5).

To examine the role of spinal DR in the effects of APO, two specific DR antagonists, SCH 23390 (DR₁: 0.1 mg/kg, 100 µl) or remoxipride (DR₂: 3.0 mg/kg, 100 µl), were administered, respectively, following the high dose of APO. SCH 23390 (n = 3), did not change the VA or the frequency of NVCs while the RMS value of EUS tonic activity was elevated 2.7-fold (p < 0.001, Paired t-test) during the filling phase; and the EUS bursting during voiding which APO enhanced disappeared and DSD reemerged. Remoxipride (n = 3) reduced VA 0.86-fold (p < 0.05) and non-significantly increased the RMS value of EUS tonic activity 1.18-fold, but did not significantly influence bursting during voiding (Table 2). The results were similar to those obtained when the drugs were administered after L-DOPA. Thus, non-selective stimulation of spinal DR with APO suppresses bladder overactivity and DSD to improve bladder storage and voiding reflexes in SCI rats.

Blockage of spinal DR₂ does not significantly influence bladder and EUS reflexes

To determine if tonic activation of spinal DR₂ by endogenous dopamine modulates bladder and EUS reflexes after SCI, we injected i.v. three doses (0.1, 1.0 and 3.0 mg/kg) of remoxipride, a specific DR₂ antagonist, sequentially at 30 min intervals during continuous bladder CMG and EUS EMG recordings (Table 1). The drug did not induce significant changes in any parameters. For those that initially lacked bursting EUS activity during voiding cycles, remoxipride did not unmask the activity. For those exhibiting EUS bursting and bladder HFO, none of three doses shortened or masked the pattern. Therefore, the results suggest that spinal DR₂ does not play a tonic role in the recovered bladder and EUS reflexes in SCI rats.

Stimulating spinal DR₂ increases the duration of EUS bursting
To examine the effect of spinal DR2 activation on the micturition reflex, we injected i.v. increasing doses of quinpirole, a specific DR2 agonist, at 30 min intervals during continuous infusion CMG and EUS EMG recordings (Table 1). The effect of quinpirole appeared within 1-2 min after administration, and continued for about 15, 25 and 35 min as the dose increased. Compared to vehicle delivery, the middle dose of quinpirole increased VA of bladder contractions \(p < 0.05\), Friedman test followed by Dunn’s) and all three doses increased VI (all \(p < 0.05\), Fig. 6A). Quinpirole did not influence EUS tonic activity in the filling phase but the low and middle doses markedly (both \(p < 0.05\)) increased the duration of EUS bursting during voiding. In expanded recordings, it is clear in basal conditions or after vehicle treatment that the AP and SP components of EUS bursting were irregular and bladder HFOs were not prominent. However, after administration of quinpirole, the EUS bursting exhibited a regular pattern (Fig. 6B). Following the last dose of quinpirole, administration of remoxipride (3.0 mg/kg, 100 µl, \(n = 4\)) reduced the VA of bladder contractions by 0.76-fold \(p < 0.05\), Paired t-test) and notably, masked EUS bursting by increasing high-amplitude tonic activity during voiding (Fig. 6C) (Table 2). This confirms that the effects of quinpirole were specifically induced by stimulation of DR2. Therefore, the results indicate that activation of spinal DR2 enhances EUS bursting activity for improving voiding in the recovered micturition reflex.

Manipulating spinal DR1 increases EUS tonic activity

Sequential administration of increasing doses of the selective DR1 antagonist SCH 23390 (5.0, 10, 100 µg/kg, i.v.), rapidly altered bladder and EUS activity (Fig. 7). The effects persisted for about 20, 35 and 75 min in a dose dependent manner. The VA of intravesical pressure in bladder contractions was significantly (both \(p < 0.05\), Friedman test followed by Dunn’s) increased in response to the middle and high doses of the drug. All three doses increased the RMS value of EUS tonic activity in the filling phase before voiding onset (all \(p < 0.05\)) and shortened the EUS bursting period during voiding (both \(p < 0.05\) in the low and middle doses; \(p = 0.064\) in the high dose) (Table 1). Notably, the EUS bursting pattern accompanied by bladder HFOs which initially existed in 2 rats was masked by tonic activity after the middle and high doses of the drug. This suggests that the physiological role of spinal DR1 is active suppression of tonic EUS muscle activity in SCI rats. Since the EUS tonic phase before bursting reflects the closure of the urethral outlet for urine storage, it is therefore considered that activation of spinal DR1 reduces outlet resistance and facilitates voiding. Thus, escalation of VA of bladder contractions after blocking the receptors could reflect the increased outlet resistance. In addition, spastic movements of the body and legs occurred when the middle and high doses of SCI 23390 were administered, indicating similar DR1 inhibitory mechanisms in spinal motor pathways controlling somatic muscles. Collectively, blocking spinal DR1 inhibits the voiding reflex following SCI.
Surprisingly, stimulation of spinal DR₁ with SKF 38393 (0.3, 1.0, 3.0 µg/kg), a specific DR₁ agonist, induced similar responses in EUS muscle activity. The effect appeared rapidly after administration and continued for about 20, 35, and 70 min after sequential administration of each of the three doses. The middle and high doses of the drug increased (both \(p < 0.05 \), Friedman test followed by Dunn’s) the RMS value of EUS tonic activity during the filling phase (Fig. 8). No significant effect was observed on bladder activity.

Manipulating spinal DR affects voiding efficiency

During single CMGs which were used to evaluate voiding efficiency, the high dose of L-DOPA plus carbidopa induced a non-significant increase in voiding volumes (\(p = 0.077 \), Friedman test followed by Dunn’s), significantly reduced residual volume (saline 1.15 ± 0.25 vs. high dose 0.79 ± 0.12, \(p < 0.05 \)), and increased voiding efficiency (saline 0.97 ± 0.14 vs. high dose 1.56 ± 0.30, \(p < 0.05 \)). Bladder capacity did not change in any dose (Fig. 9A). Carbidopa alone did not induce a change in any urodynamic parameter (Fig. 9B). The high dose of APO significantly increased voiding volume (saline 0.84 ± 0.15 vs. high dose 1.26 ± 0.20), reduced residual urine (saline 0.79 ± 0.01 vs. high dose 0.36 ± 0.18) and enhanced voiding efficiency (saline 0.98 ± 0.14 vs. high dose 1.79 ± 0.06, all \(p < 0.05 \)). Although no changes were induced by the low and middle doses, there was a trend of increasing the voiding volume and voiding efficiency as well as a trend of reducing the residual volume. Bladder capacity did not change with all three doses (Fig. 9C).

Remoxipride did not alter any voiding parameter (Fig. 9D). However, the high dose of quinpirole significantly improved voiding efficiency (saline vehicle 0.85 ± 0.09 vs. high dose 2.12 ± 0.82, \(p < 0.05 \)), reduced residual volume (saline 1.52 ± 0.38 vs. high dose 0.37 ± 0.04), and induced a non-significant increase in voiding volume (\(p = 0.077 \)). Bladder capacity was not affected at any dose (Fig. 9E). Meanwhile, SKF 38393 did not affect any parameter in the voiding efficiency tests (Fig. 9F). In contrast, SCH 23390 significantly reduced voiding efficiency with middle and high doses (saline 1.28 ± 0.23 vs. mid dose 0.77 ± 0.19, high dose 0.54 ± 0.23, both \(p < 0.05 \)) and triggered a non-significant decrease in voiding volume and an increase in residual volume. Bladder capacity did not change with any of the three doses (Fig. 9G).

Stimulating DR₂ improves spontaneous voiding in SCI rats

Animals were placed in metabolic cages to measure voided volume and frequency of spontaneous micturition 3 weeks after SCI. Drugs (L-DOPA (30 mg/kg, with carbidopa 3.0 mg/kg), apomorphine (0.1 mg/kg) and quinpirole (0.3 mg/kg)) dissolved in 300 µl of saline were administered subcutaneously before recording. Compared to vehicle delivery, water consumption was not significantly different after
administration of each of the 3 drugs (data not shown). In consideration of the relatively short duration of the drug effects, micturition parameters were examined during the first 6 h after drug/vehicle delivery to evaluate peak effects. Statistical analyses revealed that following s.c. injection of L-DOPA, the most apparent effect was prolonged voiding intervals (saline 77.6 ± 7.5 vs. L-DOPA 116 ± 18.5 min, Paired t-test, p < 0.05) while neither the volume per void nor total voiding volume within 6 h significantly changed versus vehicle delivery (Fig. 10A). This suggests that elevation of spinal DA signaling may improve urine storage for the recovered spontaneous micturition function in SCI rats.

When APO was administered to non-selectively activate DR, unexpectedly, it did not cause any significant changes in any micturition parameter (Fig. 10B). In contrast, administration of quinpirole to stimulate DR₂ induced a robust increase in volume per void (saline 1.4 ± 0.2 vs. quin 2.1 ± 0.2, p < 0.01) and total voiding volume during the recording period (saline 4.7 ± 0.7 vs. quin 15.1 ± 3.0, p = 0.013). In addition, there were significantly shortened voiding intervals (saline 89.6 ± 7.8 vs. quin 60.1 ± 11) which reflected elevation in voiding frequency (Fig. 10C). Since there were no differences detected in water intake between vehicle and drug delivery, the drug-induced higher voiding volume must not be due to an increase in drinking. Thus, specifically stimulating spinal DR₂ with quinpirole may enhance voiding activity, thereby facilitating urine elimination in SCI rats.

Discussion

The present study used DR agonists and antagonists to demonstrate that endogenous spinal DA-ergic mechanisms regulate the micturition reflex in SCI rats. It appears that DA modulation of LUT function is directed primarily at the EUS spinal pathway. Activation of both DR₁ and DR₂ facilitates voiding but these responses occur by different mechanisms that target different components of the spinal EUS control: DR₁ mainly act on both tonic and bursting EUS activity while DR₂ act on EUS bursting. DR₁ are tonically activated to inhibit tonic EUS activity and blocking this subtype enhances urine storage. DR₂ have a minimal role during urine storage but stimulating this subtype increases EUS bursting during voiding (Fig. 11). The role of these two subtypes in the recovered micturition reflex of SCI rats is similar to that previously reported in spinal cord intact rats (Seki et al., 2001). Administration of the DA precursor L-DOPA or the non-selective DR agonist APO during CMG and EUS EMG recordings enhances voiding mechanisms. On the contrary, the selective DR₁ antagonist SCH 23390 reduces voiding efficiency. These studies provide evidence that the DA-ergic neurons identified in the caudal spinal cord of SCI rats (Hou et al., 2016) are active and tonically modulate LUT function. If similar mechanisms are present in humans with SCI, it is possible that pharmacological manipulation of the spinal DA-ergic system would be useful to treat neurogenic LUT disorders.

SCI eliminates the excitatory effects of L-DOPA and APO on the bladder
It is widely accepted that following SCI, the spinal cord below the lesion undergoes adaptive changes at structural, cellular and molecular levels (Edgerton et al., 2004; Sadlaoud et al., 2010). The loss of supraspinal transport of neurotransmitters and degeneration of bulbospinal pathways triggers up/down-regulation of different receptors, second messengers, and ion channels (Ogawa et al., 2008; Boulenguez et al., 2010; Kong et al., 2010), which alters the activity of spinal neurons. This neuroplasticity is implicated in both the process of urinary functional recovery and the development of neurogenic bladder symptoms, e.g., bladder hyperreflexia and DSD, at the chronic stage (Miyazato et al., 2013). Manual bladder expression helps expel residual urine. It also stimulates bladder sensory input and thus contributes to establish segmental neuronal circuit mediating spontaneous micturition recovery. The marked change in bladder activity in response to L-DOPA after SCI may reflect this plasticity. In spinal cord intact rats, systemic administration of L-DOPA combined with carbidopa elicited bladder hyperactivity that is mediated by activation of tachykinin mechanisms in the brain, leading to activation of descending noradrenergic pathways that activate alpha-1 adrenoceptors in the spinal cord (Ishizuka et al., 1997; Ishizuka et al., 2000). However, in SCI rats this effect of L-DOPA is replaced by a prominent effect on EUS function that enhances voiding efficiency and a suppressant effect on the bladder that decreases the voiding amplitude of bladder contractions. Because the high dose of L-DOPA reduced the events of NVCs, decreased voiding amplitude of bladder contractions is likely caused by suppression of parasympathetic efferent limb rather than a passive response to reduced outlet resistance. APO, a non-selective DR agonist which excites the bladder in spinal cord intact rats (Uchiyama et al., 2009), mimics the effect of L-DOPA after SCI, increasing voiding efficiency and reducing residual volume without changing bladder capacity during spontaneous voiding. Previous studies showed that APO causes detrusor overactivity and biphasic effects on voiding in spinal cord intact rats (Pehrson and Andersson, 2003; Uchiyama et al., 2009), but these were not observed in SCI rats. Quinpirole, a selective DR2 agonist also increased voiding efficiency. These data indicate that SCI eliminates the excitatory effects of L-DOPA and APO on the bladder and unmasks DR2-mediated effects on the EUS that promote voiding.

The mechanisms of DR2 in EUS bursting to improve voiding

EUS bursting which consists of active periods (APs) and silent periods (SPs) (Cheng and de Groat, 2004) is necessary for efficient voiding in rats (Peng et al., 2008; Langdale and Grill, 2016) and is reduced or masked after SCI (Yokoyama et al., 2000; Chang et al., 2007). The reduction in the ratio of SPs to APs during bursting, in combination with a decrease in bursting duration and an increase in tonic EUS activity cause DSD and poor voiding after SCI (Cheng and de Groat, 2004). Conversely, a longer EUS bursting duration indicates a more prolonged period of urethral relaxation and improved voiding while increased amplitude of intravesical pressure during voiding (VA) can reflect an increase in
urethral outlet resistance or an increase in the parasympathetic excitatory input outflow to the bladder (Dolber et al., 2007). The mechanisms underlying the DR\(_2\) mediated improvement in voiding were identified in combined CMG and EUS EMG recordings where quinpirole increased the duration of bursting EUS activity during voiding and coordinated the detrusor and EUS activity, which resulted in dramatically improved voiding efficiency in the single CMG experiment. After stimulating DR\(_2\) with quinpirole, the increase in voiding interval during continuous CMG could be explained by the decrease in the residual volume which then requires a longer filling time to reach the threshold volume for triggering the voiding reflex. Correspondingly, the changes in bladder activity may be indirect due to changes in EUS activity resulting in more efficient bladder emptying. This is supported by the lack of effect on bladder capacity in the single CMG study. Accordingly, it may indicate that activation of DR\(_2\) only targets EUS mechanisms to improve voiding and has no direct effect on the neural control of the bladder. In metabolic cage assays, stimulating DR\(_2\) with quinpirole markedly increased both the volume per void and total voiding volume. Previous studies reported that activation of DR\(_2\) in the kidney increases sodium excretion and urine flow (Felder et al., 1989; Siragy et al., 1990; Ozono et al., 2003). Therefore, an increase in the volume per void could be due to an increase in voiding efficiency while an increase in total urine volume often indicates elevated production of urine by the kidney, which can account for the decrease in the voiding interval or increase in frequency of voids.

Bladder C-fiber afferents sprout after SCI and become hyperexcitable to trigger the voiding dysfunction (Yoshimura et al., 2003; Cheng and de Groat, 2004). As quinpirole prolongs bursting, it is tempting to speculate that endogenous DA acting on DR\(_2\) regulates the spinal pathway activated by C-fiber afferents. In rats with thoracic spinal cord transection, EUS bursting is dependent on connections with a bursting center in the L3-L4 spinal cord (Chang et al., 2007; Chang et al., 2018; Karnup and De Groat, 2020b, a), thus activation of DR\(_2\) at this site may be responsible for the DA-ergic enhancement of bursting (Fig. 11). However, this DR\(_2\)-mediated physiological regulation was not active under the experimental conditions because remoxipride, a DR\(_2\) antagonist, alone did not have any effect on reflex micturition parameters. It is therefore reasonable to conclude that spinal DR\(_2\) do not actively modulate recovered LUT function, or an alternative neurotransmitter system compensates for the contribution of these receptors. Based on previous reports (Pikov and Wrathall, 2002; de Groat and Yoshimura, 2006) and our preliminary data, neurotransmitter glutamate can be released in the injured spinal cord and its receptors may mediate a decisive role in the EUS activity.

In single CMG experiments, agents that supposedly stimulated DR\(_2\) (L-DOPA, APO and quinpirole) significantly increased voiding efficiency, decreased residual volume and produced a non-significant increase in the voiding volume. However, there was not a consistent effect among these three agents on the amplitude of intravesical pressure during voiding in continuous CMG recordings.
which would be expected to decline with reduced urethral outlet resistance and improved voiding. This variability might reflect different effects on the neural control of the bladder with some doses of these agents due to stimulation or inhibition of the parasympathetic pathway to the bladder (de Groat, 2006). The parasympathetic reflex control of the bladder in SCI rodents is complicated because contractile activity is initiated by two afferent pathways located at the T13/L1 and L6/S1 spinal levels. NVCs are triggered by capsaicin-sensitive C-fiber afferents whereas bladder capacity and the initiation of voiding are triggered by A-delta afferents (Cheng and de Groat, 2004; Takahashi et al., 2013; Kadekawa et al., 2017). L-DOPA and APO promoted the storage function of the bladder by reducing the number of NVCs but these agents did not change bladder capacity. Thus, they must have a selective effect on the afferent-interneuronal limb of the C-fiber triggered reflex pathway. Remoxipride in the same dose that blocked the effect of quinpirole, did not eliminate or reduce the improved EUS bursting activity induced by L-DOPA or APO, which suggests that this effect is not mediated via DR2. Because stimulating DR1 with SKF 38393 alone did not influence EUS bursting and voiding as described below, it is plausible that the effects of the DA precursor, L-DOPA, or the non-selective agonist APO on these parameters results from activation of spinal targets that express both DR1/2, or that these two drugs may have another mechanism in addition to activation of DR1/2, such as a D1-D2 receptor heteromer reported in the striatum (Hasbi et al., 2011; Hasbi et al., 2017). Certainly, this assumption needs further experiments to be verified.

The complexity of DR1 machinery in EUS tonic activity to maintain continence

EUS tonic activity, which is important for the maintenance of continence during bladder filling and can also influence voiding after SCI, was altered by drugs acting on DRs. At the onset of voiding, tonic EUS activity is suppressed and converted to bursting to increase voiding in spinal intact rats while the persistence of tonic activity during voiding after SCI contributes to the occurrence of DSD and reduces voiding efficiency. Because L-DOPA or APO suppresses tonic EUS activity that occurs prior to voiding and SCH 23390, a DR1 antagonist, but not remoxipride eliminates this effect, it is likely that the agonists act on DR1 to increase the firing of inhibitory interneurons that suppress tonic EUS activity and SCH 23390 blocks that action. However, SCH 23390 alone increases tonic EUS activity which makes it difficult to interpret its interactions with the agonists although one possible explanation for these observations is that tonic EUS activity is tonically suppressed by the putative inhibitory interneurons activated by endogenous DA and DR1. One additional complication is that SKF 38393, a DR1 agonist, also enhances tonic EUS activity. The seemingly paradoxical excitatory effects of both a DR1 agonist and antagonist raises the possibility that DR1 receptors are located at two sites in the spinal circuitry and they generate opposing effects on EUS function (Fig. 11). That is to say, one population of receptors activated by spinal DA (Hou et al., 2016) after SCI mediates tonic inhibition of EUS activity.
and blocking these receptors enhances this activity. The other DR₁ site which stimulates EUS activity may be activated by the diencephalospinal DA-ergic pathway in spinal intact rats which is interrupted by spinal transection. This DR₁ site is not activated by spinal DA interneurons and is therefore inactive after SCI interrupts the descending pathway. Thus, blocking this site does not change EUS activity. However, pharmacologically activating this site with SKF 38393 stimulates EUS activity. This effect is consistent with the known excitatory effects of DR₁ agonists on the central pattern generator in SCI rats (Seth et al., 1993) and the direct excitatory effect of DR₁ agonists on spinal motoneurons (Han and Whelan, 2009).

In rats with SCI, bladder overdistension increases excitability of bladder related dorsal root ganglion (DRG) neurons, and injury itself elevates local nerve growth factor (NGF) levels within the cord and peripheral organs which triggers C-fiber afferent sprouting (de Groat and Yoshimura, 2010), as described above. These factors contribute to bladder hyperreflexia during bladder filling as demonstrated by previous work in which desensitizing C-fiber afferents with capsaicin treatment suppresses bladder NVCs, partially normalizes EUS activity and improves voiding (Cheng and de Groat, 2004), indicating that these sensory afferents trigger the voiding dysfunction. Recent studies showed that approximately 8-10% of DRG neurons express TH (Brumovsky et al., 2012) and small diameter unmyelinated nociceptive neurons express D₁ and D₅ receptors (Li et al., 2005; Kline et al., 2009; Galbavy et al., 2013). This suggests that DA regulation of the micturition reflex may occur via targeting sensory afferents before acting on the efferent limb. This raises the possibility that the silent DR₁ mechanism which mediates the EUS activity in response to SKF 38393 is located on the sensory limb of the EUS reflex pathway at the level of the primary afferent terminals in the dorsal horn. The receptors in the dorsal horn and on EUS motoneurons may be activated by supraspinal input in spinal intact rats because both sites receive input from the A11 DA-ergic pathway (Holstege et al., 1996) and therefore would become silent in SCI rats after destruction of the descending DA-ergic pathway. The DR₁ site that responds to L-DOPA or APO to produce inhibition and the other site that responds to L-DOPA to produce excitation may exhibit this selectivity due to differences in the DA-ergic innervation. L-DOPA could selectively target DR₁ expressed by the inhibitory neurons that are innervated by spinal DA interneurons (Fig. 11) while the DR₁ site in the dorsal horn does not receive a DA-ergic input after SCI and therefore does not respond to L-DOPA. On the other hand, the DR₁ in the dorsal horn are presumed to be denervated, and thus L-DOPA would be less effective but SKF 38393 the direct agonist might be more effective.

The reason for the selectivity of the nonselective agonist, APO, for DR₁ in the inhibitory pathway is unclear. In the present study, we observed reduced number of bladder NVCs when delivering L-DOPA or APO to stimulate DR. It is rational to assume that these drugs may reduce bladder
hyperreflexia by first activating inhibitory DR₁ expressed on C-fiber bladder afferents which in turn, indirectly affect EUS motoneurons. Certainly, this machinery could directly affect motor neurons to suppress EUS tonic activity and temporarily provide inhibitory modulation of parasympathetic preganglionic neurons to maintain low amplitudes of bladder contractions as well. Thus, the action of L-DOPA to improve voiding efficiency in SCI rats is attributable to both an enhancement of EUS bursting and a suppression of EUS tonic activity which together reduce urethral outlet resistance and improve urine flow.

Spinal DA neurons control bladder and EUS function

A comparison of the effect of DA drugs on EUS and bladder activity in SCI rodents has revealed some interesting similarities. For example, the amplitude of bladder contractions and tonic EUS activity are both enhanced by the DR₁ antagonist SCH 23390, suggesting that both organs are subject to tonic inhibition involving DR₁ or as mentioned above that the increase in tonic EUS activity induced by the drug indirectly increases bladder contractions due to increased residual volume. Meanwhile, the DR₂ antagonist, remoxipride, does not affect EUS or bladder activity indicating that neither organ is subject to tonic modulation activated by DR₂. However, the DR₂ agonist, quinpirole, enhances EUS bursting and bladder contractions, suggesting that DR₂ are normally silent after SCI but can be activated by direct stimulation. These observations raise the possibility that some bladder and EUS functions may be controlled by the same populations of spinal DA neurons and that DR₂ are innervated by input from DA neurons in the brain and become silent after elimination of that input following SCI. Regarding highly sexually dimorphic LUT system, selected DR agonists and antagonists were employed in male rats with SCI for urodynamic assays and it demonstrated similar responses as observed in the female (Qiao et al., 2021). Therefore, there is no obvious sex difference in spinal DA regulation of micturition function in rats.

Considerations of drug delivery routes and others

Although dramatic effects were detected by delivering L-DOPA or APO during continuous bladder CMG and EUS EMG recordings, these two drugs rarely affected spontaneous micturition in metabolic cages as expected. Given that they were administered *i.v.* in the former but *s.c.* in the latter, this discrepancy is possibly due to different delivery routes. Drugs with *i.v.* dosing can immediately reach the spinal cord to elicit a rapid onset effect while their diffusion is much slower via *s.c.* injection that produces a more gradual effect in metabolic cage assays. It was reported that APO given orally removes around 40–60% of the contents in the stomach (Borkar et al., 2017) and is ineffective in inducing central responses due to the first-pass effect (Subramony, 2006). Here, one *s.c.* bolus injection of APO might have similar metabolic constraints. Due to the high levels of decarboxylase present within the liver which is the first
passage to the CNS, the s.c. injection of L-DOPA appears to share a common low bioavailability even when co-delivered with a low dose of the metabolic inhibitor, carbidopa (Schneider et al., 2018). Although all drugs were administered in our experiments in the periphery we assume that the effects on lower urinary tract function were mediated by actions on the spinal cord because there are very few reports of DR expression within the urinary tract (de Groat, 2006; Winge and Fowler, 2006; Arrighi et al., 2009). Furthermore, we observed consistent urodynamic responses with i.v. and intrathecal (i.t.) drug administrations in a pilot experiment. This indicates DA has no or very subtle peripheral influences on the LUT system.

Though this research did not study the possible alteration of DA receptors responsible for SCI, plasticity of DA receptors is certainly an important topic in the micturition control, which could have potential impact on clinical application. Initially, we found that EUS bursting activity, an important parameter to evaluate the voiding, was easily masked in SCI rats if urethane was used. Therefore, we conducted the experiments in SCI rats under awake conditions. However, urethane-anesthetized naïve rats were used to reduce pain for comparison of bladder CMG and EUS EMG reflex patterns. It is thus a limitation that naïve rats were sedated but SCI rats were not. Nevertheless, the knowledge of difference could also be obtained from previous publications (Cheng and de Groat, 2004; Kadekawa et al., 2016).

Summary
Under normal conditions, well-coordinated detrusor-sphincter activity generates successful storage and emptying. After SCI in rats, the reestablished spinal micturition reflex circuit mediates involuntary voiding, but the bladder becomes hyperactive and DSD occurs. This results in inefficient voiding, urinary retention or leakage (Cheng and de Groat, 2004). It is unclear if the reestablished pathway is a newly-formed neuronal circuit or is due to the reemergence of existing circuits that normally become silent throughout development. However, it is known that SCI triggers the reorganization of synaptic connections in the spinal circuitry regulating the lower urinary tract (de Groat, 2002; de Groat and Yoshimura, 2012). In the lumbosacral spinal cord, TH+ neurons undergo plasticity and engage in the micturition circuit following SCI, compensating for a shortage of DA supply that is traditionally believed to emerge from supraspinal sources. In spite of their capacity for DA synthesis, the low level of spinally-derived DA may be insufficient to fully modulate urinary function. Nevertheless, spinal DR may be utilized for therapeutic intervention. In this study, pharmacological manipulation of spinal DA-ergic pathways can suppress bladder hyperreflexia and remarkably increase detrusor-sphincter coordination in SCI rats, leading to significantly improved voiding efficiency. It is possible that DA signaling modulates other intraspinal neurotransmitters to achieve these effects (Ogawa et al., 2006; Han et al.,
2007). Although multiple neurotransmitter systems are involved in micturition, manipulating DA-ergic mechanisms alone is sufficient to achieve meaningful micturition improvement in SCI rats. Additionally, a clinical study reported that APO increased bladder contractions while decreasing the urethral opening pressure to facilitate voiding in SCI patients (Steers et al., 2000), suggesting that DA-ergic mechanisms also exist in the human spinal cord and respond for LUT activity. Hence, pharmacological stimulation of spinal DA-ergic pathways may become a therapeutic strategy for promoting LUT functional recovery after SCI.
References

Parkinson’s disease 2015:369465.

Figure legends

Fig. 1. Hypothesis: Spinal tyrosine hydroxylase (TH)\(^+\) neurons are unmasked as a primitive residual response to SCI. During postnatal development, TH\(^+\) neurons in the lumbosacral spinal cord contribute to DA synthesis and regulate pelvic organ function before diencephalospinal DA-ergic pathways originating from A11/13 cell groups mature. As the descending projections from the brain to the lumbosacral cord mature and become the dominate regulator of pelvic visceral activity, most spinal TH\(^+\) neurons become silent due to competitive synapse formation. However, after SCI interrupts the descending pathways, spinal TH\(^+\) neurons undergo plasticity to augment DA synthesis and take over control of visceral activity to compensate for the loss of supraspinal DA control. Accordingly, we postulate that spinal endogenous DA-ergic mechanisms reemerge and regulate recovered micturition function following SCI.

Fig. 2. Representative traces show bladder CMG and EUS EMG recordings during continuous bladder filling (0.1 ml/min) in a neuroaxis intact and a SCI female rat. A, The peak amplitude of intravesical pressure (VA) during voiding (*) is low in the spinal intact rat compared to the VA in the SCI rat three weeks after T10 spinal transection (\(p < 0.0001\), Unpaired \(t\)-test) and non-voiding contractions (NVCs) are more prominent during the filling phase in the SCI rat, indicating bladder hyperreflexia. B, Time-stretched recordings during voiding show the spinal intact rat exhibits well-coordinated bursting EUS activity and high frequency oscillations (HFOs) in bladder pressure during voiding; while this coordination is absent in the SCI rat. Note that the drop in bladder pressure which reflects the opening of the urethral outlet. Statistical analysis shows that the duration of EUS bursting activity is shorter (\(p < 0.001\)) in the SCI rat than in the spinal intact rat or masked by tonic EUS activity.

Fig. 3. Representative traces show that L-DOPA suppresses bladder overactivity and improves detrusor-sphincter coordination following SCI. Three weeks following a complete T10 spinal cord transection, different concentrations of L-DOPA are administered i.v. during bladder CMG and sphincter EMG recordings. A, A time-compressed traces show that following SCI control recordings after i.v. administration of vehicle (saline) exhibit numerous, large amplitude NVCs prior to the voiding contraction (marked by *) that is accompanied by large amplitude tonic EUS EMG activity. Administration of L-DOPA to the same animal induces dose-dependent changes in reflex lower urinary tract function, including decreased amplitude of voiding contractions (VA), a reduction in the number and amplitude of non-voiding contractions (NVCs), and lowered tonic EUS activity. B, Time-expanded traces of bladder contractions and EUS EMG activity show that detrusor-sphincter dyssynergia (DSD) which typically manifests as the lack of detrusor high frequency oscillations (HFOs) and irregular and...
short EUS bursting periods (grey lines) occurs in control recordings after i.v. administration of vehicle (saline); however, injection of L-DOPA unmasks HFOs in bladder pressure and induces a longer and more regular EUS bursting period during voiding, as shown in the 0.16 sec-scaled expanded view. EUS tonic activity (2-headed arrows) that occurs in the filling phase and after voiding in the control recording is remarkably reduced. Notably, after L-DOPA administration, detrusor and sphincter activity exhibits better coordination during voiding (* indicating voiding contractions). All recordings are from the same experiment.

Fig. 4. Blocking spinal DA receptors in SCI rats diminishes the effects of L-DOPA on bladder and EUS reflexes. Recordings in A-B and C-D are from two different experiments. **A,** The left sides of the traces show repetitive voiding in a SCI rat consisting of low amplitude bladder contractions and synchronized bursts of EUS EMG activity following sequential injections of (0.1, 10 and 30 mg/kg) of L-DOPA. Injection of SCH 23390 (0.1 mg/kg, down arrow) which blocks DR₁ increases VA to similar levels as seen during basal recordings, and increases the number of non-voiding contractions (NVCs). In parallel, EUS tonic activity during the filling phase is remarkably elevated **B,** Time-expanded views of two voiding responses from the recording in panel A. The traces on the left show high frequency oscillations (HFOs) in intravesical pressure and EUS bursting (grey lines) after administration of L-DOPA. The top and bottom traces are at the same time base and indicated sections of these traces are shown in the middle two traces at an expanded time base. The records on the right are organized in the same manner and show that SCH 23390 reverses the effect of L-DOPA by blocking HFOs and EUS bursting and increasing tonic EUS activity and VA. HFOs and EUS bursting are reduced in duration or disappear after inhibiting DR₁ with SCH 23390 (right traces). **C, D,** The records are from the same experiment and organized as described in panels A and B. Recordings at a slow time base (**C**) show that in a SCI rat treated with L-DOPA, administration of remoxipride (3.0 mg/kg), a DR₂ antagonist, increased EUS tonic activity to a level similar to that occurring in basal recordings but did not obviously influence bladder contractions, detrusor HFOs or EUS bursting during voiding, as shown in the time expanded view (**D**). These data indicate that L-DOPA improves LUT performance via mechanisms involving spinal DR₁ and DR₂ in SCI rats (* indicating voiding contractions).

Fig. 5. Representative traces show that non-selective activation of spinal DR with apomorphine (APO) reduces the number of non-voiding contractions, lengthens the voiding interval and enhances the duration of EUS EMG bursting in a SCI rat. **A,** After vehicle (saline) delivery, during the filling phase before the onset of voiding many non-voiding contractions (NVCs) occur and are accompanied by high amplitude tonic EUS activity. EUS activity also increases during and after voiding (marked by *).

31
Administration of APO (10 µg/kg, i.v.) reduces the number of NVCs, decreases tonic EUS activity and increases VA. The higher dose (0.1 mg/kg) reverses the effect on VA but maintains the suppression of NVCs. B, In a time-expanded view, stimulating DR with APO reduces the amplitude of EUS tonic activity prior to voiding (2-headed arrows) while increasing the duration of EUS bursting during voiding contractions (grey lines), indicating the facilitation of voiding. A higher dose (0.1 mg/kg) of APO elicited slightly larger effects. A time-expanded view of the EUS bursting periods is shown in panel B.

Fig. 6. Selective stimulation of spinal DR2 increases bladder capacity and improves voiding reflexes. A, Three weeks after a T10 spinal cord transection, control CMG and EUS EMG recordings during continuous bladder filling and after intravenous saline injection exhibited tonic EUS activity between repeated reflex bladder contractions and voiding (marked by *). Intravenous injection of quinpirole, a DR2 agonist (10 µg or 0.1 mg/kg), prolonged VI and reduced EUS tonic activity during bladder filling. B, In a time-expanded view, the phasic bursting of EUS during voiding in SCI rats is short and irregular in the control recording after saline injection. However, after administration of quinpirole EUS bursting is prolonged and more regular, although bladder pressure oscillation patterns (HFOs) do not change (* indicating the onset of voiding). C, Following the high dose of quinpirole, administration of remoxipride (3.0 mg/kg) suppresses the large amplitude voiding reflex in bladder and masks EUS bursting during voiding.

Fig. 7. Inhibition of spinal DR1 increases tonic EUS activity in SCI rats. A, Traces show that after different doses of SCH 23390 (10 µg and 0.1 mg/kg) to block spinal DR1 during bladder CMG and sphincter EMG recordings, EUS tonic activity robustly increases and the VA of bladder contractions slightly elevates (* indicating voiding contractions). B, In a time-expanded view, EUS tonic activity (2-headed arrows) in response to bladder non-voiding contractions (NVCs) (#) in the filling phase is greater following SCH 23390 (10 µg/kg) injection than in the control recording after saline injection. C, Blocking DR1 results in shorter EUS bursting versus vehicle injection. There is still a lack of high frequency detrusor oscillation during voiding (traces in C are expanded portion of voiding with bursting in B). Therefore, this suggests that spinal DR1 regulate the micturition reflex following SCI and that they are mainly involved in regulation of EUS activity to facilitate urine elimination.

Fig. 8. Selective stimulation of spinal DR1 increases tonic EUS activity in SCI rats. During a continuous infusion CMG in the control recording (saline) prior to drug, voiding occurs at regular intervals and is associated with EUS bursting followed by tonic EUS EMG activity. Low level tonic EUS activity occurs between voids. After administration with middle (1.0 mg/kg) and high (3.0 mg/kg) doses of SKF 38393,
a DR₁ agonist which do not affect voiding interval or the amplitude of voiding contractions, EUS tonic activity increases during the period between voids (* indicates voiding contractions).

Fig. 9. Effects of drugs that modulate DA-ergic mechanisms on lower urinary tract storage and voiding functions in SCI rats. Drugs including L-DOPA (with carbidopa), carbidopa, apomorphine (APO), remoxipride, quinpirole, SKF 38393, and SCH 23390 were administered cumulatively during single CMGs in a range of doses that are listed in Table 1. A, The high dose of L-DOPA plus carbidopa induces non-significant increase of voiding volume (VV), and significantly reduces residual volume (RV) and increases voiding efficiency (VE) (both *p < 0.05, Friedman test followed by Dunn’s). Bladder capacity (BC) does not change with any dose. B, Carbidopa alone does not induce any change in voiding parameters (*p > 0.05). Administration of the high dose of either APO, a non-selective DR agonist (C) or quinpirole (D), a selective DR₂ agonist, elicits effects similar to those of L-DOPA. E, Blocking DR₁ with the middle or high doses of SCH 23390 significantly reduces voiding efficiency (both *p < 0.05). However, inhibiting DR₂ with remoxipride (F) or stimulating DR₁ with SKF 38393 (G) did not change voiding efficiency.

Fig. 10. Representative traces show volume-frequency pattern of spontaneous micturition in metabolic cage assays in SCI rats during 12 h recordings. In each “step-like” curve (A-C), the horizontal line represents the voiding interval, and the vertical line depicts the volume of urine expelled. A, Statistical analysis demonstrates that within 6 h after subcutaneous delivery of L-DOPA voiding intervals (VI) are prolonged (*p < 0.05; Paired t-test) compared to vehicle injection, but the volume of expelled urine does not change. B, Injection of apomorphine (APO), a non-selective DR agonist, does not generate detectable changes in the spontaneous micturition reflex (all *p > 0.05). C, Specific stimulation of spinal DR₂ with quinpirole induces a dramatic increase in urine volume per void (**p < 0.01) and total urine volume (*p < 0.05) as compared to vehicle delivery within 6 h period. Additionally, this drug decreases the interval between voids (*p < 0.05) compared to the control.

Fig. 11. Schematic illustration showing putative DA regulation after SCI of the spinal disynaptic pathway mediating tonic EUS activity during urine storage and the EUS bursting activity during voiding. In the L6/S1 spinal cord, an excitatory interneuron (IN, brown) receives primary bladder-EUS afferent inputs and synapses with an EUS motoneuron (MN, violet) to form a spinal reflex pathway that generates tonic EUS activity. In spinal intact rats, this circuit is modulated by A11 DA-ergic diencephalospinal pathway that activates DR₁ on the interneuron. After SCI the descending projection is interrupted and the modulation by DR₁ is silenced, while the EUS tonic activity circuit is tonically
modulated by a non-DA inhibitory interneuron (blue) activated by spinal DA neurons (red) via DR₁. Block of DR₁ with SCH 23390 eliminates the tonic inhibitory modulation and enhances EUS tonic activity. On the other hand, the EUS motoneuron also generates bursting activity during voiding. One population of excitatory interneurons is tonically active in response to stimulation by endogenous DA of DR₁. Accordingly, block of DR₁ in these neurons with SCH 23390 suppresses bursting. Another population of local interneurons that express DR₂ and are silent because they lack DA-ergic innervation also facilitate EUS bursting when activated by quinpirole. Because these receptors are normally silent, selective block of these receptors with DR₂ antagonist remoxipride does not alter bursting activity whereas it can block the enhancement of bursting that occurs when quinpirole activates the receptors.
Neonatal

Adult

SCI

L6

S3

A11

Injury
Table 1. Parameters of bladder CMGs and EUS EMG reflex assessments in SCI female rats.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Doses (mg)</th>
<th>Bladder CMG</th>
<th>EUS EMG</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VA</td>
<td>VI</td>
<td>NVCs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-DOPA (DA precursor)</td>
<td>1.0 mg</td>
<td>0.89 ± 0.05</td>
<td>1.01 ± 0.03</td>
<td>0.99 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>10 mg</td>
<td>0.81 ± 0.07</td>
<td>1.04 ± 0.03</td>
<td>1.50 ± 0.38</td>
</tr>
<tr>
<td></td>
<td>30 mg</td>
<td>0.73 ± 0.03</td>
<td>1.50 ± 0.38</td>
<td>0.81 ± 0.13</td>
</tr>
<tr>
<td>APO (DR antagonist)</td>
<td>5.0 µg</td>
<td>1.16 ± 0.04</td>
<td>1.07 ± 0.10</td>
<td>0.83 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>10 µg</td>
<td>1.07 ± 0.08</td>
<td>1.22 ± 0.14</td>
<td>0.72 ± 0.23</td>
</tr>
<tr>
<td>Remoxipride (DR antagonist)</td>
<td>0.1 mg</td>
<td>0.98 ± 0.02</td>
<td>1.42 ± 0.23</td>
<td>0.45 ± 0.18*</td>
</tr>
<tr>
<td></td>
<td>1.0 mg</td>
<td>0.93 ± 0.08</td>
<td>1.14 ± 0.12</td>
<td>1.50 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>3.0 mg</td>
<td>1.05 ± 0.12</td>
<td>1.34 ± 0.18</td>
<td>1.20 ± 0.45</td>
</tr>
<tr>
<td>Quinpirole (DR agonist)</td>
<td>30 µg</td>
<td>1.28 ± 0.10</td>
<td>3.30 ± 0.45*</td>
<td>2.09 ± 0.86</td>
</tr>
<tr>
<td></td>
<td>0.1 mg</td>
<td>1.18 ± 0.06</td>
<td>3.32 ± 0.64*</td>
<td>1.32 ± 0.57</td>
</tr>
<tr>
<td></td>
<td>0.3 mg</td>
<td>0.89 ± 0.03</td>
<td>1.15 ± 0.24</td>
<td>1.06 ± 0.19</td>
</tr>
<tr>
<td>SCH 23390 (DR antagonist)</td>
<td>5.0 µg</td>
<td>1.19 ± 0.06</td>
<td>0.96 ± 0.11</td>
<td>0.83 ± 0.09*</td>
</tr>
<tr>
<td></td>
<td>0.1 mg</td>
<td>1.16 ± 0.03</td>
<td>0.94 ± 0.07</td>
<td>0.97 ± 0.17</td>
</tr>
<tr>
<td>SKF 38393 (DR agonist)</td>
<td>3.0 mg</td>
<td>1.24 ± 0.11</td>
<td>1.00 ± 0.11</td>
<td>1.18 ± 0.23</td>
</tr>
</tbody>
</table>

VA, voiding amplitude of intravesical bladder pressure, VI, voiding interval, NVCs, non-voiding contractions, MA, maximum amplitude of tonic activity, RMS, root mean square, BP, bursting period; all data except the number of NVCs were normalized to the baseline to reduce the variability for statistics; *p < 0.05, **p < 0.01 compared to vehicle; #p < 0.05 compared to the low dose of drug.
Table 2. Summary of the agonist-antagonist interactions on the EUS.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>EUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agonist</td>
<td>Antagonist</td>
</tr>
<tr>
<td>L-DOPA (DA precursor)</td>
<td></td>
</tr>
<tr>
<td>SCH 23390 (DR₁ antagonist)</td>
<td>Reverses</td>
</tr>
<tr>
<td>Remoxipride (DR₂ antagonist)</td>
<td>No effect</td>
</tr>
<tr>
<td>APO (DR antagonist)</td>
<td></td>
</tr>
<tr>
<td>SCH 23390 (DR₁ antagonist)</td>
<td>Reverses</td>
</tr>
<tr>
<td>Remoxipride (DR₂ antagonist)</td>
<td>No effect</td>
</tr>
<tr>
<td>Quinpirole (DR₂ agonist)</td>
<td></td>
</tr>
<tr>
<td>Remoxipride (DR₂ antagonist)</td>
<td>Reverses</td>
</tr>
</tbody>
</table>