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Representational content of oscillatory brain activity during object recognition: 37 

contrasting cortical and deep neural network hierarchies 38 

Abstract: 39 

Numerous theories propose a key role for brain oscillations in visual perception. Most of these theories 40 
postulate that sensory information is encoded in specific oscillatory components (e.g., power or phase) 41 
of specific frequency bands. These theories are often tested with whole-brain recording methods of 42 
low spatial resolution (EEG or MEG), or depth recordings that provide a local, incomplete view of the 43 
brain. Opportunities to bridge the gap between local neural populations and whole-brain signals are 44 
rare. Here, using representational similarity analysis in human participants we explore which MEG 45 
oscillatory components (power and phase, across various frequency bands) correspond to low or high-46 
level visual object representations, using brain representations from fMRI, or layer-wise 47 
representations in seven recent Deep Neural Networks (DNNs) as a template for low/high-level object 48 
representations. The results showed that around stimulus onset and offset, most transient oscillatory 49 
signals correlated with low-level brain patterns (V1). During stimulus presentation, sustained beta 50 
(~20Hz) and gamma (>60Hz) power best correlated with V1, while oscillatory phase components 51 
correlated with IT representations. Surprisingly, this pattern of results did not always correspond to 52 
low- or high-level DNN layer activity. In particular, sustained beta-band oscillatory power reflected 53 
high-level DNN layers, suggestive of a feed-back component. These results begin to bridge the gap 54 
between whole-brain oscillatory signals and object representations supported by local neuronal 55 
activations. 56 

Significance Statement: 57 

Brain oscillations are thought to play a key role in visual perception. We asked how oscillatory signals 58 
relate to visual object representations in localized brain regions, and how these representations evolve 59 
over time in terms of their complexity. We used representational similarity analysis (RSA) between 60 
MEG oscillations (considering both phase and amplitude) and (1) fMRI signals (to assess local 61 
activations along the cortical hierarchy), or (2) feedforward deep neural network (DNN) layers (to 62 
probe the complexity of visual representations). Our results reveal a complex picture, with the 63 
successive involvement of different oscillatory components (phase, amplitude) in different frequency 64 
bands and in different brain regions during visual object recognition. 65 

Introduction: 66 

Oscillatory neuronal activity is thought to underlie a variety of perceptual functions. Different frequency 67 
bands can carry information about different stimulus properties (e.g., whether the stimulus consists of 68 
coarse or fine object features) (Smith, Gosselin et al. 2006, Romei, Driver et al. 2011), feedforward or 69 
feedback signals (van Kerkoerle, Self et al. 2014, Bastos, Vezoli et al. 2015), or may reflect neuronal 70 
communication between different neuronal populations (Fries 2005, Jensen and Mazaheri 2010). 71 
Other studies have shown that different components of an oscillation (e.g., its power or phase) encode 72 
different types of sensory information (Smith, Gosselin et al. 2006). 73 

Although neuronal oscillations are observed in different brain regions, and key theories hold that they 74 
reflect processing within, and communication between, brain regions (Fries 2005, Jensen and 75 
Mazaheri 2010), it has been difficult to pin down how large-scale brain oscillations are related to local 76 
patterns of neural activity, and how this relationship unfolds over time. This is because oscillatory 77 
activity is often studied with methods such as EEG or MEG, which have low spatial resolution. 78 
Although oscillatory signals with high spatial specificity can be recorded via local field potential 79 
recordings in humans or animals, these methods usually only target specific brain regions, and thus 80 
can only provide a partial view of oscillatory activity and its role in large-scale brain function. A direct 81 
link between large-scale oscillations and local neural activity is missing. 82 
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Here, we combine large-scale oscillatory signals recorded by MEG with local patterns of neural activity 83 
recorded with fMRI to bridge the gap between oscillatory components and different dimensions of 84 
object representation in the brain. Using representational similarity analysis (RSA, (Kriegeskorte, Mur 85 
et al. 2008)), we investigate the information carried by whole-brain oscillations obtained from MEG, 86 
and examine how this information evolves over time during an object recognition task. 87 

We define three distinct dimensions of interest along which neural representations may unfold, and 88 
which are often conflated in the literature. First, we use the terms “early” and “late” to denote the 89 
temporal evolution of representations. Second, we differentiate between “low-level” and “high-level” 90 
stages of a processing hierarchy. Third, we consider the complexity of representations by 91 
distinguishing between “low-complexity” and “high-complexity” information (for example, higher-92 
complexity might be characterized by additional non-linear transformations of the input). In many 93 
information processing systems and in many typical experimental situations, these three dimensions 94 
are directly related to one another, as input information propagates over time through a succession of 95 
hierarchical stages, becoming more and more complex along the way. In such situations, the three 96 
dimensions of interest are in fact redundant and need not be further distinguished. But in systems with 97 
recurrence and feedback loops (like the brain), time, space and information complexity are not always 98 
linearly related. For example, a lower hierarchical level (e.g. V1) can carry higher-complexity 99 
representations, later in time, as a result of feedback loops or lateral connections (Lamme and 100 
Roelfsema 2000). In our terminology, such a representation would be classified as late in time, low-101 
level in the hierarchy, yet high-complexity. 102 

In this work, we consider two main hierarchical systems. We are interested in understanding 103 
information processing in the human brain, so we use V1 and IT fMRI brain representations, as done 104 
in a number of recent studies (Cichy, Pantazis et al. 2014, Khaligh-Razavi and Kriegeskorte 2014). 105 
Representational similarity between MEG oscillations and this fMRI-based hierarchy can be 106 
interpreted in terms of early and late representations (based on the timing of the MEG oscillations), 107 
and in terms of low-level (V1) vs. high-level (IT) hierarchical stages. To assess the complexity of 108 
representations independent of temporal evolution and cortical hierarchy of processing, we related our 109 
data to a second class of hierarchical systems: artificial feed-forward Deep Neural Networks (DNNs), 110 
as done also in numerous recent studies (Cichy, Khosla et al. 2016, Bankson, Hebart et al. 2018, 111 
Hebart, Bankson et al. 2018, Khaligh-Razavi, Cichy et al. 2018, Kuzovkin, Vicente et al. 2018). In 112 
these artificial networks, the hierarchical level (low-level vs. high-level) is directly related to feature 113 
complexity (low vs. high-complexity representations), due to the absence of feed-back or recurrent 114 
loops: the layer number directly reflects the number of non-linear input transformations. For any MEG 115 
oscillatory signal, representational similarity with DNN activation patterns can thus inform us about 116 
representational complexity. In turn, any difference between DNN-based and brain-based RSA may be 117 
suggestive of feed-back or recurrent influences in the MEG oscillatory signals. 118 

With this dual approach, we find an intricate picture of transient and sustained oscillatory signals that 119 
can be related to V1 and IT representations. Transient oscillatory components around stimulus onset 120 
and offset, as well as sustained beta (~20Hz) and gamma (>60Hz) power components resemble V1 121 
representations, while phase-dependent sustained activity correlates best with IT representations. 122 
However, when compared to DNNs, some “low-level” V1-like components actually correlate more with 123 
higher DNN layers, suggesting that stimulus representations in primary brain regions may already 124 
include high-complexity information, presumably as a result of feedback or top-down influences (Kar, 125 
Kubilius et al. 2019, Kietzmann, Spoerer et al. 2019). 126 

In effect our results narrow the gap between the description of neural dynamics in terms of whole-brain 127 
oscillatory signals and local neural activation patterns. Disentangling temporal evolution, hierarchical 128 
stage of processing and complexity of representations from each other, our approach allows for a 129 
more nuanced view on cortical information flow in human object processing. 130 

Methods: 131 
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Experimental paradigm and data acquisition: The data analyzed in this study was obtained from 132 
(Cichy, Pantazis et al. 2014), and detailed methods can be obtained from that paper. 133 

Fifteen human subjects of either sex performed separate MEG and fMRI sessions while they viewed a 134 
set of 92 images. The image set consisted of human and non-human faces and bodies, and artificial 135 
and natural everyday objects. The 92-image stimulus set  was taken from the Kiani image set (Kiani, 136 
Esteky et al. 2007), which consists of cutout objects on a gray background (see examples in Figure 137 
1a). 138 

In the MEG sessions, each image was presented for 0.5s followed by an inter-stimulus interval (ISI) of 139 
1.2 or 1.5s. Every 3-5 trials, a target paperclip object was presented, and subjects’ task was to press a 140 
button and blink whenever they detected this target image. Subjects performed 2 MEG sessions, of 2 141 
hours each. In each session they performed between 10 to 15 runs. Each image was presented twice 142 
in each run, in random order. 143 

In each of two fMRI sessions, each image was presented for 0.5s followed by an ISI of 2.5 or 5.5s. 144 
Subjects’ task in the fMRI sessions was to press a button when they detected a color change in the 145 
fixation cross on 30 null trials, when no image was presented. Each image was presented once in 146 
each fMRI run, and subjects performed 10-14 runs in each session. 147 

The MEG data was acquired from 306 channels (204 planar gradiometers, 102 magnetometers, 148 
Elekta Neuromag TRIUX, Elekta, Stockholm) at the Massachusetts Institute of Technology. The MRI 149 
experiment was conducted on a 3T Trio scanner (Siemens, Erlangen, Germany), with a 32-channel 150 
head coil. The structural images were acquired using a T1-weighted sequence (192 sagittal slices, 151 
FOV = 256mm

2
, TR=1,900ms, TE=2.52ms, flip angle=9 degrees). For the fMRI runs, 192 images were 152 

acquired for each participant (gradient-echo EPI sequence: TR = 2,000ms, TE=32 ms, flip angle = 80 153 
degrees, FOV read = 192 mm, FOV phase = 100%, ascending acquisition gap = 10%, resolution = 154 
2mm, slices=25). 155 

 156 



 

5 
 

Figure 1: MEG-fMRI RSA analysis. (a) examples from our 92-image set (b) MEG analysis and MEG 157 
representational dissimilarity matrices (RDMs). From the MEG signals, the complex time frequency (TF) transform 158 
was computed for each of the 306 MEG sensors. The amplitude and phase (separated into cosine and sine) 159 
values were extracted from the complex number at each TF coordinate, and a MEG RDM was constructed, 160 
reflecting the distance between oscillatory activation patterns for every pair of images (i,j) (see methods for 161 
details). As a result, we obtained a power and phase MEG RDM at each TF coordinate for each participant. (c) 162 
fMRI RDMs were obtained from (Cichy, Pantazis et al. 2014). Two regions of interest (ROI) were defined: V1 and 163 
IT and one fMRI RDM was obtained for each ROI, and each participant, reflecting the distance between BOLD 164 
activation patterns for every pair of images (i,j). (d) Representational Similarity Analysis (RSA) consists in 165 
comparing two (or more) RDMs. The MEG power or phase RDMs were compared to the fMRI RDMs (V1 or IT) by 166 
computing the partial Pearson’s R. This step was performed at each TF coordinate, resulting in an RSA map of R 167 
values at each TF coordinate, for each subject and ROI. 168 
 169 
MEG analysis - preprocessing: MEG trials were extracted with a 600 ms baseline before stimulus 170 
onset until 1200 ms post-stimulus onset. A total of 20-30 trials were obtained for each stimulus 171 
condition, session, and participant. Each image was considered as a different stimulus condition. 172 

Data were analyzed using custom scripts in Matlab (Mathworks) and FieldTrip (Oostenveld, Fries et al. 173 
2011). Data were downsampled offline to 500 Hz. For each trial and sensor, we computed the 174 
complex time frequency decomposition using multitapers. Parameters used were: 50 distinct 175 
frequencies increasing logarithmically from 3 to 100 Hz, over a time interval of -600ms to 700ms with 176 
respect to stimulus onset, in steps of 20 ms. The length of the sliding time window was chosen such 177 
that there were two full cycles per time-window. The amount of smoothing increased with frequency 178 
(0.4 * frequency). 179 

From the complex number at each time-frequency (TF) coordinate, we extracted two measures for 180 
each sensor and each stimulus condition: the power and the phase of the oscillation. For each channel 181 
and stimulus condition, on each trial, the power was first expressed in decibels, and then averaged 182 
across trials to obtain one power value per stimulus condition. The phase of the oscillation was 183 
obtained by first normalizing each trial to make each trial’s vector in the complex domain of unit length, 184 
and then averaging across trials for each stimulus condition. The resultant average vector was then 185 
normalized to unit length, and the sine (real) and cosine (imaginary) components were extracted for 186 
each stimulus condition and each sensor. 187 

MEG analysis – multivariate analysis (Figure 1b): At each TF coordinate and for each stimulus 188 
condition, we next arranged the 306 power values from the 306 MEG sensors into a 306-dimensional 189 
vector representing the power pattern vector for that stimulus condition. Similarly, at each TF 190 
coordinate and for each stimulus condition we concatenated the 306 sine and 306 cosine values into a 191 
612-dimensional phase pattern vector for that stimulus condition. 192 

We next computed two representational dissimilarity matrices (RDMs): one for power and one for 193 
phase, at each TF point. For each pair of stimulus conditions, the power (phase) pattern vectors were 194 
correlated using the Pearson correlation measure, and the resulting 1-correlation value was assigned 195 
to a 92 by 92 power (phase) RDM, in which the rows and columns corresponded to the images being 196 
compared. This matrix is symmetric across the diagonal. This procedure results in one power (phase) 197 
RDM at each TF point. 198 

fMRI analysis (Figure 1c): The preprocessing steps for the fMRI data are described in detail in 199 
(Cichy, Pantazis et al. 2014). For the multivariate analysis, two regions of interest (ROIs) were defined: 200 
V1 and IT. In each subject, for each ROI, voxel activation values were extracted for each stimulus 201 
condition, and the resulting values were arranged in a pattern vector for each stimulus condition. Then, 202 
in each ROI, for each pair of stimulus conditions, the corresponding pattern vectors were correlated 203 
using the Pearson correlation measure, and the resulting 1-correlation value was assigned to the 204 
92x92 fMRI RDM. For further analysis the fMRI RDMs were averaged across the 15 subjects, resulting 205 
in one RDM per ROI. The fMRI RDMs were provided by R. Cichy, D. Pantazis and A. Oliva (Cichy, 206 
Pantazis et al. 2014). 207 
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MEG-fMRI Representational Similarity Analysis (RSA) (Figure 1d): Representational Similarity 208 
Analysis (RSA) consists in comparing two (or more) RDMs. RSA between the MEG and fMRI RDMs 209 
was performed by computing the partial Pearson’s correlation between each MEG (phase or power) 210 
RDM with each fMRI RDM (V1 or IT), while partialling out any contribution from the other fMRI RDM 211 
(IT or V1). We chose to perform a partial correlation because the V1 and IT RDMs were positively 212 
correlated with each other (r~0.3); compared to a standard correlation, the partial correlation allowed 213 
us to isolate the unique correlation of each fMRI RDM with the MEG RDM, while discarding their joint 214 
contribution. 215 

This procedure resulted in four RSA maps per subject (power/phase MEG RDMs x V1/IT fMRI RDMs). 216 
Each RSA map shows the R-value between the MEG signals and the V1/IT activation patterns at each 217 
TF point. Significance of the RSA result was evaluated with a paired t-test against 0, FDR corrected, 218 
alpha = 0.05. 219 

 220 

Figure 2. K-means clustering analysis procedure. Starting from the MEG RDM representations (top left, as 221 
described in Figure 1a), we flatten each RDM data point into a vector. The entire set of vectors (across all TF 222 
coordinates and power/phase conditions) is entered into a K-means clustering algorithm (right), resulting in N 223 
clusters and their centroids. By measuring the distance of these centroids to all initial RDM data points, we obtain 224 
TF maps of “distance to centroid” (bottom left) that capture the main time-frequency components (across both 225 
power and phase) of each cluster.  226 

Clustering analysis: The MEG time-frequency RDMs are heavily correlated with each other. To 227 
facilitate the interpretation of the information content of oscillatory signals, and to determine which 228 
features co-vary and which are independent, K-means clustering was performed on the MEG power 229 
and phase RDMs. Clustering was performed on the 4186-dimensional ((92*92-92)/2) RDMs across all 230 
(66) time points and (46) frequency points, combining the power and phase signals (resulting in 231 
46*66*2 = 6072 data points to cluster in a 4186-dimensional space). K-means was implemented with 232 
the Matlab function kmeans, with the correlational distance measure, five replicates, and the number 233 
of clusters going from 1 to 20. The optimal number of clusters was then determined with the elbow 234 
criterion defined as the point just before the local maximum of the second derivative of the residual 235 
sum of squares (corresponding to the point at which adding another cluster would only provide a 236 
marginal gain in variance explained). With this method, the first elbow occurred at k=7 clusters. 237 
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The chosen clusters could be visualized by plotting the correlation distance (in the 4186-dimensional 238 
RDM space) between the cluster’s centroid and every time-frequency point, for both power and phase 239 
signals, resulting in two time-frequency maps of “distance to cluster centroid” for each cluster (see 240 
Figures 6 and 7). 241 

RSA (using partial Pearson’s correlation) was performed between each cluster’s centroid and each of 242 
the fMRI RDMs (see below). For RSA with fMRI, this procedure resulted in two RSA values RV1 and 243 
RIT (one each for V1 and IT). Since each cluster centroid could correspond to both V1 and IT to 244 
different degrees, the “cortical level” L of the cluster was positioned somewhere between V1/low-level 245 
and IT/high-level using the following equation: 246 

                𝐿 = 𝜎 (
(𝑅𝐼𝑇 − 𝑅𝑉1)

(𝑅𝐼𝑇 + 𝑅𝑉1)⁄ )                (eq. 1) 247 

where σ denotes the sigmoid function. The measure L could vary between 0 (when the cluster’s 248 
representational content was perfectly similar to V1) and 1 (when it was perfectly similar to IT). 249 

Significance of RSA between the cluster centroids and the fMRI RDMs was computed with a surrogate 250 
test. On each iteration, the cluster centroid RDM was randomly shuffled and the partial correlation was 251 
computed between this shuffled RDM and the true RDM. This procedure was repeated for 10

5
 252 

iterations, and the proportion of iterations on which the shuffled RSA values were higher than the true 253 
RSA values was counted. 254 

Deep Neural Network (DNN) RDMs: The MEG phase/power representations were also compared to 255 
representations in seven DNNs (so as to ensure that conclusions were not dependent on one specific 256 
network architecture): AlexNet (Krizhevksy, Sutskever et al. 2012), VGG16 (Simonyan and Zisserman 257 
2014), GoogleNet (Szegedy, Liu et al. 2015), InceptionV3 (Szegedy, Ioffe et al. 2017), ResNet50 (He, 258 
Xiangyu et al. 2016), DenseNet121 (Huang, Liu et al. 2017) and EfficientNetB3 (Tan and Le 2019), 259 
processing the same 92 images as in our MEG and fMRI data. However, in contrast to our 92-image 260 
stimulus set, which consisted of cutout objects on a gray background, the DNNs had been trained on 261 
images from ImageNet (millions of photographs with one or more objects in natural backgrounds). The 262 
networks had thus learned optimal representations for their training set, but in this representation 263 
space our 92 images tended to cluster into a remote “corner” (Figure 3), with low dissimilarity (1- 264 
Pearson’s R) values between images, and a resulting RDM of poor quality. To retrieve meaningful 265 
distances between the representations of the 92 images, we first performed a centering procedure: we 266 
centered the activation of each layer of each DNN by subtracting the mean activation of an 267 
independent set of 368 images from the Kiani image set. This independent image set consisted of four 268 
images from each of the categories in our 92-image set. Importantly, because the image set used for 269 
centering did not include any of the 92 images from our study, there was no circularity in the centering 270 
operation, nor any leakage of information between the representations of our 92 images. This 271 
centering procedure contributed to minimize the potential problems arising from differences between 272 
our dataset and the standard ImageNet dataset—but it did not completely alleviate these differences, 273 
as can be seen in Figure 3c. 274 

RDMs were constructed for several convolutional layers of each network based on the layer activation 275 
values. There were 5 layers for AlexNet, 13 for VGG16, 12 for GoogleNet, 16 for InceptionV3, 17 for 276 
ResNet50 (hereafter referred to as ResNet), 14 for DenseNet121 (hereafter DenseNet) and 8 for 277 
EfficientNetB3 (hereafter EfficientNet). These layers were chosen so as to span the entire network 278 
hierarchy, without making the analysis computationally intractable (as some networks can contain 279 
more than 200 layers to choose from). RSA was then performed (with the Spearman correlation) 280 
between these RDMs and the centroid of each cluster (see above for details of the clustering 281 
analysis). The layer with maximum RSA, normalized by the number of layers for this DNN, was taken 282 
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to reflect the information content of this cluster between 0 (in the terminology defined in the 283 
Introduction, “low-complexity” corresponding to the DNN’s first layer) and 1 (“high-complexity”, 284 
corresponding to the DNN’s last layer), and finally averaged across the seven DNNs. 285 

Code Accessibility: Custom code can be made available upon request. 286 

 287 

Figure 3. a-b. t-SNE visualizations of 500 ImageNet samples and the 92-image stimulus-set used in this study, 288 
across representative layers of two networks (a. AlexNet; b. EfficientNet). To obtain these visualizations, the 289 
feature values of all images were subjected to a PCA (Principal Component Analysis) of which only the first 100 290 
dimensions were retained (so as to limit computational demands); then, t-distributed stochastic neighbor 291 
embedding (t-SNE) was applied, as implemented in the scikit-learn Python library, with parameters: 292 
[perplexity=30, n_iter=1000, learning_rate=1.0, min_grad_norm=0]. The DNNs used in this study had been 293 
trained on images from ImageNet, which consists of millions of photographs of one or more objects in natural 294 
backgrounds. In contrast, our 92-image stimulus set consists of cut-out images on a gray background. The DNNs 295 
learn optimal representations for the training images from ImageNet, i.e., different images from different 296 
categories are mapped to different regions of the representation space, and the whole space tends to be equally 297 
occupied by the training samples. However, as the t-SNE visualizations show, our 92 images are all projected into 298 
a remote corner of this space, meaning that the RDM distances between the 92 images are confounded by the 299 
mean vector (the pairwise Pearson distance depends more on the alignment with the mean vector, and less on 300 
the true physical distance between points). Inset images show the most stereotypical image of our 92-stimulus set 301 
(highlighted in green), the closest image from the ImageNet set (characterized, as expected, by an empty gray 302 
background), as well as one ImageNet sample near the space origin, and one on the opposite side of the feature 303 
space. To circumvent this problem, we used a re-centering approach as described in the methods section. c. The 304 
same layer of AlexNet as shown in (a), after re-centering. The 92-stimulus set is now closer to the center of the 305 
feature space. d. Systematic measurement of the distance between the centroid of our 92-stimulus set and the 306 
space origin (normalized by the standard deviation across our 92 images), for each layer of each DNN. The two 307 
DNN layers depicted in (a) and (b) are labelled on the corresponding curves. As a baseline, the dashed lines 308 
reflect the same distance measure, applied to the 500 ImageNet samples. 309 
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 310 

 311 

 312 

Results: 313 

Fifteen participants viewed the same set of 92 images while fMRI and MEG data was recorded (in 314 
separate sessions). The image set consisted of human and non-human bodies and faces, and artificial 315 
and natural stimuli. Each stimulus was presented for 0.5s, followed by a 1.2 or 1.5s baseline period. 316 

To assess oscillatory components, we extracted stimulus-related activity from -600ms to 1200ms 317 
relative to stimulus onset from the MEG data. For each trial, and each sensor a time-frequency (TF) 318 
decomposition was performed, and a power and phase value extracted at each time and frequency 319 
point. These values were used to compute representational dissimilarity matrices (RDMs) at each TF 320 
point, separately for power and phase (Methods and Figure 1a). Each element in the MEG RDMs 321 
indicates how distinct the corresponding images are in the MEG power or phase spaces, and the 322 
entire MEG RDM is a summary of how the 92-image stimulus set is represented in the MEG oscillatory 323 
power or phase at each TF point. 324 

To assess local patterns of neural activity we generated fMRI RDMs by performing comparisons 325 
between the local BOLD activation patterns of pairs of images in V1 and IT (Cichy, Pantazis et al. 326 
2014). Two fMRI RDMs were obtained (Figure 1b), one for V1 and one for IT. The fMRI RDMs are a 327 
measure of the representation of the image set in the voxel space of V1 and IT local neural activity. 328 

 329 

 330 
 331 
Figure 4: Results of the 2x2 RSA comparisons (MEG power/phase x fMRI V1/IT), averaged over all subjects. The 332 
purple contours mark those regions in the maps that are significantly different from zero (paired t-test against 0 333 
across N=15 subjects, FDR correction, alpha = 0.05). Note that the absolute latencies are not directly comparable 334 
across frequencies, because of different smoothing windows applied at the different frequencies when performing 335 
the TF transform (hence, the x-axis is labeled as uncorrected time). 336 
 337 

Bridging the space, time and frequency gap in object recognition: 338 

How similar is the oscillatory representation of the images to their representation in each brain region? 339 
The MEG RDMs (power and/or phase) at each TF point represent the stimulus set in a large-scale 340 
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brain oscillatory activity space, while the fMRI RDMs represent the same image set via BOLD activity 341 
in a local population of neurons in two brain regions (V1 or IT). We evaluated the similarity of 342 
representations in the time-frequency domain with those in the fMRI activation patterns by computing 343 
the partial Pearson’s correlation between the MEG RDMs (phase or power) with the fMRI RDMs 344 
(V1/IT), at each TF point (Figure 1c). This analysis resulted in four time frequency maps of R-values 345 
(or RSA maps), which provide the unique correspondence between whole-brain oscillations and local 346 
patterns of neural activity in V1 and IT, at each TF point (Figure 4). With these maps we can ask if and 347 
when stimulus information contained in oscillatory phase or power at each TF point resembles BOLD 348 
activations in a given brain region (V1/IT), and potentially, which region it resembles more. The 349 
advantage of measuring partial correlation (instead of a standard correlation) is to discard the 350 
(potentially large) portion of the variance in oscillatory representations that is explained equally well by 351 
V1 or IT BOLD representations—owing to the fact that V1 and IT signals already share similarities. 352 
This way, we concentrate on the part of oscillatory representations that is uniquely explained by each 353 
brain region-of-interest. 354 

Our results show that different oscillatory components map to different brain regions at different 355 
moments in time. Overall, the absolute maximum of representational similarity with brain area V1 356 
occurred in the alpha band around 120ms post-stimulus for oscillatory power, whereas the absolute 357 
maximum related to area IT occurred for theta- and alpha-phase around 200-300ms. More generally, a 358 
strong increase in representational similarity was observed shortly after stimulus onset in all four 359 
maps. The frequency, latency and duration of these similarity effects depended however on the exact 360 
oscillatory signal (power, phase) and brain region (V1, IT). In terms of MEG power (Figure 4a, b), the 361 
latencies (see also Figure 5) respected the hierarchical order of visual processing (Nowak and Bullier 362 
1998) with an increase in representational similarity in the lower (<20 Hz) frequency bands occurring 363 
around the evoked response first for RSA with V1, and about 20-30ms later for RSA with IT (paired t-364 
test against 0, FDR corrected, alpha=0.05). This latency difference is similar to that reported in (Cichy, 365 
Pantazis et al. 2014), where the peak correspondence between the average MEG signal and V1 366 
activity occurs about 30 ms prior to the peak with IT activity. The onset response in the V1 RSA map 367 
also consisted of high gamma frequencies (>70Hz), whereas this high-gamma activity was not 368 
observed in the IT RSA map. This is compatible with recent findings showing that gamma oscillations 369 
in early visual cortex are particularly prominent for certain stimuli, yet can be entirely absent for others 370 
(Hermes, Miller et al. 2015).  A sustained low-beta (20Hz, 200-500ms) and an offset high-beta (30Hz, 371 
~600ms) response also corresponded to V1 representations, although neither of these effects were 372 
observed in the IT RSA map (see also Figure 5). In terms of stimulus representations in the MEG 373 
oscillatory phase (Figure 4c, d), after an initial broadband (3-100Hz) transient peak at stimulus onset 374 
corresponding to V1 representations, stimulus information carried by sustained oscillatory phase 375 
resembled IT representations in the low (<20Hz) and high frequency (60Hz) bands, and this 376 
resemblance persisted until the end of the trial. Phase representations corresponding to V1 patterns 377 
were observed again around stimulus offset, at alpha (~10Hz) and beta (20-30Hz) frequencies (see 378 
also Figure 5), in line with the known involvement of V1 neurons in OFF responses (Jansen, Jin et al. 379 
2019). 380 
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 381 

Figure 5. Profile of the results of the RSA with V1 (green lines) and IT (black lines) in oscillatory power (top row) 382 
and oscillatory phase (bottom row) in different frequency bands. To examine the RSA maps in more detail, we 383 
extracted their time courses in different traditional frequency bands: alpha (8-13 Hz), low-beta (13-20 Hz), and 384 
high-beta (20-32 Hz). In each of these frequency bands we computed the average R-values. Since the TF 385 
decomposition induces temporal smearing, and the amount of smearing differs for different frequencies, in order 386 
to interpret the latencies of the representational similarities, we corrected for this smearing effect. Specifically, to 387 
avoid underestimating the onset latencies, we corrected time by adding half the wavelet window duration at each 388 
frequency. Note that the same correction was applied to the two curves compared in each plot. Solid lines are the 389 
means across subjects, and the shaded areas correspond to the SEM across subjects. 390 
 391 

These results thus suggest that different oscillatory components correspond to different brain regions 392 
at different time-frequency points. However, since the RDMs in the time-frequency space are heavily 393 
correlated with each other, it is difficult to ascertain from this analysis which power/phase features co-394 
vary, and which effects occur independently. To better interpret the results shown in Figure 4 we 395 
turned to a clustering analysis. The clustering analysis allowed us to reduce the dimensionality of the 396 
dataspace and to determine which oscillatory signals occurred jointly, and which are independent.  We 397 
performed k-means clustering jointly on the power and phase RDMs. That is, each RDM (one for each 398 
time point, frequency, and phase/power signal), was considered as an input data point for the 399 
clustering analysis, which returned the corresponding cluster index assigned to each point (see Figure 400 
2).  The results of the clustering analysis for k=7 clusters (the “optimal” number of clusters for our 401 
dataset) are shown in Figure 6 (see also Figure 7). The first cluster (ranked by smallest average 402 
distance from cluster centroid) corresponded to early broadband (0-100 Hz) phase and power RDMs, 403 
followed by sustained gamma power (>60Hz), and beta power (20-30Hz) at stimulus offset. The 404 
second cluster corresponded to broadband (0-100Hz) and sustained (0.1-0.4s) phase effects after 405 
stimulus onset, without any noticeable power effects. The third cluster consisted primarily of sustained 406 
(0.1-0.6s) beta (10-30Hz) and low-gamma (<60Hz) power, without any noticeable phase effects. The 407 
fourth cluster reflected broadband phase effects (0-100Hz) at stimulus offset (without associated 408 
power effects). The last 3 clusters (5-7) all displayed pre-stimulus effects in alpha-beta power, or alpha 409 
or gamma phase, characteristic of spontaneous, stimulus-unrelated activity that we did not investigate 410 
further (Figure 7). The clustering analysis performed on the MEG RDMs thus identified four main 411 
clusters of power and phase oscillatory components that occurred at different time points and in 412 
different frequency bands after stimulus onset. 413 

How do the oscillatory representations in each cluster, and their different time and frequency profiles 414 
relate to local processing in V1 and IT as measured by fMRI representations? To address this 415 
question, we performed RSA between the cluster centroids and the V1 and IT RDMs. The cluster 416 
centroids correlated to different degrees with both V1 and IT (all partial R-values between 0.12 and 417 
0.49; all significant at p < 1e-5 with a surrogate test; see methods). To directly contrast the 418 
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representational similarity of each brain area (V1, IT) to the cluster centroid, we combined the two 419 
RSA partial R-values into a single scale (see Methods, equation 1). According to this scaling (see 420 
insets in Figure 6), the transient broadband phase and power effect with sustained gamma power in 421 
cluster 1 corresponded best with V1 representations (i.e., “low-level”). Conversely, the broadband 422 
sustained phase effects of cluster 2 corresponded best to IT representations (“high-level”). The other 423 
two clusters (sustained beta-gamma power in cluster 3, broadband offset-transient phase in cluster 4) 424 
had more balanced similarity to both V1 and IT, with a slight inclination towards V1. Thus, transient 425 
oscillatory components occurring around stimulus onset correspond more closely to V1 426 
representations, whereas the more sustained components could be either more IT-like, or less 427 
localized depending on the frequency of the oscillations. These results thus suggest a complex link 428 
between oscillatory representations and local processing in V1 or IT. To try to clarify these 429 
relationships we next turned to using deep neural networks as a template for object representations. 430 

 431 

Figure 6. Clustering analysis. K-means clustering was performed on the MEG power and phase RDMs. Each 432 
time-frequency plot shows the distance of each RDM from the centroid of the corresponding cluster. The purple 433 
lines correspond to the cluster boundaries as returned by the k-means algorithm, indicating that all points within 434 
the purple lines are assigned to this specific cluster based on their distance to the different cluster centroids. The 435 
distance to centroid (color scale) reflects how “stereotypical” each RDM is for the corresponding cluster (i.e., how 436 
close to the cluster centroid), a continuous scale that complements the discrete cluster assignment. For example, 437 
even though cluster 3 simultaneously encompasses oscillatory power across many frequencies from 10Hz to 438 
65Hz, we can see that low-beta frequencies (13-20Hz) are the most “stereotypical” for this cluster. The insets 439 
show the relative degree of RSA between the cluster centroid and V1/IT (top), or the cluster centroid and the DNN 440 
layer hierarchy (bottom). For the DNNs, the layer with maximum RSA, normalized by the number of layers in the 441 
DNN hierarchy, and averaged across the seven DNN types (colored ticks), was taken as the layer that 442 
corresponded to each cluster centroid (black arrowhead). 443 

 444 
Assessing representational complexity with deep neural networks: 445 
The fMRI RDMs are a representation of the image set in the multi-voxel space of V1 and IT. However, 446 
these fMRI representations are static because the fMRI BOLD signal used to construct the RDMs was 447 
measured over a period of several seconds. Neuronal activity in these regions, on the other hand, is 448 
known to evolve over fairly rapid timescales, on the order of hundreds of milliseconds as a result of 449 
feedback and top-down signals (Roelfsema, Lamme et al. 1998, Lamme and Roelfsema 2000). The 450 
fMRI RDMs are thus limited representations of the image set, potentially mixing low- and high-451 
complexity brain activity from different moments in each trial. Therefore, while it is tempting to interpret 452 
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the oscillatory signals composing cluster 1 as low-complexity, because they are more V1-like, and 453 
those forming cluster 2 as high-complexity (more IT-like), such a conclusion would be premature as it 454 
ignores the dynamics of neural responses within and across brain regions, and how these neural 455 
responses evolve over different timescales. To obtain a complementary picture of low and high-level 456 
object representations, we considered the representations of our image set in different layers of feed-457 
forward deep neural networks (DNNs) pretrained on a large dataset of natural images. To ensure the 458 
generality of our results we assessed seven different DNNs: AlexNet (Krizhevksy, Sutskever et al. 459 
2012), VGG16 (Simonyan and Zisserman 2014), GoogleNet (Szegedy, Liu et al. 2015), InceptionV3 460 
(Szegedy, Ioffe et al. 2017), ResNet (He, Xiangyu et al. 2016), DenseNet (Huang, Liu et al. 2017) and 461 
EfficientNet (Tan and Le 2019). Activity in each layer of these DNNs is not influenced by top-down or 462 
recurrent connections, and consequently represents a truly hierarchical evolution in the complexity of 463 
image representations, from low- to high-complexity. Indeed, several studies have suggested that 464 
DNN representations approximate the feed-forward cascade of the visual processing hierarchy in the 465 
brain (Khaligh-Razavi and Kriegeskorte 2014, Cichy, Khosla et al. 2016). Performing RSA between 466 
MEG oscillatory RDMs and DNN layer RDMs should thus reveal which features of the MEG oscillatory 467 
representations correspond to low- vs high-complexity object representations. 468 

An RDM was obtained for several representative convolutional layers of the seven DNNs. RSA was 469 
then performed between the cluster centroids of the MEG RDMs and the DNN RDMs. For each cluster 470 
and DNN, the layer with maximum RSA was determined, and scaled between 0 (lowest layer, low-471 
complexity information) and 1 (highest layer, high-complexity information) based on the number of 472 
layers in the DNN hierarchy. Despite notable differences between the seven DNNs, the analysis 473 
revealed that clusters 2 and 3 mapped best to higher DNN layers, cluster 1 to intermediate layers, and 474 
only cluster 4 had similarity to lower layers. This is in stark contrast with the results of fMRI RSA, 475 
which had ranked clusters 2, 4, 3 and 1 in order of decreasing complexity. The most striking difference 476 
is obtained for cluster 3 (sustained beta-gamma power): a high-complexity representation according to 477 
DNNs, but closer to V1 than to IT according to fMRI. Based on the logic above, this cluster is likely to 478 
reflect feed-back signals that carry high-complexity object information (visible in high DNN layers) 479 
down to lower brain regions (visible in V1 BOLD signals). 480 

 481 

Figure 7. Clustering results for clusters 5-7. We identify these clusters as noise components because (i) their 482 
distance to the cluster centroid is typically higher than for other clusters, and (ii) they mainly map onto pre-483 
stimulus oscillatory activity. Pre-stimulus oscillations, while accounting for a sizeable portion of the (notoriously 484 
noisy) MEG signal variance, cannot possibly encode the identity of a stimulus that has not been presented yet. 485 
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Pre-stimulus alpha is a well-studied oscillatory component reflecting the attention state of the observer, and 486 
whose phase is known to modulate the subsequent ERP amplitudes and latencies; as such, it is not surprising 487 
that the phase of this oscillatory component would induce a separate cluster of RDM patterns (cluster 5). 488 
Similarly, pre-stimulus alpha-beta power (cluster 6) and gamma phase (cluster 7) could reflect preparatory 489 
attention or motor signals (including muscular artifacts) not related to stimulus identity. Notations as in Figure 6. 490 
Note that for consistency with the previous figure, we continue to report the V1-IT RSA scaling value in the insets; 491 
however, the corresponding correlation values were systematically lower for these clusters, and should thus be 492 
interpreted with caution (V1 partial correlations for clusters 5-7: [0.04, 0.00, 0.08], IT partial correlations: [0.00, 493 
0.04, 0.03]). In comparison, V1 partial correlations for clusters 1-4 ranged from 0.14 to 0.43, and IT partial 494 
correlations from 0.12 to 0.44. Similarly, we also report the DNN layer for which the correlation to the cluster 495 
centroid was maximal; however, this maximal correlation was consistently lower than in the previous figure, as 496 
expected for a pre-stimulus component (peak correlations averaged across DNNs for clusters 5-7: [0.02, 0.03, 497 
0.16], compared to values ranging from 0.24 to 0.45 for clusters 1-4).  498 

 499 

Discussion: 500 

Our results (summarized in Figure 8) show that MEG oscillatory components at different frequencies 501 
carry stimulus-related information at specific times, which can be linked, via RSA, to stimulus 502 
representations in different brain regions (V1, IT), and with different representational complexity (as 503 
measured by deep neural networks). Importantly, the representational dynamics of brain oscillations 504 
can be very differently expressed by power vs. phase signals. At stimulus onset and offset, broadband 505 
phase transients (possibly related to fluctuations in evoked potential latencies) carry mainly low-506 
complexity or intermediate-complexity information (clusters 1, 4 in Figure 6). However, during stimulus 507 
presentation, sustained phase information is visible across all frequencies, and consistently maps to 508 
high-level and high-complexity representations (IT and high DNN layers, cluster 2). Oscillatory power 509 
components (clusters 1 and 3) tend to correlate with both V1 and IT fMRI representations (with an 510 
inclination towards V1); however, onset-transient low-frequency (<20Hz) power together with 511 
sustained high-frequency (>60Hz) power (i.e., cluster 1) correspond best to intermediate DNN layers, 512 
whereas sustained beta-gamma power (20-60Hz) clearly maps to the highest DNN layers (cluster 3). 513 

 514 

Figure 8. Illustrative summary. The different clusters identified are plotted schematically as a function of time, and 515 
their main oscillatory characteristics (frequency band, power/phase) are indicated, together with the 516 
corresponding brain region (V1/IT) and the corresponding DNN layer (low/mid/high-complexity). 517 

It is important to note that some of the TF components revealed here could be specific to the 518 
conditions of our experiment. For example, brain oscillations are often modulated by the subjective 519 
state, the participant’s attention or the task instructions. As such, it is likely that different oscillatory 520 
patterns would be obtained for tasks involving active behavior rather than passive viewing of the 521 
images. Similarly, spurious muscular activity (including ocular saccades or micro-saccades) could be 522 
an important contribution to the observed TF components (Yuval-Greenberg, Tomer et al. 2008), as 523 
long as this activity would systematically differ between the different stimulus classes. 524 
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Our findings complement those reported in an earlier study that contrasted oscillatory power measured 525 
from intracranial electrodes with object representations across various layers of AlexNet (Kuzovkin, 526 
Vicente et al. 2018). These authors linked gamma power in lower visual areas to object content in 527 
lower DNN layers, while gamma power in higher visual areas (as well as theta-band activity) was 528 
related to higher DNN layers. Possible differences with our own observations could be explained by 529 
the spatial scale of the electro-magnetic signals recorded (more localized in intracranial electrodes, 530 
more widespread in MEG), our consideration of phase in addition to power components, our use of 6 531 
other DNNs in addition to AlexNet, or by more specific aspects of our analysis pipeline such as the 532 
DNN layer centering procedure (Figure 3) or the K-means clustering (Figure 2). 533 

In our study we found no simple mapping between low/high-level (or low/high-complexity) 534 
representations and oscillatory components (power/phase) or frequency. Both low-frequency (theta, 535 
alpha) and high-frequency (beta, gamma) oscillatory signals can carry either low- or high-536 
level/complexity representations at different times (e.g. clusters 2 vs. 4). Similarly, both phase and 537 
power signals can carry either low or high-level representations (e.g. clusters 1 vs. 3). The picture that 538 
emerges is a rather intricate one, in which successive interactions between different oscillatory 539 
components in different brain regions and at different frequencies reflect the different stages of neural 540 
processing involved in object recognition. 541 

How can the representational content of a given oscillatory component (phase or power) be 542 
interpreted in functional terms, at the level of neural populations and their interactions?  For example, 543 
a sustained phase component (such as the broadband component in Cluster 2) means that for some 544 
extended period of time (here, roughly between 150 and 350ms), the exact phase of oscillatory signals 545 
(here, across multiple frequency bands, from delta to high gamma) will systematically vary with the 546 
stimulus identity. Note that this is not about increased phase locking, but about the phase values 547 
themselves, and their differences between images. Such systematic phase differences between 548 
stimulus classes could arise if the underlying oscillatory processes come into play with different 549 
delays, e.g. as a result of information routed through slightly distinct circuits. As for oscillatory power, 550 
the differences (for example, the sustained beta power differences summarized in Cluster 3) would 551 
imply that some image classes tend to result in higher amplitudes and others in weaker amplitudes. 552 
This could arise, for example, in a scenario where the oscillation is selectively triggered by certain 553 
images (those that the neural population is selective to, e.g. animate vs. inanimate, natural vs. man-554 
made, etc.). 555 

Our results highlight the importance of complementing MEG-fMRI RSA with another measure of 556 
representational content such as feed-forward DNNs (Cichy, Khosla et al. 2016, Bankson, Hebart et 557 
al. 2018, Hebart, Bankson et al. 2018, Khaligh-Razavi, Cichy et al. 2018). fMRI BOLD signals are 558 
often analyzed such that they reflect a single static representation. Thus, they cannot distinguish 559 
dynamics in local patterns as for example early feedforward and later feedback activity. By design, 560 
feedforward DNN layers cannot be dynamically influenced by feedback signals, and could be 561 
considered to provide a template for low- vs. high-complexity representations during the different 562 
stages of image processing. Perhaps the best illustration of this notion stems from the discrepancy 563 
between fMRI and DNN RSA for MEG cluster 3, which suggests that sustained beta-gamma power 564 
during stimulus presentation could reflect feedback signals: best corresponding to V1 fMRI activity 565 
(low-level), but higher DNN layers (high-complexity). Without this additional information (e.g., looking 566 
at Figure 4a alone), one might have interpreted sustained beta-power as a strictly low-level signal. The 567 
observed distinction between sustained power effects at lower frequencies (beta and low-gamma, 568 
cluster 3) vs. higher frequencies (high-gamma, cluster 1) is consistent with a large number of recent 569 
studies that reported a functional distinction between gamma-band and beta-band signals, 570 
respectively supporting feed-forward and feedback communication (Fontolan, Morillon et al. 2014, van 571 
Kerkoerle, Self et al. 2014, Bastos, Vezoli et al. 2015, Michalareas, Vezoli et al. 2016). Future work 572 
could attempt to separate feedforward from feedback signals (e.g. with backward masking and/or 573 



 

16 
 

layer-specific fMRI), to confirm the differential contribution of gamma and beta-band oscillatory 574 
frequencies to feedforward vs. feedback object representations, as determined with RSA. 575 

In addition to their involvement in the transmission of feedforward and feedback signals, several 576 
studies have shown that different oscillatory signals can carry distinct information about stimulus 577 
properties (Smith, Gosselin et al. 2006, Romei, Driver et al. 2011, Schyns, Thut et al. 2011, Mauro, 578 
Raffone et al. 2015). Here we considered whether oscillatory components in different frequencies 579 
correspond to lower- or higher-complexity stimulus processing stages. Our results suggest that most 580 
oscillatory brain activity, at least at the broad spatial scale that is measured with MEG, reflects already 581 
advanced stimulus processing in object detection tasks. This result can be seen in Figure 6 where 582 
most oscillatory components are more related to higher-level DNN layer representations, with the 583 
exception of the offset-transient (cluster 4). Indeed, one might have expected that stimulus 584 
representations at both stimulus onset and offset are more reflective of transient low-level and low-585 
complexity processing. However, while both onset and offset signals (cluster 1 and cluster 4) are 586 
better matched to V1 than IT (“low-level”, see also Figure 4c, d), in terms of DNN activations the 587 
offset-transient (cluster 4) appears to be of much lower-complexity and the onset-transient of higher-588 
complexity (cluster 1). A tentative explanation could be that the continued presence of the stimulus 589 
after the onset-transient supports a rapid refinement of object representations, which would not be the 590 
case for the offset-transient (because the stimulus is absent from the retina). Indeed, it is remarkable 591 
that, aside from this offset-transient broadband phase activity (cluster 4), no other oscillatory signal 592 
was found to reflect low-level DNN layers (i.e., low-complexity information). 593 

One possible explanation for the relative dearth of oscillatory components reflecting low-level DNN 594 
layers could be that neural oscillations are a circuit-level property, rather than a single-neuron 595 
property; this could provide a better match for high-level DNN layers that pool across large numbers of 596 
inputs. In any case, such a bias, if it exists, would only be relative, as we did find at least one 597 
oscillatory component (related to cluster 4) that better matched low-level DNNs.   598 

In conclusion, our results help characterize the representational content of oscillatory signals during 599 
visual object perception. By separately considering hierarchical level (V1/IT) and representational 600 
complexity (based on DNNs), we narrow the gap between whole-brain oscillations and visual object 601 
representations supported by local neural activation patterns. 602 
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