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Abstract 
 
The resting human brain exhibits spontaneous patterns of activity that reflect features of the 
underlying neural substrate. Examination of inter-areal coupling of resting state oscillatory activity 
has revealed that the brain’s resting activity is composed of functional networks, whose 
topographies differ depending upon oscillatory frequency, suggesting a role for carrier frequency 
as a means of creating multiplexed, or functionally segregated, communication channels between 
brain areas. Using canonical correlation analysis, we examined spectrally resolved resting-state 
connectivity patterns derived from magnetoencephalography (MEG) recordings to determine the 
relationship between connectivity intrinsic to different frequency channels and a battery of over a 
hundred behavioural and demographic indicators, in a group of 89 young healthy participants. We 
demonstrate that each of the classical frequency bands in the range 1-40Hz (delta, theta, alpha, 
beta and gamma) delineates a subnetwork that is behaviourally relevant, spatially distinct, and 
whose expression is either negatively or positively predictive of individual traits, with the strongest 
link in the alpha band being negative and networks oscillating at different frequencies, such as 
theta, beta and gamma carrying positive function.  
 
 
 
Significance statement 
 
Even at rest, the human brain displays spontaneous coordinated rhythmic patterns of activity. 
Partitioning these according to their temporal properties reveals networks of distributed brain 
areas synchronized at different frequencies. The properties of these networks differ across 
individuals and are predictive of the brain’s response to tasks, pointing to a functional substrate 
underlying variability of task-related responses. The functional roles of these resting-state 
networks are yet to be fully elucidated. Here, in the absence of any task, we exploit the spectral 
richness of non-invasive magneto-encephalographic recordings to establish that individual 
differences in the expression of five spatio-spectrally distinct resting-state networks predict a 
diverse array of individual behavioural measures, from tobacco consumption to cognitive 
performance.  
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1. Introduction 
 
Even in the absence of any task, the brain expresses patterns of functional connectivity. Such 
resting-state activity is thought to be determined by intrinsic features of the underlying neural 
architecture (Fox and Raichle, 2007). Thus, spontaneous activity of the brain provides an insight 
into endogenous features, which are increasingly understood to be substantial contributors to 
individual differences in behaviour. A number of recent studies have highlighted the extent to 
which resting state connectivity metrics reveal individual “wiring patterns” of the brain that are 
significantly predictive of behavioural, and even demographic features. Notably, resting state fMRI 
(rs-fMRI) connectivity patterns have been shown to be predictive of task-related activation 
patterns (Tavor et al., 2016) and even to constitute uniquely identifying fingerprints that can 
distinguish between individuals (Finn et al., 2015). Such findings suggest that resting-state activity 
patterns reflect a neurobiological framework that determines a large degree of individual 
differences in brain responses to tasks, and of individual differences in behaviour. In a sense, 
they may be considered the brain’s “priors” (Kersten et al., 2004) for determining how it responds 
to input. 
 
A recent effort to relate whole-brain resting state fMRI connectivity to individual differences in 
behaviour employed canonical correlation analysis (CCA) to establish how inter-individual 
differences in connectivity relate to differences in a broad battery of behavioural and cognitive 
variables (Smith et al., 2015), using a sample of 461 participants from the Human Connectome 
Project (Van Essen et al., 2013). CCA was used to find the maximal correlations between 
combinations of variables in the connectivity and subject measures, revealing a canonical mode 
of covariation that is highly positively correlated with positive cognitive traits as well as desirable 
lifestyle indicators. This is a fascinating finding that highlights the extent to which large-scale 
neural connectivity of the human brain – even at rest - is functionally relevant. However, this 
discovery invites further and deeper inquiry: fMRI is rightly prized for its high spatial resolution, 
but its temporal resolution is inherently limited by the sluggishness of the haemodynamic 
response that it records. Consequently, fMRI cannot be used to discriminate between neural 
processes that occur at timescales in the sub-second range. These are, however, of profound 
relevance to further elucidating the nature of resting state brain activity, and its relationship to 
behaviour.  
 
A well-known characteristic feature of the human brain’s electrical activity at rest is the presence 
of oscillatory signals (Adrian and Matthews, 1934; Berger, 1929; Pfurtscheller, 1981). Oscillations 
are the product of repetitive or cyclical patterns of brain activity, which are observed to occur at 
different frequencies. Oscillations exist not only at multiple temporal scales, but also spatially they 
range from single neuron membrane potential oscillations, to local field potentials and large-scale 
magneto-electric brain signals. Temporally, different oscillatory frequencies are thought to 
represent different channels in which neural activity is communicated, and might therefore fulfil 
different functional roles (Bastos et al., 2015). Even at a relatively coarse level of spatial 
resolution, an extensive literature of M/EEG or electrophysiological studies has established how 
neuronal processes occurring in different frequency ranges have different functional associations 
- from the relatively slow sleep rhythms (e.g. delta 1-3Hz waves in NREM sleep (de Andres et al., 
2011)) to memory processes in the hippocampus (Buzsaki, 2002; Cantero et al., 2003) (mostly in 
the 4-7 Hz theta range), to processes related to sensation (covering the alpha and beta range of 
8-30 Hz (Berger, 1929; Pfurtscheller, 1981)) or executive functions such as working memory 
(Hanslmayr et al., 2016; Klimesch et al., 1997; Sauseng et al., 2002), up to rhythms in higher 
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frequencies such as gamma (30Hz and above), involved in feature binding during visual and other 
task processing (Engel et al., 1991; Fries, 2015).  
 
Oscillations can be characterised in terms of frequency, amplitude and phase. Much of the 
research into the functional relevance of human neural oscillations has focused on linking 
properties of ongoing rhythms such as phase (Busch et al., 2009; Callaway and Yeager, 1960; 
Dustman and Beck, 1965; Mathewson et al., 2009; Varela et al., 2020) or amplitude (Becker et 
al., 2008; Jasiukaitis and Hakerem, 1988; Makeig et al., 2002; Mazaheri and Jensen, 2008; 
Nikulin et al., 2007; Rahn and Basar, 1993; Reinacher et al., 2009), to behavioural and perceptual 
performance in a variety of experimental task conditions, domains and sensory systems or to 
modulated task responses. When also combined with multimodal imaging this amplitude or 
phase-informed approach has also shown that rhythms index different states of neuronal 
excitability (Becker et al., 2011; Goldman et al., 2002; Haegens et al., 2011; Laufs et al., 2003a; 
Laufs et al., 2003b; Moosmann et al., 2003; Scheeringa et al., 2011).  
 
However, while there is consensus that large-scale rhythms such as alpha or beta rhythms and 
their functional relevance (as mentioned above) are emergent properties of an interconnected 
network of neuronal ensembles (Speckmann and Elger, 2005), a proper network-centric view of 
these large-scale oscillations is a relatively new approach in M/EEG research, and often M/EEG 
studies examining functional relevance of rhythms have conducted analyses that elucidate 
relationships at the sensor or source level (for a non-exhaustive list of examples see e.g. 
Altenmueller et al., 2005 and Klimesch, 1999). 
 
Adopting a network-based view in the context of M/EEG imaging is particularly attractive given 
the high temporal resolution of the method, opening up new possibilities in terms of exploiting the 
rich spectro-temporal information that can be derived from M/EEG recordings. This adds an entire 
new dimension to the analysis of functional networks, namely the frequency these networks are 
operating at, which, in the  mammalian brain can span ranges from ultraslow (<0.1Hz) to ultrafast 
(>100 Hz) frequency regimes (Buzsaki et al., 2013)). By examining the whole-brain networks 
defined by synchronous resting state in delineated frequency ranges we can shed light 
simultaneously on not only the relationships between oscillatory frequency and behaviour but also 
how different oscillatory networks are spatially organised (Sadaghiani and Wirsich, 2020). 
 
Generally, synchronised patterns of modulation of activation at separate loci are believed to reflect 
coupled activation (Speckmann and Elger, 2005), and consequently to reveal connected areas, 
ultimately constituting functional networks. This would (technically) allow in M/EEG to look at 
these functional networks in different frequency regimes. However, what is not known is how 
meaningful these spectrally resolved networks are. Initial evidence for the multispectral nature of 
M/EEG connectivity is provided by findings from resting state activity that highlight the existence 
of spectrally resolved large-scale brain connectivity networks (Brookes et al., 2011a; Brookes et 
al., 2011b; Hillebrand et al., 2012; Hipp et al., 2012; Sadaghiani and Wirsich, 2020) . Recent 
efforts have identified large-scale (i.e. whole-brain) electrophysiological networks with 
topographical and spatial structures comparable to the resting state networks established by fMRI 
studies. For example, motor or visual resting state networks (RSNs), analogous to those 
previously described in fMRI (Biswal et al., 1995; Damoiseaux et al., 2006)  have been reported 
in MEG (Brookes et al., 2011a; Brookes et al., 2011b; Hillebrand et al., 2012). Interestingly, these 
networks, while spatially similar to fMRI-derived RSNs, had distinct spectral properties. That is - 
they exist as coherent activity in different frequency regimes: the motor network being most 
pronounced in the beta range (14-30 Hz) whereas networks incorporating visual areas were most 
visible in the alpha range 8-12 Hz. The finding of different topographies in spectrally distinguished 
networks hints at the potentially different function these spontaneous networks might serve, but 
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beyond the more intuitively interpretable sensory- and motor-related networks mentioned above, 
the roles and particular functional relevance of the spatial networks that emerge at different 
frequencies, remains elusive (see, for example, discussion in Sadaghiani and Wirsich, 2020). At 
this point, it is worth highlighting that all neural communication is constrained by the underlying 
anatomical connectivity, and that any network of information transfer that is discovered is 
necessarily a reflection of intrinsic brain architecture (“Structure defines function”, pp. 31-52 
Buzsaki, 2006). Consequently, any relationship elucidated between functional connectivity 
patterns and behaviour depends upon neuroanatomy, but they are not fully determined by it 
(Uddin, 2013). One indicator of this view is the existence of connectivity in different frequency 
ranges which, if anything but noise, is suggestive of the possibility that the anatomically 
constrained connections can be exploited to multiple ends. 
 
The precise role of network communication at different frequencies is the subject of ongoing and 
increasing interest. One overarching notion is that of “multiplexing”, viz. that different oscillatory 
frequencies comprise different communication channels allowing the same anatomical 
connections to be used for different functional roles (Akam and Kullmann, 2014). An influential 
theory with a very broad scope - ‘communication through coherence’ (CTC) - proposes that the 
observed spectrally-resolved networks, i.e. networks that share a common rhythm on a carrier 
frequency, reflect activity of cell assemblies that are in communication with each other – e.g. when 
binding different sensory modalities together (Fries, 2015). Coherence in the faster gamma band 
(40 Hz and above) in particular, is well examined and seems to confirm the proposals of CTC 
theory. CTC also affords the existence of similar mechanisms in other frequency bands, although 
these are less well explored and less is known about their likely functional role or roles.  
 
Another recent focus of enquiry underscoring the importance of neural activity in different 
frequency bands, has been how different frequencies reflect the activity of neurons having 
different roles in the directionality of neuronal communication. For example, it is known that 
bottom-up processes are preferentially mediated by higher-frequency (e.g. gamma) activity, while 
top-down processes have principally been associated with rhythms in lower frequencies (Bastos 
et al., 2012). In sum, there is compelling evidence indicating that spectrally confined, oscillatory 
activity may serve different purposes in network communication, be it in directing information flow 
or in circumscribing the neural assemblies that preferentially operate as coherent ensembles.   
 
Despite these advances, a holistic analysis of the functional role of oscillatory networks, taking 
into account the full spectral richness of the underlying constituents of human spontaneous brain 
activity, and its relationship to an extensive range of behavioural factors has, so far, been beyond 
our reach. Here, we seek to expand upon and complement the existing rs-fMRI findings by 
exploring the relationships between the same set of Subject measures and spectrally-resolved 
connectomes derived from rs-MEG, also made available as part of the HCP dataset (Larson-Prior 
et al., 2013). 
 
Specifically, we address the following questions: Firstly, can we identify and characterize a global 
mode linking brain connectivity and behaviour using spectrally resolved MEG? Secondly, is this 
mode comparable to that revealed for rs-fMRI? And thirdly, what, if any, additional information 
can we glean from the spectral richness afforded by the high temporal resolution of MEG? By 
exploring these questions, we will shed light upon the spatial structure and functional contributions 
of the spectral components of resting state connectivity and how they relate to a broad spectrum 
of behavioural indicators. 
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2. Methods 
 
Subjects and data 
 
Resting state MEG data from the Human Connectome Project were used for this study. 89 
subjects had complete resting state recordings (i.e. 3 recording sessions of about 6 mins). Mean 
age: 29 +/- 4 years, Sex distribution: 41 female / 48 male. Subjects were recorded in supine 
position and instructed to remain relaxed, with eyes open. 
 
Subject and behavioural measures.  
 
Following along the lines of a previous study showing CCA derived brain-behaviour mode with 
fMRI(Smith et al., 2015), we extracted a large number of subject measures from the HCP data 
set. We excluded gender related subject measures and structural measures, but kept all other 
measures (cognitive, emotional, sensory performance tests, psychiatric and personality tests, 
family history of mental or other disorders, consumption of alcohol, tobacco or other drugs, in-
scanner (fMRI) task performance). From those, we excluded variables that did not fulfil the 
following criteria:  
 

1. Less than 80% of values in a subject measure should have same discrete values  
 

2. At least 49 out of 89 subjects should have non-missing values for a given subject measure 
(compared to previous studies (Smith et al., 2015)), we chose this conservative number 
since our data set is considerably smaller). 

 
3. The maximum value of any given value across subject measures should not exceed 100 

times the mean of the group. 
 
These exclusion criteria resulted in 131 behavioural variables that were used for further analysis. 
 
We also deconfounded, i.e.  regressed out, effects of age, handedness, gender, height, blood 
pressure (systolic and diastolic) and brain volume for all subjects in order to remove connectivity 
related effects mediated by these that might distort and confound connectivity measures 
(independent of the imaging modality, i.e. MEG or fMRI, since both were used in the control 
analyses). Finally, all variables were further subjected to rank-based inverse normal 
transformation to ensure Gaussianity of distributions and demeaned. The general approach 
followed preprocessing of behavioural variables as previously conducted for an fMRI derived 
brain-behaviour mode (Smith et al., 2015). 
 
MEG pre-processing and parcellation, source leakage correction. 
 
MEG acquisition. Magnetoencephalography data was recorded by a whole-head MAGNES 3600 
(4D NeuroImaging, San Diego, CA). Data were acquired in three runs of resting state recordings, 
lasting 6 minutes each. The MEG recorded from 248 magnetometer sensors, with 23 reference 
channels. Sampling rate was at 508.63 Hz and data were down-sampled for further processing 
to 200 Hz. The standard pre-processing pipeline as offered by the HCP (‘tmegpreproc’) was used 
which applied independent component analysis to remove potential artefacts from ocular, 
muscular or cardiac sources. For source reconstruction, single shell volume models were used, 
based on the individual anatomical MRI T1 images provided by the HCP consortium. Linearly 
constrained minimum variance (LCMV) beamforming was employed onto a regular 3D grid in 
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normalized MNI source space with a resolution of 8mm3 using normalised lead fields and data 
covariance estimated in the 1-48Hz broadband frequency range. Source activity was normalised 
by the power of the projected sensor noise. Using PCA, the first principal component at each 3D 
source voxel location was extracted resulting in 5798 (1D) source-voxels. These were parcellated 
into 100 source parcels using a semi-data driven parcellation approach. Parcels were derived on 
the basis of a 246-region anatomical brain atlas(Jiang, 2013) that covers the two hemispheres 
(including subcortical structures). However, at this resolution, parcels are sometimes too closely 
related, resulting in rank deficiencies in the covariance matrix which in turn makes the following 
source leakage correction infeasible. Reducing them to 100 parcels averts this problem and offers 
a good compromise between spatial resolution and robustness for subsequent analysis. In order 
to obtain an optimal (maximally independent)  reduced set of parcels from the original atlas73, we 
performed a k-means clustering of group-(and session) average correlation matrices of the raw 
time-series (parcellated into the initial 246 parcels per subject and session). This clustering 
identified parcels that were most correlated the most (in absolute terms) and these were 
subsequently merged, resulting in a final, set of 100 parcels with minimum correlation to each 
other. Parcellation at higher dimensionality, e.g. with N=200, led to failure of the multivariate 
source leakage correction, which requires full rank covariance matrices. This apparent rank 
deficiency suggested that 200 parcels represents an overparameterisation of the data - i.e. they 
data contain there are fewer than 200 independent dimensions. A visualization is provided in 
Figure 1-1, for a labelled list of parcels see Figure 1-2). 
 
This parcellation is different to that used to analyse the relationships between fMRI connectivity 
maps and behaviour (Smith et al., 2015) and also offered as part of the HCP1200 release. We 
chose to use the above data-driven customized parcellation based on the rationale that the fMRI-
derived parcellation is a spatial ICA capitalizing on the high spatial resolution available in fMRI 
data, which sometimes results in spatially fine-grained components. This level of spatial resolution 
is not always a given in MEG data (as attested by the rank deficiency of the 200 parcel model 
described above, (Jiang, 2013)). For control analyses that employed fMRI-derived measures of 
functional connectivity we employed the previously published approach (Smith et al., 2015), but 
chose the lower resolution of N=100, corresponding to the dimensionality chosen for MEG 
analysis. 
 
To obtain parcel-time series, the first principal component over all voxels belonging to any given 
parcel was extracted. After extraction, resulting parcel time-series underwent reduction of source 
leakage by using a multivariate leakage reduction approach(Colclough et al., 2015), effectively 
orthogonalising all parcel time-series and removing zero-lag correlations. 
 
All analyses were conducted on a Linux server with a 16-core Intel(R) Xeon(R) Gold 6130 CPU 
at 2.10GHz and with 96GB of RAM, running Ubuntu 18.04. Analysis scripts were run using Matlab 
R2018b. 
 
Analysis of functional connectivity 
 
After source-leakage correction, we estimated functional connectivity (FC), separately for each 
individual and session. Functional connectivity was estimated using the Oxford software library 
(OSL) toolbox (https://github.com/OHBA-analysis/osl-core). We first computed envelopes in 20 
contiguous frequency bins, with a frequency range of 0.5 to 40 Hz, and a resolution of 2 Hz, using 
the resulting envelopes in each bin after Hilbert transformation of the narrow-band filtered time-
series. Within each bin, full linear Pearson correlation was computed between all possible pairings 
of parcel-based envelope time-series, resulting in a 100 x 100 connectivity matrix for each resting 
state run, frequency bin and subject. After FC estimation, all three runs were then averaged to 
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increase stability of FC estimations. After averaging, connectivity measures, i.e. the correlation 
coefficients were first Fisher z-transformed.  
 
We observed that functional connectivity in spectrally resolved MEG data is not always 
independent of spectral power or frequency, but that higher spectral power is linked to higher 
group-average envelope correlations, with connectivity being stronger (on average) in lower 
frequency bands (which tend to have higher power due to the well-known 1/f behaviour of human 
brain power spectra). In order to avoid that our findings were not simply confounded by these 
effects, we removed this systematic variation by pair-wise regressing out of spectral power from 
connectivity measures (i.e. envelope correlation coefficients) from all possible pairings (i.e. 
edges). This resulted in subject-specific connectivity estimates without power-induced low-
frequency bias. After this, we removed the other previously defined confounds (see Methods, 
“Subjects and Behavioural measures”). Subsequently, the resulting connectivity matrices were 
renormalized to ensure zero mean and unit variance. 
 
For further analyses we chose to further reduce the number of frequency bins to 5 bands, so we 
averaged the initial spectrally resolved connectivity data to approximately follow conventional 
frequency band arrangement: delta-band [0.5 - 3 Hz], theta-band [3-7 Hz], alpha-band [7-13 Hz], 
beta-band [13-25 Hz] and lower gamma-band [25-40 Hz]. Before further analysis, we extracted 
the upper triangle from each symmetric connectivity matrix, concatenated the resulting matrices 
(5x4950x89) frequency bands (yielding a 24750 x 89 matrix FC1).  
 
Dimension reduction and analysis of brain-behaviour mode by means of canonical 
correlation analysis (CCA). 
 
Behavioural as well as connectivity data were subjected to principal component analysis (PCA). 
PCA is a popular choice for dimension reduction and pre-whitening of input into linear regression 
models in general, but also a popular choice of dimension reduction in the specific context of a 
subsequent canonical correlation analysis (Correa et al., 2010a; Correa et al., 2010b, c; Correa 
et al., 2008; Smith et al., 2015; Tsatsishvili et al., 2015; Yang et al., 2019). For connectivity, PCA 
is performed on the concatenated connectivity data sets (i.e. on the 24750 x 89 concatenated 
connectivity matrix (FC1), see Figure 1-3 for visualised approach), for behaviour it is performed 
on the 131 x 89 behavioural data set. Aiming for a ratio of 1 to 4 regarding variables vs 
observations, for both data sets, we retained 22 components per subject (22 PCs or latent 
variables, vs 89 subjects or observations, thus reducing the chance of overfitting (see also 
Methods “Validation” section for more details) in downstream analyses. This ratio, while being 
rather conservative, still ensured sufficient detail retained in the reduced model, meaning that 
after reduction to 22 components, 74.1% and 64.5% of the total variance was still explained for 
the behavioural data and the connectivity data, respectively. This resulted in a 22 x 89 PCA-
reduced connectivity matrix, FC2 and a 22 x 89 PCA-reduced behavioural matrix (B2).  
 
After PCA-derived dimension reduction we applied canonical correlation analysis (CCA) to the 
PCA-reduced data. CCA is a method that identifies the linear combination in each of two sets of 
features that transforms them to produce a maximal match of the two sets. The linear 
combinations that maximize correlation between the two sets of features or matrices are typically 
referred to as “modes”. We employ CCA here to examine whether there is such a match, or mode, 
of brain-behaviour population covariation for MEG functional connectivity and behavioural data. 
In contrast to fMRI approaches, MEG contains the additional dimension of frequency, here 
characterised in five frequency bands CCA is then performed on these two identically-sized 
matrices (FC2 and B2), finding the linear combination of weights (or mode) that transforms each 
of the two matrices into new matrices (FC3 and B3) where each row is maximally similar to each 
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other. Each row in FC3 and B3 corresponds to a newly formed canonical variate that is orthogonal 
to all other canonical variates within FC3 and B3, representing the linear weighting of connectivity 
(FC2) and behavioural features (B2) to best align brain and behavioural covariation across 
subjects. Each row with their corresponding canonical variates corresponds to a “mode”, with 
decreasing degree of correlation. Consequently, CCA result in a maximum of 22 canonical modes 
with 2x22 canonical variates that are also orthogonal within FC3 and B3. Each mode’s statistical 
significance, that is, the significance of the correlation between rows in FC3 and B3 is then 
established by permutation testing (with n = 10000), which corrects for multiple comparisons. For 
permutation testing, subject labels were swapped while respecting family structure in the data. 
For running CCA and permutation testing we used an adapted version of the scripts made 
available in a previous CCA study(Smith et al., 2015). 
 
Visualisation of post-CCA results 
 
For characterization of the observed CCA mode(s) with respect to the underlying behavioural 
variables and connectivity, the resulting behavioural CCA weights (i.e. one per subject, n=89 in 
total) were correlated with the full, deconfounded behavioural variables (i.e. 131 x 89), and the 
mode-derived connectivity weights (n=89), in turn, were correlated with the full, deconfounded 
individual FC networks (i.e. the original 5 x 4950 x 89 connectivity matrix), yielding interpretable 
results, i.e. the composition of modes in terms of the correlated behavioral variables as well as 
the edges, of which their connectivity strength, on a subject-by-subject level, correlated with the 
mode, further termed “mode-by-connectivity correlations (MCC)”, or “MCC edges”,  corresponding 
to the concept of “edge modulations" used previously (Smith et al., 2015).  For visualization of 
connectivity and these resulting MCC edges, we used the freely available Circos software suite 
(Krzywinski et al., 2009) (http://circos.ca/software/download/circos/). We also derived MCC nodes 
from the data to reflect the average functional relevance i.e. the average MCC value, of the 
corresponding node. This essentially collapses one dimension of the 100x100 MCC edge 
matrices by averaging over edge connections. For visualizing the results, the parcellation 
functionality of OSL was used. 
 
Validation of CCA results 
 
CCA is highly efficient in maximizing correlation between data sets, finding the features (or a 
linear combination thereof) that are maximally aligned. However, this naturally leads to concerns 
of overfitting. While it already has been shown that similar approaches have yielded robust and 
stable results for larger data sets (with a similar parametrization of CCA input regarding the ratio 
of features to sample size), the current dataset is smaller. Thus, while we are confident that our 
choices, e.g. a low number of retained components, a relatively modest number of parcels etc. 
are conservative and ensure robustness, we performed several additional control analyses to rule 
out overfitting and to add confidence in the stability of the presented results. The following 
analyses were performed: 
 

1) In a first cross-validation test, we split each subject’s MEG resting state data set into two 
parts: One part consisted of the first two resting state sessions, the other part consisted 
of the last session. CCA was applied to the first, acting as a  training set - identifying the 
best matching mode in the first two sessions  - whereas the second data set (the remaining 
resting state session) acted as test set - by applying the identified weights from the training 
set on the test set, effectively predicting subject and connectome weights for the test set. 
These predicted subject measure and connectome variates for the test subjects were then 
correlated with each other to obtain an estimate of how well the weights identified by the 
CCA on the training set still work in the test set. Mean correlation in the first mode, i.e. 



10 
 

between the first canonical variate of subject measures and the corresponding first 
canonical variate of connectome data in the training set (FC3(1)train vs B3(1)train) was 0.9X, 
while the brain-behaviour correlation coefficient in the test set (FC3(1)test vs B3(1)test) was at 
0.79. As a reference, the mean correlation of the permutation null distribution in the test 
data set was 0.02, with a standard deviation of 0.11. At the observed correlation of r=0.79, 
significance of the observed correlation was at max p = 1x10-4 (the threshold for r at a 5% 
alpha-level (corrected) being r = 0.21). 
 

2) For a second, complementary cross-validation test, we used a leave-one-subject-out 
approach to test whether there is overfitting on a cross-subject level. Accordingly, CCA 
was applied to a first training set of all subjects apart from the left-out subject (n = 88) - 
identifying the best matching mode in these subjects - and applying these weights (that 
form the first canonical variates) on the left-out subject set effectively obtaining predicted 
subject and connectome canonical variates for the left-out, test subject. Subsequently, this 
approach was repeated for all 89 subjects, resulting predicted subject measure and 
connectome scores for all subjects. These predicted subject measure and connectome 
scores for the test subjects were then correlated and tested for significance. For this type 
of cross-validation, correlation coefficient r in the first mode, i.e. between the first canonical 
variate of subject measures and the corresponding first canonical variate of connectome 
data in the training set (FC3(1)train vs B3(1)train) was at r = 0.67. Mean correlation coefficient 
r of the permutation null distribution was <0.01, with a standard deviation of 0.11. 
Significance of the correlation of the first mode was at maximum of p = 0.001 (with a 5% 
significance threshold of a correlation coefficient r being 0.1930). 
 

3) In this control analysis, we tested the stability of our spectrally resolved approach with 
regard to the resulting band-specific MCC edges, i.e. the functionally relevant networks 
identified in each of the five bands. To do so, we now split the connectivity data, for each 
subject, into 5 sets, each containing only a single frequency-band specific connectivity 
matrix and then ran the described PCA-CCA pipeline separately on those. We then 
compared the resulting separate  MCC matrices (MCCsep)  with the corresponding band-
specific MCC matrices of the original, integral CCA analysis (MCCorig), where all 5 bands 
entered CCA in their entirety (we chose this correlation as a test criterion here, since in 
this case neither canonical subject measure variates nor functional connectivity variates 
(FC3, B3) are directly comparable to the one integral main analysis. The resulting 
correlation coefficients between MCCsep and MCCorig were: in delta band 0.76, theta band 
0.48, alpha band 0.80, beta band 0.48, and in the gamma band 0.32. For interpretation of 
these results it needs to be said that a holistic, integral CCA of all five band-specific 
connectomes is not expected to give identical results in each band as the band-separate 
analysis in the control condition, but it answers the question whether the general 
relevance, for example the quality of each identified band-specific network is preserved 
(see the “CP positive and negative” section in Discussion). All bands show, on average, 
the same qualitative relevance – being predominantly either CP positive or negative, as in 
the original analysis. For an exemplary illustration of the alpha-band MCC edges in 
analysis 2 and 3 see Figure 2-1. 
 

For the remaining control analyses we will present the validation and control analysis results 
in the following order: CC1, CC2 and CC3; with CC1 being the correlation coefficient between 
the first canonical variates, representing the first canonical mode in FC3orig and FC3control,  and 
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CC2 being the correlation between first canonical variates in B3orig and B3control, while CC3 is 
the resulting brain-behaviour correlation (FC3alternative vs B3alternative) in the first canonical mode: 

 
4) In this control analysis, we ran a CCA on the same 89 subjects, where we only used fMRI 

derived connectivity measures, analogous to previous reported approaches. Similar to our 
main result and previously reported fMRI results, we found one significant mode arraying 
subjects on a positive-negative axis of behavioural variables. Resulting connectome 
(FC3MEG(1)) and subject measure scores (B3MEG(1)) for the first canonical mode of the MEG 
derived main analysis (5-bands),  and the fMRI derived canonical scores (FC3FMRI(1) and 
B3FMRI(1)  for the first mode correlated by CC1 = 0.26 and CC2 = 0.27, respectively. When 
comparing these fMRI derived CCA results against the full 20-frequency-bin MEG-CCA 
correlations were slightly higher: CC1 = 0.3 and CC2 = 0.32, respectively. While these 
correlations seem relatively low, qualitatively, the fMRI-derived CCA approach identified 
a positive-negative axis within the first canonical mode similarly to previously reported and 
identified here by the main MEG CCA analysis, see Figure 1-4 for the behavioural 
variables associated with and their ranking within this mode. The resulting first canonical 
mode yielded a correlation coefficient of CC3 = 0.92. 
 

5) We compared the CCA outcome of our 5-band approach to the outcome using the initially 
estimated, ‘fully’ spectrally resolved 20-bin connectivity data (see Methods above). 
Correlations of subject measure scores and connectome scores (i.e. FCorig vs FC3control 
and B3orig vs B3control) were at CC1 = 0.8 and CC2 = 0.85, respectively. The resulting mode 
gave a brain-behavior correlation coefficient of CC3 = 0.93. 
 

6) In this control analysis we did not perform source leakage. Correlations between the 
original, full-source leakage corrected model and the non-corrected model were: CC1 = 
0.25 and CC2 = 0.27 for the first canonical variates (FC3orig vs FC3control and B3orig vs 
B3control). Resulting brain-behaviour correlation was CC3 = 0.89. 

 
7) A model where we only used 50 parcels (fMRI-derived parcellations from the HCP 

initiative, HCP1200 release available from 
https://db.humanconnectome.org/data/projects/HCP_1200) for parcellation of MEG data 
instead of the 100 in our original analysis, correlation to the original canonical variates 
were CC1 = 0.14 and CC2 = 0.16 respectively (FC3orig vs FC3control, B3orig vs B3control). 
Resulting brain-behaviour correlation was CC3 = 0.90. 
 

8) In another control analysis, we chose an approach where connectivity was defined as 
broadband connectivity (1-40Hz) only, so instead of several bands or bins there was only 
one connectivity measure per parcel. Correlations with the original canonical variates 
(FC3orig vs FC3control and B3orig vs B3control) were CC1 = 0.36 and CC2 = 0.38. Resulting 
brain-behaviour correlation was CC3 = 0.90. 
 

The correlation coefficient of each identified first mode for control analyses 4-8 can be found 
visualized in Figure 1-5A. 

 
9) In a last control analysis, we tested whether MEG and fMRI connectivity show some 

overlap in explaining variance across the subject population, i.e. we tested the link 
between these two independently acquired and modality-specific connectomes. This test 
was performed by using only connectivity data as input to the CCA, i.e. one set of variables 
being the fMRI connectivity data while the other one was the MEG based connectivity data 
(from the same subjects), asking for the existence of a connectome-connectome mode of 
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population covariation. As result, we observed one significant mode, tying together MEG 
and fMRI connectivity across subjects was identified (resulting brain-behaviour correlation 
coefficient in first mode was r = 0.92). Apart from the demonstration of the existence of 
such a link, we did not perform further analyses to look into spatial or spectral components 
of this link or visualize them, since it was beyond the scope of this study. 

 
We also computed the explained variance of the first and all following canonical variates, i.e. the 
first and significant CCA mode until the last computed mode with regard to the set of behavioural 
variables. Results are shown in Figure 1-2, demonstrating that the first canonical mode explains 
significantly more variance in behaviour than the permutation based null model where we 
swapped subject label n=1000 times. For a comparison of the explained variance in the control 
analyses 4-8, see also Figure 1-5B. 
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3. Results 
 
3.1. MEG-derived functional connectivity reveals a global brain-behaviour mode along a 
positive-negative axis of subject measures. 
 
We used canonical correlation analysis (CCA) to examine the relationship between spectrally 
resolved resting-state MEG connectivity and a battery of 131 behavioural, demographic and 
personality variables in 89 healthy young individuals. CCA is a method that identifies an optimal 
linear combination of features (a mode) in two separate data sets that maximizes correlation 
between them – in our case functional, spectrally resolved MEG connectivity and subject 
measures. MEG connectivity was examined in five conventional frequency bands in the range 1-
40Hz (delta [0.5 - 3 Hz], theta [3-7 Hz], alpha [7-13 Hz], beta [13-25 Hz] and lower gamma [25-40 
Hz]). Connectivity was determined for the whole brain divided into 100 functionally-defined parcels 
(see Figure 1-1 and Figure 1-2). To remove simple effects of resting state power, average resting 
state spectral power was regressed out of connectivity strength variations across subjects in a 
pairwise manner, i.e. for each connection, and frequency band, power of both nodes was 
regressed out. CCA was then performed on a PCA reduced subspace of this data, examining the 
potential link between subject-wise variations of connectivity strength and behavioural 
performance (see Methods), identifying one significant canonical mode after permutation testing 
(r = .94, p <= 10-4, see also Figure 1-3 for a visualization of the CCA approach). This mode links 
spectrally resolved brain connectivity and behaviour. The existence of a significant mode indicates 
that there is a significant relationship between resting state connectivity and the subject 
measures. This first canonical mode is also unique in that it explains more variability in behaviour 
than the other modes (or permutation-based null models), as shown in Figure 1-6. 
 
In order to provide a functional characterization of this mode of maximum covariation between 
subject measures and connectivity, we evaluated how the mode (i.e. the observed first canonical 
variates) covaries with the individual subjects’ scores on each of the subject measures and 
connectivity measures. This procedure reveals the way in which the mode that best aligns the full 
set of subject measures with the connectivity patterns explains the inter-individual variation in 
each of the subject measures. Thus, positive correlation between an SM and the canonical variate 
suggests that the higher a subject is ranked on this subject measure, the larger this subject’s 
score for the canonical variate. Conversely, a negative relationship between an SM and the 
canonical variate indicates that higher scores on that SM are associated with lower subject scores 
on the canonical variate. 
 
The behavioural variables most strongly positively and negatively associated with this mode are 
shown in Figure 1A. The subject measures are arranged along a positive-negative axis that is 
qualitatively the same as that previously described for an fMRI derived CCA mode(Smith et al., 
2015). It ranges from subject measures that entail tobacco consumption and somatic problems 
(which may quite reasonably be characterised as ‘negative’) to subject measures indicating high 
cognitive performance (at the other end of this ranking, interpreted as ‘positive’). The nature of 
the positive relationship between the mode and performance on a working memory task is further 
illustrated in Figure 1B, where a clear pattern emerges demonstrating that higher individual scores 
on the subject measure and connectome canonical variate are predictive of superior list sorting 
performance. 
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Figure 1. Canonical correlation analysis of spectrally resolved MEG data and a large set of behavioural 
and other subject measures results in one significant mode (r = 0.94, p < 10-4, corrected for multiple 
comparisons by permutation testing). For the used parcellation, see Extended data Figure 1-1, with 
anatomical labels found in Extended data Figure 1-2. A visualisation of the analysis approach is shown in 
Extended data Figure 1-3. A. The canonical mode arranges behavioural variables and subject measures 
on a positive-negative axis, similar to what has been previously reported for hemodynamic measures of 
brain connectivity (Smith et al., 2015), for comparison see also Extended data Figure 1-4, showing the 
fMRI-based brain-behaviour mode for the set of subjects used here). At maximum positive correlation there 
are mostly subject measures indexing cognitive performance such as reading skills and vocabulary 
knowledge, while on the negative end of the spectrum are subject measures like somatic problems, and 
tobacco consumption (thresholded at a correlation coefficient of |r|>.25). B. Correlation of CCA-derived 
subject measure scores and connectivity scores for the first canonical variates identified, i.e. the first 
canonical mode. In color the behavioral score for the working memory test is shown per subject. For a 
detailed overview of how certain methodological choices impact results see Exentended data Figure 1-5. 
The first CCA mode as visualized here also explains a significant amount of variance in the data (see 
Extended data Figure 1-6). Abbreviations – Penn matr. = Penn matrix test; ASR: Achenbach Adult Self 
Report; DSM: Diagnostic and Statistical Manual, MMSE = mini mental state exam, SSAGA = Semi-
Structured Assessment for the Genetics of Alcoholism, unadj = unadjusted for age effects. Please note that 
some secondary measures (e.g. similar metrics for tobacco consumption are left out to avoid redundancy). 

 
This outcome alone is remarkable – despite using a different imaging modality and having access 
to only a substantially smaller sample (89 vs. 461 data sets) the nature of the mode revealed is 
highly consistent with that previously demonstrated for the same set of subject measures and rs-
fMRI connectivity. A quantitative comparison with rs-fMRI based CCA results, as well as the 
impact of parcellation scheme and subdivision into the selected frequency bands on the outcome 
is presented in Figure 1-5.  
 
Although this MEG-derived canonical mode resembles and partially even reproduces a previously 
identified fMRI-derived brain-behaviour mode, we are at pains to point out that this does not 
automatically render it the ‘universal’ brain-behaviour mode. Given a different array of subject 
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metrics, or a qualitatively different array of brain metrics, the principal brain-behaviour mode 
uncovered by CCA could be different to the one at hand. This possibility is, however, speculative. 
What we may state with confidence is that, independent of the underlying imaging modality, a 
canonical brain-behaviour mode, optimally matching spectrally resolved connectomes and 
subject measure, can be identified, which arranges subjects on a positive-negative axis consistent 
with a study in which connectivity was derived from hemodynamic measures of brain activity.  
 
3.2 The CCA Mode is Composed of Spatio-Spectrally Segregated Subcomponents 
In a second step, we characterize the connectivity components of the identified brain-behaviour 
mode, for each of the five frequency bands and their connectomes. In order to do this, the 
connectivity patterns across subjects in each band were correlated with the individual connectome 
weights of the significant CCA mode. This reveals which connections (hereafter referred to as 
edges) of the connectome are more, or less, related to the mode, and therefore associated with 
individual differences over subject measures. The outcome of this analysis is shown in Figure 2. 
The correlation coefficients calculated in this analysis are referred to as mode-by-connectivity 
correlations (MCC) or MCC edges. The patterns of within-band MCC edges significantly related 
to the mode are clearly differently distributed over the brain and have distinctly negative or positive 
relationships with the mode in each of the analysed frequency bands.  
 
 

 
Figure 2. A-E. Mode-by-connectivity correlations (i.e. edges whose connectivity on a subject-by-subject 
level covaries with the mode, and thus behaviour, in short MCC) for each frequency band, from delta, theta, 
alpha and beta to gamma band. MCC values of frequency bands are colour coded (2 colours per band, 
positive and negative, encoding the correlation coefficients, in a range from -.5 to .5 to the observed 
canonical mode). Edges rendered on the brain templates are thresholded at the 0.5th bottom and 99.5th top 
percentile (of the permutation-based null distribution) for visualization. Each of the bands shows a 
preference for either positive or negative relationship to the mode, but not a mixture of both. This is also 
visible in the histograms in the bottom row that depict the distributions of all (i.e. unthresholded) correlation 
coefficients, with comparison to null distributions generated by a permutation test (n=10000, in grey). For 
additional control analyses demonstrating the robustness of results, see also Extended data Figure 2-1. 
 
Figure 3A shows the top 50 MCC edges across all five frequency bands, providing an overview 
of the diversity of connectivity patterns in each of the frequency ranges analysed. To reveal the 
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relative functional importance of each node in terms of its relationship to the mode, averaging was 
performed over all the MCC correlation matrices in which the respective node is involved. We 
thus derive maps of accumulated MCC nodes, which are shown in Figure 3B. As described above, 
the distributions of these accumulated MCC maps across bands is primarily unipolar, each of the 
five frequency bands preferentially showing either a positive or a negative relationship with the 
mode, but not both (Figure 3B). 

 
Figure 3. A. Connectogram-style visualization(Irimia et al., 2012) of the MCCC edges presented in Figure 
2. This figure shows the top 50 MCC edges(i.e. the top 50 positive and negative edges, respectively), across 
all five frequency bands (globally tresholded across all bands pooled). Nodes are represented on the 
outside of the ring, in an approximately anatomically-faithful anterior-posterior and left-right arrangement. 
Anatomically labeled parcel identities are listed in Figure 1-2. Each parcel’s grayscale value indicates its 
average relationship to the CCA mode, i.e. its average accumulated MCC values across frequency bands 
– white indicates a positive relationship to the mode, and black indicates a negative relationship (averaged 
over bands and all edges, i.e. connections of that parcel). The 5-band histograms on the outer ring indicate 
the band-specific accumulated  MCC values for each node (same color coding as for the top edges in 1A 
and the maps in 1B, histograms pointing outwards are positive, inward histograms indicate negative 
accumulated MCC values). B. Maps of accumulated MCC values for all frequency bands. These represent 
the average MCC values, over all connections, for each parcel. Thus, these accumulated maps represent 
the overall involvement of each parcel in predicting behaviour and provide complementary information to 
the MCC edges by showing the presence of connectivity foci, i.e. nodes of particular importance to the 
MCC network, acting as sinks or hubs. Thresholded at the 10th and 90th percentiles for negative and positive 
accumulated MCC values, respectively. NB: No supra-threshold accumulated MCC values are observed in 
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the gamma band. Abbreviations: L = left, R = right, pos. = positive, neg. = negative, SUBCORT = 
subcortical. 

 

3.3 Connectivity of spectrally-resolved brain activity is preferentially positively or 
negatively linked to cognitive performance, but not mixed 
  
The discovery of frequency-specific connectivity components that correlate either negatively or 
positively with the CCA-derived mode – and as a consequence, negatively or positively with 
cognitive performance (CP)- invites the conclusion that some connectivity patterns are “positive”, 
while others are “negative”. We will refer to them further as CP positive and CP negative. This 
interpretation is somewhat consistent with previous reports from rs-fMRI data (Smith et al., 2015), 
which also showed that certain subcomponents (especially areas pertaining to the default mode 
network) of the whole-brain connectome are positively, and others (mostly visual areas) 
negatively, associated with the positive-negative axis behavioral exposed by CCA.  
 
3.3.1 Delta-band and alpha-band MCC show negative relation to cognitive performance 
 
Alpha and delta-band connectivity were almost exclusively negatively associated with the CCA 
mode, i.e. negatively correlated with cognitive performance. The parcels with the highest 
incidence of significant connectivity-behaviour relationships in the alpha-band are principally 
concentrated in visual-posterior areas, consistent with the usual distribution of alpha power at 
rest. Given that spectral power was regressed out of these analyses (see Methods), we may 
conclude that higher connectivity in the alpha band, absent the biasing effects of the typically 
higher power in this frequency range compared to the rest of the spectrum, is predictive of lower 
cognitive performance and higher incidence of negatively associated health and behaviour 
indicators. Delta-band connections also correlate negatively with behaviour. The majority of 
implicated nodes are differently distributed compared to alpha-band MCCs, incorporating bilateral 
inferior posterior and anterior temporal lobes and inferior and orbitofrontal areas. 
 
The negative relationship of the alpha-band posterior MCC edges to the canonical behavioural 
mode is comparable to the accumulated MCC nodes known from fMRI derived CCA 
analysis(Smith et al., 2015). By means of spectrally resolved CCA analysis, we can assign a 
neuro-spectral profile to some of these previously reported MCC networks. For example, the 
fMRI-derived negative-posterior MCC nodes in early visual areas(Smith et al., 2015) are putative 
equivalents of the MEG-derived negative-posterior alpha-band MCC nodes, exhibiting similar 
locus and functional relevance (i.e. higher connectivity = lower score in a similar CCA mode). 
 
The components of the delta-band are less easy to map onto previous results. The finding of 
delta-band specific MCC values negatively related to the mode is suggestive of a negative impact 
of increased low-frequency neural coupling at rest on cognitive function. Usually, pronounced 
delta oscillations are found during sleep, while in the awake human brain, delta is most often 
recorded in pathological situations such as in the presence of lesions or tumours. Unusually 
elevated delta coupling may also be a sign of slowed theta oscillations, a phenomenon often 
observed in pathological cognitive decline, such as Alzheimer’s disease, caused by cholinergic 
loss (Speckmann and Elger, 2005). While we do not propose that the young, healthy cohort 
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examined here suffered from any neurological pathologies, it is intriguing to note the fact that slow 
oscillatory activity is not typically associated with optimal brain function during wakefulness. 
 
3.3.2 Theta-, beta- and gamma band MCC edges show positive relationship to cognitive 
performance 
 
Beta, theta and gamma-band MCC edges exhibit a substantially different relationship to the 
canonical mode, compared to alpha and delta MCC edges. This is the case both in terms of the 
polarity of the relationship, and the spatial distribution of the relevant nodes. For the observed 
canonical mode, subjects scoring high in frontal and prefrontal beta-band connectivity also score 
highly in the identified canonical mode, indicating higher cognitive performance. The patterns that 
arise from beta-band accumulated MCC maps, especially in medial areas, show good 
correspondence to previous results for fMRI connectivity (Smith et al., 2015). For theta MCC 
edges and accumulated MCC maps, spatially we see a more pre-central pattern with a 
functionally similar interpretation – the more pronounced the connectivity is in these edges, the 
higher the subject scores in the canonical mode, i.e. the higher the subject is ranked on the 
positive-negative axis identified by the significant CCA mode. The properties of gamma-band 
MCC edges are particularly noteworthy. While the overall gamma MCC network is somewhat 
patchy, featuring what appear to be a greater number of short-range connections, its connectivity 
is still relevant for the global mode of behaviour. It also seems to have fewer sinks or hubs where 
connections emerge or terminate, resulting in the absence of significant accumulated MCCs, in 
contrast to the more clustered network patterns in frequency bands at lower frequencies. 
Considering that gamma in general is known to be an index of local activation, offering often 
relatively fine spatial resolution (e.g. down to mapping the representation of individual digits of the 
hand (Miller et al., 2009)), this is not altogether surprising. 
 
This striking dichotomy of either CP positive or CP negative connectivity – when looking at 
spectrally resolved connectomes – is both novel and unexpected. Previous results – using fMRI 
connectivity that is agnostic to the underlying frequencies of neuronal communication – have so 
far only shown patterns of mixed positive or negative relationship to the observed brain-behaviour 
mode. We tested whether this segregation does arise from the CCA trivially by creating MCC 
edges from surrogate data, by permuting the subject-labels and recomputing the (pseudo-)MCC 
patterns. The resulting null-distributions of correlation coefficients are shown in Figure 2 (bottom 
row); they do not exhibit any polarity preference or skewedness as the actual MCCs do. 
 
3.4 Resolved MEG connectivity model shows results comparable to fMRI connectivity 
 
In terms of the resulting canonical mode and its maximum alignment of connectivity and subject 
measures, the MEG connectivity model used here (5 bands, 100 parcels) shows comparable 
results with regard to the results obtained with fMRI connectivity (for identical subjects, subject 
measures and number of principal components entering CCA), see Figure 1-5A. Also, with regard 
to explaining the full set of subject measures, the MEG connectivity used here performs similarly 
well as the fMRI-based connectivity (Figure 1-5B). Interestingly, what was also observed is that 
an entirely unresolved, i.e. one-dimensional broadband connectivity model performs less well in 
terms of maximum alignment and explained variance of subject measures. Even when using the 
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initially available spectral resolution (20 2-Hz wide bins instead of 5 bands), results did not 
outperform the 5-band model. 
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4. Discussion 
 
In summary, we show that exploiting the spectral richness of MEG connectivity patterns by using 
a spectrally resolved connectome reveals a brain-behaviour mode not unlike previous results 
uncovered via hemodynamic connectivity metrics. Beyond simply reproducing these, our results 
demonstrate the existence of functionally distinct networks across a broad range of conventional 
frequency bands. Even neighbouring bands, e.g. alpha and beta, can have opposing functional 
roles with respect to a brain-behaviour mode arranging behavioural measures on a positive-
negative axis. 
 
Regarding the approach taken in this study, the concept of spectrally resolved connectivity, which 
can also be considered neuronal communication at multiple time scales or channels, is not new. 
Some models of how neuronal assemblies communicate have focused on activity confined to 
certain frequency bands (Fries, 2005), while more recent perspectives also incorporate multi-
channel or multi-frequency scenarios (Fries, 2015). Furthermore, empirical studies, mostly MEG, 
have also increasingly shown connectivity and networks at multiple frequencies or showing 
features or states with specific spectral features or profiles (Hipp et al., 2012;Colclough et al., 
2016; Vidaurre et al., 2018;Brookes et al., 2016; Brookes et al., 2016; Colclough et al., 2016; Hipp 
et al., 2012; Vidaurre et al., 2018) and first reviews about the accumulated literature emerge 
(Sadaghiani and Wirsich, 2020). What was, however, hitherto missing was a functional 
characterization of these spectrally resolved features or parameters, specifically of connectivity, 
due to the absence of an attested link to behaviour. Here, to the best of our knowledge, for the 
first time, we have demonstrated the nature of the relationship between a spectrally resolved 
connectivity estimate to not just one, but an entire battery of behavioural and other subject 
variables. 
 
Although the classification of brain activity into several predefined frequency bands is already an 
extension of spectrally unresolved approaches, it still might be an oversimplification of the 
richness of neuronal dynamics in the brain. However, it can be useful and the fact that using 
predefined, canonical, spectral ranges and the corresponding connectomes reveals a global 
brain-behaviour mode with little overlap between bands lends support to the idea of spectrally 
resolved, functionally meaningful networks. The relevance of these bands is underscored firstly 
by the comparison with two analyses reported above. First, the analysis using broadband 
connectivity showed a brain-behaviour mode that was both less capable of explaining variance in 
behaviour than the spectrally resolved approach. Second, analysis using the fully (i.e. 20-bin) 
spectrally resolved connectome failed to reveal any additional insights into brain-behaviour 
associations compared to of the five conventional bands. Of course, this does not mean that 
deploying the standard 5-band model is the optimum for identifying brain-behaviour links, but it 
suggests the existence of well-defined and functionally distinct frequency ranges and the 
networks that emerge from them.  
 
Our study and its results add several novel aspects here. First, we show that an observed link 
between brain and behavior cannot be attributed to a single isolated frequency band but is what 
appears to be a rich multi-level spatio-spectral connectivity pattern. Second, the holistic analysis 
that we offer here is  identifying a clear, interpretable and plausible brain-behavior axis which has 
been reported before, and in the present case of M/EEG connectivity adds a novel component 
which is looking at neural communication in a spectrally resolved and spatially interpretable 
manner, in a healthy population. By virtue of this analysis, we were able to reveal different 
contributions of the spectrally resolved connectome(s), with the striking observation is that the 
frequency bands and their functionally relevant connectomes often can have very different 
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functional roles – some of them having a positive functional relationship with cognitive 
performance and others a negative relationship. 
 
The multi-spectral character of positive and negative MEG connectivity  
 
This strong preference for either positive or negative relationships with the mode, corroborated 
by numerous control analyses, seems to be supportive of the existence of different ‘channels’ of 
neuronal communication, characteristic of and confined to these frequency bands and the edges 
involved. Furthermore, we do not find that a single frequency band completely dominates the CCA 
derived brain-behaviour mode. Rather, analyses of both the functionally relevant patterns of 
connectivity - the MCC edge correlations - as well as the accumulated MCC node correlations, 
point to a relatively distributed and balanced contribution of network components indicative of 
behaviour.  
 
The fundamental and qualitative difference between the observed patterns of MCCs in alpha and 
beta-bands is a good illustration of our observations regarding the positive or negative nature of 
spectrally resolved connectivity. While both rhythms, alpha and beta, at rest, express functional 
connectivity network patterns that are relatively amenable to interpretation (Brookes et al., 2016; 
Brookes et al., 2011b; Hipp et al., 2012) – they resemble visual or motor related networks - the 
resulting MCC edges, for the observed mode at least for beta, are more frontally or prefrontally 
localized and can be less easily assigned directly to sensorimotor functions. In addition, higher 
beta-band connectivity is beneficial, while higher alpha connectivity (in the predominantly visual 
nodes implicated by CCA) is apparently deleterious for cognitive performance linked to the 
observed mode. This implies that higher connectivity strength is not always better, but its impact 
on the mode (and thus behaviour) appears to be a function of frequency. The finding of negative 
MCC values in the alpha range may appear somewhat surprising, however, all additional control 
analyses we had performed support our finding of posterior, alpha-band specific connectivity 
being detrimental to cognitive performance. With regard to existing studies that focused on alpha-
band connectivity, most of them were examining patient populations. Of these studies one study 
did – in line with our findings – report increased occipital alpha connectivity in schizophrenic 
patients compared to healthy controls (Liu et al., 2019), which is interesting because 
schizophrenia often involves cognitive impairment. Other studies dealing with cognitive 
impairment arising from Alzheimers’ disease (Ranasinghe et al., 2014; Stam et al., 2006) reported 
decreased alpha-band connectivity related to cognitive deficits, but more in frontal or unspecific 
regions. Thus, while there are some clinical studies that focused on alpha-band connectivity (or 
other bands), we are not aware of a healthy M/EEG cohort where a similar large battery of 
behavioural variables was collected. However, the study using HCP fMRI-derived connectivity 
found also most of their negative MCC values in early visual areas being in line with our 
findings(Smith et al., 2015). This, together with the observation that CCA identified a MEG-fMRI 
link of connectivity patterns (see Methods, “Validation”) lends further support to our findings. 
 
 
Previous work, other related lines of research and concepts 
 
The fundamental issue of CP positive and CP negative brain patterns is also related to another 
line of research, which has investigated how neuronal variability predicts healthy ageing and a 
maintained high level of cognitive performance (Garrett et al., 2011; Garrett et al., 2013). While 
the approach employed here emphasised connectivity rather than variability per se, i.e. of single 
sensors, sources or voxels, the two concepts are not entirely unrelated. For example, neuronal 
variability (or activity in the widest sense) is a necessary pre-condition for meaningful connectivity. 
However, this type of common variability as it is reflected in our conceptual approach of estimating 
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M/EEG connectivity, is not a one-way road; whether this covariation or connectivity is positive or 
negative with regard to cognitive performance is very specific and rather dependent on the locus 
and the frequency band the network is operating at. 
 
Regarding previous work from the M/EEG side, the following should be noted: there are decades 
of studies linking rhythms and cognitive processing and function (e.g. see Arns et al., 2013; 
Klimesch, 1999), with almost every frequency band having been associated with cognitive 
processing in one way or another, from delta (Harmony, 2013), theta (Finnigan and Robertson, 
2011; Vlahou et al., 2014) and alpha (Klimesch, 1999), over beta (Lundqvist et al., 2018) up to 
the gamma frequency range (Ward, 2003). Yet, these studies often focused on sensor-wise or 
areal spectral features such as amplitude or phase variability, hence being agnostic of the 
potential relevance of any longer-distance inter-areal communication or network activity. Although 
these local M/EEG oscillations are also likely to  be embedded in small-scale local networks, 
these are unresolvable by M/EEG imaging, we therefore distinguish these from the longer-range 
networks that we have investigated in the foregoing analyses Thus, while our network-based 
results seem in part in line with the general literature, e.g. ascribing alpha and theta a role in sleep 
and relaxation, while showing a more positive, attention or memory-related role of theta, beta and 
gamma activity, a direct comparison is not straightforward and may not even be entirely valid. 
Similarly, the resulting spatial maps of previous studies – especially at the sensor level - and our 
results are only comparable to a certain degree. This is not to say that there is no overlap – the 
spatial maps (especially the accumulated MCC maps) in theta (covering medial temporal lobe 
areas), alpha  (covering visual areas) and beta (covering precentral motor and premotor areas) 
are indeed similar to previously reported resting state networks (Biswal et al., 1995; Brookes et 
al., 2011a; Brookes et al., 2011b; Hipp et al., 2012). However, the networks and maps that we 
observe here go beyond simply describing group level rs-connectivity patterns or a replication of 
those - they describe the edges and nodes that are predictive of cognitive-behavioral performance 
as delineated by the identified mode. 
 
More directly-comparable, i.e. large-scale, network-based evidence for a link between rhythms 
and cognitive functions remains somewhat scarce compared to the large body of literature 
focusing on single sensors or sources. Nevertheless, such evidence is accumulating, and a more 
network-centric view is gaining traction (e.g. see Sadaghiani and Wirsich, 2020). For example, 
more recently, it has been shown that networks of these rhythms and their network properties 
(such as centrality, degree, small-worldness or path length) can link spontaneous M/EEG rhythms 
to cognitive performance, both in healthy subjects (Langer et al., 2012; Vriend et al., 2020; 
Zakharov et al., 2020) or in patient populations predicting cognitive decline (Fraga Gonzalez et 
al., 2018; Liu et al., 2019; Ranasinghe et al., 2014; Stam et al., 2006; Stam et al., 2007; Tewarie 
et al., 2012)  or surgery-related improvement (van Dellen et al., 2012). While offering a network 
view on the functional relevance of M/EEG rhythms these studies did not employ an integrated, 
spectrally resolved connectivity approach as we have. 
 
The apparent existence of multiple, functionally-relevant frequencies opens up the possibility of 
multiplexing, which is an elegant concept of how communication and information transfer may be 
realized in the human brain (Akam and Kullmann, 2014; Fontolan et al., 2014). While we cannot 
completely exclude such a scenario, our results do not support this scenario. Rather, we obtained 
evidence for spectrally distinct networks, that are also spatially distinct in their network 
characteristics. The distinct character of these behaviourally relevant components may not 
necessarily require multiplexed communication.  This highly complementary nature suggests that 
the idea of frequency bands is not just an entirely artificial construct but seems to delineate 
different functional networks. It is important to note that the networks that are reflected by the 
identified MCC edges here are different from pure resting state networks that show coherent 
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behaviour and as such are considered connected. The networks that are reported here are rather 
characterized by their similar functional meaning with respect to the identified brain-behaviour-
mode. The patterns we find, i.e. the spectrally resolved MCC edges implicated in the canonical 
brain-behaviour mode, are for the most part spatially distinct patterns and do not show strong 
overlap across spectral boundaries. 
 
Limitations and outlook 
 
As with any study, our study has some potential limitations that are important to keep in mind. 
First of all, while our study is a first step into an examination of the functional role of spectrally 
resolved neuronal large-scale communication, our approach is far from providing an exhaustive 
picture. Two notable components missing in this picture are: First, directionality is absent in the 
characterization of connectivity here, because we determine connectivity (and its strength) by 
looking at envelope correlations. While this is a common approach demonstrated to be useful in 
numerous scenarios, one apparent extension would be adding directionality, or, in a stronger 
sense, causality, e.g. by using Granger causality or related approaches. Second, another aspect 
of our approach is that at the core of our analysis – while integrating all bands into one CCA 
analysis – connectivity is derived from single, isolated frequency bands. This prevents direct 
insight into the potential of cross-frequency communication or interaction for explaining behavioral 
variability. In fact, one could go even further and claim that all oscillatory activity is only one part 
of the broader picture of neuronal dynamics and including 1/f dynamics is a crucial extension of 
describing neuronal dynamics (and possibly, interaction). As a last important thought, it has to be 
emphasized that while our observation of a brain-behavior mode (with a clear positive-negative 
axis related to cognitive performance) and its similarity to a previous fMRI derived brain-behaviour 
mode (Smith et al., 2015) is reassuring, this does by no means imply that it is the only possible 
mode or that there can be only one (and not several). Future studies with different imaging 
modalities, even more subjects or additional behavioural and subject measures may elucidate the 
answer to this question. 
  
Conclusion 
 
In conclusion, we have provided evidence that electrophysiologically derived and spectrally 
resolved connectivity present in MEG resting state data can be used to index the ranking of 
individuals across a large range of subject measures. It exhibits highly structured patterns that 
are functionally relevant and provides sensitivity comparable to rs-fMRI derived networks in 
explaining variability of subject measures across a wide range of different features and domains. 
Furthermore, the additional dimension afforded by spectrally resolving connectivity measures 
opens up new avenues into a better and more holistic understanding of the roles and contributions 
of brain rhythms at rest that ultimately will help cast light on the intrinsic features of the brain that 
determine positive and negative cognitive and behavioural traits. Given recent breakthroughs in 
using frequency-tuned transcranial electrical stimulation techniques to enhance cognition 
(Reinhart and Nguyen, 2019), outlining the roles of spectrally resolved connectivity networks is 
all the more timely, and provides a basis for considering potential network-level targets for novel 
neuromodulatory interventions. 
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5. Data availability 
The sensor space MEG resting state data and the corresponding subject measures are available 
online on https://db.humanconnectome.org, however they are not publicly accessible without 
registration. Due to privacy concerns, access to these data needs registration and approval by 
the HCP consortium. All authors have been approved and have accepted the terms of use for the 
open and restricted part of the HCP data. 

The processed and derived data (functional connectivity, CCA results etc.) that support the 
findings of the study can be made available upon reasonable request to the corresponding author. 
Since derived from the HCP data, the processed data are not publicly available due to them 
containing information that could potentially comprise research participant privacy and / or violate 
HCP terms of use and thus will be only shared accordingly. 

 

6. Code accessibility 
The code used in this study comes from several publicly available toolboxes and software. A 
previous implementation of CCA with respect to HCP functional connectivity and subject 
measures has been used elsewhere (Smith et al., 2015) and can be found on 
https://www.fmrib.ox.ac.uk/datasets/HCP-CCA/. Circos software is available on 
http://circos.ca/software/download/circos/. OSL software is available on 
https://github.com/OHBA-analysis/osl-core. Customized Matlab scripts for source reconstruction, 
use of PCA / CCA, post-CCA visualizations using OSL and Circos will be made available upon 
reasonable request to the corresponding author. 
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Extended data (Figures & Tables). 
 
 
 
Figure 1-1. Visualisation of the used parcellation (n = 100, lateral view). Parcel identities can be 
found in Figure 1-2, with anatomical labels. 

 

Figure 1 - 2. Table showing the parcel identities with anatomical labeling derived from the BNA 
atlas(Jiang, 2013). Mention of several areas means the parcel has been created by merging 
these originally separate BNA parcels into a single parcel. Abbreviations: m = medial, l = lateral, 
r = rostral, a = anterior, p = posterior, v = ventral, c = caudal, i = inferior, o = orbital, p = 
pregenual, ag = agranular, rv = rostroventral, sg = subgenual, cv = caudoventral, cl = 
caudolateral, dg = dorsal granular, lv = lateroventral, dm = dorsomedial, vm = ventromedial, tla 
= tongue and larynx area, ms = medial superior, iv = intermediate ventral, rd = rostrodorsal, cd = 
caudodorsal, rp = rostroposterior, op = opercular, vla/d = ventral a/dysgranular, da = dorsal 
agranular, ms = medial superior, ulhf = upper limb, head and face region, op = opercular, pg= 
pregenual, ms = medial superior, ll = lower limb region, dld = dorsal dysgranular, iv = 
intermediate ventral, pc = postcentral, ip = intraparietal, vld = ventraldysgranular, vlg = ventral 
granular, dla = dorsal agranular, cvl = caudal ventral lateral, ta = temporal agranular, lp = lateral 
posterior. 

 

Figure 1-3. Illustration of analysis approach. Functional connectivity as defined by envelope 
correlations within five conventional frequency bands are extracted from n=89 subjects. For each 
subject, these spectrally resolved connectivity features are first concatenated (A, forming matrix 
FC1) and subjected to group PCA, retaining the first 22 principal components per subject 
(resulting in matrix FC2). The same approach is used for reducing dimensionality of the subject 
measures of all subjects (concatenated vector B1), retaining the first 22 principal components 
(resulting matrix B2). These two matrices (FC2 and B2) are then subject to canonical correlation 
analysis (CCA), which identifies within each matrix the optimal linear weighting to maximize 
correlation of features between the two sets of variables (i.e. brain vs behaviour), transforming 
matrices FC2 and B2 into FC3 and B3. There, each row represents one mode where the newly 
formed (i.e. linearly recombined) connectivity and behavior canonical variates correlate most 
strongly (first mode here is indicated by thin black line).  

 

Figure 1-4. First CCA mode using fMRI derived connectivity (n=89). A. Behavioural ranking 
(thresholded at |rho|>0.25) and brain-behaviour mode visualization across subjects. B. 
Correlation of CCA-derived subject measure scores and connectivity scores for the first canonical 
variates identified, i.e. the first canonical mode. In colour, the behavioural score for the top-ranking 
behavioral variable in this mode, here line orientation discrimination, is shown per subject. 
 
 
Figure 1-5. Comparison of different CCA analyses. A. Correlation of first canonical variates (first 
mode) of connectivity vs behaviour (y-axis show level of significance of correlation in negative 
logarithmic scale). B. Explained variance (in percent) of the behavioural variables in the first 
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mode, same connectivity models as in A. In the order of appearance: 1 - Original analysis (5 
frequency bands, 100 parcels). 2 - 20-bin resolved MEG connectivity data. 3 – fMRI connectivity 
used instead of MEG connectivity. 4 – Spectrally unresolved MEG broadband connectivity (1-
40Hz) used, 5 - 50 parcel MEG connectivity data used. 6 – As original analysis, without source 
leakage correction performed. See also methods ("Validation analyses”, analyses numbered 4 to 
8). 
 

Figure 1-6. The amount of variance (%) explained by the first canonical variate (i.e. first mode) in 
the full set of behavioral variables. Permutation test n =1000. Green and red lines indicate 
differently thresholded top and bottom percentiles of permutation based null model. The first mode 
explains significantly more variance than permutation-based (pseudo-)results.  

 
Figure 2-1. Stability of mode-by-connectivity correlation (MCC) results for different analyses A. 
Exemplarily for the alpha-band, MCCs for the original (main) analysis and three control analyses. 
First panel: Results from original analysis, visualizing the alpha-band MCCs. Second panel: CCA 
has now been performed separately for each frequency band, here the MCC result for the alpha-
band model is shown. Third panel: For this analysis, data were split into a training and test set, 
where the training was carried out on the first two resting state sessions and testing was carried 
out on the third session. Alpha-band MCCs are shown for the CCA mode that was learned in the 
training set and applied to the test set. Fourth panel: In this analysis, data were split into training 
and test set by a leave-one-subject-out approach. Alpha band MCCs are shown for the CCA 
mode as established for the left-out subjects (and their predicted canonical variates, see Methods 
for details). All alpha-band MCCs show comparable patterns with the majority of supra-threshold 
patterns being negative, posterior MCC patterns related to the identified CCA mode. B. Summary 
of the distribution of suprathreshold MCCs across all frequency bands. Complementary to first 
row, this shows all frequency bands from delta to gamma. Almost all analyses behave the same 
way, apart from the beta-band in the frequency-band separate CCA analyses (where beta band 
CCA did not yield any significant mode). C. Similarity of MCC patterns to the original main 
analyses (first panel and Figure 2). Here, correlation was performed over the whole 4950-element 
MCC vector in each frequency band. High correlations indicate good correspondence with original 
MCC patterns from the main analysis (as visualized in Figure 2). See also methods ("Validation 
of CCA approach”, analyses 1-3). 

 
 
 
 


