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1. Abstract  42 

   43 

Two-photon calcium imaging is now widely used to infer neuronal dynamics from changes in 44 

fluorescence of an indicator. However, state of the art computational tools are not optimized 45 

for the reliable detection of fluorescence transients from highly synchronous neurons located 46 

in densely packed regions such as the CA1 pyramidal layer of the hippocampus during early 47 

postnatal stages of development. Indeed, the latest analytical tools often lack proper 48 

benchmark measurements. To meet this challenge, we first developed a graphical user 49 

interface allowing for a precise manual detection of all calcium transients from imaged 50 

neurons based on the visualization of the calcium imaging movie. Then, we analyzed movies 51 

from mouse pups using a convolutional neural network with an attention process and a 52 

bidirectional long-short term memory network. This method is able to reach human 53 

performance and offers a better F1 score (harmonic mean of sensitivity and precision) than 54 

CaImAn to infer neural activity in the developing CA1 without any user intervention. It also 55 

enables automatically identifying activity originating from GABAergic neurons. Overall, 56 

DeepCINAC offers a simple, fast and flexible open-source toolbox for processing a wide 57 

variety of calcium imaging datasets while providing the tools to evaluate its performance.   58 

   59 

Significance statement: Inferring neuronal activity from calcium imaging data remains a 60 

challenge due to the difficulty in obtaining a ground truth using patch clamp recordings and 61 

the problem of finding optimal tuning parameters of inference algorithms. DeepCINAC offers 62 

a flexible, fast and easy-to-use toolbox to infer neuronal activity from any kind of calcium 63 

imaging dataset through visual inspection.  64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 
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1. Introduction  79 

   80 

In vivo calcium imaging is widely used to study activity in neuronal microcircuits. 81 

Advances in imaging now allows for the simultaneous recording of several thousands of 82 

neurons (Stringer et al., 2019). One difficulty resides in how to infer single neuron activation 83 

dynamics from changes in fluorescence of a calcium indicator. A challenge is therefore to 84 

offer an analytical tool that would be scalable to the wide variety of calcium imaging datasets 85 

while providing reliable analysis.  86 

State of the art computational tools to infer neuronal activity (such as CaImAn 87 

(Giovannucci et al., 2019; Pnevmatikakis et al., 2016)) are based on the deconvolution and 88 

demixing of fluorescence traces from segmented cells. However, in order to optimize the 89 

deconvolution parameters, a ground truth based on simultaneous targeted patch-clamp 90 

recordings and two-photon imaging is necessary (Chen et al., 2013; Evans et al., 2019).   91 

Moreover, an analysis based on the fluorescence traces even after a demixing 92 

process can still be biased by overlapping cells (Gauthier et al., 2018). In a recent study from 93 

Gauthier and collaborators (Gauthier et al., 2018) analyzing calcium imaging data recorded 94 

in the region CA1 in adult rodents (Gauthier and Tank, 2018), 66% of the cells were reported 95 

as having at least one false transient and overall, among 33090 transients (from 1325 96 

sources), 67% were considered as true, 13% as false and 20% were unclassified. Those 97 

contaminations increase the risk of misinterpretation of the data. Inferring neuronal activity 98 

from the developing hippocampus in-vivo is even more challenging due to several factors: 1- 99 

recurring network synchronizations are a hallmark of developing neuronal networks (Ben-Ari 100 

et al., 1989; Galli and Maffei, 1988; O’Donovan, 1989; Provine, 1972), which results in 101 

frequent cell co-activations, 2- the somata of pyramidal neurons are densely packed which 102 

results in spatial overlap, 3- Different calcium kinetics are observed in the same field of view 103 

(due to different cell types and different stages of neuronal maturation (Allene et al., 2012)). 104 

All these points are illustrated in Videos 1 and 2 (Region CA1 of the hippocampus from 105 

mouse pups). In addition, most methods do not offer solutions to evaluate the performance 106 

of neuronal activity inference on user datasets. To meet those challenges, we have 107 

developed a graphical user interface (GUI) that allows for such evaluation through data 108 

exploration and a method based on deep-learning to infer neuronal activity. Even if several 109 

deep-learning-based methods to infer neuronal activity from fluorescence signals have 110 

already been developed (Berens et al., 2018), none proposes a method directly based on 111 

raw two-photon imaging signals.  112 

Our goal was to train a classifier to recognize cell activation directly from a movie 113 

which falls into the domain of action recognition. Action recognition from videos has seen 114 

recent important progress thanks to deep learning (Bin et al., 2018). Using a similar 115 
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approach, we have trained a binary classifier on calcium imaging movies (allowing us to 116 

explore both the forward and backward temporal information among the whole sequence of 117 

video frames) to capture the fluorescence dynamics in the field of view and then predict the 118 

activity of all identified cells. It gave us the opportunity to take full advantage of the 119 

information contained in the movie in terms of dynamics and potential overlaps or other 120 

sources of contamination that might not be accessible when working only on fluorescence 121 

time courses.  122 

To train the classifier a ground truth was needed. To our knowledge, no calcium 123 

imaging datasets from the developing hippocampus in vivo with simultaneous 124 

electrophysiological ground truth measurements are available. The most accurate ground 125 

truth would require targeted patch-clamp recordings with two-photon imaging on all the 126 

different hippocampal cell types with different calcium dynamics. This is technically difficult, 127 

time consuming and even more during development as the ground truth must be obtained 128 

from cells at various stages of maturation. As a result, we decided to base the ground truth 129 

on the visual inspection of raw movies using a custom-made GUI. It gives the advantages to 130 

work on any kind of calcium imaging dataset and to offer an easy tool to benchmark 131 

methods that infer neuronal activity.   132 

The GUI offers a tool to precisely and manually detect all calcium transients (from 133 

onset to peak, which is the time when cells are active). We collected and combined a corpus 134 

of manual annotations from four human experts representing 37 hours of two-photon calcium 135 

imaging from 11 mouse pups aged between 5 to 16 postnatal days in the CA1 region using 136 

GCaMP6s. Almost 80 % of the labeled data was used to train the model, while the rest was 137 

kept to benchmark the performance. Then, movies were processed using a convolutional 138 

neural network with an attention mechanism and a bidirectional long-short term memory 139 

network (Hochreiter and Schmidhuber, 1997; LeCun and Bengio, 1995; Vaswani et al., 140 

2017). 141 

To evaluate the method, we used the ground truth as a benchmark. We found that 142 

this method reached human level performance and offered a better sensitivity and F1 score 143 

than CaImAn to infer neuronal activity in the developing hippocampus without any user 144 

intervention. Overall, DeepCINAC (Calcium Imaging Neuronal Activity Classifier) offers a 145 

simple, ergonomic, fast and flexible open-source toolbox for processing a wide variety of 146 

calcium imaging data while providing the tools to evaluate its performance.   147 

 148 

2. Methods  149 

   150 

In this section, we will describe all the necessary steps to build a deep learning 151 

neural network “DeepCINAC”. This toolbox was developed to analyze in vivo two-photon 152 
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calcium imaging data acquired in the developing hippocampus (See § Experimental 153 

procedure and data acquisition). As a first step, we needed to set a ground truth that was 154 

established on the visualization of the recorded movie by three to four human experts (§ 155 

Ground truth). Then data are pre-processed (§ Data pre-processing and feature 156 

engineering and model description) and used to train the network (§ Computational 157 

performance). As a final step, we used labelled data to evaluate the performance of 158 

DeepCINAC (§ Performance evaluation). Tutorials and the source code are freely available 159 

online (§ Toolbox and data availability).  160 

  161 

2.1 - Experimental procedure and data acquisition  162 

All experiments were performed under the guidelines of the French National Ethic 163 

Committee for Sciences and Health report on "Ethical Principles for Animal Experimentation" 164 

in agreement with the European Community Directive 86/609/EEC.  165 

 166 

Viral injection. To induce widespread, rapid and stable expression of the calcium 167 

indicator GCaMP6s in hippocampal neurons at early postnatal stages, we intraventricularly 168 

injected a viral solution (pAAV.Syn.GCaMP6s.WPRE.SV40, Addgene #100843-AAV1) at P0 169 

in mouse pups of either sex (Figure 1A-B). This injection protocol was adapted from already 170 

published methods (Kim et al., 2014, 2013). Mouse pups were anesthetized on ice for 3 to 4 171 

minutes and 2 μL of the viral solution were injected in the left lateral ventricle which 172 

coordinates were estimated at the ⅖ of the imaginary line between the lambda and the eye 173 

at a depth of 400 μm. Expression of GCaMP was checked on slices and was sufficient for in 174 

vivo imaging as early as P5, which is consistent with already published data (Kim et al., 175 

2014). In addition, GCaMP expression, brightness and kinetics of the reporter was then 176 

stable throughout all developmental stages used (data not shown). 177 

 178 

Surgery. The surgery to implant a 3 mm large cranial window above corpus callosum 179 

was adapted from described methods (Dombeck et al., 2010; Villette et al., 2015). 180 

Anesthesia was induced using 3% isoflurane in a mix of 90% O2 - 10% air and maintained 181 

during the whole surgery (approximately 1:30h) between 1% and 2.5% isoflurane. Body 182 

temperature was controlled and maintained at 36°C. Analgesia was controlled using 183 

Buprenorphine (0.025mg/kg). Coordinates of the window-implant were estimated by eyes. 184 

The skull was removed and the cortex was gently aspirated until the external capsule / 185 

alveus that appears as a plexus of fibers was visible. Surface of the corpus callosum was 186 

protected with QuickSil (WPI) then the cannula with the window was implanted and fixed to 187 

the heaplate of the animal. 188 

 189 
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Imaging. Two-photon calcium imaging experiments were performed on the day of the 190 

surgery (Figure 1C-D) at least one hour after the end of the surgery. 12500-frames-long 191 

image series from a 400x400 μm field of view with a resolution of 200x200 pixels were 192 

acquired at a frame rate of 10.6 Hz (Figure 1D). We then motion-corrected the acquired 193 

images by finding the center of mass of the correlations across frames relative to a set of 194 

reference frames (Miri et al., 2011) .  195 

 196 

Cell segmentation. To detect cell contours, we used either the segmentation method 197 

implemented in suite2p (Pachitariu et al., 2017) or the Constrained Nonnegative Matrix 198 

Factorization (CNMF) implemented in CaImAn. 199 

 200 
Activity inference. To infer activity we used the Markov chain Monte Carlo (MCMC) 201 

implemented in CaImAn on cell contours obtained from the CNMF of the toolbox. The 202 

MCMC spike inference was done as described (Pnevmatikakis et al., 2016). We used 203 

DeepCINAC predictions on both contours from suite2p and CaImAn. 204 

 205 

2.2 Data visualisation: GUI 206 

To visualize our data and explore the results from any spike inference method, we 207 

designed a graphical user interface (GUI) that provides a visual inspection of each cell’s 208 

activity (Figure 2). The GUI offers a set of functionalities allowing visualization of i) calcium 209 

imaging movies centered and zoomed on the cell of interest during a time window that 210 

includes a given transient, ii) sources, transient profiles and their correlations (as developed 211 

by Gauthier and collaborators), iii)  transient fluorescence signal shape. 212 

Additionally, the GUI can be used to i) display the spike times from an inference 213 

method (Figure 2A1-2), ii) establish a ‘ground truth’ (Figure 2B), iii) visualize DeepCINAC 214 

predictions (Figure 2C).  215 

The GUI was developed using Python and Tkinter package. It can read data from 216 

several formats including neurodata without borders files (Rübel et al., 2019; Teeters et al., 217 

2015). More details on the GUI and a complete tutorial are available on GitLab 218 

(https://gitlab.com/cossartlab/deepcinac)   219 

 220 

2.3- Ground truth 221 

 222 

Activity inference: Electrophysiological ground truth. Ground truth data from 223 

experiments previously described were taken from crcns.org. (Chen et al., 2013; GENIE 224 

Project, 2015). Briefly, visual cortex neurons expressing the calcium indicator GCaMP6s 225 

were imaged while mice were presented with visual stimuli. 60 Hz two photon imaging and 226 
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loose cell-attached recordings at 10 kHz were performed simultaneously. Using ImageJ 227 

software, we downsampled imaging data to 10 Hz by averaging every six frames and 228 

rescaled it to 1.2 μm/pixel. We considered a cell active during a rise time if a spike was 229 

detected during that time, and used the previously described GUI to convert those data in 230 

the cinac format so we could produce benchmarks and train a classifier using those data 231 

(see Table 1 and Table 1-1 for more details).  232 

 233 

Activity inference: Visual ground truth. All functionalities of the GUI were used as 234 

criteria by each human expert to label the data. The ground truth was established based on 235 

two-photon calcium imaging from pups from 5 to 16 days old (see Table 1) in a four steps 236 

workflow as described in Figure 3. Data were selected and labeled at least by two 237 

independent human experts (Figure 3, step 1 & 2). We then combined those labels (Figure 238 

3, step 3) and a final agreement was decided by three to four human experts (Figure 3, step 239 

4). In addition, we trained another classifier for interneurons using transgenic pups in which 240 

only interneurons express the indicator (Melzer et al., 2012). As previously described, 241 

interneurons’ activity was labeled by three or four human experts and used to train an 242 

interneuron specific classifier (CINAC_v7, see Table 1). After training our classifier on a first 243 

set of cells, we used the predictions obtained on new data to establish additional ground 244 

truth based on the mistakes made on those data. At least two human experts labeled 245 

segments of 200 frames containing the wrong predictions. Additional visual ground truth was 246 

established by one human-expert (RD) on three other datasets from our lab using the GUI: i) 247 

GCAMP6s calcium imaging movies from the developing barrel cortex (‘Barrel-ctx-6s’, 1.5Hz, 248 

1.2μm/pixel) (Modol et al., 2019) , ii) GCaMP6m imaging movies (‘Hippo-6m’, 10 Hz, 2 249 

μm/pixel) and iii) GECO imaging movies (‘Hippo-GECO’, 5 Hz, 2 μm/pixel) both from the 250 

adult hippocampus (see Table 1-1 for the details). For ‘Barrel-ctx-6s’ and ‘Hippo-GECO’, the 251 

CaImAn spike inference had already been performed by the original experimenter. We 252 

performed CaImAn spike inference on ‘Hippo-6m’.  253 

 254 

 CINAC version* n cells n animals n frames 

Hippo-dvt v1 v4 v6 1041 132 689272 

Hippo-GECO v3 5 2 45000 

Hippo-6m v4 3 1 42000 

Barrel-ctx-6s v4 20 2 36000 

Visual-ctx-6s v5 v6 7 NA 33800 

Hippo-dvt-INs v7 29 9 362500 
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Table 1:  Data used to train the classifiers. 255 

Training dataset include validation dataset (see methods). 256 

Description of the datasets precising the number of frames, number of animals and field of 257 

views included, as well as the classifiers that used these datasets.  258 

n: number of.  259 

*: version that used at least part of those dataset.  260 
1: including 2 simulated movies, representing 32 cells and 80000 frames. 261 
2: including 2 simulated movies. 262 

 263 

Cell type ground truth. We used calcium imaging movies from GadCre (Melzer et al., 264 

2012) positive animals injected with both h-SynGCaMP6s and Cre-dependent TdTomato to 265 

identify interneurons by the overlap of GCaMP6s and TdTomato signals. Using the GUI, we 266 

manually categorized 743 cells from 85 recordings among three categories: interneuron, 267 

pyramidal cell and noisy cell. 283 TdTomato expressing cells were categorized as 268 

interneurons. 296 cells were categorized as putative pyramidal cells based on their 269 

localization in the pyramidal layer, their shape and their activity. Finally 164 cells were 270 

categorized as noisy cells, determined by visually estimating their signal-to-noise ratio. We 271 

used a total of 643 cells (245 interneurons, 245 putative pyramidal cells and 153 noisy ones) 272 

to train the cell type classifier and 100 cells (38 interneurons, 51 putative pyramidal cells and 273 

11 noisy ones, not included in the training dataset) were used to evaluate it.  274 

 275 

2.4 - Data pre-processing, feature engineering and model description  276 

   277 

Definition of training, validation and test datasets. Our main dataset was split 278 

between a test dataset and a dataset used to train the classifier (referred to as training 279 

dataset, see Table 1 and 1-1). The training dataset used as the input of the classifier was 280 

randomly split with a ratio of 80-20% on a training and validation dataset. Validation data are 281 

used at the end of each epoch of the training to update the weights of the classifier. 282 

 283 

Data pre-processing and feature engineering. Calcium movies in tiff format were split 284 

into individual tiff frames to be efficiently loaded in real time during the data generation for 285 

each batch of data fed to the classifier. For any given cell, a batch was composed of a 286 

sequence of 100 frames of 25x25 pixels window centered on the cell body. The length of the 287 

batch was chosen to fit for interneurons activity (rise and decay time). The window size was 288 

adapted to capture the activity of cells overlapping the target cell. In a recording of 12500 289 

frames, the number of transients ranges from 10 to 200 approximately. Thus the frames 290 

during which the cell is active (from onset to peak), represents a low percentage of the total 291 
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data. Because manual labeling is time consuming, the data used as ground truth was limited 292 

in size. To overcome the issue of the imbalanced data and to enlarge the dataset, we used 293 

the following three approaches:  294 

#1: Data augmentation (Perez and Wang, 2017): temporal and spatial data 295 

augmentation were used. Temporal augmentation was used in that each block of 100 frames 296 

was overlapping with each other using a sliding window of 10 frames of length. Spatial 297 

augmentation took the form of transformations such as flip, rotation or translations of the 298 

images.  The data augmentation was done online, meaning that the transformations were 299 

done on the mini-batches that the model was processing. This allowed avoiding memory 300 

consumption and generating a dataset on multiple cores in real time.  301 

#2: Simulated data: To balance our dataset, and increase the ability of the network to 302 

predict a fake transient as false, we have simulated calcium imaging movies with a higher 303 

rate of overlapping activity than our dataset (an example of artificial movie is available online 304 

on the gitlab page, alongside the source code: https://gitlab.com/cossartlab/deepcinac). We 305 

started by collecting more than 2000 cell contours from several movies that were segmented 306 

using suite2p. We randomly picked contours to build a cell map, with sixteen cells for which 307 

one to four cells are overlapping it. We then generated for each cell an activity pattern, with a 308 

randomly chosen number of transients (from 2 to 16 for 1000 frames, 1.2 to 9.6 309 

transients/min for a 10 Hz sampling rate) and duration of rise time (from 1 to 8 frames, 100 310 

to 800 ms for a 10 Hz sampling rate), following a random distribution. To simulate the 311 

fluorescence signal, on the rise time we use a linear fit from the onset to peak, for the decay 312 

we use an exponential decay with a decay from 10 to 12 frames of duration. To generate the 313 

calcium imaging movie, we decided on a basal level of activity and then we adjusted the 314 

intensity of pixels in the cell for each frame according to the amplitude of the cell 315 

fluorescence, pixels in the cell have a different weight depending if they are in the soma or 316 

not, their intensity being lower in the nucleus. We finally added some gaussian noise (μ=0, 317 

σ²=0.1) on every frame.          318 

#3: Data stratification: In order to balance the data, we used data augmentation on 319 

selected movie segments (underrepresented segments), and excluded others 320 

(overrepresented segments) from the training data set. After data stratification, we obtained 321 

approximately 60% of the movie segments containing at least one real transient, 30% at 322 

least one fake transient without real ones and 10% without transients. We were then able to 323 

be more precise over the proportion of segments with multiple transients or cropped 324 

transients. We gave higher weights to segments containing fake transients in order for the 325 

network to adjust the accuracy accordingly.    326 

The data augmentation, simulated data and stratification were applied to the part of 327 

the training dataset not used for validation. 328 



 

 10 

 329 

Model description. To perform action recognition, we designed a joint model 330 

combining a forward-pass long-short-term memory (LSTM), a backward-pass LSTM and 331 

convolutional neural network (CNN) features. In order for the bi-directional LSTM to focus on 332 

relevant information, we reinforced it by an attention process at the stage of encoding similar 333 

to previous work (Bin et al., 2018; Rémy, 2019). The model was designed using Python and 334 

Keras library (Chollet, 2015), see Figure 4).  335 

The model used to predict the cell activity takes three inputs, each representing the 336 

same sequence of 100 frames (around 10 seconds of activity). Each frame had dimensions 337 

of 25x25 pixels, centered around the cell of interest, whose activity we want to classify. The 338 

first input has all its pixels set to zero except for the mask of the cell of interest (cell activity). 339 

The second input has all its pixels set to zero except for the mask of the cells that intersect 340 

the cell of interest (overlapping activity). The final input has the cell of interest and the one 341 

intersecting its pixels set to zeros (neuropil activity). That way, the model has all the 342 

information necessary to learn to classify the cell’s activity according to its fluorescence 343 

variation.   344 

The model used to predict the cell type takes two inputs, each representing the same 345 

sequence of 500 frames (around 50 seconds of activity). Each frame had dimensions of 346 

20x20 pixels, centered around the cell of interest, whose cell type we want to classify. The 347 

first input has all its pixels set to zero except for the mask of the cell of interest (cell activity). 348 

The second input has all its pixels.  349 

We used dropout (Srivastava et al., 2014) to avoid overfitting, but no batch 350 

normalization. The activation function was swish (Ramachandran et al., 2017). The loss 351 

function was binary cross-entropy and the optimizer was RMSprop. To classify cell activity 352 

the output of the model was a vector of length 100 with values between 0 and 1 representing 353 

the probability for the cell to be active at a given frame of the sequence. To classify the cell 354 

type (interneuron, pyramidal cell or noisy cell), the output was three values ranging from 0 to 355 

1 and whose sum is equal to 1, representing the probability for a cell to be one of those three 356 

cell types.  357 

 358 

2.5 - Computational performance  359 

              360 

Classifier training  361 

We trained the classifier on a Linux-based HPC cluster where 4 CPUs (Intel(R) Xeon(R) 362 

CPU E5-2680 v3), 320 GB of RAM and 2 bi-GPU NVIDIA Tesla V100 were allocated for the 363 

processing task. To give an estimation of the time required to complete the training, the 364 
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general classifier (CINAC_v1) was trained over 14 epochs. Training took around 40h (less 365 

than 3 hours by epoch).  366 

 367 

Classifier prediction  368 

Using Linux-based workstation with one GPU (NVIDIA® GeForce GTX 1080), 12 CPUs 369 

(Intel Xeon CPU W-2135 at 3.70 GHz), and 64 GB of RAM, the time to predict the cell 370 

activity on a movie of 12500 frames was on average 13 sec, approximately 3.5 hours for a 371 

1000 cells. The time to predict the cell type on a movie of 12500 frames was on average 2 372 

sec, approximately 33 min for a 1000 cells.  Similar performance was achieved using google 373 

colab.   374 

   375 

2.6 - Performance evaluation  376 

   377 

Descriptive metrics for activity classifier: sensitivity, precision, F1 score. We 378 

evaluated the performance of the activity classifiers which predict for each frame if a cell is 379 

active or not. We chose to measure the sensitivity and precision values, as well as the F1 380 

score that combines precision and sensitivity into a single metric defined as the harmonic 381 

mean of precision and sensitivity (Géron, 2019). Because we have a skewed dataset (cells 382 

being mostly inactive), we chose not to use the accuracy. The output of the binary classifier 383 

being the probability for a cell to be active at a given frame, we considered that a transient 384 

was predicted as true if at least during one of its frames the cell was predicted as active. On 385 

this basis, we were then able to compute the sensitivity (defined as the proportion of real 386 

transients that were detected) and the precision (defined as the proportion of detected 387 

transients that are real transients). We used these metrics in order to base the choice of the 388 

'best' epoch on the classifier performance on the test dataset rather than the performance on 389 

validation dataset. However, we stopped the training when the validation dataset metrics 390 

reached a plateau. 391 

 392 

 Descriptive metrics for cell type classifier: sensitivity, precision, F1 score. We 393 

evaluated the performance of the cell type classifier which predicts the type of a cell. We 394 

chose to measure the sensitivity and precision values, as well as the F1 score. To do so  we 395 

used the metrics module of the Python package scikit-learn (Pedregosa et al., 2011) that 396 

returns the confusion matrix and a classification report containing those metrics.  397 

 398 

 Statistical analysis. The distribution of F1 score values on the datasets for each 399 

inference method were compared using Wilcoxon signed-rank test with an a priori 400 
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significance level of p = 0.05 using scipy Python package (Oliphant and Jones, 2001). This 401 

test was performed only on distribution with more than 15 samples. Significance level : we 402 

used ‘*’ for  0.01≤p-value<0.05, ‘**’ for 0.001≤p-value< 0.01 and  ‘***’ for  p-value<0.001. 403 

   404 

Detection of overlap activity. Based on empirical research we found that 15% of 405 

overlap was the minimal size above which a true transient in the cell is sufficient to trigger a 406 

false transient in the overlapped cell. For all pairs of overlapping cells (with an intersected 407 

area of at least 15% of the highest area of the two cells), we computed their transient profiles 408 

over all putative activations (all rise time over the full recording) and then calculated the 409 

Pearson correlation with their respective cell source profile. To assure to attribute the correct 410 

transient to the truly active cell we used a high correlation threshold 0.7 for the first cells and 411 

low threshold for the second cell of 0.2. We considered that the transient was a true 412 

activation of the first cell leading to a false transient in the second one. Indeed, we observed 413 

that the correlation method such as the one used in Gauthier et al. (Gauthier et al., 2018) is 414 

not always sufficient to classify correctly the transient activity. However, by using the 415 

combination of a very low and high threshold, we assure (in most of the cases) that one cell 416 

is having a false transient while the other one is truly active. Finally, we evaluated whether 417 

the classifier could classify the putative transient of the second cell as false (with a prediction 418 

< 0.5).  419 

   420 

Comparison with CaImAn. We compared the classifier performance against a state of 421 

the art computational tool, namely CaImAn. To fairly compare CaImAn and DeepCINAC to 422 

the ‘Ground Truth’ we used the cell contours obtained from the CNMF. The spike inference 423 

from the MCMC as well as, DeepCINAC predictions and the ‘Ground Truth’ were established 424 

on these contours. A transient was considered as detected by CaImAn, if at least one spike 425 

was inferred during the rise time of the transient.  426 

 427 

 2.7 - DeepCINAC workflow 428 

 429 

To summarize, DeepCINAC uses .cinac files built using the GUI. To train a classifier, 430 

those files are given as inputs to the neuronal network, providing time series data 431 

representing the calcium fluorescence dynamics of the cells. The same files can be used to 432 

benchmark the performance of a classifier and using the GUI, it is possible to add new data 433 

for training based on the errors of previous classifier outputs (Figure 5). 434 

 435 

2.8 - Toolbox and data availability  436 

  437 
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The source code is available on gitlab (https://gitlab.com/cossartlab/deepcinac). The 438 

page includes a full description of the method, a user manual, tutorials and test data, as well 439 

as the settings used. A notebook configured to work on google colab is also provided, 440 

allowing for the classifier to run online, thus avoiding installing the necessary environment 441 

and providing a free GPU. The toolbox has been tested on windows (v7 Pro), Mac Os X 442 

(MacOS Mojave) and Linux Ubuntu (v.18.04.1). 443 

 444 

3. Results  445 

   3.1. Validation of visual Ground truth. 446 

 447 

As a first step, we asked whether the visualization of fluorescent transients was a 448 

good estimation of spiking activity present in a neuron. To do so, we used previously 449 

published data combining loose seal cell attached recordings with 2-photon calcium imaging 450 

(Chen et al., 2013; GENIE Project, 2015). We compared the visual ‘ground truth’ to the ‘true’ 451 

spiking of the cell. We found that visual inspection of calcium imaging movies allows the 452 

detection of 87.1, 79.1 and 80.7% ‘true’ transients (i.e. spike associated transient) for each 453 

human expert respectively (median sensitivity, Figure 6A). Among visually detected 454 

transients, 98.7, 98.6 and 98.6% were ‘true’ transients for each human expert respectively 455 

(median precision, Figure 6B). The F1 scores that combine these two previous metrics were 456 

84.1, 81.5, 85.9% for each human expert respectively (median value Figure 6C). We 457 

evaluated the classifier CINAC_v6 trained with some recordings of ‘Visual-ctx-6s’ and 458 

‘Hippo-dvt’ (Table 1-1). We found that it allows the detection of 94% of the ‘true’ transients 459 

(median sensitivity, Figure 6A). Among predicted transients, 94.2% were ‘true’ transients 460 

(median precision, Figure 6B). F1 score was 94.7% (median value Figure 6C). Overall we 461 

conclude that in absence of patch-clamp based ground truth the visual inspection of the 462 

movie provides a good estimation of neuronal activity and that deep learning approach 463 

based on movie visualization can reach the human level in estimating cell activations. 464 

 465 

 3.2 DeepCINAC performance evaluation on developing hippocampus dataset 466 

 467 

Comparing DeepCINAC against CaImAn and human level.  468 

We compared the performance of DeepCINAC and CaImAn (Pnevmatikakis et al., 469 

2016), a well-established algorithm to infer neuronal activity, against the visual ground truth 470 

on CA1 hippocampus data during development (‘Hippo-dvt’). We first evaluated DeepCINAC 471 

(CINAC_v1) on 20 putative pyramidal neurons and 5 interneurons (Figure 7). The median 472 

sensitivity was 80.3% (interquartile range 75–94.5, Figure 7A), the median precision was 473 
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90.8% (interquartile range 81.2-95.5, Figure 7B) and the median F1 score was 86.3% 474 

(interquartile range 78.9-91.3, Figure 7C).    475 

We next evaluated CaImAn on the same cells using the same metrics. The median 476 

sensitivity was 60.6% (interquartile range 45.6-76, Figure 7A), the median precision was 477 

100% (interquartile range 93.8-100, Figure 7B). The median F1 score was 70.1% 478 

(interquartile range 62.6-81.6, Figure 7C), which was significantly lower than CINAC_v1 F1 479 

score (Wilcoxson signed rank test, T=50 and p=0.002). Finally, we asked if DeepCINAC 480 

could perform as well as human 'experts’. The median CINAC_v1 F1 score on the 15 cells 481 

annotated by the 2 human ‘experts’ (JD and RD) was 88.2% (interquartile range 78.3-92) 482 

which was significantly lower than RD and JD F1 scores (F1=95.2%, T=4, p=0.002 and 483 

F1=96.8%, T=22, p=0.031 respectively, Figure 7-1A). However, on six cells annotated by 484 

MP, CINAC_v1 and MP F1 scores were close (F1=84.3% and F1=86.4% respectively, 485 

Figure 7-1B). Even though DeepCINAC is still not at the ground truth level (combination of 486 

triple human labelling), it approximates human level. 487 

 488 

Specific handling of overlap 489 

One important characteristic of data from the developing CA1 region of the 490 

hippocampus is the high density of active neurons that can lead to overlap. This overlap 491 

between cells leading to false transients was pointed out as a specific issue in the analysis 492 

of calcium traces from a demixing (Gauthier et al., 2018). We asked whether the classifier 493 

would be able to distinguish real transients from increases in fluorescence due to the activity 494 

of an overlapping cell. Based on the visual inspection of imaged fields of view with numerous 495 

overlaps, we chose to specifically test the algorithm on calcium imaging data containing 391 496 

cells segmented using CaImAn. Among those cells, we detected a total of 426 transients 497 

(fluorescence rise time) from 23 cells that were likely due to overlapping activity from a 498 

neighboring cell (see method for overlap activity detection). Among those transients, 98.6% 499 

were correctly classified as false by CINAC_v1 (general classifier), 93.2% were correctly 500 

classified as false by the CINAC_v7 (interneuron specific classifier) and 93.2% were 501 

correctly classified as false by CaImAn. We next asked if the results could be improved by 502 

the use of another segmentation method. To do so, we performed the same analysis on the 503 

exact same field of view using the classifier prediction on the segmented cells obtained from 504 

suite2p (Pachitariu et al., 2017). Among a total of 480 cells, a total of 2718 transients from 505 

101 cells were likely due to the activation of an overlapping cell, 99.1% of them were 506 

correctly classified as false by CINAC_v1. 507 

 508 

Onset to peak prediction 509 
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Since we aimed at predicting as active all the frames included in the full rise time of 510 

the calcium transient (from onset to peak), we looked at the proportion of frames predicted 511 

as active in real transients. Using the general classifier (CINAC_v1), the median ratio of 512 

frames predicted among each real transient was 85.7% (interquartile range 70-100) for the 513 

20 putative pyramidal cells and the 5 putative interneurons (Figure 7-2). We demonstrated 514 

that CINAC_v1 allows the detection of cell activation all along the rise time, giving us both 515 

the onset of cell activation and the duration of the rise time (Figure 7-2).  516 

 517 

3.3 Classifier generalization and specialization 518 

 519 

DeepCINAC performances on other datasets 520 

A major aspect to consider in the development of algorithms to infer neuronal activity 521 

from calcium imaging data, is the ability to be easily scalable to the wide variety of datasets 522 

(i.e. different indicators, different brain regions, ...).  523 

We investigated the extent to which DeepCINAC (CINAC_v1) that was trained on 524 

data from the developing hippocampus would perform on other datasets (Figure 8-1). To 525 

answer that question, we used i) GECO imaging movies (‘Hippo-GECO’, 5 Hz, 2 μm/pixel, 526 

Figure 8-1A), ii) GCaMP6m imaging movies (‘Hippo-6m’, 10 Hz, 2 μm/pixel, Figure 8-1B) 527 

both from the adult hippocampus, iii) GCAMP6s calcium imaging movies from the 528 

developing barrel cortex (‘Barrel-ctx-6s’, 1.5Hz, 1.2μm/pixel, Figure 8-1C) (Modol et al., 529 

2019) iv) GCAMP6s calcium imaging movies of interneurons from the developing 530 

hippocampus (‘Hippo-dvt-INs’, 10 Hz, 2 μm/pixel,, Figure 8-1D) and GCaMP6s recordings 531 

from the adult visual cortex (‘Visual-ctx-6s’ - downsampled 10Hz, rescaled 1.2 μm/pixel, see 532 

methods, Figure 8-2). We show that DeepCINAC performs well on ‘Hippo-6m’ and ‘Barrel-533 

ctx-6s’ data. On ‘Hippo-6m’, F1 scores were 66.7% and 70.9% for CaImAn and CINAC_v1 534 

respectively (Figure 8-1B, bottom panel). On ‘Barrel-ctx-6s’, F1 scores were 54.3% and 535 

76.4% for CaImAn and CINAC_v1 respectively (Figure 8-1C, bottom panel). However 536 

CINAC_v1 does not generalize well enough to infer activity on the ‘Hippo-GECO’ recordings 537 

(F1 score = 44.2%, Figure 8-1A) neither on ‘Visual-ctx-6s’ (F1 score = 69.9%, Figure 8-1C). 538 

To overcome these poor performances on ‘Hippo-GECO’ and ‘Visual-ctx-6s’ and to 539 

improve performances on ‘Barrel-ctx-6s’ and ‘‘Hippo-6m’ datasets, we considered two 540 

strategies. The first one consists in training a classifier specific to the data. The second one 541 

consists in adding part of the new data to the large database to improve the classifier ability 542 

to generalize (Figure 8 and 8-1).  543 

Since our performances were low using CINAC_v1, we adopted the first strategy to 544 

improve the classifier on ‘Hippo-GECO’ and ‘Visual-ctx-6s’ datasets. We used part of these 545 

datasets to train specific classifiers and evaluate them on the remaining data (Table 1-1). 546 
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First, we observed that the ‘Hippo-GECO’ specific classifier (i.e. CINAC_v3) performed 547 

better than CINAC_v1 and CaImAn (CINAC_v3 median F1 score=69.6%, CINAC_ v1 548 

median F1 score=12.9% and CaImAn median F1 score=63.5%, Figure 8A bottom panel). 549 

This increase in F1 score from CINAC_v1 to CINAC_v3 was due to an increase in the 550 

sensitivity of the classifier (CINAC_v1 median sensitivity=10%, CINAC_v3 median 551 

sensitivity=70.3%, Figure 8A top panel) with a moderate loss in precision (CINAC_v1 552 

median precision=95%, CINAC_v3 median precision= 81.2%, Figure 8A middle panel). 553 

Second, we showed that the ‘Visual-ctx-6s’ datasets specific classifiers (i.e. CINAC_V5 and 554 

CINAC_v6) performed better than CINAC_v1 and CaImAn (CINAC_v1 median F1 555 

score=69.9%, CINAC_v5 median F1 score=73.9% and CINAC_v6 median F1 score=94.7%, 556 

Figure 8-2C). Because CINAC_v5 was trained exclusively on labelled data from the ‘visual-557 

ctx-6s’ dataset it allows an increase in the classifier sensitivity (CINAC_v1 median 558 

sensitivity=59.2%, CINAC_v5 median sensitivity=100%, Figure 8-2A). However this increase 559 

was achieved at the cost of a reduced precision (CINAC_v1 median precision=96.2%, 560 

CINAC_v5 median precision=59%, Figure 8-2B), and overall a slight increase in the F1 561 

score (Figure 8-2 C). To improve the performance on this dataset, we extended the 562 

CINAC_v5 training set with 4 cells from the ‘Hippo-dvt’ to train CINAC_v6. This allows us to 563 

increase both sensitivity (CINAC_v6 median sensitivity=94%) and precision (CINAC_v6 564 

median precision=94.2%) of the classifier, leading to a large improvement of the F1 score 565 

(CINAC_v6 median F1 score=94.7%, Figure 8-2C). In a nutshell, when the dataset to 566 

analyse has different calcium dynamics, a new classifier specifically trained on this dataset 567 

would reach higher performance than CINAC_v1.  568 

On the datasets from the adult hippocampus (‘Hippo-6m’) and developing barrel 569 

cortex (‘Barrel-ctx-6s’), since CINAC_v1 performances were close to the performance 570 

reached on ‘Hippo-dvt’ dataset, we considered the second strategy. We extended the 571 

CINAC_v1 training dataset with labeled data from ‘Hippo-6m’ and ‘Barrel-ctx-6s’ datasets 572 

and trained a new classifier (CINAC_v4). First, we observed that on the ‘Hippo-6m’ dataset, 573 

CINAC_v4 classifier has better sensitivity and precision than CINAC_v1 and CaImAN 574 

(CINAC_v1 median sensitivity=53.8%, CINAC_v4 median sensitivity=58.7%, CaImAn 575 

median sensitivity=37.3%, CINAC_v1 median precision=95.3%, CINAC_v4 median 576 

precision=96.2%, CaImAn median precision=95.7%, CINAC_v1 median F1 score=68%, 577 

CINAC_v4 median F1 score=71.6%, CaImAn median F1 score=51.4%, Figure 8B). Second, 578 

we found that on ‘Barrel-ctx-6s’ dataset, CINAC_v4 classifier performed better than 579 

CINAC_v1 and CaImAn (CINAC_v4 F1 score=87.3%, CINAC_v1 F1 score=79.7%, CaImAn 580 

F1 score=53.3%, Figure 8C, bottom panel). This increase in F1 score from CINAC_v1 to 581 

CINAC_V4 was due to an increase in the sensitivity of the classifier (CINAC_v4 median 582 

sensitivity=92.6%, CINAC_v1 median sensitivity=67.1%, CaImAn median sensitivity=43.5%, 583 
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Figure 8C, top panel) with a moderate loss in precision (CINAC_v4 median 584 

precision=84.3%, CINAC_v1 median precision=95.9%, CaImAn median precision=92.9%, 585 

Figure 8C, middle panel). Overall we confirm here that adding part of a new dataset to the 586 

training set of CINAC_v1 classifier allows us to improve the performance on this new 587 

dataset. Thus, one could use the training dataset of CINAC_v1 and add part of a new 588 

dataset to train a classifier that would achieve better performance than CINAC_v1 on this 589 

new data.  590 

 Because we benefited from already published data from our group (‘Barrel-ctx-6s’), 591 

we next asked if we could arrive at the same conclusion using CINAC_v1. We used the 592 

activity inferred by CINAC_v1 on this data and performed assemblies detection analysis as 593 

described previously (Modol et al., 2019). We found the same number of assemblies as the 594 

original analysis (Figure 8-3A and 8-3B, first two panels), as well as the same topographic 595 

organization (Figure 8-3A and 8-3B, bottom panels). We confirmed that the assemblies 596 

detected by either CaImAn or CINAC_v1 were composed of similar cells (Figure 8-3C). 597 

 598 

DeepCINAC performances on different cell types 599 

A second important aspect to infer neuronal activity from calcium imaging movies is 600 

the variety of cell types recorded in the same field of view (e.g. interneuron and pyramidal 601 

cells). In recordings from the hippocampus we observed that most interneurons have very 602 

different calcium dynamics than pyramidal cells (higher fluorescence signal followed by a 603 

plateau). Because CINAC_v1 was mainly trained on the activity of pyramidal cells, we 604 

suspected that it would not provide accurate inference on interneurons. Using the GUI we 605 

verified its prediction on interneurons and concluded that they were not always optimal 606 

(Figure 8-1D). To improve activity inference on interneurons, we trained an interneuron 607 

specific classifier. In more details the precision of the inference was similar for CINAC_v1 608 

and CINAC_v7 (CINAC_v1 median precision=79%, CINAC_v7 median precision=78.9%, 609 

Figure 8D top panel). However CINAC_v7 provides more sensitive inference (CINAC_v1 610 

median sensitivity=88.6%, CINAC_v7 median sensitivity=92.6%, Figure 8D middle panel). 611 

As a result, the specific classifier performed better than the general one on interneurons 612 

(CINAC_v1 median F1 score=81.9%, CINAC_v7 median F1 score=85.1%, Figure 8D, 613 

Bottom panel).  614 

 615 

3.4 Cell type inference using DeepCINAC 616 

 617 

Recently a deep-learning method using a similar model to DeepCINAC was 618 

proposed to differentiate cell types (Troullinou et al., 2019). This model was based on the 619 

analysis of fluorescence traces from various cell types and automatically classified imaged 620 
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cells in different types. We asked whether DeepCINAC would be able to distinguish 621 

interneurons from pyramidal cells using as input the calcium imaging movie rather than the 622 

fluorescence trace. Additionally we added a noise category in the training dataset allowing 623 

us to automatically discard cells. We achieved a general F1 score of 86%. We had a 624 

sensitivity of 90.2%, 81.6% and 81.8% and a precision of 90.2%, 91.2% and 60% for 625 

pyramidal, interneuron and noisy cells respectively (Table 2). 626 

Since activity inference performance using DeepCINAC depends on the cell type, we 627 

perform this cell type prediction before activity inference. During the activity inference of a 628 

movie DeepCINAC can be configured to switch between different activity classifiers 629 

depending on the type of the cell to predict. 630 

 631 

 632 

  Ground Truth 

  Pyramidal cell Interneuron Noise 

Prediction 

Pyramidal cell 46 5 0 

Interneuron 1 31 2 

Noise 4 2 9 

Table 2: Cell type prediction confusion matrix. 633 

Confusion matrix, representing the number of True Positives, True Negatives, False 634 

Positives and False negatives. “Ground Truth” refers to the manually detected interneurons 635 

and pyramidal cells. “Prediction” refers to the type predicted by the classifier for the same 636 

cells.  637 

 638 

4. Discussion  639 

   640 

Deep learning based method(s) to infer neuronal activity from 2-photon calcium 641 

imaging datasets use cellular fluorescence signals as inputs. Here we propose a method 642 

based on the visual inspection of the recordings. We will discuss the advantages and 643 

limitations of this approach.   644 

Using the movie dynamics, we benefited from all the information available in the 645 

calcium imaging movie. This approach allowed us to not rely on a demixing algorithm to 646 

produce the neuron’s traces. Instead, by working directly on the raw calcium imaging movie, 647 

the algorithm has learned to identify a transient and distinguish overlap activity from a real 648 
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transient. DeepCINAC achieves better performance than CaImAn and is able to achieve 649 

human performance level on some fields of view and cells.  650 

Additionally, we show that a classifier trained on a specific dataset (‘Hippo-dvlt-6s’) is 651 

able to generalize to other datasets (‘Hippo-6m’ and ‘Barrel-ctx-6s’). DeepCINAC allows 652 

training of flexible classifiers whose generalization on new datasets can be improved by 653 

adding part of this new dataset to the training (at the cost of slightly reduced performance of 654 

the classifier on original data). However, we show that generalization is not always achieved 655 

such as in the case of a classifier trained on ‘Hippo-dvt’ data and used to predict activity on 656 

some very different datasets (‘Hippo-GECO’ and ‘Visual-ctx-6s’). This is likely explained by 657 

the difference in calcium indicator, imaging rate and imaging resolution. We demonstrated 658 

that this limitation can be circumvented by training specific classifiers. Overall, this approach 659 

allowed us to create classifiers that scale to different developmental stages (from P5 to 660 

adult), different types of neurons (pyramidal cells and interneurons) as well as different 661 

indicators (GCaMP6s, GCaMP6m, GECO).  662 

Analysis of calcium imaging data may be impacted by some factors: i) small 663 

amplitude transients, ii) transients occurring during the decay of another one, iii) 664 

summations, iv) X and Y movement or neuropil activation. Users can evaluate the impact of 665 

those factors through visual inspection of the inferred activity using the deepCINAC GUI. 666 

Finally, we explored the range of values of hyperparameters in order to optimize the 667 

accuracy of the classifier. Labeling data is time-consuming but the training does not need 668 

any parameters tuning and the prediction is straight forward. Neither tedious manual tuning 669 

of parameters is required, nor a GPU on a local device because we provide a notebook to 670 

run predictions on google colab (see Methods). Predictions are fast, with a run-time of 671 

around 10 seconds by cell for 12500 frames, meaning less than three hours hours for 1000 672 

cells. However, a GPU would be necessary to train the network on a big dataset.   673 

Already widely used by many calcium imaging labs (Andalman et al., 2019; Driscoll 674 

et al., 2017; Gauthier and Tank, 2018; Katlowitz et al., 2018), CaImAn offers a performing 675 

and functional analysis pipeline. Even though the complex fine tuning of CaImAn parameters 676 

on the dataset might lead to a suboptimal spike inference from the model, we decided to 677 

compare CaImAn against our ground truth.   678 

The benchmarks remain limited to a small number of cells for which we established a 679 

ground truth and may be extended to more cells. Notably, a future approach could be to use 680 

more realistic simulated data such as done in a recent work (Charles et al., 2019).   681 

In the model we used, each cell was represented by a segment of the field of view, in 682 

our case a 25 by 25 pixels (50 μm by 50 μm) window that allows complete coverage of the 683 

cell fluorescence and potential overlapping cells. Consequently, the network is able to 684 

generalize its prediction to recordings acquired with this resolution (2 μm / pixel). However, 685 
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to be efficient on another calcium imaging dataset with a different resolution it would be 686 

necessary to train a new classifier adjusting the window size accordingly. Importantly, we 687 

trained the model on a selection of cells with valid segmentations; meaning that a cell is not 688 

represented by several contours. The inference performance of the classifier might decrease 689 

on cells whose segmentation was not properly achieved.   690 

Since precise spike inference cannot be experimentally assessed on the data, we 691 

chose to infer the activity of the cell defined by the fluorescence rise time instead of inferring 692 

the spikes. However, with a ground truth based on patch-clamp recordings, we could adapt 693 

this method to switch from a binary classification task to a regression task, predicting the 694 

number of spikes at each frame.  695 

  696 

Conclusion  697 

   698 

We built DeepCINAC basing the ground truth on visual inspection of the movie and 699 

training the classifier on movie segments. DeepCINAC offers a flexible, fast and easy-to-use 700 

toolbox to infer neuronal activity from a variety of two photon calcium imaging dataset, 701 

reaching human level performance. It provides the tools to measure its performance based 702 

on human evaluation. Currently, DeepCINAC provides several trained classifiers on CA1 703 

two-photon calcium imaging at early postnatal stages; its performance might still be 704 

improved with more labeled data. In the future, we believe that a variety of classifiers 705 

collaboratively trained for specific datasets should be available to open access. 706 

 707 

 708 
  709 
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Figure Legends 710 
 711 
Video 1: In vivo 2-p imaging in the CA1 region of the hippocampus in a 12 days old mouse 712 
pup. 713 
FOV is 80 μm by 80 μm, frame rate is 8Hz and video is speeded up 10 times. The Video 714 

shows recurrent periods of neuronal activations recruiting a large number of adjacent 715 

neurons leading to spatial and temporal overlaps. 716 

 717 

Video 2:  In vivo 2-p imaging in the CA1 region of the hippocampus in a 7 days old mouse 718 
pup. 719 
FOV is 100 μm by 100 μm, frame rate is 8Hz and video is speeded up 10 times. The Video 720 

shows different cell types (i.e. interneurons and pyramidal cells) with different calcium 721 

dynamics. 722 

 723 
Figure 1: Experimental paradigm. 724 
1A: Experimental timeline.   725 

1B: Intraventricular injection of GCaMP6s on pups (drawing) done at P0.   726 

1C: Schematic representing the cranial window surgery.   727 

1D: Top left: Imaged field of view. Scale bar: 100 μm. Top right: Activity of 5 random neurons 728 

in the field of view (variation of fluorescence is expressed as Δf/f). Scale bar 50 s. Bottom: 729 

Drawing of a head fixed pup under the microscope.    730 

 731 

Figure 2: Examples of different uses of the GUI.  732 

The GUI can be used for data exploration (2A1-A2), to establish the ‘Ground Truth’ (2B) and 733 

to evaluate DeepCINAC predictions (2C).  734 

2A:  The GUI can be used to explore the activity inference from any methods. The spikes 735 

inferred from CaImAn are represented by the green marks at the bottom. The GUI allows the 736 

user to play the movie at the time of the selected transient and visualize the transients and 737 

source profile of the cell of interest.  738 

2A1: Movie visualization and correlation between transient and source profiles allow the 739 

classification of the first selected transient as true positive (‘TP’) and the second selected 740 

transient as false positive (‘FP’).  741 

2A2: Movie visualization and correlation between transient and source profiles allow the 742 

classification of the selected transient as false negative (‘FN’).   743 

2B: The GUI can be used to establish a ‘Ground Truth’. In this condition it offers the user the 744 

possibility to manually annotate onset and peak of calcium transient. Onsets are represented 745 

by vertical dashed blue lines, peaks by green dots.  746 
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2C: When the activity inference is done using DeepCINAC, the GUI allows the display of the 747 

classifier predictions. The prediction is represented by the red line. The dashed horizontal 748 

red line is a probability of one. The blue area represents time periods during which the 749 

probability is above a given threshold, in this example 0.5. 750 

Abbreviations: T: Transient profile, S: Source Profile, Corr: correlation, FOV: field of view 751 

 752 

Figure 3: Workflow to establish the ‘Ground Truth’. 753 

First a cell was randomly chosen in the imaged field of view.  754 

3-1 - All putative transients of the segment to label were identified for the onset to the peak 755 
of each calcium event.  756 

3-2 - Three human experts (“expert” A, “expert” B, “expert” C) independently annotated the 757 
segment. Among all putative transients each human expert had to decide whether it was in 758 
his opinion a ‘true’ transient.  759 

3-3 - The combination of the labelling lead to ‘consensual transients’ (i.e. ‘true’ transient for 760 
each human expert - black square) and to ‘non-consensual transients’ (i.e ‘true’ transient for 761 
at least one human expert but not all of them - open square).  762 

3-4 - All ‘non-consensual transients’ were discussed and ‘ground truth’ was established. 763 

 764 

Figure 4: Architecture of DeepCINAC neural network   765 

As a first step, for each set of inputs of the same cell, we extract CNNs features of video 766 

frames that we pass to an attention mechanism and feed the outputs into a forward pass 767 

network (FU, green units) and a backward pass network (BU, orange units), representing a 768 

bi-directionnal LSTM. Another bi-directionnal LSTM is fed from the attention mechanism and 769 

previous bi-directionnal LSTM outputs. A LSTM (MU, blue units) then integrate the outputs 770 

from the process of the three types of inputs to generate a final video representation. A 771 

sigmoid activation function is finally used to produce a probability for the cell to be active at 772 

each given frame given as input.  773 

 774 

Figure 5. DeepCINAC step by step workflow. 775 

5A. Schematic of two-photon imaging experiment. 776 

5B. Screenshot of DeepCINAC GUI used to explore and annotate data. 777 

5C. The GUI produces .cinac files that contain the necessary data to train or benchmark a 778 

classifier.  779 

5D. Schematic representation of the architecture of the model that will be used to train the 780 

classifier and predict neuronal activity.  781 

5E. Training of the classifier using the previously defined model.  782 
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5F. Schematic of a raster plot resulting from the inference of the neuronal activity using the 783 

trained classifier. 784 

5G. Evaluation of the classifier performance using precision, sensitivity and F1 score.  785 

5H. Active learning pipeline: screenshots of the GUI used to identify edge cases where the 786 

classifier wrongly infers the neuronal activity and annotate new data on similar situations in 787 

order to add data for a new classifier training.  788 

 789 

Figure 6: Validation of visual ‘Ground truth’ and deep learning approach.  790 

6A. Boxplots showing sensitivity for the 3 human experts (RD, JD, MP) and CINAC_v6 791 

evaluated against the known ground truth from 4 cells from the GENIE project. 792 

6B. Boxplots showing precision for the 3 human experts (RD, JD, MP) and CINAC_v6 793 

evaluated against the known ground truth from 4 cells from the GENIE project.  794 

6C. Boxplots showing F1 Score for the 3 human experts (RD, JD, MP) and CINAC_v6 795 

evaluated against the known ground truth from 4 cells from the GENIE project.  796 

Each colored dot represents a cell. Cell labels in the legend correspond to session identifiers 797 

from the dataset. 798 

CINAC_v6 is a classifier trained on data from the GENIE project and the ‘Hippo-dvt’ dataset 799 

(Table 1, Table 1-1). 800 

 801 

Figure 7: Evaluation of CINAC_v1 performance on ‘Hippo-dvt’ dataset. 802 

7A. Boxplots showing sensitivity for the 3 human experts (RD, JD, MP), CaImAn and 803 

CINAC_v1 evaluated against the visual ground truth of 25 cells. 15 cells were annotated by 804 

JD and RD, 6 by MP. 805 

7B. Boxplots showing precision for the 3 human experts (RD, JD, MP), CaImAn and 806 

CINAC_v1 evaluated against the visual ground truth of 25 cells. 15 cells were annotated by 807 

JD and RD, 6 by MP. 808 

7C. Boxplots showing F1 score for the 3 human experts (RD, JD, MP),CaImAn and 809 

CINAC_v1 evaluated against the visual ground truth of 25 cells. 15 cells were annotated by 810 

JD and RD, 6 by MP. 811 

Each colored dot represents a cell, the number inside indicates the cell’s id and each color 812 

represents a session as identified in the legend. 813 

CINAC_v1 is a classifier trained on data from the ‘Hippo-dvt’ dataset (Table 1, Table 1-1). 814 

Figure 7 is supported by Figure 7-1 and Figure 7-2. 815 

 816 

Figure 7-1: Comparison of CINAC performance to human experts. 817 

7-1A: Boxplot displaying F1 score of two human experts (RD and JD) and CINAC_v1. Here 818 

are shown 15 cells annotate by both ’experts’ 819 
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7-1B: Boxplot displaying F1 score of one human expert (MP) and CINAC_v1. Here are 820 

shown 6 cells annotated by MP. 821 

Each colored dot represents a cell, the number inside indicates the cell’s id and each color 822 

represents a session as identified in the legend. 823 

CINAC_v1 is a classifier trained on data from the ‘Hippo-dvt’ dataset (Table 1, Table 1-1). 824 

 825 

Figure 7-2: Onset to peak detection of calcium transient.  826 

Boxplot showing the proportion of frames predicted as active during the transient rise time. 827 

CINAC_v1 is a classifier trained on data from the ‘Hippo-dvt’ dataset (Table 1, Table 1-1). 828 

Each colored dot represents a transient and each color represents a session as identified in 829 

the legend. 830 

 831 

Figure 8: Use of DeepCINAC classifiers to optimize performances on various dataset.  832 

8A: Boxplot displaying the sensitivity (top panel), precision (middle panel) and F1 score 833 

(bottom panel) for ‘Hippo-GECO’ dataset. For each panel, we evaluated CaImAn 834 

performance as well as two different versions of CINAC (v1 and v3). CINAC_v1 is a 835 

classifier trained on data from the ‘Hippo-dvt’ dataset and CINAC_v3 is a classifier trained on 836 

data from the ‘Hippo-GECO’ dataset (Table 1, Table 1-1). 837 

8B: Boxplot displaying the sensitivity (top panel), precision (middle panel) and F1 score 838 

(bottom panel) for ‘Hippo-6m’ dataset. For each panel, we evaluated CaImAn performance 839 

as well as two different versions of CINAC (v1 and v4). CINAC_v1 is a classifier trained on 840 

data from the ‘Hippo-dvt’ dataset and CINAC_v4 is a classifier trained on data from the 841 

‘Hippo-dvt’, ‘Hippo-6m’, and ‘Barrel-ctx-6s’ dataset (Table 1, Table 1-1). 842 

8C: Boxplot displaying the sensitivity (top panel), precision (middle panel) and F1 score 843 

(bottom panel) for ‘Barrel-ctx-6s’ dataset.  For each panel, we evaluated CaImAn 844 

performance as well as two different versions of CINAC (v1 and v4). CINAC_v1 is a 845 

classifier trained on data from the ‘Hippo-dvt’ dataset and CINAC_v4 is a classifier trained on 846 

data from the ‘Hippo-dvt’, ‘Hippo-6m’, and ‘Barrel-ctx-6s’ dataset (Table 1, Table 1-1). 847 

8D: Boxplot displaying the sensitivity (top panel), precision (middle panel) and F1 score 848 

(bottom panel) for ‘Hippo-dvt-INs’ dataset. For each panel, we evaluated CaImAn 849 

performance as well as two different versions of CINAC (v1 and v7). CINAC_v1 is a 850 

classifier trained on data from the hippo-dvt dataset and CINAC_v7 is a classifier trained on 851 

interneurons from the ‘Hippo-dvt’ dataset (Table 1, Table 1-1).  852 

Each colored dot represents a cell, the number inside indicates the cell’s id and each color 853 

represents a session as identified in the legend. 854 

Figure 8 is supported by Figure8-1, Figure 8-2, Figure 8-3. 855 

 856 
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Figure 8-1: Comparison of CaImAn and CINAC_v1 performances on various dataset.  857 

8-1A: Boxplot displaying the sensitivity (top panel), precision (middle panel) and F1 score 858 

(bottom panel) for ‘Hippo-GECO’ dataset. For each panel, we evaluated CaImAn 859 

performance as well as CINAC_v1.  860 

8-1B: Boxplot displaying the sensitivity (top panel), precision (middle panel) and F1 score 861 

(bottom panel) for ‘Hippo-6m’ dataset.  862 

8-1C: Boxplot displaying the sensitivity (top panel), precision (middle panel) and F1 score 863 

(bottom panel) for ‘Barrel-ctx-6s’ dataset.   864 

8-1D: Boxplot displaying the sensitivity (top panel), precision (middle panel) and F1 score 865 

(bottom panel) for ‘Hippo-dvt-INs’ dataset.  866 

Each colored dot represents a cell, the number inside indicates the cell’s id and each color 867 

represents a session as identified in the legend. CINAC_v1 is a classifier trained on data 868 

from the ‘Hippo-dvt’ dataset (Table 1, Table 1-1). 869 

 870 

Figure 8-2: Use of DeepCINAC classifiers to optimize performances on ‘Visual-ctx-6s’ 871 

dataset.  872 

8-2A. Boxplots showing sensitivity for CINAC_v1, CINAC_v5 and CINAC_v6 evaluated 873 

against the known ground truth of 4 cells from the GENIE project. 874 

8-2B. Boxplots showing precision for CINAC_v1, CINAC_v5 and CINAC_v6 evaluated 875 

against the known ground truth of 4 cells from the GENIE project.  876 

8-2C. Boxplots showing F1 Score for CINAC_v1, CINAC_v5 and CINAC_v6 evaluated 877 

against the known ground truth of 4 cells from the GENIE project.  878 

CINAV_v1 is a classifier trained on data from the ‘Hippo-dvt’ dataset, CINAC_v5 is a 879 

classifier trained on data from ‘Visual-ctx-6s’ dataset, CINAC_v6 is a classifier trained on 880 

data from ‘Visual-ctx-6s’ dataset and 4 cells from the ‘Hippo-dvt’ dataset (Table 1, Table 1-881 

1). 882 

Each colored dot represents a cell. Cell labels in the legend correspond to session identifiers 883 

from the dataset. 884 

 885 

Figure 8-3: Cell assemblies detection and organization using CaImAn and CINAC_v1 on 886 

published data. 887 

8-3A&B. The top panel represents the clustered covariance matrix of synchronous calcium 888 

events (SCE). The middle panel represents neurons active in SCE organized by cluster (cell 889 

assembly). The bottom panel represents the cell’s map, each color represents a cell 890 

assembly. 891 

8-3A. Cell assemblies detection results using CaImAn.  892 

8-3B. Cell assemblies detection results using CINAC_v1. 893 
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8-3C. Individual cells composing assemblies in each method. ‘a’ represents the number of 894 

neurons detected by Modol et al., using CaImAn. ‘b’ represents the number of neurons 895 

detected using CINAC_v1.  Each color represents a cell assembly, color-coded as in the 896 

maps. 897 

 898 

Table 1:  Data used to train the classifiers. 899 

Training dataset include validation dataset (see methods). 900 

Description of the datasets precising the number of frames, number of animals and field of 901 

views included, as well as the classifiers that used these datasets. 902 

n: number of.  903 

*: version that used at least part of those dataset.  904 
1: including 2 simulated movies, representing 32 cells and 80000 frames. 905 
2: including 2 simulated movies. 906 

Table 1 is supported by Table1-1. 907 

 908 

Table 1-1: Detailed data used to train and test the classifiers. 909 

Detailed content of training and test datasets used for all CINAC versions (v1 to v7) used in 910 

the analysis. 911 

 912 
Table 2: Cell type prediction confusion matrix. 913 

Confusion matrix, representing the number of True Positives, True Negatives, False 914 

Positives and False negatives. “Ground Truth” refers to the manually detected interneurons 915 

and pyramidal cells. “Prediction” refers to the type predicted by the classifier for the same 916 

cells.  917 

  918 
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 1 

 CINAC version* n cells n animals n frames 

Hippo-dvt v1 v4 v6 1041 132 689272 

Hippo-GECO v3 5 2 45000 

Hippo-6m v4 3 1 42000 

Barrel-ctx-6s v4 20 2 36000 

Visual-ctx-6s v5 v6 7 NA 33800 

Hippo-dvt-INs v7 29 9 362500 
 



 

 1 

  Ground Truth 

  Pyramidal cell Interneuron Noise 

Prediction 

Pyramidal cell 46 5 0 

Interneuron 1 31 2 

Noise 4 2 9 

 


