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Abstract 

Rhythmic auditory stimuli are known to elicit matching activity patterns in neural 

populations. Furthermore, recent research has established the particular importance of high-

gamma brain activity in auditory processing by showing its involvement in auditory phrase 

segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings 

from eight human listeners, to see whether periodicities in high-gamma activity track the 

periodicities in the envelope of musical rhythms during rhythm perception and imagination. 

Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue 

during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma 

activity track the periodicities in the musical rhythms, we compute the correlation between the 

autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which 

participants listened to white noise was used to establish a baseline. High-gamma 

autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both 

hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, 

numerous significant electrodes are observed on the right hemisphere. Of particular interest is a 

large cluster of electrodes in the right prefrontal cortex that is active during both rhythm 

perception and imagination. This indicates conscious processing of the rhythms’ structure as 

opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma 

activity measured from cortical electrodes tracks both attended and imagined rhythms. 
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Significance Statement 

The possibility to capture high-frequency brain activity, such as High Gamma, with high 

spatial and temporal resolution makes invasive brain recordings extremely valuable. We present 

new data from an invasive ECoG study with a comparably large sample size. Deploying a new 

periodicity-tagging technique that extends the common frequency tagging, we found that High 

Gamma in auditory areas tracks periodicity. Furthermore, we use the periodic nature of musical-

stimuli as a neural footprint and found that high-gamma activity in the prefontal cortex tracks 

periodicities of musical rhythms both during listening and imagination. The neural mechanisms 

involved in imagination in particular are ill understood. The present study provides evidence that 

the pre-frontal cortex tracks periodicities in auditory stimuli during perception and imagination, 

and highlights the usefulness of musical stimuli for studying neural processes. 

  



Neural populations match their activity patterns in response to repetitive, rhythmic auditory 

stimuli (Nozaradan, 2014; Nozaradan, Peretz, Missal, & Mouraux, 2011; Nozaradan, Peretz, & 

Mouraux, 2012; Nozaradan, Zerouali, Peretz, & Mouraux, 2015). However, the neural response 

to rhythmical stimuli is not exclusively driven by exogenous stimulus properties, such as an 

auditory stimulus, but is also shaped by endogenous top-down mechanisms, such as attention and 

imagination (Nozaradan et al., 2011). This suggests that neural activity in the context of 

repetitive auditory stimuli is not only worth investigating as a reactive process, triggered by 

external stimulation, but may also shed light on complex functions, such as imagination. Here, 

we aim to further characterise neural activity in auditory perception and imagination, specifically 

in high-gamma activity.  

High Gamma. Recent medical advances have allowed music perception research 

investigating neural responses to auditory rhythms to venture beyond non-invasive EEG 

methodologies to invasive measurements such as the use of intracranial electrodes in epilepsy 

patients. In an intracranial study, Nozaradan, Mouraux, et al. (2017) showed that a 0-30 Hz as 

well as a 30-100 Hz power band track the envelope of musical rhythms. In the present study, we 

aim to further explore the involvement of a different power band; High Gamma. 

Activity in the high-gamma band is much more localized (Miller et al., 2007) and thought 

to resemble ensemble spiking (Ray, Crone, Niebur, Franaszczuk, & Hsiao, 2008). Due to the 

small size of the generator area, frequencies above 70 Hz, become increasingly unreliable to 

measure, let alone localise, using EEG. In Electrocorticography (ECoG), the electrodes are 

deployed directly on the cortex rather than on the scalp. This enables accurate characterization of 

High Gamma (or Broadband Gamma, ~70-170 Hz). This is important, as High Gamma can be 

linked to auditory attention, auditory perception, and appears to mark auditory segment 

boundaries (Leuthardt et al., 2011; Pei et al., 2011; Potes, Gunduz, Brunner, & Schalk, 2012; 

Schalk & Leuthardt, 2011; Sturm, Blankertz, Potes, Schalk, & Curio, 2014)(see Cervenka, 



Nagle, & Boatman-Reich, 2011 for a review). Indeed, high-gamma activity can even be used to 

decode speech from the brain (Angrick, Herff, Johnson, et al., 2019; Angrick, Herff, Mugler, et 

al., 2019; Anumanchipalli, Chartier, & Chang, 2019; Herff et al., 2019; Herff et al., 2015; Pasley 

et al., 2012). When listening to music, High Gamma averaged across listeners correlates with the 

sound envelope of a musical piece in a data set with 7 participants (Potes et al., 2012). Using the 

same data set with an additional three participants, Sturm et al. (2014) found a correlation 

between High Gamma and the music envelope in 4 out of 10 participants. A recent study also 

suggests that high-gamma activity is not only involved in music listening, but also music 

imagination (Ding et al., 2019). In this study, participants were asked to imagination the 

continuation of familiar musical pieces. High-gamma activity significantly exceeded the baseline 

that was measured prior to stimulus onset. Using lagged correlations between High Gamma and 

the music’s envelope, the authors investigated the time course of the activation of different brain 

regions.  

In the present study, we aim to further investigate the potential involvement of High 

Gamma in music perception. However, rather than exploring familiar musical pieces, we focus 

on High Gamma’s involvement in musical rhythm perception as well as imagination. Here, we 

are also less concerned with the time-course of different brain region’s activation, but rather 

explore areas that capture the underlying periodicities of the rhythmic signal.  

Periodicity tagging. In the present study, we utilise autocorrelation representations of 

musical rhythms and high-gamma brain activity. This approach focuses on capturing and 

comparing the periodicities observed in the autocorrelations of the musical rhythm with those 

observed in high-gamma activity. This approach is inspired by, and related to, the widely used 

frequency-tagging approach, however, instead of comparing frequency components in the 

rhythmic envelope with frequency components in neural responses, it compares their 

periodicities (Henry, Herrmann, & Grahn, 2017; Lenc, Keller, Varlet, & Nozaradan, 2018, 2019; 



Novembre & Iannetti, 2018; Nozaradan, Keller, Rossion, & Mouraux, 2017; V. G Rajendran, 

Harper, Garcia-Lazaro, Lesica, & Schnupp, 2017; V. G. Rajendran & Schnupp, 2019). For 

example, a rhythm might have many interonset intervals (where the onsets are not necessarily 

consecutive) of 500ms and only a few such interonset intervals of 250ms. Neural responses 

stimulated by such rhythms might, or might not, exhibit similar temporal periodicities. Because 

autocorrelation captures the distribution of such periodicities in a signal, measuring the 

correlation between the autocorrelation of a rhythmic envelope and the autocorrelation of a 

neural response, allows us to straightforwardly quantify how similar their periodicity 

distributions are. Autocorrelation is invariant to phase and so is not affected if there is a temporal 

delay between the two signals. Furthermore, there are a variety of different envelopes that can 

produce equivalent autocorrelations: we see this as an advantage because it is agnostic to the 

precise mechanism by which the periodicity is “coded” by the neural envelope. Indeed, there are 

various ways in which high-gamma activity could code the stimulus – not only through envelope 

matching – so a many-to-one matching is necessary when looking for areas of interest that track 

periodicity of stimuli. Here, we argue that if a high-gamma brain activity pattern represents or 

tracks the underlying periodicity of an acoustic signal, then it is most likely related to the 

stimulus. In summary, we specifically ask here whether high-gamma activity during listening, as 

well as imagination of repetitive auditory rhythms captures the rhythms periodicities using a 

periodicity tagging (autocorrelation) approach.  

 

Method 

Participants. Electrocorticographic data were recorded from 8 patients (3 female, 5 male, 

22 to 42 years old) with pharmacoresistant epilepsy undergoing localization of epileptogenic 

zones and eloquent cortex before surgical resection. When questioned, no patients reported 

hearing deficits or any form of musical training. In all cases, a tumour was not the source for the 



seizures and no lesions were indicated by any electrode used for analysis. Patients participating 

in this study gave written informed consent and the study protocol was approved by the 

institutional review boards of Old Dominion University and Mayo Clinic, Florida. Patients were 

implanted with subdural electrode grids or strips, based purely on their clinical need. Electrode 

locations were verified by co-registering pre-operative MRI and post-operative CT. For 

combined visualization, electrode locations were projected to common Talairach space. There 

can be a small degree of positional error when projecting the individual co-registered electrodes 

onto the generic brain model for aggregation across participants. Electrode locations and 

activations were rendered using NeuralAct (Kubanek & Schalk, 2015). We recorded 

electrocorticographic activity during rhythm perception and imagination of a total of 437 (151 

left hemisphere, 286 right) subdural electrodes (see Figure 2). 

Stimuli. The majority of research investigating neural activity to auditory rhythms stimuli  

use either complex speech or simple clicks, white noise, pure tones, or sine tones (Nozaradan, 

Mouraux, et al., 2017). To increase ecologically validity for musical stimuli, we use kick-snare 

drum patterns. Both, the kick and the snare sound showed no spectral peaks in the critical band 

(70-170Hz). The kick’s fundamental spectral peak was at 63Hz, and the Snare peaked at 217 Hz. 

However, as naturalistic sounds were used, there was some energy present within the critical 

band. Figure 1 shows the spectra of the Kick and the Snare sound. Here, we analyse data of 

participants listening to two different musical rhythms. Each rhythm consists of 8 pulses and 4 

sounded events. The rhythms are being presented at either 120 bpm or 140 bpm. Table 1 presents 

a summary of all rhythms. Rhythm 2 is a syncopated rhythm, that is listeners will perceive a 

downbeat on the 5th element, despite there being no sounded event. We included a syncopated 

rhythm, as syncopation is typically considered to increase rhythmic complexity (Fitch & 

Rosenfeld, 2007); this allows us to explore periodicity tagging in a more complex rhythm. 



Furthermore, a control was implemented by a condition that presented white noise instead of a 

rhythm.  

 

Figure 1. Spectra of the Kick (right and) Snare (left) sound. 

 

Table 1. Overview of the musical rhythms 

Rhythm Sounded Events Sequence 

Unsyncopated 4 K  x S x K x  S x 

Syncopated 4 K x S K x S x x 

Note. ‘K’ represents a sounded Kick, ‘S’ represent a sounded Snare, and ‘x’ represent a non-sounded element.  

 

Procedure. Each participant passively listened to each rhythm in condition-blocks of 6 

repetitions in 120 bpm (12 seconds) and 8 repetitions in 140 bpm (13.7 sec). After each rhythm 

block, the rhythm dropped out (i.e., became silent) for two repetitions in the 120 bpm condition 

(4 sec) and two repetitions during the 140 bpm condition (3.4 sec) and participants were 

instructed to imagine the rhythm to continue (imagining condition).  After the imagining 

condition, the rhythms became audible for another 2 repetitions in both tempo conditions. Each 

block appeared twice throughout the experiment. The order of rhythm blocks was randomised. 

For the listening and imagining blocks, participants were instructed not to tap along with the 

rhythm or to move, and adherence to these instructions was confirmed for each participant 



through investigator observation. For each rhythm block, additional trials were performed that 

required participant to tap the events of the rhythms using their dominant hand. These 

intermingled tapping trials as well as additional rhythm blocks using different rhythms were not 

included in the present analysis. ECoG signals were simultaneously recorded throughout the 

experiment.  

ECoG data collection. Data from the electrode grids or strips Ad-Tech Medical 

Instrument Corporation, Wisconsin, 1 cm spacing) were band-pass filtered between 0.5 and 500 

Hz and recorded using g. USB amplifiers (g.tec, Austria) at a sampling rat of 1200 Hz. Data 

recording and stimulus presentation were facilitated by BCI2000 (Schalk, McFarland, 

Hinterberger, Birbaumer, & Wolpaw, 2004). Electrode grids for all eight participants can be seen 

in Figure 2. 

 

 

Figure 2. Electrode grid locations for all eight participants. 

 

Data Analysis:  Separately for each participant, electrode, tempo (120 bpm vs. 140 bpm), 

audio condition (listening vs imagine), and rhythm (Unsyncopated: K x S x K x S x vs. 

Syncopated: K x S K x S x x) we extracted the absolute Hilbert envelope of high-gamma 

activity. We used elliptic IIR low- and high-pass filters to bandpass filter the ECoG signals 



between 70 and 170 Hz and applied an elliptic IIR notch filter to attenuate the first harmonic of 

the 60 Hz line noise. The Hilbert transform was then used to extract the envelope. We calculated 

the circular autocorrelation over all repeated presentations of the rhythm up to the Nyquist 

frequency. This was done by taking the real component of an inverse DFT of a pointwise 

multiplication of a DFT of the High Gamma timeseries and its complex conjugate and then 

dividing each element by the maximum element of the vector. The same transformation was 

conducted on the envelope of the musical rhythm’s waveform. High Gamma and musical rhythm 

autocorrelations were correlated with one another. The resulting autocorrelation correlations 

(ACC) between high-gamma brain activity and musical rhythms were used to statistically assess 

whether High Gamma tracks musical rhythms. This process is schematically represented in 

Figure 3. Visually, ACC can be described as the correlation between the top and bottom right 

panels in Figure 3. As a control, we extracted high-gamma activity, envelope, and 

autocorrelation also for a condition where participants were listening to white noise instead of 

the actual musical rhythms and calculated ACC.  

 

Figure 3. Schematic representation of the data analysis. The left most panel shows the original waveform of a 

musical rhythm. The rhythm in this example is a ‘K x S x K x S x’, with ‘K‘ being the kick, ‘S’ the snare, and ‘x’ a 

pause. First, we extracted the envelope of the continuously looped presentation of the rhythm, as shown in the 

middle top panel. The top right panel then shows the autocorrelation of the rhythm’s envelope. Note that the shown 

autocorrelation vector corresponds to the length of the original rhythm to emphasise the relationship between 

waveform and autocorrelation. For the actual analysis we used the whole autocorrelation vector over all repeated 

presentations of the rhythm up to the Nqyuist frequency. Simultaneously, we measured high-gamma activity from 



cortex electrodes whilst participants are listening (or imagining) the rhythm. Similar to the musical rhythm, we 

extracted the envelope of the high-gamma activity and calculated the autocorrelation. In a last step, we correlated 

the autocorrelations of high-gamma envelope and musical rhythm envelope to obtain our dependent variable: 

autocorrelation correlation (ACC).  

 
We deployed a Bayesian mixed effect model predicting the correlation between the 

autocorrelations of High-Gamma and musical rhythms (ACC, scaled to Mean = 0, SD = 1) based 

on Rhythm (Unsyncopated. vs. Syncopated), and AudioCondition (listen vs. imagine), and Signal 

(white noise vs. rhythm). The model was provided with a random effect for Participant, 

Electrode, Tempo (120bpm vs. 140bpm), and Presentation (first vs second time a condition was 

shown), resulting in the maximal random effect structure as justified by the experimental design 

(Barr, Levy, Scheepers, & Tily, 2013). The models were implemented in the R-environment (R-

Core-Team, 2013) using the brms-package (Bürkner, 2017, 2018). The Signal coefficient in 

combination with its interaction terms allows us to inspect the evidence in favour of whether 

autocorrelation in high-gamma activity meaningfully tracks musical rhythms, whilst controlling 

for brain activity that a participant – at a given electrode location – would show when listening to 

a length-matched white noise segment instead of the actual musical rhythm. In other words, our 

model is provided with the information of how high the ACCs value between High Gamma and 

musical rhythms can be expected to be, simply because participants are listening to any auditory 

noise (here we use white noise as a control) individually for every electrode of each participants. 

The model predicts the difference to this baseline, when participants are actually listening or 

imagining the rhythms. The model was provided with a weakly informative prior student-t(3, 0, 

1), and ran on 4 chains with 1000 warm-ups and 10000 iterations each. 

 

Results  



In a first step, we explore whether High Gamma tracking periodicities of the musical 

rhythms can be observed on a broad spatial scale. For this, we deployed Bayesian mixed effects 

models that compare ACCs obtained when participants listened or imagined the rhythms to 

ACCs obtained from the baseline. The baseline is ACC between a musical rhythm and High 

Gamma of a given participant and electrode when listening to white noise. Table 2 shows 

coefficient estimates ( ), 95%-CIs, as well as Evidence Ratios for the hypothesis that there is 

elevated brain-wide High Gamma tracks the musical rhythm. For convenience, we denote with * 

conditions that show ‘significant’ tracking of periodicities at an  = .05 level (Evidence Ratios > 

19, see Milne & Herff, 2020).  The results of table 2 are derived by performing the hypothesis 

tests shown in table 3 on the fitted model shown in table 4.  

Table 2. Summary of evidence observed in each condition whether broad spatial High Gamma 

tracks the periodicities of musical rhythms more than baseline. 

Rhythm Audio Condition  95%-CI  Evidence Ratio 

Unsyncopated Listen .1136 .0827 to .1445 > 9999* 

Unsyncopated Imagine -.0435 -.0749 to -0.0125 .0114 

Syncopated Listen .0741 .0432 to .1052 > 9999* 

Syncopated Imagine .1368 .1049 to .1678 > 9999* 

Note. We obtain strong evidence for broad spatial High Gamma tracking of the envelope of musical rhythms in the 

syncopated rhythms during listening and imagining, as well as in the unsyncopated rhythm during listening. 

However, we do not observe evidence for whole-brain tracking of the unsyncopated rhythm during imagination. * 

denote effects that can be considered ‘significant’ at a   = .05 level. 

 

Table 3. Hypotheses performed on the model shown in table 4. 

Rhythm Audio Condition Hypothesis test 

Unsyncopated Listen Rhythm > 0 



 

Note. The reference was placed at the white noise condition, unsyncopated, listening condition. Rhythm indicates 

that the actual rhythm rather than white noise was heard. Unsyncopated and Syncopated refer to the two different 

rhythms used. Imagined indicates that the rhythms was not played, and instead participants were asked to imagine 

them.  

 

 

 

Table 4.  Model summary.  

  Scaled AC Correlation 

Predictors Estimates CI (95%) 

Intercept -0.67 -0.73 to -0.61 

Rhythm 0.11 0.08 to 0.15 

Syncopated 0.44 0.40 to 0.48 

Imagined 0.82 0.78 to 0.85 

Rhythm.Syncopated -0.04 -0.09 to 0.01 

Rhythm.Imagined -0.16 -0.21 to -0.11 

Syncopated.Imagined -0.00 -0.05 to 0.05 

Rhythm.Syncopated.Imagined 0.22 0.15 to 0.29 

N Electrode 518 

Observations 16576 

Marginal R2 / Conditional R2 0.216 / 0.629 

σ2 0.41 

 

Unsyncopated Imagine Rhythm + Rhythm:Imagined > 0 
 

Syncopated Listen Rhythm + Rhythm:Syncopated > 0  
 

Syncopated Imagine Rhythm + Rhythm:Syncopated + Rhythm:Imagined +  
Rhythm:Syncopated:Imagined > 0 



On a broad spatial scale, we observe strong evidence (all Evidence Ratios > 9999) in 

favour of high-gamma ACs tracking the ACs of the musical rhythms in the syncopated rhythm 

during listening and imagination, and in the unsyncopated rhythm during listening, but not 

imagination. When comparing the two rhythms, the unsyncopated and the syncopated rhythms 

show comparable ACCs in the listening condition (  = .04, EE = .03, 95%-CI  = -.004 to .83, 

Evidence Ratio = 13.46). In the imagination condition, however, we obtain strong evidence for 

higher ACCs in the syncopated rhythm compared to the unsyncopated condition (  = .18, EE = 

.03, 95%-CI  = .14 to .22, Evidence Ratio = >9999*). Although we do not observe tracking on a 

broad spatial scale in the unsyncopated imagination condition, this does not imply that there are 

no electrodes for which the high-gamma activity tracks the musical rhythms, as can be seen in 

the electrode-wise results.  

Figure 4 shows counts of the electrodes that significantly track the musical rhythms’ 

periodicities, as well as their normalised ACC. We calculated significance thresholds for each 

participant and rhythm individually. For this, we used the distribution of correlations between the 

autocorrelation of a musical rhythm and the autocorrelation of high-gamma activity whilst 

listening to length-matched white noise segments. Correlations that exceed 99% of this 

distribution are deemed significant. Normalised ACC values were obtained by subtracting the 

ACC when listening to length-matched white noise instead of listening or imagining the musical 

rhythms. Each electrode in a given participant was normalised by the white noise ACC of the 

same electrode in that participant. As can be seen in Figure 4, each condition contains electrode 

in which high-gamma ACs track the ACs of the respective musical rhythms.  

 



 

Figure 4. Number (first and second row) and magnitudes (third and fourth row) of electrodes that 

significantly track musical rhythms in their high-gamma activity, pooled across participants and electrodes. 

Significance was defined by exceeding participant-wise 99% of the ACC between musical rhythms and High 

Gamma during the white-noise control condition. All conditions contain electrodes that significantly track the 
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musical rhythms. Normalised ACC values were obtained by subtracting the significance thresholds from the 

observed ACCs. Error bars represent 95%-CIs. 

 

Figure 4 also suggests an increase in the number of significant electrodes between first and 

second presentation of each condition (i.g., higher bars in the second row compared to the first). 

A Bayesian mixed model supports this. The model predicts Normalised ACC based on 

Presentation Number (first vs. second), whilst controlling for Participant and Electrode. The 

model reveals an increase in Normalised ACC in all conditions (all Evidence Ratios > 65*). This 

can be seen in Table 5. 

 

Table 5. Summary of evidence observed that Normalised ACCs are higher during the second 

presentation compared to the first presentation of each condition. 

Rhythm Tempo Audio Condition  95%-CI  Evidence Ratio 

Unsyncopated 120 Listen .24 .15 to .34 > 9999* 

Unsyncopated 120 Listen .20 .11 to .30 > 9999* 

Unsyncopated 140 Imagine .32 .23 to .42 > 9999* 

Unsyncopated 140 Imagine .28 .18 to .37 > 9999* 

Syncopated 120 Listen .17 .08 to .27 799* 

Syncopated 120 Listen .12 .03 to .22 65.56* 

Syncopated 140 Imagine .14 .05 to .24 136.93* 

Syncopated 140 Imagine .21 .06 to .30 3999* 

Note. We obtain strong evidence that Normalised ACCs are higher in the second compared to the first presentation 

in all conditions. * denote effects that can be considered ‘significant’ at an  = .05 level. 

 

To investigate the potential overlap between significant electrodes in listening and 

imagination we used a Bayesian Mixed effects models predicting 

SignificanceDuringImagination (Binary factor with 1 = significant, 0 = not significant), based on 

SignificanceDuringListening (and vice versa), whilst controlling for Rhythm, Tempo, 



Participant, Presentation, and Electrode. We observe very strong evidence that 

SignificanceDuringListening predicts SignificanceDuringImagination (  = 1.83, EE = .25, 95%-

CI  = 1.43 to 2.24, Evidence Ratio = >9999*) and vice versa (  = 2.51, EE = .26, 95%-CI  = 

2.01 to 2.94 Evidence Ratio = >9999*). This suggests high predictive information between the 

electrodes that are significant in listening and those that are significant during imagination. 

Further insight is provided in the topography section of the results. 

To visualise the tracking, Figure 5 shows examples for each condition. The red line shows 

the AC of a given musical rhythm. The blue line shows the AC of an example electrode. 



 

Figure 5. ACs of the musical rhythm conditions and pre-frontal example electrodes (blue-yellow, pre-frontal 

cluster in Figure 6). The x-axis represents the sample (time). The ACs of the listen condition look different to the 

AC of the imagine condition, because there were more repetitions, thus samples, in the listen condition (6 repetition 

at 120 bpm over 12 seconds; 8 repetitions at 140 bpm over 13.7 sec) condition before the audio dropped out, than 

there were samples in the silent imagine condition (2 repetitions in both tempi; 4 sec at 120bpm; 3.4 sec at 140 bpm 
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). There are electrodes in which High Gamma ACs (blue) significantly track the musical rhythms ACs (red) in all 

conditions. 

 

This study is predominantly concerned with High Gamma, however, we performed the 

same analysis on the Beta band (12-30 Hz) to see whether high-gamma activity carries 

information that is not contained in other frequency bands. We chose Beta because it was 

suggested by the reviewers and prior work suggests an involvement of Beta in neural processing 

of musical rhythms (Chang, Bosnyak, & Trainor, 2016). We observed strong evidence that there 

are more electrodes that significantly track the musical rhythm’s AC using High Gamma 

compared to Beta (  = 2.17, EE = .72, 95%-CI  = 0.98 to 3.4, Evidence Ratio = 2799*). 

Furthermore, the increase in Normalised ACC between first and second presentation that is 

observed in all conditions in High Gamma is not observed in Beta in any condition (all Evidence 

Ratios < 5.78), with the exception of the unsycopated rhythm at 140bpm in the imagined 

condition (Evidence Ratio = 799*). However, it is worth mentioning that we also found some 

electrodes that tracked the musical rhythms’ ACs in the Beta ACs. 

Topography. To localise the effect, we plotted all electrodes on a joint brain map. Figure 6 

shows heat maps of mean normalized ACC for listening (top) and imagining (bottom) across all 

rhythms and tempi.  

 



 

Figure 6. A joint brain map for all participants across all conditions. Heat maps visualize mean normalized 

ACC across all rhythms and tempo. Significant ACCs can be observed particularly in the frontal areas of the right 

hemisphere. These ACCs are also significant during the imagine condition.  

 

Discussion 

The present study investigated the involvement of High Gamma in listening as well as 

imagining musical rhythms using brain activity of eight participants measured through invasive 

ECoG. Bayesian mixed effects models provided compelling support that high-gamma activity 

tracks the envelope of musical rhythms. Specifically, we deployed an analytical approach that 

emphasises the periodicity in musical rhythms by investigating correlations between the 

autocorrelations of musical rhythms’ and the autocorrelation of high-gamma brain activity. In all 

listening conditions the models support the conclusion that high-gamma activity captures the 

periodicity in musical rhythms. We observe the same in all but one condition, when participants 

are imagining the rhythms, rather than listening to them. Taken together, it appears that during 

imagination, neural populations display similar high-gamma activity that tracks the envelope of 

the imagined stimulus, usually observed when acoustic stimuli are actually present. This may be 



preliminary support for the notion that – on a neural level – imagination involves activity of the 

reactive neural response associated with the presence of the stimulus. 

The present finding supports previous ECoG studies that highlight the importance of high-

gamma activity in auditory processing (Herff et al., 2015; Leuthardt et al., 2011; Pasley et al., 

2012; Pei et al., 2011; Potes et al., 2012; Schalk & Leuthardt, 2011; Sturm et al., 2014) (see 

Cervenka et al., 2011). Specifically, our results replicate the findings that High Gamma tracks 

music envelopes (Sturm et al., 2014). Such replications are important, because ECoG studies 

operate with very small sample sizes. Furthermore, we extend the finding to imagination, and a 

periodicity tagging approach. The direct approach of directly correlating High Gamma with 

stimulus envelope deployed by (Sturm et al., 2014) relies on relatively long segments, clean data, 

and a phase-locking. Furthermore, correlating High Gamma with the stimulus envelope can only 

identify neural population that engage in envelope matching. Yet, there are various ways in 

which high-gamma activity could theoretically code the stimulus. The present approach is able to 

identify neural populations that engage in envelope matching as well as those that match any 

form of distinct activity pattern to the periodicities of the stimuli. As such, we put the present 

approach forward as a useful tool to identify brain regions of interest. The identified regions 

could then be further analysed to characterise the nature of the activity pattern that tracks the 

periodicities of the stimuli. It is important to note that the present approach correlates the two 

autocorrelations with one another. It is possible that other metrics of similarity such as cosine 

similarity, Weissman score, or shared mass could work equally well or even better. Future work 

could investigate the benefits of more sophisticated similarity measures.  

The unsyncopated and the syncopated rhythms show comparable ACCs in the listening 

condition. This is worth noting as the syncopated rhythm could be considered the more 

complicated rhythm (Fitch & Rosenfeld, 2007). The stronger tagging of the syncopated rhythm 

compared to the unsyncopated rhythm in the imagination condition is surprising. A possible 



explanation could be, that the syncopated rhythm may be more interesting and engaging for 

participants, having a ‘groove’ that makes it easier to entrain. A different explanation 

considering the order in which the conditions were presented is provided in the limitation 

section. 

High-gamma activity showed a greater number of significant electrodes compared to beta 

activity. High Gamma also shows a strong increase in Normalised ACCs between first and 

second presentation in all conditions. This increase was only seen in one condition for Beta 

(Unsyncopated, 140bpm, imagined). The strong evidence for an increase in Normalised ACCs 

between first and second presentation in High Gamma, but not Beta, may suggest that some form 

of higher order auditory processing is involvement in periodicity tagging in High Gamma that 

improves with increased exposure. A possible candidate could be a prediction-based mechanism 

that shows clearer activation patterns when familiar with a rhythm. While High Gamma showed 

more significant electrodes, there were some electrodes that also showed significant tagging of 

the musical rhythms’ periodicities in the Beta band. This is interesting because Beta can be 

reliable captured in EEG, whereas High Gamma cannot. A future study could investigate 

whether periodicity tagging can be shown using EEG and the autocorrelations in the Beta band. 

Topography. Electrodes with significant ACCs can be found in auditory areas in the 

superior temporal gyrus and in frontal areas on both hemispheres. Numerous significant 

electrodes are observed on the right hemisphere which is in accordance with previous findings 

(Thaut, Trimarchi, & Parsons, 2014). However, due to the better coverage of the right 

hemisphere compared to the left hemisphere, we cannot draw conclusions about hemispherical 

dominance (151 left hemisphere, 286 right). Of particular interest is the large cluster of 

electrodes in the right prefrontal cortex that are active during both rhythm perception and 

imagined perception, which indicate conscious processing of the rhythm structure as opposed to 

mere auditory phenomena. This finding mirrors research that also observed frontal High Gamma 



when imagining familiar music (Ding et al., 2019). The previous study also found elevated high-

gamma activation in the temporal lobe during imagination. Here, we did not observe that High 

Gamma in the temporal lobe represents the periodicities of the musical rhythms during 

imagination like the prefrontal cortex does. However, this could simply be due to a difference in 

methodology. The previous study (Ding et al., 2019) focused on areas that show elevated high-

gamma activity and/or areas where gamma activity tracks the music’s envelope. The present 

study uses musical rhythms rather than familiar music, and focuses on areas that track the 

rhythms’ periodicities, regardless of overall activity. However, any area that closely tracks the 

audio envelope in the present dataset would have been identified by our periodicity-tagging 

approach, so further research is required to shed line of the role of temporal lobe during 

imagination. 

Limitations. An important limitation in the present design is that what we and others 

(Ding et al., 2019) liberally term ‘imagination’ is in fact an ‘imaginary continuation’ of the 

rhythms. In theory, such a continuation could be functionally distinct from un-prompted 

imagination. In fact, it is possible that if the imagination condition would have lasted longer, 

then potentially the high-gamma representation of the rhythms’ periodicity may have diverged. 

This is an empirical question for a future study. Despite using stimuli that showed no spectral 

peaks in the critical band (70-170Hz), when using naturalistic drum sounds, it is impossible to 

avoid energy across the spectrum. It is therefore possible that that the neural patterns observed 

are event related potentials, rather than ongoing neural activity. However, the prefrontal location, 

as well as activity during imagination would require further thought to explain through event 

related potentials. Furthermore, the one condition that did not show brain-wide significant 

tracking of the rhythms periodicity in High Gamma urges caution interpretation of the present 

results. This is, because the condition was the simpler rhythm. If anything, we would have 

expected this condition to show the strongest effect. A possible explanation lies in the fact that 



this condition was always tested first. Potentially, participants were not yet familiar with the 

imagination task to evoke a reliable effect. Some support for this explanation can be gained from 

the increase in Normalised ACC as well as number of significant electrodes between first and 

second presentation of the conditions. Furthermore, as common in invasive brain studies, we 

were operating with small participant numbers, and despite our best efforts of making the most 

of the data at hand, by deploying a Bayesian framework, we simply may not have the statistical 

power to compensate for all sources of random variability.  

 

Conclusion 

Deploying an analytical approach that emphasises the periodicity in musical rhythms, we 

found that high-gamma brain activity in auditory areas tracks periodicity when listening to 

musical rhythms. Furthermore, we found that high-gamma activity in the prefontal cortex tracks 

periodicity of musical rhythms both during listening and imagination. 
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