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Abstract: (242 words) 47 

During self-guided behaviors animals identify constraints of the problems they face and 48 

adaptively employ appropriate strategies (Marsh, 2002). In the case of foraging, animals must 49 

balance sensory-guided exploration of an environment with memory- guided exploitation of 50 

known resource locations. Here we show that animals adaptively shift cognitive resources 51 

between sensory and memory systems during foraging to optimize route planning under 52 

uncertainty. We demonstrate this using a new, laboratory-based discovery method to define the 53 

strategies used to solve a difficult route optimization scenario, the probabilistic “traveling 54 

salesman” problem (Anaya Fuentes et al., 2018; Mukherjee et al., 2019; Raman & Gill, 2017). 55 

Using this system, we precisely manipulated the strength of prior information as well as the 56 

complexity of the problem. We find that rats are capable of efficiently solving this route-57 

planning problem, even under conditions with unreliable prior information and a large space of 58 

possible solutions. Through analysis of animals’ trajectories, we show that they shift the 59 

balance between exploiting known locations and searching for new locations of rewards based 60 

upon the predictability of reward locations. When compared to a Bayesian search, we found 61 

that animal performance is consistent with an approach that adaptively allocates cognitive 62 

resources between sensory processing and memory, enhancing sensory acuity and reducing 63 

memory load under conditions in which prior information is unreliable. Our findings establish 64 

new approaches to understand neural substrates of natural behavior as well as the rational 65 

development of biologically inspired approaches for complex real-world optimization.66 
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Significance Statement (106 words): 67 

 68 

Animals display remarkable problem-solving abilities across a variety of complex situations. 69 

Here, we used a large, computer-controlled foraging field with precisely controlled probabilities 70 

of food resources in either repeated or random locations to test how rats determine which 71 

strategies to use to solve an extremely complicated route planning problem.  We found that rats 72 

balanced exploration for novel locations of food with exploitation of known food locations to 73 

solve this problem, with the balance between exploratory and exploitative strategies governed 74 

by the amount of information available regarding resource location. Our results show how 75 

animals balance sensory input with learned information to solve complex, real-world route 76 

planning problems. 77 

 78 

Introduction (730 words) 79 

Animals balance the ability to flexibly interact with their environment with the need to 80 

reserve energy while foraging. Foraging in natural environments can be particularly difficult due 81 

to the sparse and unreliable nature of sensory cues emanating from food sources. This is 82 

especially true when animals need to travel between multiple locations and it is unknown 83 

whether food will be present at these locations. Under conditions of high uncertainty it may be 84 

beneficial to rely upon sensory information during foraging and utilize a more exploratory 85 

approach, when the increased cognitive demand of this strategy is offset by the need to flexibly 86 

interact with the environment. Conversely, using a memory-based strategy to exploit known 87 

resource locations allows for the quick establishment of efficient stereotyped routes, yet result in 88 

behaviors that are not readily adaptable to changing contingencies in the environment. It is 89 

therefore important for animals to maintain cognitive flexibility while foraging in their natural 90 

environment in order to execute the most efficient behaviors required for food procurement 91 
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(Dolan & Dayan, 2013). To this end, the ability to adaptively modify search strategy by using 92 

internal representations of the dynamic environment would serve to vastly increase the 93 

effectiveness of foraging bouts (Slotnick, 2001; S. Zhang & Manahan-Vaughan, 2015).   94 

Animals must learn the constraints of their environment in order to determine how to 95 

optimize their foraging strategies, with the balance of exploration versus exploitation being vital 96 

in this context (Auh & Menguc, 2005; Gupta et al., 2006; Kramer & Weary, 1991; Mehlhorn et 97 

al., 2015). During exploration, animals sample from multiple food patches over the course of 98 

several foraging bouts. This allows them to construct an internal representation of different 99 

possible locations where they can find food, with the benefit being that their future foraging 100 

would be more resistant to reduced or noisy sensory cues. Exploitation of this information 101 

follows and relies on remembering bountiful patch locations so that animals have a framework to 102 

use for navigation. While benefits of exploitation include spending less energy traveling to 103 

locations where it is unknown whether food will be available, potential drawbacks would be that 104 

this strategy fails when resources have been exhausted or when resource locations change. 105 

Additional exploration after establishing resource location is thus most useful when new resource 106 

locations need to be discovered, such as when information regarding resource locations is found 107 

to be unreliable. Under the constraints of foraging in an unpredictable environment, it is more 108 

difficult to exploit reliable resource locations in order to reduce foraging costs and strategies 109 

should shift toward exploration.  110 

The ability to rapidly solve complex problems, such as optimization of foraging 111 

strategies, is a defining feature of animal intelligence. Indeed, varieties of animals solve difficult 112 

optimization problems nearly instantaneously (Drea & Carter, 2009; Kenward et al., 2005; Wall 113 

& Balda, 1977; Q. Zhang et al., 2015). However, it has been difficult to study route optimization 114 
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during naturalistic foraging in a laboratory setting. Historically, many foraging tasks have been 115 

studied with apparatuses that do not explore the full behavioral repertoire of a natural forager. 116 

One issue is the difficulty of providing alternative possible paths for the animals when they are 117 

restricted to a track, such as a figure-8 maze (Pedigo et al., 2006). In these simplified tasks the 118 

space of available behaviors is limited to simple actions such as left and right turns. While other 119 

studies avoid these restrictions through the use of open field designs, these approaches 120 

necessarily reduce the precision and reproducibility of resource locations (Agarwal et al., 2014). 121 

We address these challenges by studying naturalistic foraging in a large, computer-controlled 122 

open field where food rewards can be precisely and reproducibly located anywhere in the 123 

environment.  124 

Using our computer-controlled open field design we investigated the strategies rats use to 125 

solve a notoriously difficult optimization scenario, the probabilistic traveling salesman problem. 126 

In this problem, an agent must establish the most efficient (i.e., shortest) route between a finite 127 

number of locations and each location has a certain probability of containing pellets (Leipälä, 128 

1978; Percus & Martin, 1999). We observed rats’ ability to follow efficient acquisition 129 

sequences and measured how well animal performance correlated with memory-guided 130 

exploitative strategies or sensory-guided exploratory strategies as a function of the predictability 131 

of the pellet distributions upon which animals were trained. These precise behavioral 132 

experiments suggest animals adaptively shift their reliance on sensory information in response to 133 

the reliability of the foraging environment. 134 

 135 

Materials and Methods 136 

 137 

Subjects. The experiments in this study were performed on 12 male Long-Evans rats, purchased 138 
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from Charles River Labs and housed individually. All animals were maintained on a 12-hour 139 

reverse light-dark schedule (lights off at 7:00am) with ad libitum access to water. After a 140 

weeklong habituation to the animal housing facility, all animals were then sustained at 85% of 141 

their free- feeding body weight in order to maintain motivation. All tests were performed 142 

between 9:00am and 6:00pm, during the dark phase of the light cycle. Zeitgeber Time (ZT, with 143 

ZT0 = lights on in the animal facility) of experiments was ZT 14 to ZT 23. To limit distal visual 144 

cues, all tests were performed under dim red light (~660 nm). All experimental procedures were 145 

approved by the Institutional Animal Care and Use Committee at the University of Washington. 146 

 147 

 148 

Testing Apparatus. The foraging arena was a large, fully enclosed open-field measuring 2.5m 149 

in length, 1m in width, and 1m in height. The frame of the arena was constructed from T-slotted 150 

aluminum railings. The sides of the arena were constructed from 1.27cm thick clear acrylic, 151 

while the ceiling was 0.635cm in thickness. The floor was a sheet of 0.0635cm thick opaque 152 

white acrylic. The ends of the arena were made from a wire mesh to allow for air to circulate 153 

throughout. A nest area where the animals would remain during the intertrial interval was 154 

attached to one end of the arena. The nest area was constructed from 1.27cm thick clear acrylic. 155 

Two synchronized cameras (The Imaging Source; DMK 23UP1300; frame rate 120 per second) 156 

were used to track the movement of the animals. An automated, custom-made pellet dispenser 157 

was used to bait the arena with 45mg sucrose pellets (Bio-Serv). An Arduino Uno controlled the 158 

movement of the motors running the pellet dispenser, allowing movement in the x- and y- 159 

coordinate plane. 160 

Estimation of odor cues: Odor cue dispersal in the arena was directly measured using an ethanol 161 

source and miniature ethanol sensors (Tariq et al., 2019) that were scanned in a grid across the 162 
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arena. The maximal signal detected at each sensor location over 30 seconds was normalized and 163 

reported in figure 4. There was no flow imposed on the arena, which limited the dispersal of 164 

airborne odor cues. 165 

 166 

 167 

Behavioral Paradigm. Before testing, all animals were habituated to the animal facility for 1 168 

week. Animals then spent 2 days habituating to the attached waiting cage for ~15 minutes at a 169 

time. In order to motivate animals to return to the waiting cage, sucrose pellets were placed in 170 

the cage every 2 minutes when a 1 second, 1000Hz tone was played. They were then granted 171 

access to the test arena and were given 2-3 days to habituate to it. Animals were considered to 172 

have reached criterion when they were able to make 3 transitions between the waiting cage and 173 

test arena within 30 minutes. 174 

Animals were placed into the waiting cage at the beginning of each testing session. Rats 175 

completed 1 session a day of 3 trials each. Before each trial, the automated pellet dispenser 176 

baited the arena with sucrose pellets organized into 3 clusters of approximately 3 pellets each. 177 

During foraging periods the dispenser was automatically lifted out of the arena so that the 178 

animals could not interact with it. Procedures differed only through the testing phase, when 179 

animals were assigned to forage within environments of high, medium, or low food location 180 

predictability. Animals trained on the environment with high food location predictability (n=4) 181 

were overtrained on a single distribution of pellet locations that stayed consistent across trials 182 

and sessions. Animals foraging in the environment with low food location predictability (n=4) 183 

were trained on unpredictable pellet distributions that changed across trials. All other animals 184 

(n=4) were trained on a moderately predictable distribution of pellet locations that changed 185 

slightly over time. All rats were given a maximum of 30 minutes to eat all of the sucrose pellets 186 
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during the session. The entire testing period lasted for 30-35 days with approximately 5 sessions 187 

a week. 188 

Experimental Design and Statistical Analysis. No explicit power analysis was conducted in 189 

order to determine sample sizes. However, the number of animals used is consistent with 190 

experiments in the current literature. All analyses were conducted using MATLAB (MathWorks) 191 

on PC workstations running under the Windows 10 operating system. A custom LabView 192 

(National Instruments) program was used to collect the behavioral data, also on a PC running the 193 

Windows 10 operating system. Significant differences between groups were assessed with the 194 

Mann-Whitney U test followed by p-value adjustment with False Discovery Rate when multiple 195 

comparisons were made. 196 

Predictability of pellet distributions was quantified using an across trial minimum distance 197 

metric, which, for each pellet in a given distribution reports the minimum distance from that 198 

pellet to all pellets in the immediately previous distribution. Relative entropy (RE) is equivalent 199 

to Kullback-Leibler Divergence and was calculated as: 𝑅𝐸(𝑃||𝑄) = ∫ 𝑃(𝑗)𝑙𝑜𝑔(𝑃(𝑗)/𝑄(𝑗)) for 200 

all points j in the current trial's probability density function (P) and the probability density 201 

function calculated from all previous trials (Q). Prior to calculating the RE all distributions were 202 

convolved with a smoothing function, which was an averaging filter of width = 1 cm. RE is 203 

reported in bits.   204 

For establishing optimal pellet acquisition sequences for each distribution we used a 205 

genetic algorithm developed by Joseph Kirk: Fixed Start Open Traveling Salesman Problem - 206 

Genetic Algorithm (https://www.mathworks.com/matlabcentral/fileexchange/21198-fixed-start-207 

open-traveling-salesman-problem-genetic-algorithm). Briefly, this algorithm starts from a 208 
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𝐿 

population of randomly generated paths that start at the entrance to the arena and travel to each 209 

pellet once.  It then uses an iterative process wherein in each “generation” of solutions the fitness 210 

of every path in the population is evaluated; the objective function for fitness in this case is 211 

minimization of path length. The more fit (shorter) paths are selected, and each path’s sequence 212 

of pellet locations is modified (recombined with other paths or randomly changed, or “mutated”) 213 

to form a new generation. The new generation of candidate paths is then used in the next 214 

iteration of the algorithm. The algorithm can be terminated when either a maximum number of 215 

generations has happened or the path length reaches a small enough value. 216 

Efficiency of foraging paths (Fig. 3a) was calculated as 𝑓𝑒 =  lo/𝑙𝑎, where lo is the 217 

optimal path length, la is the animal's path length, and fe is foraging efficiency.  218 

 219 

Bayesian search. For analyses conducted in Figure 5, we modeled rat behavior as a Bayesian 220 

search. Briefly, the search arena is divided into 2.8 cm squares resulting in a 40 x 80 grid of 221 

possible locations. This grid is then populated with the same pellet distributions that were used in 222 

the behavioral experiments. We start our analysis on day 10 of training, which provides an agent 223 

with up to the first 10 days of training data as a map of prior expectations regarding pellet 224 

locations (Fig. 5a). The expression for prior expectation of pellet location is given by: 225 

pe(𝑥, 𝑦) = 𝛴𝑡−1(𝑥, 𝑦)/(𝑡 − 𝐿) 226 

 227 

Where t is the trial number, rw is the probability of a pellet being found at a given point, (x,y), 228 

over previous trials and pe is the resulting prior expectation from the previous pellet locations. L 229 

is based on the length of memory being used and is defined as 𝐿 = (𝑡 − 𝑚𝑑, 1), with md being 230 

memory depth in trials, with md >=1. To enforce the nearest-neighbor search strategy used by 231 



 

 10 

rats, this map of prior expectations is discounted by linear distance from the agent, resulting in 232 

decreased likelihood to search first in areas that are located at large distances from the agent. 233 

This results in the following expression at a point, (x, y) within the grid of possible pellet 234 

locations: 235 

𝑚(𝑥, 𝑦) = 𝑝𝑒(𝑥, 𝑦) ∗ ((𝑚𝑎𝑥(𝑑) − 𝑑(𝑥, 𝑦))/𝑚𝑎𝑥(𝑑)) 236 

 237 

Where d is the distance from the agent and m is the memory-based map of prior expectations for 238 

pellet location adjusted by distance from the agent. The agent also uses sensory information that 239 

decays with distance to update their expectation of the possible pellet location, 240 

s(𝑥, 𝑦) = cr(𝑥, 𝑦) ∗ ((max(𝑑) − 𝑑(𝑥, 𝑦))/max(𝑑))𝑠𝑒 241 

 242 

where s is the sensory density function and cr is a map with the current location of all pellets set 243 

to 1 and all other locations set to 0. The term se is an exponent that determines the rate of decay 244 

of sensory information with distance. These two sources of information are weighted and then 245 

summed to result in a map that guides the agent's next step in the search path. 246 

p(𝑥, 𝑦) = s(𝑥, 𝑦) ∗ 𝑠𝑤 + m(𝑥, 𝑦) ∗ (1 − 𝑠𝑤) 247 

 248 

Where p is the probability map, s is the sensory density function and m is the memory-based map 249 

of prior expectations for pellet location. The term sw is the weight given to sensory information, 250 

{sw | 0 ≤ sw ≤ 1}.  The agent makes its next step along the vector to the maximum point of p. 251 

The agent is considered to have perfect target detection at their location, such that after the agent 252 

moves to a new location, if a pellet is at that location it is always detected and if no pellet is at 253 

that location the probability of a target at that site is updated to 0. To fit parameters for the 254 

Bayesian search, we used a 3-dimensional coarse grid of values for sw, se, and md. We found the 255 
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best fit for each animal in this grid and report these results in Figure 5. 256 

For reported measures in Fig. 5f, 𝑠𝑎 = (1 − (𝑠𝑒/(𝑆𝐸)) + 𝑠𝑤)/2, where sa is sensory 257 

acuity and SE is the set of values of se across all best fits for 12 animals, while 258 

𝑚𝑖 = (𝑚𝑎𝑥(𝑝𝑟{𝑚𝑑 > 0}) − 𝑚𝑒𝑎𝑛(𝑝𝑟{𝑚𝑑 ≤ 3}))/(𝑚𝑎𝑥(𝑝𝑟{𝑚𝑑 > 0}) − 𝑚𝑖𝑛(𝑝𝑟{𝑚𝑑 > 0})), 259 

where mi is long-term memory usage and pr is the correlation of the agent's performance with 260 

the animal's performance using md set to the indicated range of values. 261 

Software accessibility. All software developed for analysis and generation of figures is available 262 

at the Gire lab website and at Github.  263 

 264 

Results 265 

 266 

Route planning revealed through controlling predictability of reward locations 267 

We adapted the probabilistic traveling salesman problem for experimental investigation 268 

through the use of an automated system for precise, computer-controlled food pellet placement 269 

within a large foraging arena (Fig. 1a). We divided a cohort of 12 rats into 3 equal groups that 270 

foraged within environments of high, medium, and low food location predictability (Fig. 1b). 271 

Animals in each group were tested across precisely replicated pellet placements (Fig. 1c) and all 272 

placements used had equivalent optimal path lengths (Fig. 1d), as calculated through a genetic 273 

algorithm solution to the traveling salesman problem for each pellet placement (see methods). 274 

We generated sequences of pellet locations over days to create distributions that were extremely 275 

well-predicted by prior experience as well as distributions that were unable to be anticipated 276 

based upon prior pellet locations. To generate pellet placements with controlled levels of 277 
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predictability we quantified the between trial minimum distance for each pellet of a given 278 

distribution and all pellets of the previous trial’s distribution and set this value to be low for the 279 

computer-generated set of locations used for predictable conditions and to be high for the 280 

unpredictable condition (Fig. 1e). The lower values for pellets in predictable distributions 281 

indicate that these pellets are in areas that are extremely close to where pellets were located on 282 

the previous trial, allowing animals to create an expectation over repeated searches. This is also 283 

demonstrated through a reduction of the relative entropy (a measure of surprise) of newly-284 

encountered pellet distributions following multiple days of training for animals in high and 285 

medium predictability conditions. Animals could not develop such an expectation under low 286 

levels of predictability and relative entropy does not decrease with training for the unpredictable 287 

distribution (Fig. 1f). In all conditions, animals searched for an average of 7 pellets, with the 288 

precise number on a given trial unknown to the animal (Fig. 1g). This results in typically 7!, or 289 

5,040 possible sequences of pellet acquisition, with most sequences being extremely sub-290 

optimal. Examples of trajectories taken by animals on the first and last days of training 291 

demonstrate changes in search trajectories with learning (Fig. 1h). After training, all animals 292 

favored a small subset of near-optimal acquisition sequences (Fig. 2a), consistent with findings 293 

in non-probabilistic optimization across a number of species (Blaser & Ginchansky, 2012). We 294 

found that a simple nearest neighbor heuristic (in which rats solve the task by traveling to the 295 

next nearest pellet) achieved strong performance on this task, often comparable to that of 296 

optimized routes (Fig. 2b).  Indeed, we found that animals achieved optimal performance only 297 

when the optimal solution was the same as a nearest neighbor approximating solution (Fig. 2c), 298 

suggesting that the rats employed the nearest neighbor heuristic to solve the task.  Rats foraging 299 

in predictable environments were capable of employing a nearest neighbor strategy earlier during 300 
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training, though all animals, even those in unpredictable environments, did increase the use of 301 

nearest neighbor routes while foraging (Fig. 2d). However, animals in the highest predictability 302 

group were significantly more effective at ordering their search based on nearest neighbor 303 

relations of reward locations (Fig. 2e, error relative to a nearest neighbor search: 16.9 +/- 0.5 cm 304 

for most predictable, 22.1 +/- 2 cm for moderately predictable, and 20.8 +/- 1.4 cm for least 305 

predictable, n = 4 animals per predictability group, see methods for statistical tests used for all 306 

comparisons). Examples of optimal, nearest neighbor, and animal sequences of pellet acquisition 307 

for animals in highly predictable and unpredictable environments are shown in Fig. 2f. 308 

 309 

Predictable environments enable enhancement of search routes 310 

In our task, which involves probabilistic presence of pellets, this nearest neighbor 311 

search can be implemented through two different strategies: in a sensory-guided strategy 312 

animals use cues (odor or vision) to navigate towards the nearest detected target; in a memory-313 

guided strategy animals use prior information to navigate towards the nearest, most likely 314 

locations of pellets. We next investigated which of the two alternative strategies might guide a 315 

nearest neighbor search within each level of uncertainty. Over training, animals across all 316 

predictability levels significantly increased their probability to travel to the nearest pellet 317 

during search (Fig. 2d). However, the number of days of training taken for this to occur was 318 

dependent upon the predictability of the pellet distribution (Fig. 2d; significant improvement 319 

on days 2-10 for highly and moderately predictable conditions, significant improvement not 320 

until days 10-15 for unpredictable conditions; p <0.05 compared to day 1, n=4 for all groups). 321 

We found that animals searching in highly predictable environments were effective at 322 

enhancing the efficiency of their search across long distances (>40 cm) and learned to do this 323 
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relatively early in training (days 5-10).  Those in moderately predictable environments also 324 

learned to increase the efficiency of their search tours but required more training to do so (days 325 

10-15), while those searching in unpredictable environments did not significantly increase the 326 

efficiency of their tours (Fig. 3a,b).  As the unpredictable nature, or “surprise value” of the 327 

environment increased, the ability of animals to increase the efficiency of their search tours 328 

decreased (Fig. 3c, R= -0.72, p < 0.008, n = 12). These results suggest that based upon the 329 

predictability of the environment rats employ two different strategies to find the next nearest 330 

pellet – one in which tours can be efficiently narrowed towards straight line paths and another 331 

in which paths between rewards are necessarily circuitous (see Fig. 1h, lower panel for 332 

example tours after training).  333 

In addition to supporting better-ordered search routes (Fig. 2d-f) and efficient paths to 334 

the nearest target from farther away (Fig. 3a-c), predictable distributions also enabled rats to 335 

enhance the speed of their travel between rewards. During training, the speed of the trajectories 336 

taken between pellets increased the most quickly for animals operating in the most predictable 337 

environments, though all animals eventually learned to decrease time between rewards by 338 

increasing speed (Fig. 3d).  Time spent pausing (speed < 1cm per second) and number of 339 

pauses per second did not significantly change with training (Fig. 3e,f), suggesting consistent 340 

motivation to perform the task across all animals. 341 

 342 

Analyzing shifting weightings between sensory- and memory-dominated strategies 343 

We next sought to more precisely quantify the role of sensory information and memory 344 

in the navigation strategies used by animals under varying levels of uncertainty. To perform this 345 

analysis we simulated animal behavior by developing an agent that searched through foraging 346 
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space using multiple free parameters related to exploratory and exploitative search 347 

characteristics (Elazary & Itti, 2010; McNamara et al., 2006). These parameters include the 348 

length of memory for the prior, the distance over which sensory signals from the pellets are 349 

detected, and the relative weighting of sensory and memory terms. We allowed these parameters 350 

to vary on a multidimensional grid and analyzed goodness of fit to actual animal performance as 351 

the correlation between trial-by-trial performance of the simulated searcher and the animal (Fig. 352 

5 and see methods). As expected, searches with long-range, noiseless sensory information lead 353 

to a perfect nearest neighbor search and do not correlate well with animal behavior (Fig. 5b) 354 

since rats do not have access to perfect information and need to use local sensory information or 355 

learned locations to navigate (see Fig. 4 for an examination of possible sensory cues used for 356 

this task). Similarly, searches with only a memory term also do not correlate well with actual 357 

behavior (Fig. 5b). Consistent with animals under different levels of uncertainty using diverse 358 

search strategies, we found that any set of a wide range of parameters applied uniformly to all 359 

animals resulted in only moderate correlation with actual behavior (Fig. 5c). We next allowed 360 

parameters to vary individually for each animal. While this approach will trivially result in a 361 

better fit due to the increased number of free parameters (Fig. 5b-c, p<0.01; n= 12), we used the 362 

values of parameters obtained for these individual fits to examine the contribution of sensory 363 

and memory input to the simulated search that best matched each animal’s performance. When 364 

varying the length of memory used by the searcher we found that simulated searches across the 365 

most predictable distributions benefited from increased memory with an increase in correlation 366 

to actual animal performance when the simulated searcher had access to cumulative memory of 367 

previous searches (predictable, single trial memory: R = 0.12 +/- 0.05; cumulative memory R = 368 

0.66 +/- 0.03; p<0.05; n = 4). Searches across moderately predictable and unpredictable 369 
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distributions did not show a significant increase in correlation with animal behavior with 370 

increased memory (Fig. 5d). Consistent with these results, the impact of shuffling prior 371 

distributions on agent performance was directly related to the predictability of the data set (Fig. 372 

5e). To quantify the impact of sensory input on these searches we combined the weighting given 373 

to sensory input with the distance from which each agent could detect a target to create a 374 

measure of sensory acuity for each simulated agent (see methods). This measure was well 375 

correlated with increasing relative entropy of the training set, suggesting that animals increased 376 

sensory acuity under uncertainty (Fig. 5f, left panel; R = 0.8469; p = 0.005). We also used the 377 

length of memory for the best match to animal behavior to create a metric for long-term 378 

memory usage (see methods). We found a significant inverse correlation between relative 379 

entropy and long-term memory usage (Fig. 5f, right panel; R = -0.7252; p = 0.0076), suggesting 380 

that as the training set became more predictable animals relied more on long-term memory. Our 381 

results are consistent with a Bayesian search where searchers adaptively shift the weightings 382 

given to various locations (and thus, their likelihood to travel to these locations) based on their 383 

relative weightings of sensory and memory terms. For example, a searcher may shift the 384 

weighting of a given location based on being rewarded there many times in the past 385 

(exploitative, memory-guided strategy) or it may shift the weighting based on sensing cues 386 

emanating from a given location (exploratory, sensory-guided strategy). 387 

 388 

Discussion (1,402 words) 389 

 390 

Animals make use of appropriate cognitive strategies and behaviors to solve the many 391 

problems they are faced with during self-guided behaviors such as foraging (Marewski & Link, 392 

2014). It is known that when animals are introduced to new environments with multiple food 393 

locations they may continually explore and sample the different options, or they may exploit a 394 
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single, most profitable option (Krebs, 1978). However, it is not fully understood how animals 395 

balance exploratory behaviors against exploitative behaviors (Gupta et al., 2006). Our study 396 

revealed that rodents make use of their prior knowledge of the predictability of an environment 397 

to determine the extent that they rely on sensory cues during their foraging bouts. Our results are 398 

consistent with a strategy that increases sensory acuity and reduces memory load in direct 399 

relation to the level of uncertainty in an environment (Fig. 6). This increased reliance on sensory 400 

input allows animals searching across unpredictable environments to employ an effective nearest 401 

neighbor strategy with nearly the same efficacy as animals that are operating in highly 402 

predictable environments, although due to the short-range nature of sensory cues a sensory-403 

guided strategy fails at long distances and animals are unable to increase the efficiency of 404 

foraging trajectories over these distances (Fig. 3). Conversely, animals operating in predictable 405 

environments reduce their reliance on sensory input in favor of stereotyped and efficient searches 406 

based on long-term memory, which allows them to enhance search tours over long distances. In 407 

short, in a sensory-dominated strategy animals approach the nearest sensed pellet, while in a 408 

memory-dominated strategy animals approach the nearest remembered location, enabling more 409 

efficient, planned routes to emerge. This result is consistent with the finding that humans 410 

integrate information from different sensory modalities and dynamically give greater weight to 411 

the modality that provides the stronger, most well-defined estimate (Ernst & Banks, 2002). 412 

Taken together, these results suggest that animals assess the predictability of an environment to 413 

select appropriate strategies to allocate cognitive resources between sensory processing and 414 

memory while solving complex natural problems. 415 

While it is difficult for animals to rapidly learn efficient paths for collecting rewards in 416 

the unpredictable environment, optimal paths in this environment are not more complex than 417 
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those in predictable environments, as shown in figure 1D.  Indeed, animals in unpredictable 418 

environments do optimize their foraging behavior after many sessions, achieving a roughly equal 419 

ability to perform a nearest-neighbor solution to the task (see Fig. 2d). They may learn a general 420 

understanding of where pellets have never been found (such as along the boundaries of the 421 

arena) and may focus their search to the center of the arena in order to maximize getting close 422 

enough to pellets to then use sensory guidance to approach the reward locations (examples in 423 

Fig. 1b,h). This suggests that while animals have a diminished, imperfect ability to rapidly learn 424 

efficient paths in unpredictable environments they are still capable of improving their foraging 425 

strategy, perhaps through a combination of coarse predictions and enhanced sensory guidance.  426 

The differential weighting of sensory cues, specifically odor cues, is expected when the 427 

turbulent nature of odor plumes in natural environments is taken into account. Odor-guided 428 

searches are notoriously difficult due to the sparse and intermittent nature of odor plumes 429 

(Vickers, 2000). The ability of rodents to form internal representations of their environment 430 

could allow them to apply learned spatial information to dynamic environments, creating a map 431 

that would act to lessen the cognitive load required to use the complex sensory cues in odor 432 

plumes and greatly increase the effectiveness of odor-guided searches. So it follows that rodents 433 

would prefer to use a strategy that relies less on olfactory cues when instead they could navigate 434 

using the cognitive map of their familiar environment. This is in line with our results suggesting 435 

that under unpredictable conditions rats do not efficiently navigate to the next closest pellet when 436 

it is more than 40 cm from their current location (Fig. 3a). Previous research suggests that 40cm 437 

is close to the threshold of rodents' ability to gain a directional benefit from the sparse odor cues 438 

emanating from an odor source (Gire et al., 2016; Liu et al., 2020). This difficulty is increased 439 

when rats have been trained on unpredictable environments and are unable to construct strong 440 
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expectations of pellet location. Since there is no underlying structure of where pellets can be 441 

found that animals in the unpredictable environment can learn over time, the low weighting 442 

given to the memory terms in the Bayesian model reflects animals’ discounting of information 443 

that will not be as useful as increasing their reliance on sensory cues. Animals then take 444 

advantage of the sensory cues emanating from food locations by increasing their weighting, 445 

which is in line with the results from our Bayesian model (Fig. 5). Monitoring the trajectories of 446 

the rats allowed us to also determine that rats traveled in much more efficient paths when they 447 

were navigating under conditions of high predictability. This suggests that they are able to 448 

navigate directly to where pellets are located without having to resort to behaviors indicative of 449 

searching for olfactory cues, which typically result in more circuitous search trajectories (see 450 

Fig. 1h). 451 

Optimizing travel paths during navigation is a notoriously difficult problem to solve, 452 

especially when one considers the complexity of the traveling salesman problem. One must 453 

determine the shortest path between multiple locations in order to travel efficiently and conserve 454 

the most energy or increase the rate of reward per unit time. This problem is extremely difficult 455 

to solve optimally as the complexity of the problem scales unfavorably with the number of 456 

targets that must be visited. In our task, this problem is even more complex due to the fact that 457 

animals only have probabilistic information about whether food pellets will be present at target 458 

locations. While not optimal, simplifying heuristics enable solutions to such complex 459 

optimization problems to be reached in relatively short periods of time. Nearest neighbor tours 460 

are a common strategy used to solve the traveling salesman problem (Johnson, 1990; Tsai et al., 461 

2004). Under this strategy, the agent simply travels to the next nearest target location until all 462 

targets have been visited. While not optimal, this approach is computationally simple, resulting 463 
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in rapid solutions with time to solve scaling well with task complexity. Our results suggest that 464 

animals adopt a nearest neighbor strategy to procure all of the pellets; however, the degree to 465 

which the strategy resembles a perfect nearest neighbor strategy depends on the predictability of 466 

the environment. Animals trained in a predictable environment select a strategy that highly 467 

resembles a nearest neighbor search earlier on in training (Fig. 2), which allows them to more 468 

effectively exploit pellet locations and increase efficiency (Fig. 3a) and speed (Fig. 3d) of their 469 

routes. In contrast, animals trained in unpredictable environments select a strategy that resembles 470 

a nearest neighbor search much later in training (Fig. 2d). These differential time courses could 471 

reflect the time necessary to train the underlying memory or sensory networks in the brain, with 472 

sensory training requiring a longer training period.  473 

The novel, fully-automated foraging arena we designed allows for new ways to study the 474 

balance between exploration and exploitation. Using an automated, moving pellet dispenser 475 

allows for food rewards to be placed in an unlimited number of different locations throughout the 476 

foraging arena. This allows us to instantaneously change any location in the arena into a reward 477 

location. Instead of being confined to defined locations, such as fixed near a feeder, we are able 478 

to create many different distributions of where food can be found, mimicking distributions that 479 

might occur in a more naturalistic setting. By combining this automated arena with computer-480 

generated reward distributions we can also scale the difficulty of the task to address specific 481 

research questions. This allows us to study more complex behaviors that current experimental 482 

paradigms are not equipped to adequately explore. Through computer-aided creation of reward 483 

location sequences our new approach also supports direct testing of algorithms that could be used 484 

to perform self-guided optimization. This task also integrates extremely well with new advances 485 

in automated behavioral tracking (Nath et al., 2019). Finally, the self-guided nature of our task 486 
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allows for future studies to elucidate neural mechanisms underlying complex behaviors, such as 487 

route optimization. Since animals trained on this task are not explicitly shaped or instructed on 488 

how to best perform, we are able to study how the brain changes as animals develop solutions to 489 

complex, natural problems.490 

491 
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 605 

Figure Legends 606 

 607 

Fig. 1: A computer-controlled probabilistic traveling salesman task enables direct tests of 608 

behavioral strategies under uncertainty.  609 

a) (top) A large, automated arena with a rat shown for scale. (bottom) The temporal structure of 610 

a typical trial. b) Rats forage for pellets in highly predictable (left), moderately predictable 611 

(center), and actively randomized (right) pellet placements. Placements are shown across all 612 

trials (20 days, 3 trials per day). c) The automated system allows for reproducible pellet 613 

placement across animals. From the top to bottom of the matrix correlation coefficients are 614 

shown for two different predictable distributions and the single unpredictable distribution. d) 615 

Pellet distributions from each placement shown in panels b) and c) have equivalent optimal path 616 

lengths. e) Example histograms are shown for the most predictable (black) and least predictable 617 

(gray) distributions that were tested. Vertical colored lines show the mean for the predictable 618 

(blue) and unpredictable (red) distributions. The distributions for all animals are plotted as 619 

colored circles, with color corresponding to across trial minimum distance. f) Relative entropy 620 

for each predictability grouping (high - blue; medium - purple; and randomized - red) across 621 

sessions of training. Higher values indicate higher entropy. g) Average number of pellets per 622 

trial for each predictability level. h) Examples of routes taken by rats on the first trial of the first 623 

day (top panels) and after 20 days of training (bottom panels). Color shifts from cyan to yellow 624 

as each animal’s trajectory progresses. 625 

 626 

Fig. 2: Search performance approaches a nearest neighbor heuristic after experience with 627 

reward locations 628 

a) Average distance per pellet. Rats acquire pellets in a sequence that is extremely efficient (red 629 

lines) compared to a random sampling of all possible sequences (blue bars). Predictability 630 

decreases from top to bottom. b) Performance of a nearest neighbor strategy on all distributions 631 

tested in this study when compared to the optimal path length. Dashed lines represent 10, 20, and 632 

30% above optimal. c) Animal performance on trials in which a nearest neighbor search is 633 

optimal vs. trials in which a nearest neighbor search is sub-optimal. d) The probability that rats 634 

in each predictability group acquire the nearest pellet during search increases during training for 635 

all groups. e) Scatter plot showing the relation between predictability of distribution (x axis) and 636 

difference between animal acquisition sequence and nearest neighbor sequence (y axis) for all 12 637 

animals.  f)  Example of optimal and nearest neighbor pellet acquisition sequences, and the 638 

actual sequences and trajectories taken by animals. For the right panels, color shifts from cyan to 639 

yellow as the animal’s trajectory progresses and from dark to light blue as the pellet acquisition 640 

sequence progresses.641 
 642 
 643 

Fig. 3: Predictability supports increased route efficiency.  644 

a) Animals searching in predictable environments increase efficiency with training (see methods 645 

for efficiency metric). Efficiency was measured on paths to rewards that were located more than 646 

40 cm away and were assessed on day 1 and then on blocks of 5 days until day 20.  b) Animals 647 

in both predictable groups significantly increased the efficiency of their search routes on the last 648 

block of training when compared to the first day. c) Efficiency of search routes measured on the 649 
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last block of training (days 15-20) show a strong negative correlation to the unpredictability of 650 

the foraging environment, here measured as the cross trial minimum pellet distance (see 651 

methods). d) All animals increase speed during training. Average speed was taken without 652 

including pauses. e) Animals spend a small amount of time pausing during the task and this does 653 

not significantly change with training. f) The number of pauses per route as a function of 654 

training.   655 

 656 

Fig. 4: Sensory cues are local.  657 

a) Top: Experimentally determined spread of odor in the foraging arena (see methods). Bottom: 658 

Calculated size of a pellet necessary for it to be visible for a foraging rat under bright, broad-659 

spectrum lighting conditions with high contrast, based on reported values for rat visual acuity. 660 

The dashed red line indicates the actual size of the pellets used (and thus the distance for 661 

detection under ideal conditions). All experiments in the current study were done under dim red 662 

light using pellets matched in color to the arena floor, further limiting the range for visual 663 

detection. b) Estimated best-case pellet detection distances for olfactory (cyan) and visual (red) 664 

sensory cues. Due to both the dim, red lighting conditions and the lightly odorized pellets actual 665 

detection distances are likely to be much smaller. c) The entire time course of odor for one 666 

mapping experiment (approximately 180 minutes) used to establish the distribution in panel a. 667 

As the sensor is moved closer to the source (later in the experiment) odor fluctuations become 668 

much larger. d) A grid of mean odor intensity values that were sampled during the experiment 669 

and convolved with a gaussian function to create the estimated odor density function in panel a.  670 

Odor sensor activation over time from the indicated locations (1,2 and 3) is shown to the left of 671 

the grid. 672 

 673 

Fig. 5: Modeling behavior as a Bayesian search with adaptive sensory acuity and memory 674 

depth explains performance under uncertainty.  675 

a) Examples of prior distributions accumulated over all trials for one predictable and one 676 

unpredictable set of pellet locations. b) Correlation to animal performance of models with 677 

parameters emphasizing sensory (S) or memory (M) guidance or an adaptive model (A) 678 

individually fit to each animal. c) Correlation of agent's search performance with animal 679 

behavior when using parameters fit to other animals (All others) or the best fit to that specific 680 

animal (Best fit). The best fit is significantly better than the fits from other animals (p= 0.0043, n 681 

= 12). d) Correlation between animal behavior and a Bayesian search with either single trial 682 

memory (1) or best performance with cumulative memory (C). e) Performance ratio (Path length 683 

with priors from different distributions / Path length with correct prior) for all animals plotted as 684 

a function of the across trial minimum distance for the distributions presented to each animal 685 

(significant correlation: R = -0.85, p = 0.0004). A higher value for the performance ratio 686 

indicates longer path length with a shuffled prior. Agents searching with unpredictable 687 

distributions (red) show identical performance regardless of the prior used. f) (left) Sensory 688 

acuity based on the best fit search parameters vs. relative entropy based on the distributions that 689 

animals have experienced. (right) Long-term memory usage vs. relative entropy of pellet 690 

distributions encountered.  691 

 692 

 693 
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Fig. 6: Schematic of two strategies selected to solve the probabilistic traveling salesman 694 

task. A schematic of the main results, showing that animals adaptively change the strategies used 695 

for a search depending upon the level of uncertainty of the environment, here depicted as a 696 

spectrum from red (uncertain) to blue (predictable).697 

698 

699 
















