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Abstract  53 

In Neuroscience, the structure of a circuit has often been used to intuit function – an 54 

inversion of Louis Kahn's famous dictum, `Form follows function' (Kristan and Katz 2006). 55 

However,  different brain networks may utilize different network architectures to solve 56 

the same problem. The olfactory circuits of two insects, the Locust, Schistocerca 57 

americana, and the fruit fly, Drosophila melanogaster, serve the same function – to 58 

identify and discriminate odors. The neural circuitry that achieves this shows marked 59 

structural differences. Projection neurons (PN) in the antennal lobe (AL) innervate 60 

Kenyon cells (KC) of the mushroom body (MB). In locust, each KC receives inputs from 61 

50% PNs, a scheme that maximizes the difference between inputs to any two of ~50,000 62 

KCs. In contrast, in drosophila, this number is only 5% and appears sub-optimal. Using a 63 

computational model of the olfactory system, we show the activity of KCs is sufficiently 64 

high-dimensional that it can separate similar odors regardless of the divergence of PN-65 

KC connections. However, when temporal patterning encodes odor attributes, dense 66 

connectivity outperforms sparse connections.  67 

Increased separability comes at the cost of reliability. The disadvantage of sparse 68 

connectivity can be mitigated by incorporating other aspects of circuit architecture seen 69 

in drosophila. Our simulations predict that drosophila and locust circuits lie at different 70 

ends of a continuum where the drosophila gives up on the ability to resolve similar odors 71 

to generalize across varying environments, while the locust separates odor 72 

representations but risks misclassifying noisy variants of the same odor. 73
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Significance Statement  74 

How does the structure of a network affect its function? We address this question in the 75 

context of two olfactory systems that serve the same function, to distinguish the 76 

attributes of different odorants, but do so using markedly distinct architectures. In the 77 

locust, the probability of connections between projection neurons and Kenyon cells - a 78 

layer downstream - is nearly 50%. In contrast, this number is merely 5% in drosophila. 79 

We developed computational models of these networks to understand the relative 80 

advantages of each connectivity. Our analysis reveals that the two systems exist along a 81 

continuum of possibilities that balance two conflicting goals – separating the 82 

representations of similar odors while grouping together noisy variants of the same 83 

odor.  84 

    85 
Introduction  86 

Neural circuits encode a variety of stimuli and perform a wide range of computations. 87 

The structure of the neural circuit (i.e., the organization and statistics of the connectivity 88 

between neurons in the circuit) plays a key role in restricting the kinds of computations 89 

that the circuit can perform (Marr 1969, Albus 1971, Hopfield and Tank 1986). 90 

Understanding what different structural organizations imply for circuit function is an 91 

integral step towards generating a complete picture of brain function. These structure-92 

function relationships are of particular interest in circuits that are trying to accomplish 93 

the same overarching goal while making use of different structural parameters. What 94 

advantages do the different parameter regimes provide in such situations? One such 95 

instance that has been explored recently, (Jortner, Farivar, and Laurent 2007, Jortner 96 

2013, Litwin-kumar et al. 2017) is the functional effect of different densities of 97 
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connections across species in the antennal lobe - mushroom body circuit of the insect 98 

olfactory system.  99 

  100 

Figure 1 caption:  A schematic of the insect olfactory system  101 

A schematic of the olfactory system contrasting the structural parameters of the 102 
circuit in a)Drosophila melanogaster and b) Schistocerca americana.   103 

  104 

The insect olfactory system is arguably one of the most well-characterized neural 105 
circuits.  106 

Its compactness and simplicity, combined with the powerful genetic tools available, have 107 

allowed a detailed understanding of its structure and function. The circuit begins at the 108 

olfactory sensory neurons (OSNs) that convert odorant information from the 109 

environment into electrical signals that are passed on to higher brain regions (Hallem 110 

and Carlson 2004, 2006; Fisek 2014). The second level of the circuit is the Antennal Lobe 111 

(AL), where the principal excitatory neurons - Projection Neurons (PNs) - represent odors 112 

as dense spatiotemporal firing patterns (Laurent 1996b; Wehr and Laurent 1996; Wilson 113 

and Laurent 2005). The AL then feeds information to the Mushroom Body (MB), where 114 

Kenyon Cells (KCs) represent the odor as a spatially and temporally sparse pattern of 115 

firing (Javier Perez-Orive et al. 2002; Turner, Bazhenov, and Laurent 2008). A high spiking 116 

threshold and inhibitory inputs to KCs from a pair of large GABAergic neurons 117 

(Papadopoulou et al. 2011; Masuda-Nakagawa et al. 2014, Lin et al. 2014) maintains the 118 

sparseness of KC responses. The inhibitory GABAergic neurons are graded neurons 119 

whose membrane voltage is mediated by the activity of the KCs, thus forming a feedback 120 

inhibition loop [Figure 1]. Synapses immediately downstream of the KCs are plastic and 121 
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thought to be the primary locus of associative memory in the insect (Heisenberg 2003, 122 

Hige, Aso, Modi, et al. 2015). KCs converge on to the Mushroom Body Output Neurons 123 

(MBONs). From the MBONs onwards, neuronal activity is related more with behavioral 124 

output than with stimulus representation (Aso et al. 2014; Hige, Aso, Rubin, et al. 2015).  125 

While the overarching goal of the MB circuit - to distinctly represent odors so as to 126 

facilitate learning and appropriate behavioral responses - appears to be conserved 127 

across species, the number of connections received from the AL to a given KC varies 128 

significantly. In the fruit fly, a sparse  ~5% of all PNs synapse onto each KC, whereas in 129 

the locust, this number is dense (~50%) [Figure 1] (Caron et al. 2013; Jortner, Farviar and 130 

Laurent 2007). 50% connectivity seen in the locust olfactory system is thought to 131 

maximize the differences between the inputs received by individual KCs (Jortner, Farivar, 132 

and Laurent 2007; Jortner 2013). 5% connectivity observed in drosophila, must then 133 

make it a sub-optimal classifier. The combinatorial arguments that have been posited 134 

thus far do not consider the full spatiotemporal extent of an odor-evoked pattern of 135 

activity in the antennal lobe. To understand the implications of these contrasting 136 

connectivities, we tested the response of the fly and the locust olfactory networks to 137 

two different kinds of inputs – one, where odors were represented as spatiotemporal 138 

patterns of activity by AL neurons and another, where odors were represented only by 139 

the identity of active PNs. We show that an identity code allows a broad range of 140 

connection densities, including those seen in both the fly and locust, to distinguish 141 

different odors. However, with temporal variations, denser connectivities between PNs 142 

and KCs maximize the distance between odor representations. The sensitivity of the 143 

locust olfactory system, due to its dense connectivity, comes at a cost. Under changing 144 

environmental conditions, the same odor may generate different representations in PN 145 
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space that the locust could potentially misclassify as distinct odors. Such 146 

misclassifications are less likely in the drosophila circuit where PN-KC connections are 147 

sparse. To elucidate the logic behind these connectivities, we simulated the distinct 148 

architectures of each insect. In drosophila, all the sensory neurons expressing a 149 

particular receptor type synapse onto PNs in a spatially circumscribed structure called a 150 

glomerulus. Sister PNs, that receive inputs from ORNs at a particular glomerulus, tend to 151 

fire in a highly correlated manner (Kazama and Wilson 2009) (though this is not the case 152 

in related mammalian cells –(Dhawale et al. 2010) where the activity, though correlated 153 

is different). In contrast, locust glomeruli receive input from multiple ORN types. We 154 

show that the glomerular architecture of the fruit fly improves the ability of the network 155 

to distinguish odors despite a low probability of PN-KC connections. Our simulations 156 

predict that the fruit fly and locust circuits lie at different ends of a continuum where the 157 

fruit fly gives up on resolution in odor space so that it can generalize across varying 158 

environments. This implies that very similar odors may be misclassified as the same odor 159 

as they are too similar to be resolved. The locust, on the other hand, maximally 160 

separates odor representations but runs the risk of misclassifying the same odor under 161 

different conditions.  162 

 163 

Methods  164 

Temporally patterned odor representations in AL circuits  165 

We modeled the odor representation in the AL in two ways. First, as a static 166 

representation consisting of a binary vector of length 900 (number of model PNs). Each 167 

element of the vector indicated only whether a particular PN was active (if the value at 168 
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that position was 1) or not (0) [Figure 2a]. The second representation incorporated the 169 

temporal evolution of the odor. In the locust AL, odors elicit a temporal pattern of 170 

activity in PNs that begins with the onset of the odor. In experimental recordings, not all 171 

PNs show an odor specific response that begins immediately upon odor onset. Several 172 

neurons show increased activity many milliseconds after odor onset. Some PNs can 173 

show complex responses such as an increased level of activity to both odor onset and 174 

offset. However, it is likely that the onset and offset responses are largely seen in 175 

nonoverlapping groups of PNs (Saha et al. 2017). Here, we simulated PN spiking activity 176 

as continuous bursts. The spatiotemporal pattern generated by the PN population was 177 

defined by the onset, offset, and duration of PN bursts. Another important aspect to 178 

consider was the presence of oscillations in the Local Field Potential (LFP)  in the  20-179 

30Hz frequency range (Laurent 1996a) in the AL of locusts. Similar oscillations have also 180 

been observed in intracellular recordings from drosophila AL (Tanaka, Ito, and Stopfer 181 

2009). The presence of such oscillations suggests that odor induced PN responses are 182 

correlated with more PNs spiking at the peak of the LFP than at other phases. The 183 

oscillations also provide a natural time scale to partition the PN response into smaller 50 184 

ms epochs (the duration of one cycle at 20Hz). We measured the time to odor initiation 185 

and the duration of a continuous PN response in units of epochs. The statistics of the 186 

number and timing of PN spikes were extracted from a survey of the literature (see table 187 

1 - Laurent 1996b; Wehr and Laurent 1996; Stopfer, Jayaraman and Laurent, 2003; 188 

Wilson and Laurent 2005). We adapted these results to design a matrix representation 189 

of PN activity. This consisted of a 900x3000 matrix of 1s and 0s [Figure 3]. Each row 190 

represented one out of 900 PNs, and each column of the matrix represented the activity 191 

of all PNs over a 1ms time interval. The parameters (and their values) used in this 192 
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process (to simulate 1 second of odor delivery and a 3-second response) are listed below 193 

(note all variables are normally distributed, and values represent mean  standard 194 

deviation unless mentioned otherwise):   195 

 Table 1: Statistics of PN spikes  196 

Percentage of active neurons  

  

Basal firing rate  
 spikes/second.  

Odor induced firing rate  
spikes/second  

Number of active epochs   cycles of LFP  

Number of epochs before activity Number of LFP cycles drawn from a 
uniform integer distribution ranging 
from 1 to 20  

     197 

To generate a population PN response, a value used to specify the percentage of active 198 

neurons was drawn from a normal distribution with mean and variance given in Table 1. 199 

This value was used as a probability threshold to decide if a given PN fires or not. For 200 

each of the 900 PNs, a uniform random number was drawn to decide whether that PN 201 

was activated by the odor. If the random value was less than the probability threshold 202 

chosen, then the neuron was activated by the odor. A value of the basal firing rate (per 203 

second) was drawn from a normal distribution with the appropriate mean and standard 204 

deviation (Table 1) and spikes equaling three times the value drawn were uniformly and 205 

randomly distributed over the 3000 time points. A value for odor induced firing rate was 206 

drawn from a normal distribution, as were the number of active epochs and the number 207 
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of epochs before odor-induced activity. These three values provide information about 208 

which of the LFP oscillation cycles additional spikes needed to be added to the particular 209 

neuron's activity, as well as how many spikes were to be added in a single epoch. These 210 

spikes were then distributed in each of the "active" epochs in such a way that the spike 211 

was more likely to occur at the center of the epoch (corresponding to the peak of the 212 

LFP) than at the ends. If the neuron was not odor-activated, then it fired at its basal 213 

firing rate as described earlier.   214 

These attributes were calculated for each of the 900 PNs to generate a complete 215 

spatiotemporal pattern describing an odor. An odor was defined by the specific PNs that 216 

were activated and the parameters drawn from the distributions quantified in Table 1. In 217 

different trials of the same odor, the PNs that were activated, as well as their 218 

parameters, remained the same. However, the exact timing of the spikes in the active 219 

epochs changed.  220 

The timing of spikes was drawn randomly (within specified "active" epochs) for each 221 

trial. In contrast, two odors differ not only in the timing of spikes of active PNs but also 222 

in the identity of the active PNs.   223 

Whether a PN was active or not was independent of whether other PNs were active. This 224 

reflected the multi-glomerular organization seen in locust. To mimic a fly-like glomerular 225 

organization where sister PNs fire in a correlated manner, PNs were divided in 50 groups 226 

of 6 (Note that here we simulated 300 PNs and not 900 in agreement with the number 227 

seen in the fly). The grouping reflected the glomerular architecture in Drosophila. 5 out 228 

of these 50 groups were chosen to contain active neurons. The other 4 parameters 229 

mentioned in Table 1 were then chosen for these active neurons. To simulate a new 230 
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odor that was distinct from a previously described one, 1-5 of the active glomeruli in the 231 

first odor were changed randomly (See Figure 3 for an instance of a simulated odor).  232 

Neuron and synapse implementation  233 

The spatiotemporal pattern that was generated using specific attributes for PN spike 234 

statistics described above was used to stimulate a layer of 50,000 KCs. We systematically 235 

varied PN-KC connections and computed the corresponding KC responses to several 236 

odors. PN-KC synapses are cholinergic (Yasuyama 1999) and were modeled as such 237 

[equations 1, 2, 3] (Destexhe, Mainen, and Sejnowski 1994; Bazhenov et al. 2001; Javier 238 

Perez-Orive et al. 2002; Turner, Bazhenov, and Laurent 2008). Each PN spike released a 239 

fixed amount of neurotransmitter T. This was used to drive post-synaptic KCs. The 240 

synaptic currents were given by:  241 

                                            (1)    242 

     243 

Where,  244 

                                                                                           (2)                          245 

                                                                    (3) 246 

               247 

 In  these  equations  the  constants  were:  248 

   is the  249 

 

.  
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Heaviside function. [O] is the open probability of the ion channels on the KC membrane  250 
and  represents the amount of neurotransmitter released by a given PN. t0 is the time 251 

of the last spike and tmax is the duration for which the neurotransmitter was released. 252 

KCs were modeled as leaky integrate and fire neurons (Turner, Bazhenov, and Laurent 253 

2008; Papadopoulou et al. 2011).     254 

                                                                                        (4)    255 

Here . The KC generated a spike when  256 

 . The membrane potential was reset to   mV at the time point immediately  257 

after the spike. We simulated an array of 50,000 such KCs that responded to a 3000ms 258 

long input from PNs.  259 

     260 

 Classification and distance metrics     261 

To quantify the difference between the representations of two odors by the same 262 

neuronal population we used the Hamming distance. Elements of the KC activity vector 263 

were set to 1 if that KC fired a spike during the odor presentation and zero otherwise.  264 

The Hamming distance calculates the number of bits that differ between the two vectors 265 

(For example see Figure 2). In some figures, we used a normalized version of this metric 266

that divides twice the Hamming distance by the total number of active neurons in both 267 

vectors being compared. To illustrate this metric, consider a vector representing the 268 

activity of 100 neurons. Consider, in one scenario 10 of these neurons were active for 269 

odor A and a different set of 10 non-overlapping neurons for odor B. The Hamming 270 

distance between these odor representations would be 20. In another scenario, 20 271 
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neurons were activated for odor A and 20 non-overlapping neurons for odor B, the 272 

Hamming distance would be 40. However, in both cases the two odors were maximally 273 

different from one another, that is, they did not overlap. In contrast, the normalized 274 

Hamming distance for both cases described above would take a maximum value of 1. 275 

The normalized Hamming distance may be thought of as a measure of the degree of 276 

overlap between odor representations. If two odors stimulate strictly non-overlapping 277 

KCs the distance between the representations would be 1 regardless of the number of 278 

active KCs. This normalization was also necessary to visualize the distance between odor 279 

representations particularly when the PN-KC connections were dense (>50%). Dense 280 

connectivity regimes showed a large trial-trial variation in the number of active KCs.  281 

In addition to using the normalized Hamming distance to visualize the distance between 282 

odor representations, we used two classification algorithms (k-medoids clustering and 283 

non-classical multidimensional scaling) to visualize and classify high dimensional KC 284 

representations of odors. In both these classification algorithms we first defined the 285 

pairwise Hamming distance between the KC vectors of all simulated odor 286 

representations. The algorithm (k-medoids clustering using MATLAB) iteratively 287 

minimizes the within cluster distance while maximizing the distance across clusters. 288 

Unlike the k-means clustering algorithm that calculates a center for each cluster as the 289 

mean of the cluster, the k-medoids algorithm treats an existing data point as the center 290 

of the cluster and measures all within-cluster distances from that point. We also 291 

performed a multidimensional scaling analysis using the mdscale function in MATLAB. 292 

The algorithm maps points from the high-dimensional KC space to a plane while 293 

preserving the pairwise distance relationship between all the data points.   294 
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Code Accessibility 295 

The code/software described in the paper is freely available online at 296 

http://modeldb.yale.edu/261877 . The access code for the online repository is 0000. The 297 

code is also available as Extended Data. 298 

Results  299 

In the locust, each KC receives input from nearly half of the antennal lobe PNs. This 300

pattern of connectivity maximizes the difference between inputs to any two of the 301 

~50,000 Kenyon cells in the mushroom body [Figure 2b] (Jortner, Farivar, and Laurent 302 

2007). Given the large number of possible combinations of inputs to KCs, it is highly 303 

unlikely that the combination of PNs that synapse onto a given KC will be exactly the 304 

same as that which synapse onto any other KC. In contrast, if the PN-KC connection 305 

probability were 5% (seen, for example, in drosophila), the number of total possible PN 306 

combinations would be nearly 99% lower than if the PN-KC connection probability were 307 

50%, making it more likely for two KCs to share the same inputs [Figure 2b], (Jortner, 308 

Farivar, and Laurent 2007, Jortner 2013).  What advantages does this seemingly sub-309 

optimal scheme offer? We addressed this conundrum by simulating a model KC network 310 

that received realistic PN input. Using the distance between KC odor representations, 311 

and the classification accuracy of the network, as a proxy for the ability of the animal to 312 

distinguish odors, we determined the circumstances under which different circuit 313 

connectivities confer specific advantages in odor discrimination. 314 

  315 

A PN identity code allows a wide range of connectivities to distinctly represent odors  316 

 If each KC sees  out of  PNs, then the maximum number of combinations would be  317 
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obtained for  [Figure 2b]. However, it is the response of KCs that is read by 318 

subsequent layers, not PN input. The KC response may be thought of as a nonlinear 319 

transformation of the summed input from the PNs. KCs act as coincidence detectors that 320 

integrate pre-synaptic input that arrives within short temporal windows of the order of 321 

~50ms (Perez-Orive J. et al. 2004, Perez-Orive J. et al. 2002, Gruntman & Turner 2013). 322 

KCs fire only if a sufficient number of spikes fall within the integration window. 323 

Therefore, we first investigated whether the previously hypothesized (Jortner, Farivar, 324 

and Laurent 2007) optimal connection probability from PNs to KCs remains optimal in 325 

spite of the threshold imposed by the KC response and whether a lower connection 326 

probability is indeed sub-optimal.    327 

Figure 2 caption: 50% connectivity does not maximally separate KC representations when 328 
PN inputs are static  329 
a) The threshold model of KCs. The left-most vector represents the PN activity. This is 330 
combined through a connectivity matrix to give the input seen by each KC (a 50000-331 
element long vector). Thresholding is then applied to define spiking KCs. b) The Hamming 332 
distance between inputs seen by two KCs is calculated for all possible pairs and averaged 333 
and plotted as a function of the PN-KC connectivity. c) The mean (  standard deviation) 334 
normalized Hamming distance between the activity of KC networks driven by two 335 
different inputs is plotted on the y-axis as a function of the PN-KC connectivity. Different 336 
shades plot the distance between odor representations that differed in 5-80% of the 337 
active PNs.   338 

  339 

We tested this hypothesis using a simple threshold model of KCs and determined how 340 

distinctly the KC population output represented different odors. We modeled the input 341 

to KCs as a binary vector of length 900. This captured  a single snapshot of the activity of 342 

the AL circuit (Jortner 2013; Litwin-kumar et al. 2016) [Figure 2a]. In the locust AL, the 343 

duration of each cycle of the 20 Hz oscillatory local field potential provides a natural 344 

time-scale to define the duration of a snapshot.  We then calculated the response of KCs 345 

(
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to this input for different values of PN-KC connectivity. We varied the number of 346 

projections from PNs to KCs such that each KC received inputs from 5 to 95 percent of all 347 

PNs (in steps of 5 percent). We simulated different odors by randomly shuffling the PN 348 

activity vector. If the summed activity of all the PNs that were connected to the same KC 349 

exceeded a threshold, we labeled the KC as active and set its response to 1. Increasing 350 

the density of connections from PNs to KCs increased the number of active KCs for the 351 

same input vector. Changes in the sparseness of the KC output vector can lead to a 352 

change in the distance between odor representations. Our goal was to calculate the 353 

overlap between output vectors, independent of the sparseness of the representation. 354 

Therefore, for each connection probability we adjusted the response threshold of KCs 355 

such that only 10% of the 50,000 KCs simulated crossed the threshold. (Javier Perez-356 

Orive et al. 2002; Turner, Bazhenov, and Laurent 2008). This ensured that changes in the 357 

distance between odor representations were solely due to changes in the PN-KC 358 

connectivity and not confounded by connectivity dependent changes in the sparseness 359 

of the KC response. We simulated four sets of inputs consisting of 101 PN odor 360 

representations. Within each of the four sets of simulated odors, the input vectors 361 

differed from each other by varying amounts - 5, 10, 20, 40 or 80% respectively. For 362 

example, consider the 900 PNs whose activity represented a given odor ‘A’. About 20% 363 

of these PNs would be active. Another odor ‘B’ in the input set would differ from ‘A’ by 364 

10% if 90 of the 900 PNs changed their activity state from active to inactive or vice versa 365 

when compared with ‘A’. We then calculated the normalized Hamming distances 366 

between odor pairs belonging to each group and compared the distances obtained for 367 

different PN-KC connection probabilities. The KC population's ability to distinctly 368 

represent odors showed no dependence on the connectivity between the two regions 369 



 

16  

[Figure 2c] regardless of the degree of similarity between the PN representations of 370 

odors. This counterintuitive result arises from the fact that even at low connectivity 371 

values the number of ways to choose inputs to KCs is more than a hundred orders of 372 

magnitude greater than the number of KCs in the network (Litwin-kumar et al. 2016)(see 373 

the Discussions section). Therefore, when odor distances were measured in terms of the 374 

output of KCs, both the drosophila (5% PN-KC connectivity) and the locust olfactory 375 

network (50% connectivity) were equally capable of distinguishing between similar 376 

odors.  377 

Inclusion of PN temporal patterning reveals the functional differences between 378 

connectivities  379 

In response to an odor presentation, AL neurons generate a dynamic pattern that 380 

evolves reliably and over multiple time scales. This spatiotemporal patterning is thought 381 

to progressively decorrelate the representations of similar odorants (Wiechert et al. 382 

2010) and make them more easily discriminable by follower neurons in the mushroom 383 

body. Earlier, we used a single snapshot in time to represent an odor and found that the 384 

PN-KC connectivity had little effect on the Hamming distance between KC 385 

representations of the odor. Next, we sought to determine the role of the temporal 386 

structure of odor representations in discrimination.   387 

Figure 3: Simulation of temporally patterned PN inputs to a KC network.   388 
a) The matrix on the left represents the activity of a set of 900 PNs. Each row shows 389 
the activity of a single PN during a 3000ms time period. Blue dots show the time of a 390 
spike. The red region represents the time during which the odor was presented. On 391 
top, a summation of the activity of the entire PN network is shown clearly indicating 392 

the oscillations in the net PN activity. This input was used to calculate T  and  Isyn (the 393 
synaptic input to KCs). The differences between the population representation of two 394 
inputs were calculated using the Hamming distance. b) Mean population response of 395 
900 PNs projected onto the first three principal components for three odors is shown 396 
by the black traces. Individual trials are shown by the colored traces c) The mean 397 
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membrane potential of all KCs shows a 20Hz oscillation. Bottom panels show the 398 
response of two KCs (in red and black traces) to two different odors. Only the first 399 
odor evokes a consistent response from this particular KC across 5 odor trials (middle 400 
panel). The second odor does not lead to reliable spiking in this example KC. 401 
 402 

Odor inputs to KCs were modeled as a pattern of spikes from PNs. The statistics of spikes 403 

emulated that seen in the extant literature (see methods). We simulated trial-trial 404 

variability by jittering the spike timing within 50 ms windows. Note that in addition to 405 

this jitter, random spikes were inserted such that the mean baseline firing rate in the 406 

absence of an odor stimulus was 4 Hz. We simulated different odors by activating 407 

different groups of PNs. To visualize the dynamics of the population of PNs, we first 408 

calculated the number of spikes generated by each PN in overlapping 50 ms windows. 409 

We then projected the PN activity vector during each 50ms window onto the first three 410 

principal components. Odor representations of the PN population may be visualized as 411 

continuous trajectories in this reduced-dimensional space. When the odor stimulus was 412 

turned on, the AL response followed a trajectory from baseline (defined by low firing 413 

rates) to a ‘fixed point’ (Mazor & Laurent 2005). Once the odor stimulus was turned off, 414 

the trajectory returned to baseline, but along a different path from the one it had taken 415 

to reach the fixed-point post-odor-onset (Mazor & Laurent 2005, Stopfer et al. 2003). 416 

Multiple trials of the same odor generated trajectories that remained close to each 417 

other, while dissimilar odors were well separated in the space defined by the principal 418 

components. [Figure 3]. The input from PNs was used to drive a population of KCs. In 419 

contrast to the threshold model of KCs used in the previous section, here we modeled 420 

KCs as leaky integrate and fire neurons with integration properties that matched the 421 

responses seen in earlier studies (Javier Perez-Orive et al. 2002; J. Perez-Orive, 422 

Bazhenov, and Laurent 2004). Here too, we maintained the sparseness of KC responses 423 



 

18  

across different PN-KC connection regimes by choosing progressively higher spike 424 

thresholds as the probability of connections increased. The threshold chosen ensured 425 

that only 10% of the KCs spiked in each epoch (50ms window) when the odor was 426 

present regardless of the connectivity. We chose such a threshold-based sparseness to 427 

mimic the ultimate effect of the GGN that dynamically adjusts feedback inhibition in 428 

response to the intensity of the KC response. However, for high PN-KC connectivity, 429 

(>50%), we found that the difference between inputs to different KCs was very small. 430 

Therefore, small changes in the KC threshold led to an all-or-none response and 431 

consequently a high variability across trials and a reduced ability to discriminate 432 

between odorants. Intrinsic variability in KC thresholds and differences in the strengths 433 

of PN-KC synapses can potentially reduce this variability for connectivities beyond 50%.  434 

We used a normalized Hamming distance to visualize differences across all connectivity 435 

values. In the 0-50% connectivity regime, where the number of activated KCs remained 436 

nearly the same and well-controlled by KC threshold modification, the Hamming 437 

distance matched the normalized Hamming distance except for a constant scaling factor.  438 

Including PN temporal patterning revealed some functional differences between 439 

different PN-KC connectivity regimes.  440 

KCs received inputs that represented odors with different degrees of similarity between 441 

them. We calculated the mean normalized Hamming distance between all pairs of KC 442 

activity vectors for different odors and connectivities [Figure 4a]. Our analysis began to 443 

pick out differences in the ability of the KC population with different connectivities to 444 

represent odors distinctly. The normalized Hamming distance between KC odor 445 

representations increased with increasing PN-KC connectivity for all odor distances  446 
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[Figure 4a]. This implied that the representations of two different odors are more 447 

distinct in higher connectivity regimes. This could potentially allow the network to 448 

accurately associate specific odors with reward signals in downstream layers of the 449 

olfactory circuit  450 

(Cassenaer & Laurent 2012, Owald et al. 2015, Hige et al. 2015). However, an increase in 451 

Hamming distance was accompanied by a concomitant increase in the variability of the 452 

distance across odor pairs. We found a similar trend in the distance between the trials 453 

that represented the same odor (trace marked 0% difference in Figure 4a). Therefore, 454 

for high PN-KC connection densities, it seemed likely that different trials of the same 455 

odor could be incorrectly classified as distinct odors. Ideally, the network must maximize 456 

the distance between odor representations while also keeping the trial-trial variability 457 

within a range that prevents misclassification of odors. The Hamming distance metric 458 

does not take into account the variability of KC odor representation. Therefore, we used 459 

k-medoids clustering to separate the odor representations into non-overlapping groups.  460 

Our data consisted of 25 KC response vectors (5 odors x 5 trials). Each was a 50000-461 

element long vector, where each element represented a single KC and contained either 462 

a 1 if that KC was active or 0 if it was inactive. We determined whether the trials had 463 

been grouped correctly based on their odor identity. For each set we used the 464 

percentage of correct classifications as a measure of the ability of the network to 465 

distinguish between odorants. As the PN-KC connectivity increased to nearly 45%, the 466 

number of correct classifications dropped abruptly, indicating that the distance across 467 

trials of the same odor matched or exceeded the distance between representations of 468 

different odors [Figure 4b]. Therefore, 45% PN-KC connectivity increased the distance 469 

between representations while keeping trial-trial variability within a reasonable range. 470 
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This result is similar to that of (Jortner 2013) though it is based on the output of KCs over 471 

a few seconds of odor stimulation, while (Jortner 2013) based their conclusion on a 472 

single snapshot of odor input. Next we used multidimensional scaling to visualize the 473 

distribution of different odors on a plane. The algorithm mapped each 50000-474 

dimensional KC representations of an odor trial on to a single point on this plane. For 475 

low values of PN-KC connectivity, multiple trials of the same odor preferentially 476 

remained close together. As the divergence of connections increased, the separation 477 

between the representations of different trials of a particular odor and different odors 478 

began to merge, making it difficult to correctly segregate the odors [Figure 4c, different 479 

odors are marked in different colors]. The odors plotted here differed from each other in 480 

5% of the PNs that were stimulated.   481 

It is possible that the differences in Hamming distance could be merely a consequence of 482 

using a specific KC model (an integrate-and-fire neuron here) compared to a nonlinear 483 

threshold neuron in earlier sections. To show that this is not the case we created odor 484 

representations in which odors differed only in the identity of PNs that they activated. 485 

All active PNs produced the same number of spikes at exactly the same points in time. In 486 

this way we continued to include all aspects of our expanded model but removed any 487 

differences in temporal structure that could be utilized differently by the different 488 

connectivity regimes. Therefore, if the usage of our new KC model that evolved in time 489 

was the cause for the functional differences that we saw, then the results of this 490 

simulation would differ from that of the previous simulations [Figure 2c] that used a 491 

threshold model. We found that the distance between odor representations in both 492 

models, the integrate and fire model and the threshold model, were independent of the 493 
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degree of PN-KC connectivity when temporal features of the odor representation were 494 

eliminated (compare Figure 4d with Figure 2c).  495 

Taken together, these results suggest that the inclusion of temporal structure in AL 496 

activity causes post-synaptic KC populations that receive a large number of inputs to 497 

respond differently from those that receive few inputs. However, there appears to be a 498 

trade-off here. Dense connectivity regimes are highly sensitive to small changes in 499 

incoming input and can incorrectly categorize noisy trials of the same odor as different 500 

odors. On the other hand, sparse connectivity regimes produce reliable representations 501 

that can be clustered correctly into different groups. However, these are likely to fail if 502 

very similar odors are introduced because the representations may not be well 503 

separated as seen from the low Hamming distance between the odor representations 504 

[Figure 4].  505 

Figure 4 caption: PN temporal patterning reveals the functional differences between 506 
connectivities  507 

a) Distance between odor representations. The mean (  standard deviation) 508 
normalized Hamming distance between the KC representations of odor pairs is shown as 509 
a function of the PN-KC connectivity value. Here KCs are modeled as described in 510 
Figure 3. b) Classification accuracy decreases with increasing PN-KC connectivity. A k-511 
medoids clustering algorithm that used the distance between 25 KC activity vectors (5 512 
trials x 5 odors) was used to categorize each vector as one of 5 odors. The percentage of 513 
correctly classified odor representations is plotted on the y-axis as a function of the 514 
connectivity of the PN-KC network. c) Odor representations become indistinguishable 515 
with increasing PN-KC connectivity. Five odors that differed from each other by 5% PN 516 
input, mapped to a plane using multidimensional scaling. Different trials of a given odor 517 
are plotted using a single color. Different odors are plotted using different colors. The 518 
PN-KC connectivity is shown in the title of each sub-plot d) Hamming distance between 519 
static odor representations. The mean (  standard deviation) normalized Hamming 520 
distance between the KC representations of odor pairs is plotted as a function of PN-KC 521 
connectivity. Here, the PN odor representation did not change in time. 522 

Glomerular organization of the fly aids odor discrimination  523 

Olfactory receptor neurons in insects are distributed randomly across the antennae 524 

within tiny hair like structures called sensilla. Each receptor neuron expresses a single 525 

(

(
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olfactory receptor protein and possesses a receptive field tuned to a variety of odorants 526 

(Hallem and Carlson 2004, 2006). In drosophila, all the sensory neurons expressing a 527 

particular receptor type synapse onto a single glomerulus giving nearly identical input to 528 

sister PNs that receive input from that glomerulus (Kazama and Wilson 2009). While 529 

correlated PN responses can potentially improve the signal to noise ratio, this comes at a 530 

cost, namely, the dimensionality of the olfactory representation is vastly reduced. The 531 

size of the representation may be thought of as the number of independent dimensions, 532 

that is, the number of neurons that can generate uncorrelated patterns of activity. In 533 

locusts that lack this glomerular organization, the maximum number of independent 534 

dimensions is 900 (number of PNs that could potentially receive unique odor input). In 535 

drosophila this reduces dramatically since multiple neurons receive identical input from 536 

ORNs and generate a highly correlated output. The number in drosophila may be much 537 

smaller (~50, the number of glomeruli) since the output of sister PNs is nearly the same. 538 

Does the glomerular organization of the drosophila olfactory system mitigate some of 539 

the disadvantages in odor discrimination imposed by sparse PN-KC connections?  540 

Figure 5:  Glomerular organization of the fly aids odor discrimination  541 
(a) The mean (  standard deviation) normalized Hamming distance as a function of PN-542 
KC connectivity in a network with glomerular structure. (b) The normalized HD of odors 543 
with a 1-glomerulus difference in a fly-like glomerular system is compared to the HD 544 
between odor representations of a system with locust-like glomerular structure. (c) 545 
Classification accuracy of odors that are different by 2 glomeruli (2% or 12 neurons in the 546 
fly-architecture) (blue trace) compared to the classification accuracy of odors that 547 
differed by 5% (45 neurons) of stimulated odors in locust. Classification accuracy is higher 548 
for the fly-like organization for low PN-KC connectivities.  549 
   550 

To test if the inclusion of the uni-glomerular architecture seen in the fly produces any 551 

improvement in the ability of sparsely connected networks we performed simulations in 552 

which odors were defined by the glomeruli they activated. These odors differed in the 553 

number of unique glomeruli they activated rather than the number of unique PNs 554 

(



 

23  

[Figure 5a]. These inputs were then fed to the same KC network simulated earlier. We 555 

saw that for sparse connectivity regimes the uni-glomerular organization magnified the 556 

differences in PN activity and increased the Hamming distance between KC 557 

representations of odors compared to the non-glomerular case [Figure 5b]. We then 558 

used k-medoid based clustering and classification to determine whether the fly-like 559 

architecture provided any benefits in odor classification. We compared the classification 560 

accuracy as a function of PN-KC connectivity for two cases – a system with a multi-561 

glomerular (locust-like architecture) and one with a uni-glomerular (fly-like 562 

architecture). We found that the uni-glomerular architecture improved the classification 563 

accuracy of the network for low PN-KC connectivities compared to the multi-glomerular 564 

architecture [Figure 5c]. However, this kind of glomerularization appears to cause no 565 

change or even slightly reduce the ability of dense connectivity schemes to separate 566 

odor representations. This suggests that the glomerular organization seen in the fly does 567 

in fact improve the animal’s ability to distinguish between odors.  568 

  569 

Discussion  570 

Discrimination of purely spatial odor representations is independent of PN-KC 571 

connection density  572 

In the locust AL, PNs generate elaborate spatiotemporal patterns in response to an odor.  573 

These patterns are read by KCs in the MB. The density of connections between PNs and 574 

KCs is such that each KC receives input from nearly one half of the PNs. A 50% 575 
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probability of connections from PNs to KCs ensures that the PN inputs to KCs are 576 

maximally separated. The number of ways to pick m  out of n  elements is maximized  577 

when m
n
2

, thus maximizing the distance between inputs to KCs (see Figure 2b and 578 

Jortner 2013).  This argument assumed that this distance between inputs dropped off 579 

quickly as m changed from m
n
2

. Therefore, in schemes that did not have close to 50% 580 

connectivity KCs did not receive sufficiently distinct inputs. We found that while the 581 

inputs were indeed maximally separated at 50% connectivity, once the summed inputs 582 

underwent a KC threshold function all connectivity regimes were equally good at 583 

separating odors. This is in line with more recent studies that show that even a 5% 584 

connection probability generates a large representation space such that even highly 585 

similar odors are mapped to distant locations (Litwin-Kumar et al. 2017). However, these 586 

observations are confined to odor representations that are static. When the temporal 587 

patterning of inputs was included, denser connectivities appeared to be significantly 588 

better at separating odor representations.  589 

  590 

Odor representations are variable in networks with dense connectivity  591 

Increasing connection density comes at a price. Odorants are embedded in a noisy and 592 

changing milieu. Recognition of appetitive and aversive odorants must play out against a 593 

background of irrelevant olfactory information. Thus, the network must be tolerant to 594 

perturbations in the odor representation. This constraint introduces an upper bound on 595 

the density of connections between PNs and KCs. Our simulations demonstrated that 596 

high connectivity values led to highly variable representations of the odor by KCs as was 597 
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seen from the standard deviation of the Hamming distance. Dense ( %) 598 

connectivity regimes generated representations that were   times more variable 599 

than representations generated by sparse connectivity schemes. The reason for this 600 

increased variability is that for dense connectivity schemes, KCs see nearly identical 601 

input from PNs. For connectivity regimes > 50%, with temporally varying PN inputs, the 602 

discriminability between KC inputs decreases with increasing connection density. The 603 

response of KCs is modulated by inhibitory feedback from the GGN. The GGN inhibits all 604 

the KCs and maintains sparseness across large variations in odor attributes by controlling 605 

the propensity of KCs to respond. In high connectivity regimes, a threshold that causes 606 

one of the KCs to fire invariably allows most KCs to fire. A small increase in threshold can 607 

lead to a condition where none of the KCs fire. Noisy changes in input statistics can thus 608 

drive the KC responses leading to large trial-trial variability. While the variability of the 609 

odor representation is maximal for connection densities in the 80-95% range, as 610 

mentioned previously even networks with connection densities in the range of 45-60% 611 

show poor classification ability when exposed to multiple trials of the same odor. This is 612 

clearly not ideal for a system attempting to represent sensory information in a 613 

stereotyped way over different trials and learn from experience.  614 

Temporal patterning of PN activity reveals functional differences amongst PN-KC 615 

connectivity regimes  616 

A key insight from the simulations performed in this paper is the observation that the 617 

categorization of odors in the insect MB is dependent on an interaction between PN-KC 618 

connectivity and temporal patterning of PN input. The reason for these differences as 619 

shown earlier is due to the differing demands of connectivity regimes on the temporal 620 

coincidence of spiking and spike thresholds. Taken together, our results reiterate that 621 
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temporal patterning of PN input carries information about the identity of odors (Stopfer, 622 

Jayaraman and Laurent, 2003). But more importantly, we show that this information can 623 

be utilized differently by systems with different PN-KC connectivity values. Sparse 624 

connectivity regimes utilize this in a way that allows for reduction in noise sensitivity and 625 

dense connectivity regimes use it to maximally separate between odors. Given the 626 

complexity of our sensory world, the olfactory system must balance two seemingly 627 

conflicting goals. Resolve highly similar sensory inputs and do so with considerable 628 

reliability in spite of noisy variations in the input. Our model suggests that the locust and 629 

drosophila live in different regimes of a continuum of possibilities, arriving at different 630 

solutions, perhaps driven by their own evolutionary histories. Importantly, the 631 

differences in the functions of these two circuits is only revealed when the temporal 632 

structure of the odor representation is taken into account.  633 

  634 
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Figure Captions  737 
  738 
Figure 1:  A schematic of the insect olfactory system  739 

A schematic of the olfactory system contrasting the structural parameters of the circuit 740 
in a)Drosophila melanogaster and b) Schistocerca americana.   741 

742 

Figure 2: 50% connectivity does not maximally separate KC representations when PN 743 
inputs are static  744 
a) The threshold model of KCs. The left-most vector represents the PN activity. This is 745 
combined through a connectivity matrix to give the input seen by each KC (a 50000-746 
element long vector). Thresholding is then applied to define spiking KCs. b) The Hamming 747 
distance between inputs seen by two KCs is calculated for all possible pairs and averaged 748 
and plotted as a function of the PN-KC connectivity. c) The mean (  standard deviation) 749 
normalized Hamming distance between the activity of KC networks driven by two 750 
different inputs is plotted on the y-axis as a function of the PN-KC connectivity. Different 751 
shades plot the distance between odor representations that differed in 5-80% of the 752 
active PNs.   753 
 754 
Figure 3: Simulation of temporally patterned PN inputs to a KC network.   755 
a) The matrix on the left represents the activity of a set of 900 PNs. Each row shows 756 
the activity of a single PN during a 3000ms time period. Blue dots show the time of a 757 
spike. The red region represents the time during which the odor was presented. On 758 
top, a summation of the activity of the entire PN network is shown clearly indicating 759 

the oscillations in the net PN activity. This input was used to calculate T  and  Isyn (the 760 
synaptic input to KCs). The differences between the population representation of two 761 
inputs were calculated using the Hamming distance. b) Mean population response of 762 
900 PNs projected onto the first three principal components for three odors is shown 763 
by the black traces. Individual trials are shown by the colored traces c) The mean 764 
membrane potential of all KCs shows a 20Hz oscillation. Bottom panels show the 765 
response of two KCs (in red and black traces) to two different odors. Only the first 766 
odor evokes a consistent response from this particular KC across 5 odor trials (middle 767 
panel). The second odor does not lead to reliable spiking in this example KC.768 
 769 
Figure 4: PN temporal patterning reveals the functional differences between 770 
connectivities  771 

a) Distance between odor representations. The mean (  standard deviation) 772 
normalized Hamming distance between the KC representations of odor pairs is shown as 773 
a function of the PN-KC connectivity value. Here KCs are modeled as described in 774 
Figure 3. b) Classification accuracy decreases with increasing PN-KC connectivity. A k-775
medoids clustering algorithm that used the distance between 25 KC activity vectors (5 776 
trials x 5 odors) was used to categorize each vector as one of 5 odors. The percentage of 777 
correctly classified odor representations is plotted on the y-axis as a function of the 778 
connectivity of the PN-KC network. c) Odor representations become indistinguishable 779 
with increasing PN-KC connectivity. Five odors that differed from each other by 5% PN 780 
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input, mapped to a plane using multidimensional scaling. Different trials of a given odor 781 
are plotted using a single color. Different odors are plotted using different colors. The 782 
PN-KC connectivity is shown in the title of each sub-plot d) Hamming distance between 783 
static odor representations. The mean (  standard deviation) normalized Hamming 784 
distance between the KC representations of odor pairs is plotted as a function of PN-KC 785 
connectivity. Here, the PN odor representation did not change in time.786

 787 

Figure 5:  Glomerular organization of the fly aids odor discrimination  788 
(a) The mean (  standard deviation) normalized Hamming distance as a function of PN-789 
KC connectivity in a network with glomerular structure. (b) The normalized HD of odors 790 
with a 1-glomerulus difference in a fly-like glomerular system is compared to the HD 791 
between odor representations of a system with locust-like glomerular structure. (c) 792 
Classification accuracy of odors that are different by 2 glomeruli (2% or 12 neurons in the 793 
fly-architecture) (blue trace) compared to the classification accuracy of odors that 794 
differed by 5% (45 neurons) of stimulated odors in locust. Classification accuracy is higher 795 
for the fly-like organization for low PN-KC connectivities.    796 

 797 
 Extended Data 1 :  Code to simulate PN and KC networks. 798 

The included .zip file contains MATLAB code used in the paper to produce PN network 799 
responses and simulated the KC network.800 
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