

Research Article: New Research | Sensory and Motor Systems

Effect of circuit structure on odor representation in the insect olfactory system

https://doi.org/10.1523/ENEURO.0130-19.2020

Cite as: eNeuro 2020; 10.1523/ENEURO.0130-19.2020

Received: 4 April 2019 Revised: 10 February 2020 Accepted: 23 February 2020

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2020 Rajagopalan and Assisi

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

1 Effect of circuit structure on odor representation in the insect

2 olfactory system

Adithya Rajagopalan¹ and, Collins Assisi²

¹ Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States

² Division of Biology, Indian Institute of Science Education and Research, Pune, India

Running title: Effect of circuit structure on odor representation.

- 10 Corresponding Authors Adithya Rajagopalan and Collins Assisi
- 11 Email rajagopalana@janelia.hhmi.org, collins@iiserpune.ac.in
- Number of figures 5
- Number of tables 1
- 14 Number of words in abstract 247
- 15 Number of words in introduction 916
- 16 Number of words in the discussion 763

Conflict of Interest The authors declare no competing financial interests.

Acknowledgements

CA was funded by DBT–Wellcome Trust India Alliance through an Intermediate Fellowship IA/I/11/2500290 and IISER Pune. AR was funded by an Inspire fellowship, Department of Science and Technology, India. We thank members of the Nadkarni and Assisi labs and Dr. Aurnab Ghose for useful discussions.

Abstract

53

In Neuroscience, the structure of a circuit has often been used to intuit function - an 54 55 inversion of Louis Kahn's famous dictum, `Form follows function' (Kristan and Katz 2006). 56 However, different brain networks may utilize different network architectures to solve 57 the same problem. The olfactory circuits of two insects, the Locust, Schistocerca americana, and the fruit fly, Drosophila melanogaster, serve the same function – to 58 identify and discriminate odors. The neural circuitry that achieves this shows marked 59 60 structural differences. Projection neurons (PN) in the antennal lobe (AL) innervate Kenyon cells (KC) of the mushroom body (MB). In locust, each KC receives inputs from \sim 61 62 50% PNs, a scheme that maximizes the difference between inputs to any two of ~50,000 KCs. In contrast, in drosophila, this number is only 5% and appears sub-optimal. Using a 63 computational model of the olfactory system, we show the activity of KCs is sufficiently 64 65 high-dimensional that it can separate similar odors regardless of the divergence of PN-66 KC connections. However, when temporal patterning encodes odor attributes, dense connectivity outperforms sparse connections. 67 68 Increased separability comes at the cost of reliability. The disadvantage of sparse 69 connectivity can be mitigated by incorporating other aspects of circuit architecture seen 70 in drosophila. Our simulations predict that drosophila and locust circuits lie at different 71 ends of a continuum where the drosophila gives up on the ability to resolve similar odors

- 72 to generalize across varying environments, while the locust separates odor
- 73 representations but risks misclassifying noisy variants of the same odor.

74 Significance Statement

75 How does the structure of a network affect its function? We address this guestion in the 76 context of two olfactory systems that serve the same function, to distinguish the 77 attributes of different odorants, but do so using markedly distinct architectures. In the 78 locust, the probability of connections between projection neurons and Kenyon cells - a 79 layer downstream - is nearly 50%. In contrast, this number is merely 5% in drosophila. We developed computational models of these networks to understand the relative 80 advantages of each connectivity. Our analysis reveals that the two systems exist along a 81 82 continuum of possibilities that balance two conflicting goals – separating the 83 representations of similar odors while grouping together noisy variants of the same 84 odor.

Introduction

87 Neural circuits encode a variety of stimuli and perform a wide range of computations. 88 The structure of the neural circuit (i.e., the organization and statistics of the connectivity between neurons in the circuit) plays a key role in restricting the kinds of computations 89 90 that the circuit can perform (Marr 1969, Albus 1971, Hopfield and Tank 1986). Understanding what different structural organizations imply for circuit function is an 91 92 integral step towards generating a complete picture of brain function. These structurefunction relationships are of particular interest in circuits that are trying to accomplish 93 94 the same overarching goal while making use of different structural parameters. What 95 advantages do the different parameter regimes provide in such situations? One such 96 instance that has been explored recently, (Jortner, Farivar, and Laurent 2007, Jortner 97 2013, Litwin-kumar et al. 2017) is the functional effect of different densities of

85 86

98	connections across species in the antennal lobe - mushroom body circuit of the insect
99	olfactory system.
100	
101	Figure 1 caption: A schematic of the insect olfactory system
102 103	A schematic of the olfactory system contrasting the structural parameters of the circuit in a)Drosophila melanogaster and b) Schistocerca americana.
104	
105 106	The insect olfactory system is arguably one of the most well-characterized neural circuits.
107	Its compactness and simplicity, combined with the powerful genetic tools available, have
108	allowed a detailed understanding of its structure and function. The circuit begins at the
109	olfactory sensory neurons (OSNs) that convert odorant information from the
110	environment into electrical signals that are passed on to higher brain regions (Hallem
111	and Carlson 2004, 2006; Fisek 2014). The second level of the circuit is the Antennal Lobe
112	(AL), where the principal excitatory neurons - Projection Neurons (PNs) - represent odors
113	as dense spatiotemporal firing patterns (Laurent 1996b; Wehr and Laurent 1996; Wilson
114	and Laurent 2005). The AL then feeds information to the Mushroom Body (MB), where
115	Kenyon Cells (KCs) represent the odor as a spatially and temporally sparse pattern of
116	firing (Javier Perez-Orive et al. 2002; Turner, Bazhenov, and Laurent 2008). A high spiking
117	threshold and inhibitory inputs to KCs from a pair of large GABAergic neurons
118	(Papadopoulou et al. 2011; Masuda-Nakagawa et al. 2014, Lin et al. 2014) maintains the
119	sparseness of KC responses. The inhibitory GABAergic neurons are graded neurons
120	whose membrane voltage is mediated by the activity of the KCs, thus forming a feedback
121	inhibition loop [Figure 1]. Synapses immediately downstream of the KCs are plastic and

122	thought to be the primary locus of associative memory in the insect (Heisenberg 2003,
123	Hige, Aso, Modi, et al. 2015). KCs converge on to the Mushroom Body Output Neurons
124	(MBONs). From the MBONs onwards, neuronal activity is related more with behavioral
125	output than with stimulus representation (Aso et al. 2014; Hige, Aso, Rubin, et al. 2015).
126	While the overarching goal of the MB circuit - to distinctly represent odors so as to
127	facilitate learning and appropriate behavioral responses - appears to be conserved
128	across species, the number of connections received from the AL to a given KC varies
129	significantly. In the fruit fly, a sparse $$ ~5% of all PNs synapse onto each KC, whereas in
130	the locust, this number is dense (~50%) [Figure 1] (Caron et al. 2013; Jortner, Farviar and
131	Laurent 2007). 50% connectivity seen in the locust olfactory system is thought to
132	maximize the differences between the inputs received by individual KCs (Jortner, Farivar,
133	and Laurent 2007; Jortner 2013). 5% connectivity observed in drosophila, must then
134	make it a sub-optimal classifier. The combinatorial arguments that have been posited
135	thus far do not consider the full spatiotemporal extent of an odor-evoked pattern of
136	activity in the antennal lobe. To understand the implications of these contrasting
137	connectivities, we tested the response of the fly and the locust olfactory networks to
138	two different kinds of inputs – one, where odors were represented as spatiotemporal
139	patterns of activity by AL neurons and another, where odors were represented only by
140	the identity of active PNs. We show that an identity code allows a broad range of
141	connection densities, including those seen in both the fly and locust, to distinguish
142	different odors. However, with temporal variations, denser connectivities between PNs
143	and KCs maximize the distance between odor representations. The sensitivity of the
144	locust olfactory system, due to its dense connectivity, comes at a cost. Under changing
145	environmental conditions, the same odor may generate different representations in PN

146	space that the locust could potentially misclassify as distinct odors. Such
147	misclassifications are less likely in the drosophila circuit where PN-KC connections are
148	sparse. To elucidate the logic behind these connectivities, we simulated the distinct
149	architectures of each insect. In drosophila, all the sensory neurons expressing a
150	particular receptor type synapse onto PNs in a spatially circumscribed structure called a
151	glomerulus. Sister PNs, that receive inputs from ORNs at a particular glomerulus, tend to
152	fire in a highly correlated manner (Kazama and Wilson 2009) (though this is not the case
153	in related mammalian cells –(Dhawale et al. 2010) where the activity, though correlated
154	is different). In contrast, locust glomeruli receive input from multiple ORN types. We
155	show that the glomerular architecture of the fruit fly improves the ability of the network
156	to distinguish odors despite a low probability of PN-KC connections. Our simulations
157	predict that the fruit fly and locust circuits lie at different ends of a continuum where the
158	fruit fly gives up on resolution in odor space so that it can generalize across varying
159	environments. This implies that very similar odors may be misclassified as the same odor
160	as they are too similar to be resolved. The locust, on the other hand, maximally
161	separates odor representations but runs the risk of misclassifying the same odor under
162	different conditions.
163	

Methods

164

165 Temporally patterned odor representations in AL circuits

We modeled the odor representation in the AL in two ways. First, as a static
representation consisting of a binary vector of length 900 (number of model PNs). Each
element of the vector indicated only whether a particular PN was active (if the value at

169	that position was 1) or not (0) [Figure 2a]. The second representation incorporated the
170	temporal evolution of the odor. In the locust AL, odors elicit a temporal pattern of
171	activity in PNs that begins with the onset of the odor. In experimental recordings, not all
172	PNs show an odor specific response that begins immediately upon odor onset. Several
173	neurons show increased activity many milliseconds after odor onset. Some PNs can
174	show complex responses such as an increased level of activity to both odor onset and
175	offset. However, it is likely that the onset and offset responses are largely seen in
176	nonoverlapping groups of PNs (Saha et al. 2017). Here, we simulated PN spiking activity
177	as continuous bursts. The spatiotemporal pattern generated by the PN population was
178	defined by the onset, offset, and duration of PN bursts. Another important aspect to
179	consider was the presence of oscillations in the Local Field Potential (LFP) in the 20-
180	30Hz frequency range (Laurent 1996a) in the AL of locusts. Similar oscillations have also
181	been observed in intracellular recordings from drosophila AL (Tanaka, Ito, and Stopfer
182	2009). The presence of such oscillations suggests that odor induced PN responses are
183	correlated with more PNs spiking at the peak of the LFP than at other phases. The
184	oscillations also provide a natural time scale to partition the PN response into smaller 50
185	ms epochs (the duration of one cycle at 20Hz). We measured the time to odor initiation
186	and the duration of a continuous PN response in units of epochs. The statistics of the
187	number and timing of PN spikes were extracted from a survey of the literature (see table
188	1 - Laurent 1996b; Wehr and Laurent 1996; Stopfer, Jayaraman and Laurent, 2003;
189	Wilson and Laurent 2005). We adapted these results to design a matrix representation
190	of PN activity. This consisted of a 900x3000 matrix of 1s and 0s [Figure 3]. Each row
191	represented one out of 900 PNs, and each column of the matrix represented the activity
192	of all PNs over a 1ms time interval. The parameters (and their values) used in this

193 process (to simulate 1 second of odor delivery and a 3-second response) are listed below

194 (note all variables are normally distributed, and values represent mean \pm standard

195 deviation unless mentioned otherwise):

Table 1: Statistics of PN spikes

Percentage of active neurons	$(0.2 \pm 0.05) \times$ number of PNs
Basal firing rate	3.87 ± 2.23 spikes/second.
Odor induced firing rate	19.53 ± 10.67 spikes/second
Number of active epochs	8 ± 4 cycles of <u>LFP</u>
Number of epochs before activity	Number of LFP cycles drawn from a uniform integer distribution ranging from 1 to 20

197

196

198 To generate a population PN response, a value used to specify the percentage of active neurons was drawn from a normal distribution with mean and variance given in Table 1. 199 200 This value was used as a probability threshold to decide if a given PN fires or not. For 201 each of the 900 PNs, a uniform random number was drawn to decide whether that PN 202 was activated by the odor. If the random value was less than the probability threshold chosen, then the neuron was activated by the odor. A value of the basal firing rate (per 203 204 second) was drawn from a normal distribution with the appropriate mean and standard 205 deviation (Table 1) and spikes equaling three times the value drawn were uniformly and 206 randomly distributed over the 3000 time points. A value for odor induced firing rate was 207 drawn from a normal distribution, as were the number of active epochs and the number

208	of epochs before odor-induced activity. These three values provide information about
209	which of the LFP oscillation cycles additional spikes needed to be added to the particular
210	neuron's activity, as well as how many spikes were to be added in a single epoch. These
211	spikes were then distributed in each of the "active" epochs in such a way that the spike
212	was more likely to occur at the center of the epoch (corresponding to the peak of the
213	LFP) than at the ends. If the neuron was not odor-activated, then it fired at its basal
214	firing rate as described earlier.
215	These attributes were calculated for each of the 900 PNs to generate a complete
216	spatiotemporal pattern describing an odor. An odor was defined by the specific PNs that
217	were activated and the parameters drawn from the distributions quantified in Table 1. In
218	different trials of the same odor, the PNs that were activated, as well as their
219	parameters, remained the same. However, the exact timing of the spikes in the active
220	epochs changed.
221	The timing of spikes was drawn randomly (within specified "active" epochs) for each
222	trial. In contrast, two odors differ not only in the timing of spikes of active PNs but also
223	in the identity of the active PNs.
224	Whether a PN was active or not was independent of whether other PNs were active. This
225	reflected the multi-glomerular organization seen in locust. To mimic a fly-like glomerular
226	organization where sister PNs fire in a correlated manner, PNs were divided in 50 groups
227	of 6 (Note that here we simulated 300 PNs and not 900 in agreement with the number
228	seen in the fly). The grouping reflected the glomerular architecture in Drosophila. 5 out
229	of these 50 groups were chosen to contain active neurons. The other 4 parameters
230	mentioned in Table 1 were then chosen for these active neurons. To simulate a new

233 Neuron and synapse implementation

234 The spatiotemporal pattern that was generated using specific attributes for PN spike 235 statistics described above was used to stimulate a layer of 50,000 KCs. We systematically 236 varied PN-KC connections and computed the corresponding KC responses to several 237 odors. PN-KC synapses are cholinergic (Yasuyama 1999) and were modeled as such [equations 1, 2, 3] (Destexhe, Mainen, and Sejnowski 1994; Bazhenov et al. 2001; Javier 238 Perez-Orive et al. 2002; Turner, Bazhenov, and Laurent 2008). Each PN spike released a 239 240 fixed amount of neurotransmitter T. This was used to drive post-synaptic KCs. The 241 synaptic currents were given by:

$$I_{syn} = g_{syn} \times [O] \times (V - E_{syn})$$
⁽¹⁾

243

244

245

242

Where,

$$\frac{d[O]}{dt} = \alpha \times (1 - [O]) \times T - \beta \times [O]$$
⁽²⁾

$$T = A \times \Theta \times (t_0 + t_{max} - t) \times (t - t_0)$$
(3)

247

248

246

In these equations the constants were:

$$\alpha = 0.94 \text{ ms}^{-1}, \beta = 0.18 \text{ ms}^{-1}, g_{syn} = 0.05 \frac{mS}{cm^2}, E_{syn} = 0 \text{ mV and } t_{max} = 0.3 \text{ ms}$$
. $\Theta_{\text{ is the}}$

260

Heaviside function. [O] is the open probability of the ion channels on the KC membrane and T represents the amount of neurotransmitter released by a given PN. to is the time of the last spike and t_{max} is the duration for which the neurotransmitter was released. KCs were modeled as leaky integrate and fire neurons (Turner, Bazhenov, and Laurent

254 2008; Papadopoulou et al. 2011).

$$C_m \frac{dV}{dt} = -g_L (V - E_L) - I_{syn} \tag{4}$$

Here $g_L = 0.089 \frac{\text{mS}}{\text{cm}^2}$, $C_m = 1 \frac{\mu F}{\text{cm}^2}$ and $E_L = -65 \text{ mV}$. The KC generated a spike when $V > V_{thresh}$. The membrane potential was reset to -65 mV at the time point immediately after the spike. We simulated an array of 50,000 such KCs that responded to a 3000ms long input from PNs.

261 Classification and distance metrics

To quantify the difference between the representations of two odors by the same 262 263 neuronal population we used the Hamming distance. Elements of the KC activity vector were set to 1 if that KC fired a spike during the odor presentation and zero otherwise. 264 265 The Hamming distance calculates the number of bits that differ between the two vectors 266 (For example see Figure 2). In some figures, we used a normalized version of this metric that divides twice the Hamming distance by the total number of active neurons in both 267 vectors being compared. To illustrate this metric, consider a vector representing the 268 269 activity of 100 neurons. Consider, in one scenario 10 of these neurons were active for 270 odor A and a different set of 10 non-overlapping neurons for odor B. The Hamming 271 distance between these odor representations would be 20. In another scenario, 20 11

272	neurons were activated for odor A and 20 non-overlapping neurons for odor B, the
273	Hamming distance would be 40. However, in both cases the two odors were maximally
274	different from one another, that is, they did not overlap. In contrast, the normalized
275	Hamming distance for both cases described above would take a maximum value of 1.
276	The normalized Hamming distance may be thought of as a measure of the degree of
277	overlap between odor representations. If two odors stimulate strictly non-overlapping
278	KCs the distance between the representations would be 1 regardless of the number of
279	active KCs. This normalization was also necessary to visualize the distance between odor
280	representations particularly when the PN-KC connections were dense (>50%). Dense
281	connectivity regimes showed a large trial-trial variation in the number of active KCs.
282	In addition to using the normalized Hamming distance to visualize the distance between
283	odor representations, we used two classification algorithms (k-medoids clustering and
284	non-classical multidimensional scaling) to visualize and classify high dimensional KC
285	representations of odors. In both these classification algorithms we first defined the
286	pairwise Hamming distance between the KC vectors of all simulated odor
287	representations. The algorithm (k-medoids clustering using MATLAB) iteratively
288	minimizes the within cluster distance while maximizing the distance across clusters.
289	Unlike the k-means clustering algorithm that calculates a center for each cluster as the
290	mean of the cluster, the k-medoids algorithm treats an existing data point as the center
291	of the cluster and measures all within-cluster distances from that point. We also
292	performed a multidimensional scaling analysis using the mdscale function in MATLAB.
293	The algorithm maps points from the high-dimensional KC space to a plane while
294	preserving the pairwise distance relationship between all the data points.

295 Code Accessibility

The code/software described in the paper is freely available online at
 <u>http://modeldb.yale.edu/261877</u>. The access code for the online repository is 0000. The
 code is also available as Extended Data.

Results

299

300 In the locust, each KC receives input from nearly half of the antennal lobe PNs. This 301 pattern of connectivity maximizes the difference between inputs to any two of the 302 ~50,000 Kenyon cells in the mushroom body [Figure 2b] (Jortner, Farivar, and Laurent 303 2007). Given the large number of possible combinations of inputs to KCs, it is highly 304 unlikely that the combination of PNs that synapse onto a given KC will be exactly the same as that which synapse onto any other KC. In contrast, if the PN-KC connection 305 306 probability were 5% (seen, for example, in drosophila), the number of total possible PN 307 combinations would be nearly 99% lower than if the PN-KC connection probability were 50%, making it more likely for two KCs to share the same inputs [Figure 2b], (Jortner, 308 309 Farivar, and Laurent 2007, Jortner 2013). What advantages does this seemingly suboptimal scheme offer? We addressed this conundrum by simulating a model KC network 310 that received realistic PN input. Using the distance between KC odor representations, 311 312 and the classification accuracy of the network, as a proxy for the ability of the animal to distinguish odors, we determined the circumstances under which different circuit 313 314 connectivities confer specific advantages in odor discrimination.

316

317

315

A PN identity code allows a wide range of connectivities to distinctly represent odors

If each KC sees m out of n PNs, then the maximum number of combinations would be

eNeuro Accepted Manuscript

	$m = \frac{n}{2}$
318	obtained for n^{-2} [Figure 2b]. However, it is the response of KCs that is read by
319	subsequent layers, not PN input. The KC response may be thought of as a nonlinear
320	transformation of the summed input from the PNs. KCs act as coincidence detectors that
321	integrate pre-synaptic input that arrives within short temporal windows of the order of
322	~50ms (Perez-Orive J. et al. 2004, Perez-Orive J. et al. 2002, Gruntman & Turner 2013).
323	KCs fire only if a sufficient number of spikes fall within the integration window.
324	Therefore, we first investigated whether the previously hypothesized (Jortner, Farivar,
325	and Laurent 2007) optimal connection probability from PNs to KCs remains optimal in
326	spite of the threshold imposed by the KC response and whether a lower connection
327	probability is indeed sub-optimal.
328 329 330 331 332 333 334 335 336 337 338 339	Figure 2 caption: 50% connectivity does not maximally separate KC representations when PN inputs are static a) The threshold model of KCs. The left-most vector represents the PN activity. This is combined through a connectivity matrix to give the input seen by each KC (a 50000- element long vector). Thresholding is then applied to define spiking KCs. b) The Hamming distance between inputs seen by two KCs is calculated for all possible pairs and averaged and plotted as a function of the PN-KC connectivity. c) The mean (\pm standard deviation) normalized Hamming distance between the activity of KC networks driven by two different inputs is plotted on the y-axis as a function of the PN-KC connectivity. Different shades plot the distance between odor representations that differed in 5-80% of the active PNs.
340	We tested this hypothesis using a simple threshold model of KCs and determined how
341	distinctly the KC population output represented different odors. We modeled the input
342	to KCs as a binary vector of length 900. This captured a single snapshot of the activity of
343	the AL circuit (Jortner 2013; Litwin-kumar et al. 2016) [Figure 2a]. In the locust AL, the
344	duration of each cycle of the 20 Hz oscillatory local field potential provides a natural
345	time-scale to define the duration of a snapshot. We then calculated the response of KCs

346	to this input for different values of PN-KC connectivity. We varied the number of
347	projections from PNs to KCs such that each KC received inputs from 5 to 95 percent of all
348	PNs (in steps of 5 percent). We simulated different odors by randomly shuffling the PN
349	activity vector. If the summed activity of all the PNs that were connected to the same KC
350	exceeded a threshold, we labeled the KC as active and set its response to 1. Increasing
351	the density of connections from PNs to KCs increased the number of active KCs for the
352	same input vector. Changes in the sparseness of the KC output vector can lead to a
353	change in the distance between odor representations. Our goal was to calculate the
354	overlap between output vectors, independent of the sparseness of the representation.
355	Therefore, for each connection probability we adjusted the response threshold of KCs
356	such that only 10% of the 50,000 KCs simulated crossed the threshold. (Javier Perez-
357	Orive et al. 2002; Turner, Bazhenov, and Laurent 2008). This ensured that changes in the
358	distance between odor representations were solely due to changes in the PN-KC
359	connectivity and not confounded by connectivity dependent changes in the sparseness
360	of the KC response. We simulated four sets of inputs consisting of 101 PN odor
361	representations. Within each of the four sets of simulated odors, the input vectors
362	differed from each other by varying amounts - 5, 10, 20, 40 or 80% respectively. For
363	example, consider the 900 PNs whose activity represented a given odor 'A'. About 20%
364	of these PNs would be active. Another odor 'B' in the input set would differ from 'A' by
365	10% if 90 of the 900 PNs changed their activity state from active to inactive or vice versa
366	when compared with 'A'. We then calculated the normalized Hamming distances
367	between odor pairs belonging to each group and compared the distances obtained for
368	different PN-KC connection probabilities. The KC population's ability to distinctly
369	represent odors showed no dependence on the connectivity between the two regions

370	[Figure 2c] regardless of the degree of similarity between the PN representations of
371	odors. This counterintuitive result arises from the fact that even at low connectivity
372	values the number of ways to choose inputs to KCs is more than a hundred orders of
373	magnitude greater than the number of KCs in the network (Litwin-kumar et al. 2016)(see
374	the Discussions section). Therefore, when odor distances were measured in terms of the
375	output of KCs, both the drosophila (5% PN-KC connectivity) and the locust olfactory
376	network (50% connectivity) were equally capable of distinguishing between similar
377	odors.
378	Inclusion of PN temporal patterning reveals the functional differences between
379	connectivities
380	In response to an odor presentation, AL neurons generate a dynamic pattern that
381	evolves reliably and over multiple time scales. This spatiotemporal patterning is thought
382	to progressively decorrelate the representations of similar odorants (Wiechert et al.
383	2010) and make them more easily discriminable by follower neurons in the mushroom
384	body. Earlier, we used a single snapshot in time to represent an odor and found that the
385	PN-KC connectivity had little effect on the Hamming distance between KC
386	representations of the odor. Next, we sought to determine the role of the temporal
387	structure of odor representations in discrimination.
388 389 390 391 392	Figure 3: Simulation of temporally patterned PN inputs to a KC network. a) The matrix on the left represents the activity of a set of 900 PNs. Each row shows the activity of a single PN during a 3000ms time period. Blue dots show the time of a spike. The red region represents the time during which the odor was presented. On top, a summation of the activity of the entire PN network is shown clearly indicating
393 394 395 396 397	the oscillations in the net PN activity. This input was used to calculate T and I_{syn} (the synaptic input to KCs). The differences between the population representation of two inputs were calculated using the Hamming distance. b) Mean population response of 900 PNs projected onto the first three principal components for three odors is shown by the black traces. Individual trials are shown by the colored traces c) The mean
	16

membrane potential of all KCs shows a 20Hz oscillation. Bottom panels show the response of two KCs (in red and black traces) to two different odors. Only the first odor evokes a consistent response from this particular KC across 5 odor trials (middle panel). The second odor does not lead to reliable spiking in this example KC.

403 Odor inputs to KCs were modeled as a pattern of spikes from PNs. The statistics of spikes 404 emulated that seen in the extant literature (see methods). We simulated trial-trial 405 variability by jittering the spike timing within 50 ms windows. Note that in addition to this jitter, random spikes were inserted such that the mean baseline firing rate in the 406 407 absence of an odor stimulus was 4 Hz. We simulated different odors by activating 408 different groups of PNs. To visualize the dynamics of the population of PNs, we first calculated the number of spikes generated by each PN in overlapping 50 ms windows. 409 We then projected the PN activity vector during each 50ms window onto the first three 410 411 principal components. Odor representations of the PN population may be visualized as 412 continuous trajectories in this reduced-dimensional space. When the odor stimulus was 413 turned on, the AL response followed a trajectory from baseline (defined by low firing 414 rates) to a 'fixed point' (Mazor & Laurent 2005). Once the odor stimulus was turned off, the trajectory returned to baseline, but along a different path from the one it had taken 415 416 to reach the fixed-point post-odor-onset (Mazor & Laurent 2005, Stopfer et al. 2003). Multiple trials of the same odor generated trajectories that remained close to each 417 418 other, while dissimilar odors were well separated in the space defined by the principal 419 components. [Figure 3]. The input from PNs was used to drive a population of KCs. In 420 contrast to the threshold model of KCs used in the previous section, here we modeled 421 KCs as leaky integrate and fire neurons with integration properties that matched the 422 responses seen in earlier studies (Javier Perez-Orive et al. 2002; J. Perez-Orive, 423 Bazhenov, and Laurent 2004). Here too, we maintained the sparseness of KC responses

eNeuro Accepted Manuscript

398 399

400

401

402

424	across different PN-KC connection regimes by choosing progressively higher spike
425	thresholds as the probability of connections increased. The threshold chosen ensured
426	that only 10% of the KCs spiked in each epoch (50ms window) when the odor was
427	present regardless of the connectivity. We chose such a threshold-based sparseness to
428	mimic the ultimate effect of the GGN that dynamically adjusts feedback inhibition in
429	response to the intensity of the KC response. However, for high PN-KC connectivity,
430	(>50%), we found that the difference between inputs to different KCs was very small.
431	Therefore, small changes in the KC threshold led to an all-or-none response and
432	consequently a high variability across trials and a reduced ability to discriminate
433	between odorants. Intrinsic variability in KC thresholds and differences in the strengths
434	of PN-KC synapses can potentially reduce this variability for connectivities beyond 50%.
435	We used a normalized Hamming distance to visualize differences across all connectivity
436	values. In the 0-50% connectivity regime, where the number of activated KCs remained
437	nearly the same and well-controlled by KC threshold modification, the Hamming
438	distance matched the normalized Hamming distance except for a constant scaling factor.
439	Including PN temporal patterning revealed some functional differences between
440	different PN-KC connectivity regimes.
441	KCs received inputs that represented odors with different degrees of similarity between
442	them. We calculated the mean normalized Hamming distance between all pairs of KC
443	activity vectors for different odors and connectivities [Figure 4a]. Our analysis began to
444	pick out differences in the ability of the KC population with different connectivities to
445	represent odors distinctly. The normalized Hamming distance between KC odor
446	representations increased with increasing PN-KC connectivity for all odor distances

447 [Figure 4a]. This implied that the representations of two different odors are more distinct in higher connectivity regimes. This could potentially allow the network to 448 449 accurately associate specific odors with reward signals in downstream layers of the 450 olfactory circuit (Cassenaer & Laurent 2012, Owald et al. 2015, Hige et al. 2015). However, an increase in 451 452 Hamming distance was accompanied by a concomitant increase in the variability of the 453 distance across odor pairs. We found a similar trend in the distance between the trials that represented the same odor (trace marked 0% difference in Figure 4a). Therefore, 454 455 for high PN-KC connection densities, it seemed likely that different trials of the same odor could be incorrectly classified as distinct odors. Ideally, the network must maximize 456 the distance between odor representations while also keeping the trial-trial variability 457 458 within a range that prevents misclassification of odors. The Hamming distance metric 459 does not take into account the variability of KC odor representation. Therefore, we used k-medoids clustering to separate the odor representations into non-overlapping groups. 460 Our data consisted of 25 KC response vectors (5 odors x 5 trials). Each was a 50000-461 462 element long vector, where each element represented a single KC and contained either a 1 if that KC was active or 0 if it was inactive. We determined whether the trials had 463 464 been grouped correctly based on their odor identity. For each set we used the 465 percentage of correct classifications as a measure of the ability of the network to distinguish between odorants. As the PN-KC connectivity increased to nearly 45%, the 466 467 number of correct classifications dropped abruptly, indicating that the distance across trials of the same odor matched or exceeded the distance between representations of 468 different odors [Figure 4b]. Therefore, 45% PN-KC connectivity increased the distance 469 470 between representations while keeping trial-trial variability within a reasonable range.

471	This result is similar to that of (Jortner 2013) though it is based on the output of KCs over
472	a few seconds of odor stimulation, while (Jortner 2013) based their conclusion on a
473	single snapshot of odor input. Next we used multidimensional scaling to visualize the
474	distribution of different odors on a plane. The algorithm mapped each 50000-
475	dimensional KC representations of an odor trial on to a single point on this plane. For
476	low values of PN-KC connectivity, multiple trials of the same odor preferentially
477	remained close together. As the divergence of connections increased, the separation
478	between the representations of different trials of a particular odor and different odors
479	began to merge, making it difficult to correctly segregate the odors [Figure 4c, different
480	odors are marked in different colors]. The odors plotted here differed from each other in
481	5% of the PNs that were stimulated.
482	It is possible that the differences in Hamming distance could be merely a consequence of
483	using a specific KC model (an integrate-and-fire neuron here) compared to a nonlinear
484	threshold neuron in earlier sections. To show that this is not the case we created odor
485	representations in which odors differed only in the identity of PNs that they activated.
486	All active PNs produced the same number of spikes at exactly the same points in time. In
487	this way we continued to include all aspects of our expanded model but removed any
488	differences in temporal structure that could be utilized differently by the different
489	connectivity regimes. Therefore, if the usage of our new KC model that evolved in time
490	was the cause for the functional differences that we saw, then the results of this
491	simulation would differ from that of the previous simulations [Figure 2c] that used a
492	threshold model. We found that the distance between odor representations in both
493	models, the integrate and fire model and the threshold model, were independent of the

494 degree of PN-KC connectivity when temporal features of the odor representation were

495 eliminated (compare Figure 4d with Figure 2c).

496 Taken together, these results suggest that the inclusion of temporal structure in AL

- 497 activity causes post-synaptic KC populations that receive a large number of inputs to
- 498 respond differently from those that receive few inputs. However, there appears to be a
- 499 trade-off here. Dense connectivity regimes are highly sensitive to small changes in
- 500 incoming input and can incorrectly categorize noisy trials of the same odor as different
- 501 odors. On the other hand, sparse connectivity regimes produce reliable representations
- 502 that can be clustered correctly into different groups. However, these are likely to fail if
- 503 very similar odors are introduced because the representations may not be well
- 504 separated as seen from the low Hamming distance between the odor representations

[Figure 4].

Figure 4 caption: *PN temporal patterning reveals the functional differences between connectivities*

Distance between odor representations. The mean (\pm standard deviation) a) normalized Hamming distance between the KC representations of odor pairs is shown as a function of the PN-KC connectivity value. Here KCs are modeled as described in Figure 3. b) Classification accuracy decreases with increasing PN-KC connectivity. A kmedoids clustering algorithm that used the distance between 25 KC activity vectors (5 trials x 5 odors) was used to categorize each vector as one of 5 odors. The percentage of correctly classified odor representations is plotted on the y-axis as a function of the connectivity of the PN-KC network. c) Odor representations become indistinguishable with increasing PN-KC connectivity. Five odors that differed from each other by 5% PN input, mapped to a plane using multidimensional scaling. Different trials of a given odor are plotted using a single color. Different odors are plotted using different colors. The *PN-KC* connectivity is shown in the title of each sub-plot d) Hamming distance between static odor representations. The mean (\pm standard deviation) normalized Hamming distance between the KC representations of odor pairs is plotted as a function of PN-KC connectivity. Here, the PN odor representation did not change in time.

523 Glomerular organization of the fly aids odor discrimination

524 Olfactory receptor neurons in insects are distributed randomly across the antennae

525 within tiny hair like structures called sensilla. Each receptor neuron expresses a single

505

506

507

508

509

510 511

512 513

514

515

516 517

518

519

520

526	olfactory receptor protein and possesses a receptive field tuned to a variety of odorants
527	(Hallem and Carlson 2004, 2006). In drosophila, all the sensory neurons expressing a
528	particular receptor type synapse onto a single glomerulus giving nearly identical input to
529	sister PNs that receive input from that glomerulus (Kazama and Wilson 2009). While
530	correlated PN responses can potentially improve the signal to noise ratio, this comes at a
531	cost, namely, the dimensionality of the olfactory representation is vastly reduced. The
532	size of the representation may be thought of as the number of independent dimensions,
533	that is, the number of neurons that can generate uncorrelated patterns of activity. In
534	locusts that lack this glomerular organization, the maximum number of independent
535	dimensions is 900 (number of PNs that could potentially receive unique odor input). In
536	drosophila this reduces dramatically since multiple neurons receive identical input from
537	ORNs and generate a highly correlated output. The number in drosophila may be much
538	smaller (~50, the number of glomeruli) since the output of sister PNs is nearly the same.
539	Does the glomerular organization of the drosophila olfactory system mitigate some of
540	the disadvantages in odor discrimination imposed by sparse PN-KC connections?
541	Figure 5: Glomerular organization of the fly aids odor discrimination
542 543	(a) The mean (\pm standard deviation) normalized Hamming distance as a function of PN-KC connectivity in a network with glomerular structure. (b) The normalized HD of odors
544	with a 1-glomerulus difference in a fly-like glomerular system is compared to the HD
545 546	between odor representations of a system with locust-like glomerular structure. (c) Classification accuracy of odors that are different by 2 glomeruli (2% or 12 neurons in the
547	fly-architecture) (blue trace) compared to the classification accuracy of odors that
548	differed by 5% (45 neurons) of stimulated odors in locust. Classification accuracy is higher
549	for the fly-like organization for low PN-KC connectivities.
550	
551	To test if the inclusion of the uni-glomerular architecture seen in the fly produces any
552	improvement in the ability of sparsely connected networks we performed simulations in
553	which odors were defined by the glomeruli they activated. These odors differed in the
554	number of unique glomeruli they activated rather than the number of unique PNs 22

555	[Figure 5a]. These inputs were then fed to the same KC network simulated earlier. We
556	saw that for sparse connectivity regimes the uni-glomerular organization magnified the
557	differences in PN activity and increased the Hamming distance between KC
558	representations of odors compared to the non-glomerular case [Figure 5b]. We then
559	used k-medoid based clustering and classification to determine whether the fly-like
560	architecture provided any benefits in odor classification. We compared the classification
561	accuracy as a function of PN-KC connectivity for two cases – a system with a multi-
562	glomerular (locust-like architecture) and one with a uni-glomerular (fly-like
563	architecture). We found that the uni-glomerular architecture improved the classification
564	accuracy of the network for low PN-KC connectivities compared to the multi-glomerular
565	architecture [Figure 5c]. However, this kind of glomerularization appears to cause no
566	change or even slightly reduce the ability of dense connectivity schemes to separate
567	odor representations. This suggests that the glomerular organization seen in the fly does
568	in fact improve the animal's ability to distinguish between odors.
569	
570	Discussion
571	Discrimination of purely spatial odor representations is independent of PN-KC
572	connection density
573	In the locust AL, PNs generate elaborate spatiotemporal patterns in response to an odor.
574	These patterns are read by KCs in the MB. The density of connections between PNs and

	576	probability of connections
	577	maximally separated. The
	578	when $m \Box \frac{n}{2}$, thus maximi
<u>.</u>	579	Jortner 2013). This argum
ip	580	quickly as m changed from
CL	581	connectivity KCs did not re
n S	582	inputs were indeed maxim
D U	583	underwent a KC threshold
g	584	separating odors. This is in
Σ	585	connection probability ger
-	586	similar odors are mapped
e B	587	observations are confined
)t	588	patterning of inputs was ir
a	589	better at separating odor r
Ŭ	590	
Ad	591	Odor representations are
0	592	Increasing connection den
Ţ	593	changing milieu. Recogniti
6 G	594	background of irrelevant o
Ζ	595	perturbations in the odor i
Ð	596	the density of connections
	597	high connectivity values le

7	maximally separated. The number of ways to pick m out of n elements is maximized
3	when $m \Box \frac{n}{2}$, thus maximizing the distance between inputs to KCs (see Figure 2b and
)	Jortner 2013). This argument assumed that this distance between inputs dropped off
)	quickly as <i>m</i> changed from $m \Box \frac{n}{2}$. Therefore, in schemes that did not have close to 50%
L	connectivity KCs did not receive sufficiently distinct inputs. We found that while the
2	inputs were indeed maximally separated at 50% connectivity, once the summed inputs
3	underwent a KC threshold function all connectivity regimes were equally good at
ŀ	separating odors. This is in line with more recent studies that show that even a 5%
5	connection probability generates a large representation space such that even highly
5	similar odors are mapped to distant locations (Litwin-Kumar et al. 2017). However, these
7	observations are confined to odor representations that are static. When the temporal
3	patterning of inputs was included, denser connectivities appeared to be significantly
)	better at separating odor representations.
)	
L	Odor representations are variable in networks with dense connectivity

from PNs to KCs ensures that the PN inputs to KCs are

Increasing connection density comes at a price. Odorants are embedded in a noisy and changing milieu. Recognition of appetitive and aversive odorants must play out against a background of irrelevant olfactory information. Thus, the network must be tolerant to perturbations in the odor representation. This constraint introduces an upper bound on the density of connections between PNs and KCs. Our simulations demonstrated that high connectivity values led to highly variable representations of the odor by KCs as was

598	seen from the standard deviation of the Hamming distance. Dense ($80-95$ %)
599	connectivity regimes generated representations that were $4-5$ times more variable
600	than representations generated by sparse connectivity schemes. The reason for this
601	increased variability is that for dense connectivity schemes, KCs see nearly identical
602	input from PNs. For connectivity regimes > 50%, with temporally varying PN inputs, the
603	discriminability between KC inputs decreases with increasing connection density. The
604	response of KCs is modulated by inhibitory feedback from the GGN. The GGN inhibits all
605	the KCs and maintains sparseness across large variations in odor attributes by controlling
606	the propensity of KCs to respond. In high connectivity regimes, a threshold that causes
607	one of the KCs to fire invariably allows most KCs to fire. A small increase in threshold can
608	lead to a condition where none of the KCs fire. Noisy changes in input statistics can thus
609	drive the KC responses leading to large trial-trial variability. While the variability of the
610	odor representation is maximal for connection densities in the 80-95% range, as
611	mentioned previously even networks with connection densities in the range of 45-60%
612	show poor classification ability when exposed to multiple trials of the same odor. This is
613	clearly not ideal for a system attempting to represent sensory information in a
614	stereotyped way over different trials and learn from experience.
615	Temporal patterning of PN activity reveals functional differences amongst PN-KC
616	connectivity regimes
617	A key insight from the simulations performed in this paper is the observation that the
618	categorization of odors in the insect MB is dependent on an interaction between PN-KC
619	connectivity and temporal patterning of PN input. The reason for these differences as
620	shown earlier is due to the differing demands of connectivity regimes on the temporal
621	coincidence of spiking and spike thresholds. Taken together, our results reiterate that

622	temporal patterning of PN input carries information about the identity of odors (Stopfer,
623	Jayaraman and Laurent, 2003). But more importantly, we show that this information can
624	be utilized differently by systems with different PN-KC connectivity values. Sparse
625	connectivity regimes utilize this in a way that allows for reduction in noise sensitivity and
626	dense connectivity regimes use it to maximally separate between odors. Given the
627	complexity of our sensory world, the olfactory system must balance two seemingly
628	conflicting goals. Resolve highly similar sensory inputs and do so with considerable
629	reliability in spite of noisy variations in the input. Our model suggests that the locust and
630	drosophila live in different regimes of a continuum of possibilities, arriving at different
631	solutions, perhaps driven by their own evolutionary histories. Importantly, the
632	differences in the functions of these two circuits is only revealed when the temporal
633	structure of the odor representation is taken into account.
634	
635	
635 636	References :
636	References : Albus, James S. 1971. A Theory of Cerebellar Function. Mathematical Biosciences 10 (1): 25–61.
636 637	Albus, James S. 1971. A Theory of Cerebellar Function. Mathematical Biosciences 10
636 637 638	Albus, James S. 1971. A Theory of Cerebellar Function. Mathematical Biosciences 10 (1): 25–61.
636 637 638 639	Albus, James S. 1971. A Theory of Cerebellar Function. Mathematical Biosciences 10 (1): 25–61. Aso, Yoshinori, Divya Sitaraman, Toshiharu Ichinose, Karla R. Kaun, Katrin Vogt,
636 637 638 639 640	 Albus, James S. 1971. A Theory of Cerebellar Function. Mathematical Biosciences 10 (1): 25–61. Aso, Yoshinori, Divya Sitaraman, Toshiharu Ichinose, Karla R. Kaun, Katrin Vogt, Ghislain Belliart-guérin, Pierre-Yves Plaçais, et al. 2014. Mushroom Body Output
636 637 638 639 640 641	 Albus, James S. 1971. A Theory of Cerebellar Function. Mathematical Biosciences 10 (1): 25–61. Aso, Yoshinori, Divya Sitaraman, Toshiharu Ichinose, Karla R. Kaun, Katrin Vogt, Ghislain Belliart-guérin, Pierre-Yves Plaçais, et al. 2014. Mushroom Body Output Neurons Encode Valence and Guide Memory-Based Action Selection in Drosophila.
636 637 638 639 640 641 642	 Albus, James S. 1971. A Theory of Cerebellar Function. Mathematical Biosciences 10 (1): 25–61. Aso, Yoshinori, Divya Sitaraman, Toshiharu Ichinose, Karla R. Kaun, Katrin Vogt, Ghislain Belliart-guérin, Pierre-Yves Plaçais, et al. 2014. Mushroom Body Output Neurons Encode Valence and Guide Memory-Based Action Selection in Drosophila. eLife, no. 3: 1–42.
636 637 638 639 640 641 642 643	 Albus, James S. 1971. A Theory of Cerebellar Function. Mathematical Biosciences 10 (1): 25–61. Aso, Yoshinori, Divya Sitaraman, Toshiharu Ichinose, Karla R. Kaun, Katrin Vogt, Ghislain Belliart-guérin, Pierre-Yves Plaçais, et al. 2014. Mushroom Body Output Neurons Encode Valence and Guide Memory-Based Action Selection in Drosophila. eLife, no. 3: 1–42. Bazhenov, Maxim, Mark Stopfer, Mikhail Rabinovich, Henry D. I. Abarbanel, Terrence J.
636 637 638 639 640 641 642 643 644	 Albus, James S. 1971. A Theory of Cerebellar Function. Mathematical Biosciences 10 (1): 25–61. Aso, Yoshinori, Divya Sitaraman, Toshiharu Ichinose, Karla R. Kaun, Katrin Vogt, Ghislain Belliart-guérin, Pierre-Yves Plaçais, et al. 2014. Mushroom Body Output Neurons Encode Valence and Guide Memory-Based Action Selection in Drosophila. eLife, no. 3: 1–42. Bazhenov, Maxim, Mark Stopfer, Mikhail Rabinovich, Henry D. I. Abarbanel, Terrence J. Sejnowski, and Gilles Laurent. 2001. Model of Cellular and Network Mechanisms for

647	Caron, Sophie J. C., Vanessa Ruta, L. F. Abbott, and Richard Axel. 2013. Random
648	Convergence of Olfactory Inputs in the Drosophila Mushroom Body. Nature 497
649	(7447): 113–17.
650	Cassenaer, Stijn, and Gilles Laurent. 2012. Conditional Modulation of Spike-
651	TimingDependent Plasticity for Olfactory Learning. Nature 487 (7405): 128–128.
652	Destexhe, A., Z. F. Mainen, and T. J. Sejnowski. 1994. An Efficient Method for Computing
653	Synaptic Conductances Based on a Kinetic Model of Receptor Binding. Neural
654	Computation 6 (1): 14–18.
655	Dhawale, Ashesh K., Akari Hagiwara, Upinder S. Bhalla, Venkatesh N. Murthy, and Dinu
656	F. Albeanu. 2010. Non-Redundant Odor Coding by Sister Mitral Cells Revealed by
657	Light Addressable Glomeruli in the Mouse. Nature Neuroscience 13 (11): 1404–12.
658	Fisek, Mehmet. 2014. Connectivity and Computations in Higher-Order Olfactory Neurons
659	in Drosophila. https://dash.harvard.edu/handle/1/12274607.
660	Gruntman, Eyal, and Glenn C. Turner. 2013. Integration of the Olfactory Code across
661	Dendritic Claws of Single Mushroom Body Neurons. Nature Neuroscience 16 (12):
662	1821–29.
663	Hallem, Elissa A., and John R. Carlson. 2004. The Odor Coding System of Drosophila.
664	Trends in Genetics: TIG 20 (9): 453–59.
665	Hallem, Elissa A., and John R. Carlson 2006. Coding of Odors by a Receptor Repertoire.
666	Cell 125 (1): 143–60.
667	Heisenberg, Martin. 2003. Mushroom Body Memoir: From Maps to Models. Nature 4
668	(April): 266–75.
669	Hige, Toshihide, Yoshinori Aso, Mehrab N. Modi, Gerald M. Rubin, and Glenn C. Turner.
670	2015. Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila.
671	Neuron 88 (5): 985–98.
672	Hige, Toshihide, Yoshinori Aso, Gerald M. Rubin, and Glenn C. Turner. 2015. Plasticity-
673	Driven Individualization of Olfactory Coding in Mushroom Body Output Neurons.
674	Nature 526 (10): 258–62.
675	Hopfield, J. J., and D. W. Tank. 1986. Computing with Neural Circuits: A Model. Science
676	233 (4764): 625–33.

677	Jortner, Ron A. 2013. Network Architecture Underlying Maximal Separation of Neuronal
678	Representations. Frontiers in Neuroengineering 5 (January): 19.
679	Jortner, Ron A., S. Sarah Farivar, and Gilles Laurent. 2007. A Simple Connectivity Scheme
680	for Sparse Coding in an Olfactory System. Journal of Neuroscience 27 (7):
681	1659–69.
682	Kazama, Hokto, and Rachel I. Wilson. 2009. Origins of Correlated Activity in an Olfactory
683	Circuit. Nature Neuroscience 12 (9): 1136–44.
684	Kristan, William B., and Paul Katz. 2006. Form and Function in Systems Neuroscience.
685	Current Biology: CB 16 (19): R828–31.
686	Laurent, Gilles. 1996a. Dynamical Representation of Odors by Oscillating and Evolving
687	Neural Assemblies. Trends in Neurosciences 19 (11): 489–96.
688	Laurent, Gilles. 1996b. Temporal Representations of Odors in an Olfactory. The Journal
689	of Neuroscience 16 (12): 3837–47.
690	Lin, Andrew C., Alexei M. Bygrave, Alix de Calignon, Tzumin Lee, and Gero Miesenböck.
691	2014. Sparse, Decorrelated Odor Coding in the Mushroom Body Enhances Learned
692	Odor Discrimination. Nature Neuroscience 17 (4): 559–68.
693	Litwin-kumar, Ashok, Kameron D. Harris, Richard Axel, and Larry F. Abbott. 2017.
694	Optimal Degrees of Synaptic Connectivity. Neuron, 93(5), 1153-1164
695	Marr, D. 1969. A Theory of Cerebellar Cortex. The Journal of Physiology 202 (2): 437–
696	70.
697	Masuda-Nakagawa, Liria M., Kei Ito, Takeshi Awasaki, and Cahir J. O'Kane. 2014. A
698	Single GABAergic Neuron Mediates Feedback of Odor-Evoked Signals in the
699	Mushroom Body of Larval Drosophila. Frontiers in Neural Circuits 8 (April): 35.
700	Mazor, Ofer, and Gilles Laurent. 2005. Transient Dynamics versus Fixed Points in Odor
701	Representations by Locust Antennal Lobe Projection Neurons. Neuron 48: 661–73.
702	Owald, David, Johannes Felsenberg, Clifford B. Talbot, Gaurav Das, Emmanuel Perisse,
703	Wolf Huetteroth, and Scott Waddell. 2015. Activity of Defined Mushroom Body
704	Output Neurons Underlies Learned Olfactory Behavior in Drosophila. Neuron 86
705	(2): 417–27.

706	Papadopoulou, Maria, Stijin Cassenaer, Thomas Nowotny, and Gilles Laurent. 2011.
707	Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron. Science
708	721 (6030): 721–25.
709	Perez-Orive, Javier, Ofer Mazor, Glenn C. Turner, Stijn Cassenaer, Rachel I. Wilson, and
710	Gilles Laurent. 2002. Oscillations and Sparsening of Odor Representations in the
711	Mushroom Body. Science 297 (July): 359–66.
712	Perez-Orive, J., Maxim Bazhenov, and Gilles Laurent. 2004. Intrinsic and Circuit
713	Properties Favor Coincidence Detection for Decoding Oscillatory Input. Journal of
714	Neuroscience 24 (26): 6037–47.
715	Saha, Debajit, Wensheng Sun, Chao Li, Srinath Nizampatnam, William Padovano,
716	Zhengdao Chen, Alex Chen, et al. 2017. Engaging and Disengaging Recurrent
717	Inhibition Coincides with Sensing and Unsensing of a Sensory Stimulus. Nature
718	Communications 8 (May): 15413.
719	Stopfer, Mark, Vivek Jayaraman, and Gilles Laurent. 2003. Intensity versus Identity
720	Coding in an Olfactory System. Neuron 39 (6): 991–1004.
721	Tanaka, Nobuaki K., Kei Ito, and Mark Stopfer. 2009. Odor-Evoked Neural Oscillations in
722	Drosophila Are Mediated by Widely Branching Interneurons. The Journal of
723	Neuroscience 29 (26): 8595– 8603.
724	Turner, Glenn C., Maxim Bazhenov, and Gilles Laurent. 2008. Olfactory Representations
725	by Drosophila Mushroom Body Neurons. Journal of Neurophysiology 99: 734–46.
726	Wehr, M., and G. Laurent. 1996. Odour Encoding by Temporal Sequences of Firing in
727	Oscillating Neural Assemblies. Nature 384 (6605): 162–66.
728	Wiechert, Martin T., Benjamin Judkewitz, Hermann Riecke, and Rainer W. Friedrich.
729	2010. Mechanisms of Pattern Decorrelation by Recurrent Neuronal Circuits. Nature
730	Neuroscience 13 (8): 1003–10.
731	Wilson, Rachel I., and Gilles Laurent. 2005. Role of GABAergic Inhibition in Shaping
732	Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe. The Journal
733	of Neuroscience 25 (40): 9069–79.
734	Yasuyama, Kouji, and Paul M. Salvaterra. 1999. Localization of Choline
735	Acetyltransferase-Expressing Neurons in Drosophila Nervous System. Microscopy
736	Research and Technique 45 (2): 65–79.
	20

737 Figure Captions

Figure 1: A schematic of the insect olfactory system

A schematic of the olfactory system contrasting the structural parameters of the circuit in a) *Drosophila melanogaster* and b) *Schistocerca americana*.

Figure 2: 50% connectivity does not maximally separate KC representations when PN inputs are static

a) The threshold model of KCs. The left-most vector represents the PN activity. This is combined through a connectivity matrix to give the input seen by each KC (a 50000element long vector). Thresholding is then applied to define spiking KCs. b) The Hamming distance between inputs seen by two KCs is calculated for all possible pairs and averaged and plotted as a function of the PN-KC connectivity. c) The mean (\pm standard deviation) normalized Hamming distance between the activity of KC networks driven by two different inputs is plotted on the y-axis as a function of the PN-KC connectivity. Different shades plot the distance between odor representations that differed in 5-80% of the active PNs.

Figure 3: Simulation of temporally patterned PN inputs to a KC network.
a) The matrix on the left represents the activity of a set of 900 PNs. Each row shows the activity of a single PN during a 3000ms time period. Blue dots show the time of a spike. The red region represents the time during which the odor was presented. On top, a summation of the activity of the entire PN network is shown clearly indicating

the oscillations in the net PN activity. This input was used to calculate T and I_{sym} (the synaptic input to KCs). The differences between the population representation of two inputs were calculated using the Hamming distance. b) Mean population response of 900 PNs projected onto the first three principal components for three odors is shown by the black traces. Individual trials are shown by the colored traces c) The mean membrane potential of all KCs shows a 20Hz oscillation. Bottom panels show the response of two KCs (in red and black traces) to two different odors. Only the first odor evokes a consistent response from this particular KC across 5 odor trials (middle panel). The second odor does not lead to reliable spiking in this example KC.

Figure 4: PN temporal patterning reveals the functional differences between connectivities

a) Distance between odor representations. The mean (\pm standard deviation) normalized Hamming distance between the KC representations of odor pairs is shown as a function of the PN-KC connectivity value. Here KCs are modeled as described in Figure 3. b) Classification accuracy decreases with increasing PN-KC connectivity. A k-medoids clustering algorithm that used the distance between 25 KC activity vectors (5 trials x 5 odors) was used to categorize each vector as one of 5 odors. The percentage of correctly classified odor representations is plotted on the y-axis as a function of the connectivity of the PN-KC network. c) Odor representations become indistinguishable with increasing PN-KC connectivity. Five odors that differed from each other by 5% PN

input, mapped to a plane using multidimensional scaling. Different trials of a given odor are plotted using a single color. Different odors are plotted using different colors. The PN-KC connectivity is shown in the title of each sub-plot d) Hamming distance between static odor representations. The mean (\pm standard deviation) normalized Hamming distance between the KC representations of odor pairs is plotted as a function of PN-KC connectivity. Here, the PN odor representation did not change in time.

Figure 5: Glomerular organization of the fly aids odor discrimination

(a) The mean (\pm standard deviation) normalized Hamming distance as a function of PN-KC connectivity in a network with glomerular structure. (b) The normalized HD of odors with a 1-glomerulus difference in a fly-like glomerular system is compared to the HD between odor representations of a system with locust-like glomerular structure. (c) Classification accuracy of odors that are different by 2 glomeruli (2% or 12 neurons in the fly-architecture) (blue trace) compared to the classification accuracy of odors that differed by 5% (45 neurons) of stimulated odors in locust. Classification accuracy is higher for the fly-like organization for low PN-KC connectivities.

Extended Data 1 : Code to simulate PN and KC networks.

The included .zip file contains MATLAB code used in the paper to produce PN network responses and simulated the KC network.

781

782

783

784

785

786

787

788 789

790

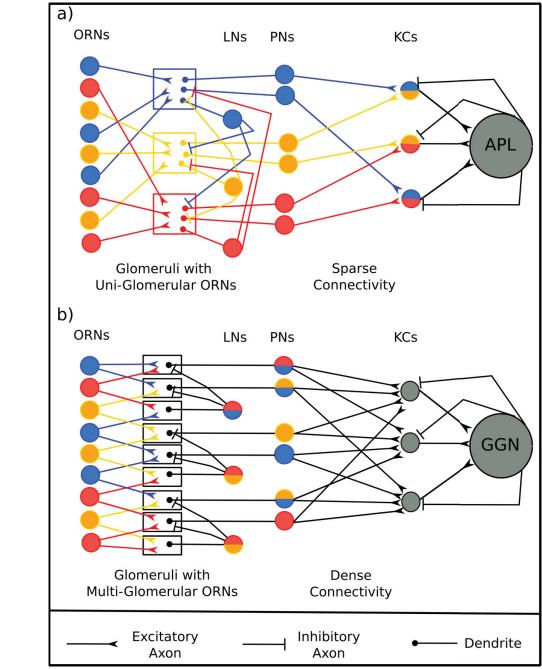
791 792

793 794

795

796 797 798

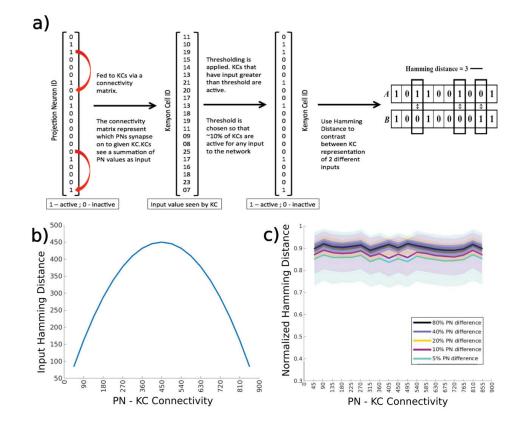
799



804

806 757 Figure 2

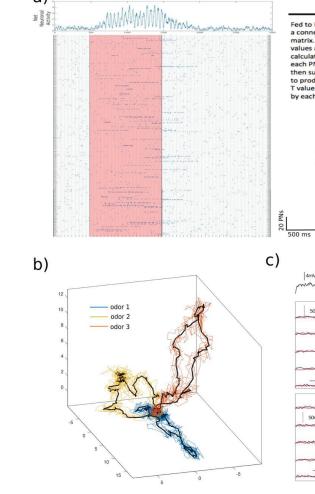
869

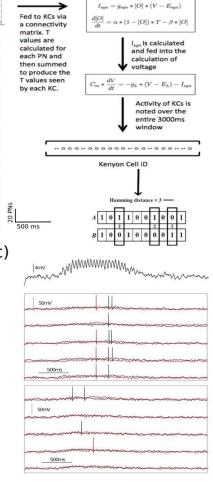


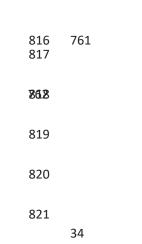
eNeuro Accepted Manuscript

815 760 Figure 3

a)

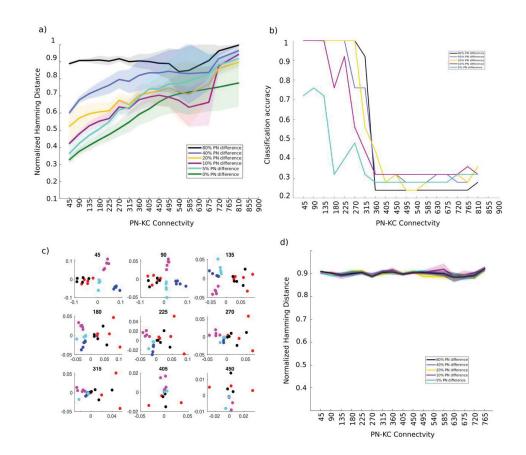






824 763 Figure 4

825 764



eNeuro Accepted Manuscript

