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Abstract  73 
Flexible functional interactions among brain regions mediate critical cognitive functions. Such interactions 74 
can be measured using functional magnetic resonance imaging (fMRI) data either with instantaneous (zero-75 
lag) or lag-based (time-lagged) functional connectivity. Because the fMRI hemodynamic response is slow, 76 
and sampled at a timescale (seconds) several orders of magnitude slower than the underlying neural 77 
dynamics (milliseconds), simulation studies have shown that lag-based fMRI functional connectivity, 78 
measured with approaches like Granger-Geweke causality (GC), provides spurious and unreliable 79 
estimates of underlying neural interactions. Experimental verification of this claim is challenging because 80 
neural ground truth connectivity is, often, unavailable concurrently with fMRI recordings.  Here we 81 
demonstrate that, despite these widely-held caveats, GC networks estimated from fMRI recordings contain 82 
useful information for classifying task specific cognitive states. We estimated instantaneous and lag-based 83 
GC functional connectivity networks using fMRI data from 1000 participants (Human Connectome Project 84 
database). A linear classifier, trained on either instantaneous or lag-based GC, reliably discriminated 85 
among seven different task and resting brain states, with over 80% cross-validation accuracy. With 86 
network simulations, we demonstrate that instantaneous and lag-based GC exploited interactions at 87 
fast and slow timescales, respectively, to achieve robust classification. With human fMRI data, 88 
instantaneous and lag-based GC identified complementary, task-core networks. Finally, variations in GC 89 
connectivity explained inter-individual variations in a variety of cognitive scores. Our findings show that 90 
instantaneous and lag-based methods reveal complementary aspects of functional connectivity in the brain, 91 
and suggest that slow, directed functional interactions, estimated with fMRI, may provide useful markers of 92 
behaviorally relevant cognitive states.  93 
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Significance statement  94 
Functional MRI is a leading, non-invasive technique for mapping functionally connected networks in the 95 
human brain. The fMRI hemodynamic response is slow, noisy and sampled far more slowly (seconds) than 96 
the timescale of neuronal spikes (milliseconds). fMRI data is, therefore, considered unsuitable for mapping 97 
directed, time-lagged functional connectivity among brain regions. Here, we apply machine learning to fMRI 98 
data from 1000 human participants and show that directed connectivity, estimated with Granger-Geweke 99 
Causality from fMRI data, accurately predicts task-specific cognitive states, and individual subjects’ 100 
behavioral scores. Moreover, directed connectivity robustly identifies network configurations that may be 101 
challenging to identify with conventional, correlation-based approaches. Directed functional connectivity, as 102 
measured with fMRI, may be relevant for a complete understanding of brain function.  103 



 

 6 

Introduction 104 
Mapping functional coupling among brain regions is, key to mapping brain function and for understanding 105 
how the brain produces behavior (Fox et al., 2005). Human fMRI studies have commonly investigated such 106 
functional coupling with correlation-based measures, including the Pearson correlation coefficient (Vincent 107 
et al., 2008; Buckner et al., 2009) and partial correlations between pairs of brain regions  (Marrelec et al., 108 
2006; Ryali et al., 2012). Correlation-based measures characterize “instantaneous” functional interactions 109 
among brain regions that occur at timescales faster than the sampling rate of the measurement (Barnett 110 
and Seth, 2017). In contrast, comparatively few studies, have characterized functional connectivity with lag-111 
based measures (Sridharan et al., 2008; Ryali et al., 2011). 112 
 113 
Measures of linear dependence and feedback, based on Granger-Geweke causality (GC; Geweke, 1982, 114 
1984) represent a powerful approach for estimating both instantaneous and lag-based functional 115 
connectivity. These measures are firmly grounded in information theory and statistical inferential 116 
frameworks (Geweke, 1982, 1984; Seth et al., 2015). GC measures have been widely applied to estimate 117 
functional connectivity in recordings of brain activity made with electroencephalography (EEG; Dhamala et 118 
al., 2008), magnetoencephalography (MEG; Ding and Wang, 2014) and electrocorticography (ECoG; 119 
Bastos et al., 2015). However, the application of GC measures to brain recordings made with functional 120 
magnetic resonance imaging (fMRI) has provoked significant controversy (Chang et al., 2008; Smith et al., 121 
2011; Friston et al., 2013; Wen et al., 2013). Because the hemodynamic response is produced and 122 
sampled at a timescale (seconds) several orders of magnitude slower than the underlying neural processes 123 
(milliseconds), previous studies have argued that lag-based measures, particularly lag-based GC, produce 124 
spurious and unreliable estimates of functional connectivity, when applied to fMRI data (fMRI-GC; Lin et al., 125 
2009; Smith et al., 2011; Seth et al., 2013; Solo et al., 2018). 126 
 127 
Three primary confounds have been identified with inferring connectivity with fMRI-GC. First, systematic 128 
differences in hemodynamic lags across regions could yield spurious directionality of GC connections 129 
(Chang et al., 2008; Friston, 2009; Smith et al., 2011). Second, in simulations, measurement noise added 130 
to the signal during fMRI acquisition significantly degrades GC functional connectivity estimates (Nolte et 131 
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al., 2008; Smith et al., 2012; Seth et al., 2013). Finally, downsampling recordings to the typical fMRI 132 
sampling rate (seconds), three orders of magnitude slower than the timescale of neural spiking 133 
(milliseconds), effectively eliminates all traces of functional connectivity inferred by GC (Seth et al., 2013).  134 
 135 
The controversy regarding the application of GC to fMRI data continues to date. On the one hand, claims 136 
regarding the efficacy of GC estimates are primarily based on simulations (Seth et al., 2015; Solo, 2016), 137 
and are only as valid as the underlying model of neural activity and hemodynamic responses. Because the 138 
precise mechanism by which neural responses generate hemodynamic responses is an active area of 139 
research, strong conclusions cannot be drawn based on fMRI simulations alone. On the other hand, 140 
establishing ground-truth validity for fMRI functional connectivity requires invasive neurophysiological 141 
recordings across many brain regions, concurrently during fMRI scans, a challenging enterprise. For 142 
example, David et al. (2008) addressed this technical challenge, and showed that, in a rodent model, fMRI-143 
GC functional connectivity estimates matched connectivity estimates from intracerebal EEG only when 144 
confounding hemodynamic effects were explicitly removed from the former.  145 
 146 
Here, we seek to examine the empirical relevance of fMRI-GC functional connectivity networks in human 147 
subjects for identifying task specific cognitive states, and for predicting behavior, by applying machine 148 
learning (Arbabshirani et al., 2017) to fMRI-GC networks. We estimated instantaneous and lag-based GC 149 
connectivity with fMRI data drawn from 1000 human subjects, recorded under seven different task 150 
conditions and in the resting state (Human Connectome Project database; Glasser et al., 2013). We trained 151 
a linear classifier, based on GC connectivity features, to discriminate among the different task and resting 152 
conditions, and assessed classifier accuracy with cross validation. Instantaneous and lag-based fMRI GC 153 
connectivity could decode task-specific cognitive states with superlative accuracies. Next, with simulations, 154 
we show that slow   interactions at the timescale of seconds emerge in networks with sparse, random 155 
connectivity (Ganguli et al., 2008), despite individual neurons operating at fast, millisecond timescales. We 156 
further show that such interactions can be recovered with GC sampled at slow fMRI timescales, providing a 157 
putative explanation for the success of GC with classifying task states (Sundaresan et al., 2017). Finally, 158 
we demonstrate that GC connectivity features can be used as predictors (Aiken et al., 2003; Liégeois et al., 159 
2019) to explain inter-individual variations in behavioral scores across a variety of cognitive tests. In 160 
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summary, fMRI-GC may be relevant for understanding slow, emergent and behaviorally relevant functional 161 
interactions in the human brain. 162 
 163 
Materials and Methods 164 
Ethics statement.   165 
The scanning protocol for the Human Connectome Project was approved by the Human Research 166 
Protection Office at Washington University at St. Louis' (IRB # 201204036). Only de-identified, publicly 167 
released data were used in this study. Secondary data analysis procedures were approved by the Institute 168 
Human Ethics Committee at Indian Institute of Science, Bangalore. 169 
 170 
Data and code availability statement. 171 
Data used in the study is available in the public domain at the Human Connectome Project database 172 
(https://db.humanconnectome.org/). Data sharing permissions can be found at the HCP website. The code 173 
required to replicate results described in the paper was developed at the Indian Institute of Science, 174 
Bangalore, India, and is freely available online at https://figshare.com/s/9d9131a6780fc8197cf1. 175 
 176 
fMRI data, parcellation and time-series extraction. 177 
We analyzed minimally preprocessed brain scans of 1000 subjects, drawn from the Human Connectome 178 
Project (HCP) database (S1200 release; age range: 22-35 years; 527 females); fMRI acquisition and 179 
preprocessing details are described elsewhere (Van Essen et al., 2012; Glasser et al., 2013). Briefly, in this 180 
preprocessing pipeline, subject’s data is firstly aligned to MNI space, volumes are segmented based on 181 
predefined subcortical parcels, and white matter and pial (cortical) surfaces are registered to the respective 182 
surface atlas. This is followed by gradient distortion correction, motion correction, image distortion 183 
correction, spline resampling, intensity normalization and brain masking. Next, cortical and subcortical grey 184 
matter voxels are mapped onto standard cortical surface vertices and subcortical parcels, respectively. 185 
Extended Data (ED) Figure 1-3 shows the identifiers of the subjects from whom data were analyzed. Data 186 
were analyzed from resting state and seven other task conditions (ED Figure 1-1): Emotion processing, 187 
Gambling, Language, Motor, Relational processing, Social cognition and Working memory; in most figures, 188 
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these tasks are referred to with their initial letters. fMRI scans for the relational task were not available for 189 
9/1000 subjects; therefore, we analyzed a total of 7991 scans across all tasks and subjects.  190 
 191 
We employed five different brain parcellations based one anatomical atlas and four functional atlases (ED 192 
Figure 1-4). For the tasks versus resting-state classification based on GC connectivity (first section of 193 
Results), all 5 parcellations were used. Based on the classification performance in this analysis, we picked 194 
the three parcellations with the highest accuracies (90 node and 14 network parcellations of Shirer et al., 195 
2012 and 96 network parcellation of Thomas Yeo et al., 2011) and these were used for the pairwise 196 
classification analysis of each task versus the other as well as the n-way task classification analyses. 197 
Analysis with averaging GC features across subjects (Fig. 1D) was performed with a 90 node parcellation 198 
(Shirer et al., 2012). Classification analyses with data purged of instantaneous correlations and unweighted 199 
digraph representations (second section of Results) were performed with the Shirer et al (2012) 14 network 200 
parcellations. Analyses involving identifying task-generic and task-discriminative networks, as well as 201 
behavioral score predictions, based on GC features (last section of the Results) were performed with the 202 
Shirer et al (2012) 14 network parcellation. Voxel time series were extracted using Matlab and SPM 8 203 
(Penny et al., 2007) , and regional and network time series were computed by averaging the time series 204 
across all voxels in the respective region or network.  205 
We employed parcellations with fewer, more coarse-grained regions, rather than fine-grained parcellations 206 
because Granger Causality estimates were more reliable when the number of regions was fewer than the 207 
number of timepoints. Both task and resting scans were of sufficient duration (~200-300 volumes) to permit 208 
robust GC estimation. Finally, we noticed that in some parcellations, there were overlapping voxels 209 
between some of the regions. To avoid mixing of signals, we assigned each overlapping voxel to the region 210 
to whose centroid it was closest, based on Euclidean distance. 211 
 212 
Estimating functional connectivity with GC. 213 
We modeled instantaneous and lag-based functional connectivity between brain regions using conditional 214 
Granger-Geweke Causality (Geweke, 1984). The linear relationship between two multivariate signals x and 215 
y conditioned on a third multivariate signal z can be measured as the sum of linear feedback from x to y 216 
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(Fx→y|z), linear feedback from y to x (Fy→x|z), and instantaneous linear feedback (Fx◦y|z) (Geweke, 1984; 217 
Roebroeck et al., 2005). To quantify these linear relationships, we model the future of each time series in 218 
terms of their past values, using multivariate autoregressive (MVAR) modeling (Extended Data 219 
Mathematical Note, Section S1, equation 1). MVAR model order was determined with the Akaike 220 
Information Criterion (AIC) for each subject, and was typically 1. The MVAR model fit was used to estimate 221 
both an instantaneous connectivity matrix using iGC (Fx◦y|z) and a lag-based connectivity matrix using 222 
dGC (Fx→y|z). Details are provided in ED Mathematical Note, Section S1. Because the minimum number 223 
of scans across datasets (176) exceeded the number of nodes in all parcellations used (e.g. 90 nodes in 224 
the Shirer et al, 2012 parcellation), the GC estimation was well-posed.  225 
Briefly, Fx→y|z is a measure of the improvement in the ability to predict the future values of y given the 226 
past values of x, over and above what can be predicted from the past values of z and y, itself (and vice 227 
versa for Fy→x|z). Fx◦y|z, on the other hand, measures the instantaneous influence between x and y 228 
conditioned on z (see ED Mathematical Note, Section S1). We refer to Fx◦y|z, as instantaneous GC (iGC), 229 
and Fx→y|z and Fy→x|z as lag-based GC or directed GC (dGC), with the direction of the influence (x to y 230 
or vice versa) being indicated by the arrow. The “full” measure of linear dependence and feedback Fx,y|z is 231 
given by: Fx,y|z = Fx→y|z + Fy→x|z + Fx◦y|z. Fx,y|z measures the complete conditional linear dependence 232 
between two time series. If, at a given instant, no aspect of one time series can be explained by a linear 233 
model containing all the values (past and present) of the other, Fx,y|z will evaluate to zero (Roebroeck et 234 
al., 2005). 235 
 236 
Classification with linear SVM based on GC connectivity. 237 
The connection strengths of the estimated GC functional connectivity matrices were used as feature 238 
vectors with a linear classifier based on SVM for high dimensional predictor data. For a parcellation with n 239 
ROIs, the number of features for iGC-based classification was n(n-1)/2 (upper triangular portion of the 240 
symmetric n n iGC matrix) and for dGC-based classification it was n2−n (all entries of the n n dGC matrix, 241 
excluding self-connections on the main diagonal).Based on these functional connectivity features, we 242 
asked if we could reliably distinguish each task condition from resting state (e.g. language versus resting) 243 
or each task condition from the other 244 
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 245 
For pairwise classification of resting state scans versus each task we used Matlab’s fitclinear function, 246 
optimizing hyperparameters using a 5-fold approach: by estimating hyperparameters with five sets of 200 247 
subjects in turn, and measuring classification accuracies with the remaining 800 subjects. Classification 248 
performance was assessed with leave-one-out and 10-fold cross-validation. We also assessed the 249 
significance of the classification accuracy with permutation testing (see Methods). In simulations, we 250 
observed that the magnitude of GC estimates varied based on the number of timepoints used in the 251 
estimation. To prevent this difference in number of timepoints from biasing classification performance, each 252 
scan was truncated to a common minimum number of time samples across the respective scans being 253 
classified (task, resting) before estimating GC. For each subject, GC connectivity was estimated 254 
independently for the two scan runs (left-to-right and right-to-left phase encoding runs), and averaged 255 
across the runs. Hyperparameters optimized included the regularization parameter, regularization method 256 
(ridge/lasso) and the learner (linear regression model, svm/logistic) using the 257 
OptimizeHyperparameters option to the fitclinear function. Hyperparameter optimization was 258 
performed only for task vs. rest classifications, but not for subject feature averaging, task vs. task, or N-way 259 
classification analyses. 260 
 261 
For pairwise classification of each task versus the other, default hyperparameters were used in the 262 
fitclinear function and classification performance was assessed with leave-one-out cross-validation. 263 
For n-way classification, we used MATLAB’s fitcecoc function, which is based on error-correcting output 264 
codes, and fits multiclass models for SVMs. Briefly, the function implemented a one-vs-all coding design, 265 
for which seven (number of classes in multiclass classification) binary learners were trained. For each 266 
binary learner, one class was assigned a positive label and the rest were assigned negative labels. This 267 
design exhausts all combinations of positive class assignments. Classification performance in n-way 268 
classification was assessed with leave-one-out cross-validation. For each classification analysis mentioned 269 
above, task scans were truncated to the common minimum number of time samples across each set of 270 
scans, before estimating GC. 271 
 272 
Classification based on GC connectivity across sub-tasks and with sub-sampled data.  273 
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Tasks in the HCP data were run as a block design, alternating between various conditions (sub-tasks). We 274 
tested whether GC connectivity would be able to classify among sub-tasks within each task (ED Figure 1-275 
2). fMRI time series corresponding to each sub task was obtained by concatenating blocks of fMRI task 276 
time series pertaining to the respective sub task; the temporal order across blocks was preserved while 277 
concatenating the data. We also ensured that data at the conjunction of two successive blocks, which 278 
represented non-contiguous time points, were not used for GC estimation. The two sub tasks to be 279 
classified were then truncated to have same number of time points. GC estimation and pair-wise 280 
classification across sub-tasks was performed with the procedure described in the previous section. The 281 
Shirer et al (2012) 14-network parcellation was used for these analyses. For the motor task, time series for 282 
the left and right finger movement blocks were combined into a “hand” movement sub-task, and left and 283 
right toe movement blocks were combined into a “foot” movement sub-task.  284 
 285 
We also tested whether GC on fMRI data sampled at slower rates would suffice to classify among task and 286 
resting states. We obtained time series downsampled at 2x the original sampling interval by removing data 287 
at even numbered sample points, and retaining data at odd numbered sample points (k=1, 3, 5…). The 288 
even-sample point data were appended the end of odd-sample data series, thereby retaining the overall 289 
number of data points in the original time series. Again, we ensured that data at the conjunction of the odd- 290 
and even-sampled data series (last odd-sampled point and first even sampled point), which represented 291 
non-contiguous data points, were not used for GC estimation. Similarly, we obtained time series 292 
downsampled at 3x the original sampling interval by removing every third data point, starting with the 293 
second or third data point, and concatenating these timeseries to retain the overall number of data points in 294 
the original timeseries. As before, GC estimation and pair-wise classification was performed with the 295 
procedure described in the previous section 296 
 297 
Permutation testing of classifier accuracies. 298 
We performed permutation tests for evaluating the statistical significance of classifier performance, using 299 
the method outlined in (Ojala and Garriga, 2010). The test involved permuting task labels independently for 300 
each subject and computing a null distribution of 10-fold cross-validation accuracy. We employed 1000 301 
surrogates and assessed significance of each empirically estimated 10-fold cross-validation accuracy 302 
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values for dGC and iGC, based on the proportion of samples in the null distribution which were greater than 303 
the cross-validation accuracy estimated from the data. We conducted these analyses for the tasks versus 304 
resting state classifications, n-way task classification, classification analyses after purging instantaneous 305 
correlations and those based on digraph features, separately for the two metrics (dGC and iGC).  306 
 307 
Testing for data stationarity and goodness of MVAR model fit.  308 
Computing GC based on VAR modeling assumes that the timeseries represent a stationary process. Four 309 
different tests were performed to test whether the MVAR model provided a valid and adequate fit to the 310 
data (ED Figure 1-7). We performed these tests for parcellated time-series using scripts provided in the 311 
Multivariate Granger Causality (MVGC) toolbox (Barnett and Seth, 2014). First, we checked for the stability 312 
of the MVAR model fit by computing logarithm of the spectral radius using the var_specrad() function. A 313 
negative value was taken to indicate a stable fit. Second, we assessed consistency of the model fit, which 314 
quantifies what proportion of the correlation structure in data is accounted for by the VAR model, using the 315 
consistency() function. We adopted a threshold of 80% (or above) for both task and resting timeseries to 316 
consider the data to have passed the test for consistency (Barnett and Seth, 2014). Third, we evaluated the 317 
whiteness of residuals based on the Durbin-Watson test for absence of serial correlation of VAR residuals, 318 
using the whiteness() function. Values of the Durbin-Watson statistic less than 1 or greater than 3 signify a 319 
strong positive or negative correlation, respectively among the residuals (Barnett and Seth, 2014). Subjects 320 
for whom the Durbin-Watson statistic lay between 1 and 3 for more than 90% of the regional timeseries, for 321 
both task and resting state data, were considered to have passed the test. Fourth, we checked for 322 
stationarity based on the augmented Dicky-Fuller unit-root test (ADF), using the mvgc_adf() function. As in 323 
the previous case, subjects for whom the ADF test statistic was less than its critical value for more than 324 
90% of the regional timeseries, for both task and resting state data, were considered to have passed the 325 
test. 326 
 327 
Control for motion artifacts. 328 
We checked whether systematic differences in motion artifacts could contribute to the superlative 329 
classification accuracies observed with GC. For this, we calculated Frame-wise Displacement (FD; Power 330 
et al., 2012) as the sum of temporal derivatives of translational and rotational displacement along the three 331 
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(x,y,z) axes in mm, with the estimated motion parameters provided by HCP. Frames with FD>0.5mm were 332 
considered “misaligned” and were discarded (“scrubbed”) while estimating GC values. Because dGC is 333 
estimated based on lagged correlations, we also discarded one frame before and after every misaligned 334 
frame (AR model order was typically 1 for these data). We then repeated the SVM-based two-way 335 
classification of resting state from the seven different task states, with GC features estimated on the 336 
“motion scrubbed” data; we also repeated n-way classification among the 7 tasks. Comparison of 337 
classification (cross-validated) accuracies with and without motion scrubbing, across all 1000 subjects, is 338 
shown in ED Figure 1-6C. 339 
 340 
Classification based on BOLD series 341 
We tested how well the BOLD signal itself would classify among tasks, based on the mean and standard 342 
deviation of fMRI time series of each region, based on the Shirer et al parcellation (2012). Regional time 343 
series were truncated to common minimum number of timepoints for pair of task and resting state scans. 344 
LR and RL phase encoded data time series were concatenated, and mean and standard deviation were 345 
computed, for each of the 14 ROIs, providing 28 features for classification. Similarly, for n-way 346 
classification, time series of all tasks were truncated to the common minimum available number of 347 
timepoints across tasks, before computing the mean and standard deviation. Based on these 28 features, 348 
we sought to classify, as before, resting state from each task (two-way classification), and also among 349 
tasks (n-way classification). 350 
 351 
Functional connectivity estimation and classification with partial correlations. 352 
We compared the performance of classification based on GC measures with that based on partial 353 
correlations (PC). Partial correlations were computed based on the inverse of the covariance matrix as 354 
outlined previously (Marrelec et al., 2006; Ryali et al., 2012). Like iGC, the PC connectivity matrix is 355 
undirected and symmetric. Therefore, only the upper triangular portion of the matrix, including (n*(n−1)/2) 356 
PC weights, was used as features in the classification analyses. Classification and cross-validation 357 
analyses followed the procedures described in the Methods section on “Classification with linear support 358 
vector machines based on GC connectivity”. 359 
 360 
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PC connectivity performed consistently better than GC connectivity for classifying task from resting state 361 
(Fig. 2A). We propose the following analytical explanation for this observation: PC, an estimator based on 362 
instantaneous covariance, is less susceptible to noise than GC, which is based on lagged covariance. This 363 
is due to the fact that the estimation of lagged-covariance is susceptible to errors from noise at multiple 364 
time-points. For illustration, consider a timeseries generated by a VAR(1) model:  x(t) = A x(t − 1) + e(t).  365 
The lagged (lag-1) covariance matrix (Σ1) is estimated from the data as:   366 
E [x(t) x(t − 1)T] = E [(Ax(t − 1) + e(t)) x(t − 1)T]= A E[x(t − 1) x(t − 1)T] + E [e(t) x(t − 1)T] 367 
Thus, when estimating the lagged covariance, the variance of the interaction term E [e(t) x(t − 1)T] (second 368 
term in the right hand side) contributes to the variance of Σ1 in addition to the variance in computing the 369 
instantaneous covariance E[x(t − 1) x(t − 1)T] (first term on the right hand side).  370 
 371 
Classification based on GC connectivity in zero-lag correlation purged data. 372 
To test the complementarity of information conveyed by GC functional connectivity versus functional 373 
connectivity based on instantaneous correlations we decorrelated the regional time series data to purge 374 
them of instantaneous correlations. We adopted two approaches for this purpose: i) zero-phase component 375 
analysis (ZCA) and ii) generalized eigenvalue decomposition (GEV).  376 
 377 
i) Zero-phase component analysis (ZCA). Consider demeaned t r data matrix X of regional timeseries with t 378 
timepoints and r regions, with covariance matrix C. Decorrelating the data, to remove correlations among 379 
the columns of X, is achieved with a whitening transformation. A common whitening transformation is 380 
based on principal components analysis (PCA): Y = WPCAX, with WPCA = D E⊤where D is a diagonal 381 
matrix, with the eigenvalues of C on its diagonals, and the columns of E contain the eigenvectors of C. 382 
While the PCA transformation effectively decorrelates regional timeseries, there is no way to ensure one-to-383 
one correspondence of the whitened dimensions across subjects, rendering subsequent classification 384 
analysis challenging. Consequently, here we chose a different whitening transformation based on zero-385 
phase component analysis (ZCA), also known as the Mahalanobis transformation. Based on this 386 
transformation, whitening is achieved as: Y = WZCAX, with WZCA = ED E⊤ = C . A particular advantage 387 
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of the ZCA transformation is that it yields whitened data that is as close as possible to the original data, in a 388 
least-squares sense (Kessy et al., 2018). Therefore, each subject’s data is projected on to a set of 389 
dimensions are most closely aligned with the underlying regional timeseries dimensions. Because the 390 
regions exhibit spatial correspondence across subjects (due to fMRI spatial normalization), the ZCA 391 
dimensions possess a natural, one-to-one correspondence across subjects, permitting subsequent 392 
classification. Before classification analysis ZCA dimensions were identified for each subject, separately for 393 
task and resting datasets. Regional time series for task and resting data were independently decorrelated 394 
by projecting onto their respective ZCA dimensions. GC (and PC) functional connectivity was estimated 395 
based on the these decorrelated timeseries, followed by classification analysis, as described previously 396 
(Methods section on “Classification with linear support vector machines based on GC connectivity”). As 397 
proof that the ZCA transformation was working effectively, classification accuracy based on PC (an 398 
instantaneous correlation measure) computed from ZCA components was at chance across all tasks (Fig. 399 
2C top).  400 
 401 
ii) Generalized Eigenvalue Decomposition (GEV). Although ZCA effectively purged correlations from the 402 
data, for the subsequent classification analyses task and resting state data were projected onto different, 403 
respective ZCA dimensions. Thus, the above-chance task versus resting state classification accuracy with 404 
GC features derived from ZCA components (Fig. 2C top) could perhaps be explained by, for example, 405 
systematic differences with how reliably ZCA dimensions were estimated across task and resting-state 406 
scans. We therefore sought an approach that could project both task and resting data into the same 407 
dimension while simultaneously decorrelating both. Such joint decorrelation may be achieved by projecting 408 
the data on to the generalized eigenvectors of the covariance matrices of the two datasets (Karampatziakis 409 
and Mineiro, 2014). Let CT and CR denote the covariance matrices of the task and resting datasets 410 
respectively. The generalized eigenvectors of these two symmetric matrices are given by the columns of G 411 
= ET DT

-1/2 ER, where, as before DT is a diagonal matrix, with the eigenvalues of CT on its diagonals, and the 412 
columns of ER and ET contain the eigenvectors of CR and CT respectively. It can be readily verified that 413 
GTCTG and GT CR G are both diagonal matrices. Therefore, G is a matrix that jointly diagonalizes both CT 414 
and CR and projecting either task or resting state data into the columns of G decorrelates the respective 415 
timeseries. So, for these analyses, the regional time series for the task and resting state conditions for each 416 
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subject were jointly decorrelated by projecting them onto a single space spanned the generalized 417 
eigenvectors. This was followed by classification analysis with GC features obtained from the decorrelated 418 
time series. As before, we confirmed the effectiveness of the decorrelation by computing classification 419 
accuracy based on PC from GEV components, which was at chance across all tasks (Fig. 2C bottom). 420 
 421 
Classification based on unweighted digraph representations of GC connectivity. 422 
An unweighted directed graph (digraph) network representation shows the dominant direction (but not 423 
magnitude) of functional connectivity among brain regions. Obtaining significant directed connections with 424 
dGC is challenging due to number of multiple comparisons required for testing n2-n connections. To identify 425 
significant directed connections, overcoming the multiple comparisons problem, we first subtracted the dGC 426 
connectivity matrix from its transpose and then applied the following two-stage procedure. In the first stage, 427 
the 1000 subjects were divided into five folds. For each two-way task versus resting state classification, 428 
recursive feature elimination (RFE, described in a later section titled “GC feature selection based on 429 
Recursive Feature Elimination”) was performed based on dGC features of subjects from one fold (i.e. with 430 
200 subjects). A minimal set of connection features identified by RFE, and their corresponding symmetric 431 
counterparts were then employed in the subsequent analyses; we term these connections K; the cardinality 432 
of K (the number of significant connections) was typically in the range of 2 - 86 (2.5th - 97.5th percentile). In 433 
the second stage, we identified statistically significant connections among these K features alone. For each 434 
of the subjects in the four remaining folds (i.e. 800 subjects), a null distribution for the dGC values of the 435 
features in K was obtained by estimating dGC following phase-scrambling the time series (Ryali et al., 436 
2011). Next, we identified significant connections based on dGC values that occurred at the tail of the null 437 
distribution; the threshold for significant connections was determined based on a p-value of 0.05 with a 438 
Bonferroni correction for multiple comparisons. Classification performance based on digraph features was 439 
assessed with leave-one-out cross-validation. 440 
 441 
GC connectivity in simulated fMRI time series. 442 
To test the ability of GC measures to reliably recover functional interactions at different timescales, we 443 
simulated fMRI time series for model networks. Simulated fMRI time series were generated using a two-444 
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stage model. The first stage involved modeling latent neural dynamics with a stochastic, linear vector 445 
differential equation given by:  446 

dr/dt = -r + Wr + ε 447 
where r is the multivariate neural state variable representing the state of each neuron (or node) in the 448 
network (an N 1 vector, with N being the number of neurons), dr/dt is its temporal derivative, W is the 449 
neural (“ground truth”) connectivity matrix (dimension N N),  is the time constant of each neuron (or node) 450 
and ε is i.i.d Gaussian noise (N(0, )), with =IN (N N identity matrix). Although this model does not 451 
explicitly incorporate signal propagation delays, such vector Ornstein-Uhlenbeck models rank, arguably, 452 
among the most common models employed for simulating neural and fMRI time series, in many previous 453 
studies (Smith et al., 2011; Seth et al., 2013; Barnett and Seth, 2017).The multivariate time series r(t), 454 
sampled at discrete time points r(k ) with a sampling rate of , were generated based on the discrete time 455 
(1-lag) connectivity matrix A( ) and a residual noise intensity ( ). Here: 456 

A( ) = e
A

 ;        ( ) = (1/ ) ( (0) - e
A

(0) e
A’

) 457 
where A = (1/ ) (W - IN), e

A
 denotes the matrix exponential, A’ is the transpose of A, and (0) is the zero 458 

lag autocovariance which satisfies the continuous time Lyapunov equation A (0)+ (0)A’+ =0 (Seth et al., 459 
2013). In the second stage, the latent neural dynamics were convolved with the hemodynamic response 460 
function (HRF) to obtain the simulated fMRI time series: y = H x, where H is the canonical hemodynamic 461 
response function (hrf; simulated with spm_hrf in SPM8),  is the convolution operation and y is the 462 
simulated fMRI time series. Finally, following convolution with the hrf, the data were downsampled to 750 463 
ms, to mimic the repeat time (TR) of the HCP fMRI scans used in this study. The same model was used for 464 
the different simulations used in the manuscript (third section of the Results). The parameters for the 2-465 
node simulations, and for the 9-node (100 neurons per node) simulations are described in ED Figure 3-1.  466 
 467 
For the 2-node simulations (Fig. 3A), iGC and dGC values were estimated by simulating the network for 468 
200 timepoints, averaged across 25 repetitions. The 9-node simulations (Fig. 3B-C) were performed with a 469 
900 neuron network, with 100 neurons per node. Each node had sparse, random excitatory/inhibitory 470 
connectivity among its neurons (parameters in ED Figure 3-1), whereas only 5% of neurons in each node 471 
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were involved in inter-node connections, to mimic sparse, long-range connectivity in the neocortex 472 
(Knösche and Tittgemeyer, 2011). The network was simulated for 200 timepoints, and timeseries from all 473 
(100) neurons in each node were averaged to generate 9 node timeseries. iGC and dGC values were 474 
estimated from the node timeseries and averaged across 10 independent repetitions. Significance was 475 
assessed with  a bootstrap approach that involved generating 1000 surrogates by phase scrambling the 476 
node timeseries to yield a null distribution of GC values (Ryali et al., 2011), followed by a Benjamini-477 
Hochberg correction for multiple comparisons.  478 
 479 
Simulations comparing PC and iGC connectivity (ED Figure 3-2 B-C) were performed as follows: We 480 
simulated a 7-node network with a 1-lag VAR model of the form: Xk = A Xk−1 + ɛk. where Xk is the state of 481 
the discrete time process at discrete timestep ‘k’, A is the connectivity matrix, and ɛ is Gaussian noise with 482 
covariance matrix d. A was chosen to be a random matrix with spectral radius less than 1 to ensure 483 
stability.  was chosen such that the covariance between every pair of residuals was zero (independent 484 
residuals) except for the first two residuals. The correlation between these residuals, ɛ1 and ɛ2, was 485 
parametrically varied between -1.0 and 1.0 to systematically vary the strength of iGC connectivity. Note 486 
that, under this model, iGC between X1 and X2 vanishes only if and only if ɛ1 and ɛ2 are uncorrelated 487 
(Geweke, 1984). 488 
 489 
GC feature selection based on Recursive Feature Elimination (RFE). 490 
We performed features selection for analyses reported in Fig. 2D, 4B,C and ED Figure 4-2B, ED Figure 1-491 
4E, based on Recursive Feature Elimination (RFE). RFE identifies a minimal set of features, which provide 492 
maximal cross-validation accuracy (Guyon and Elisseeff, 2003). Here, we implemented a two-level 493 
algorithm, described previously (Gel’fand and Yaglom, 1959; Chang et al., 2008). First, the data were 494 
divided into N1 (here, 10) folds. Of these, N1−1 folds were used as “training” data, and one fold was 495 
reserved as “test” data for quantifying the generalization performance of the classifier. Training data were 496 
pooled and further divided into N2 (here, 5) folds. The SVM classifier was then trained on N2−1 folds 497 
(leaving out one fold) and discriminative weights were obtained. The above procedure was repeated N2 498 
times by leaving out each fold, in turn. Average weights were then computed by averaging the absolute 499 
values of the discriminative weights across the N2 runs. Next, 10% of the features (connections) 500 
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contributing the lowest average weights were discarded, and the classifier was trained again with only the 501 
retained set of features. This procedure of feature selection and training was repeated until no more 502 
features remained. At this stage, the generalization performance for every set of retained features (each 503 
“RFE level”) was assessed using the left out “test” data. The entire procedure was repeated N1 times by 504 
leaving out each fold of the original data, in turn, as test data. Final generalization performances and 505 
discriminative weights of each RFE level were obtained as the average over N1 folds. We selected the set 506 
of connections at the RFE level at which the generalization performance reached an “elbow”: a minimal set 507 
of connections at which generalization performance dipped dramatically below its maximal level. To identify 508 
this elbow (e), we used a custom elbow fitting procedure, requiring a piecewise linear fit to the RFE curve, 509 
based on two lines, one for "x>e" and another for "x<=e", with the first line required to have a higher slope 510 
than the second. The first point in each RFE curve was excluded from the higher slope line fit (Fig. 4C, 4E, 511 
ED Figure 4-2B). RFE was typically repeated 5 times before determining peak accuracy and corresponding 512 
features. 513 
 514 
Simulating hemodynamic lag variations across nodes. 515 
We simulated systematic differences in hemodynamic lags across nodes by varying the onset parameter of 516 
the spm_hrf function (SPM8; Penny et al., 2007). For network configurations A and B described in Figure 517 
4A, we simulated 4 scenarios: a) same mean HRF onset (μL= 3s) across nodes; b) source node HRF onset 518 
lagging the destination node by 1s (μL-src > μL-dst); c) source node HRF onset leading destination node by 1s 519 
(μL-src > μL-dst); and d) mixed latencies of lead and lag across source and destination nodes (see next). GC 520 
was estimated for 100 simulated participants, by sampling onset latencies for each of the 6 nodes (A-F) 521 
from normal distributions (truncated to have only positive latency values), over a range of different standard 522 
deviations (σL=0-1s, in steps of 0.2s). Onset latencies were sampled independently across participants, but 523 
were sampled such that the relative latency between each pair of source and destination nodes, across 524 
corresponding network configurations, remained the same for each participant. For example, if the onset 525 
latency difference between nodes A and B was 0.7s (μL-B−μL-A=0.7s) for a particular subject, the same 526 
difference in onset latency was also maintained between nodes B and C (μL-C−μL-B=0.7s). For simulations 527 
with mixed latencies (case d), 50% of simulated participants had onset latencies drawn from distributions 528 
with the source node lagging the destination node (case b) and the remaining 50% with the source node 529 
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leading the destination node (case c).  GC values were averaged over 5 runs for each simulated 530 
participant. Finally, we performed RFE to identify key connections that distinguished the two network 531 
configurations (same procedure as in Fig. 4B). Connections weights of the most discriminative connections 532 
following RFE are shown in ED Figure 3-2E (for σL=0.4s). Difference of dGC connections strengths as well 533 
as iGC connection strengths, for various values of σL, are shown in ED Figure 3-2D. 534 
 535 
Identifying “task-generic” and “task-discriminative” GC connections. 536 
To identify a minimal set of connections that occurred consistently across tasks (“task-generic” 537 
connections), we adopted the following approach. We performed RFE analysis for task versus resting state 538 
classification for each of the six tasks (all tasks except motor); we expected each of these tasks to recruit 539 
common cognitive control mechanisms. We then performed a binomial test to identify connections that 540 
were consistently activated across tasks. Briefly, the presence or absence of a connection in the set of RFE 541 
features for a given task versus resting state classification was considered as a Bernoulli trial, with 542 
probability of success (its presence) p being the mean number of RFE features identified across all six 543 
classifications. The number of trials n was the number of tasks versus resting state classifications (here 544 
n=6). The probability of a randomly picked connection being present in more than k such RFE sets is given 545 
by the cumulative distribution function for the binomial distribution F(k; n, p). Significant connections were 546 
identified as those that occurred in k or more tasks, with threshold at the p=0.05 level.  547 
 548 
To identify a minimal set of connections that maximally differed across tasks (“task-discriminative” 549 
connections), we used RFE with an n-way classifier, to classify among all six tasks (again, except the motor 550 
task). The n-way classifier is based on training n (here, 6) one-vs-all binary learners. At the second level of 551 
the RFE procedure described above, average weights were computed for each of these n binary learners 552 
by averaging the absolute values of the discriminative weights across the N2 runs. Next, a set of features 553 
obtained by taking union of 1% of the features (connections) contributing the lowest average weights in 554 
each learner was discarded, and the classifier was trained again with only the retained set of features. 555 
 556 
While quantifying the overlap between task-generic and task-discriminating connections identified 557 
separately for dGC, iGC and PC, we converted the dGC matrix to a lower triangular matrix by reflecting all 558 
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connections about the main diagonal. The degree of overlap between PC and GC connections was 559 
quantified as the number of overlapping connections as proportion of the total number of connections 560 
identified by PC. We then computed a null distribution of the degree of overlap by randomly permuting the 561 
connection identities within each matrix, while preserving the overall number of connections in each matrix, 562 
and generating 1000 surrogate samples. The significance of the overlap of task-generic or task-563 
discriminating connections between each pair of metrics (PC-dGC or PC-iGC) was quantified as the 564 
fraction of overlapping connections in the data that exceeded this null distribution. 565 
 566 
Predicting behavioral scores based on GC connectivity 567 
We asked whether inter-individual differences in GC connectivity would be relevant for predicting inter-568 
individual differences in behavioral scores. HCP provides a well-validated battery of behavioral scores 569 
assessed with a wide range of cognitive tasks. The task battery is based on the NIH Toolbox for 570 
Assessment of Neurological and Behavioral function (Gershon et al., 2013), developed to create a uniform 571 
set of measures for rapid data collection in large cohorts. The toolbox includes assessments of cognitive, 572 
emotional, motor and sensory processing scores in healthy individuals. We pre-selected, based on domain 573 
knowledge, a specific subset of 51 scores for these analyses, using age-adjusted scores, wherever 574 
available (listed in ED Figure 5-1).  Next, we sought to predict subjects’ behavioral scores based on GC 575 
connectivity with an established leave-one-out approach (Tavor et al., 2016). Briefly, we used linear 576 
regression to predict behavioral scores using, as features, GC estimates of functional connectivity, 577 
separately for iGC (91 features or connections) and dGC (182 features). The leave-one-out analysis was 578 
performed such that the support vector regressor was fit on all but one subject and the learned beta 579 
weights were used to obtain predictions of the left-out subject’s behavioral score, using that subject’s own 580 
GC connectivity weights. Predicted scores were correlated with the actual scores using robust correlations 581 
(“percentage-bend” correlations; Wilcox, 1994).  582 
 583 
Next, we asked if GC connectivity could identify an individual based on a composite marker of her/his 584 
behavioral scores. Because 40 subjects did not have a full complement of behavioral scores, data from the 585 
remaining 960 subjects was included in this analysis. The 51 behavioral scores were, each, z-scored 586 
across subjects and formatted into a “composite behavioral score” vector. This vector served as an 587 
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individual specific composite marker of behavioral scores, as revealed the weak off-diagonal values in the 588 
covariance matrix of this vector across subjects (Fig. 5D top). dGC and iGC features of individual tasks, as 589 
well as combination of tasks (Relational and Working memory), were used to then predict the composite 590 
score marker for individual subjects, using the same leave-one-out procedure as described above. The 591 
observed and predicted set of composite scores was correlated across subjects. The distribution of 592 
observed versus predicted correlation values for each subject (values on main diagonal; Fig. 5D bottom 593 
yellow) were compared against between-subject correlation values (off-diagonal values; Fig. 5D bottom 594 
grey) using a Kolmogorov-Smirnov test.  595 
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Results 596 
GC estimated from slowly sampled fMRI data suffices to distinguish task and resting states 597 
We asked if instantaneous GC (iGC) and directed GC (dGC) (ED Mathematical Note Section S1) 598 
connectivity would flexibly reconfigure with task demand, by testing if GC connectivity sufficed to accurately 599 
classify among seven different task states or the resting state (ED Figure 1-1; Methods; (Geweke, 1982, 600 
1984)). Data were obtained from 1000 participants from the Human Connectome Project (HCP) database 601 
(Van Essen et al., 2012). We used connection weights among brain regions in each network (iGC or dGC) 602 
as feature vectors in a linear classifier based on Support Vector Machines (SVM) for high dimensional 603 
predictor data. Accuracies for classifying resting state from a working memory task (WM task) are 604 
described first; accuracies for other tasks are presented subsequently.  605 
 606 
Both iGC and dGC connectivity were able to distinguish the working memory task from resting state 607 
significantly above chance (Fig. 1B; p<0.001, permutation test). Maximum accuracy (median, [95% CI]) was 608 
97.3% [96.3 - 98.0%] with iGC and 92.0% [90.5 - 93.2%] with dGC (ED Figure 1-5B Yeo Parcellation; 609 
Statistical Tablea,b), iGC: precision= 97.2, recall= 97.4; dGC: precision= 90.9, recall= 93.2). k-fold (k=10) 610 
cross-validation accuracy was comparable (iGC: 97.1% [96.2 - 97.9%], dGC: 91.7% [90.3 - 93.0%]). These 611 
numbers correspond to maximum cross validation accuracy across all five parcellations tested (ED Figure 612 
1-4; ED Figure 1-5A); accuracies with each parcellation are shown in the Extended Data (ED Figure 1-613 
5B).Non-linear classifiers, such as SVMs based on radial basis function kernels produced similar results, 614 
with comparably above chance classification accuracy for both iGC and dGC connectivity (ED Figure 1-615 
5C). 616 
 617 
We repeated these analyses by classifying the six other tasks (ED Figure 1-1) versus resting state. iGC 618 
and dGC connectivity could accurately classify each task from resting state significantly above chance. For 619 
iGC, maximum classification accuracies ranged from 90.1%, for emotion task vs. resting state 620 
classification, to 97.1%, for language task vs. resting state classification. Similarly, for dGC, accuracies 621 
ranged from 78.1%, for emotion task vs. resting state classification, to 92.8%, for language task vs. resting 622 
state classification (Fig. 1B; Statistical Tablec). In general, classification accuracy increased with more scan 623 
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timepoints for each task versus resting state classification (Fig. 1C), consistent with GC being an 624 
information theoretic measure; we confirmed this result with simulations also (ED Figure 1-5D).  625 
 626 
In these analyses, classification accuracies based on dGC were systematically lower than those based on 627 
iGC. We asked if dGC accuracies were poorer due to noise corrupting the fit of the autoregressive model, 628 
and if a more consistent estimate could be obtained by averaging dGC connectivity features, to remove 629 
uncorrelated noise, across subjects. We addressed this question by partitioning the data into two groups -- 630 
a training (T) group and a test (S) groups – with 500 subjects each. We trained the classifier on group T 631 
and tested the classifier prediction by averaging GC matrices across several folds of S, each fold 632 
containing a few (m=2, 4, 5, 10, 25 or 50) subjects; the procedure was repeated by exchanging training and 633 
test datasets (see Methods). For the vast majority of tasks (6/7), dGC’s classification accuracy was more 634 
than 95% with as few as m=5 subjects within each fold of the test set (Fig. 1D). These results suggest that 635 
averaging dGC matrices across a few subjects, yielded reliable estimates of dGC connectivity.   636 
 637 
We considered other factors that, in addition to intrinsic connectivity differences, could have produced 638 
these superior classification accuracies. First,GC-based accuracies for classifying task versus resting state 639 
scans might arise from differences in brain regions activated during each of these scans. In addition to 640 
task-relevant sensory input, overt motor responses always occurred during task scans but were absent 641 
during resting state scans (Barch et al., 2013; Glasser et al., 2013). Could GC features discriminate among 642 
more subtle connectivity variations across/within tasks? Second, scan data from the HCP database was 643 
sampled at a TR (repetition time) of 720 ms, considerably faster than the TR for conventional fMRI scans. 644 
Would GC accuracies degrade if the data were sampled at much slower sampling rate (~2000 ms), in line 645 
with conventional fMRI TR?  646 
 647 
We addressed the first question in two stages. First, we asked if GC connectivity features would be able to 648 
classify which of the seven tasks each subject was performing in the scanner. First, we performed a 649 
pairwise classification of each task from the other. Maximum classification accuracies for iGC (dGC) ranged 650 
from 87% (67%) for the emotion vs. gambling task classification to 98% (91%) for the language vs. social 651 
task classification. Again, the number of timepoints for each task proved to be a strong indicator of 652 
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classification accuracies (Fig. 1E): average inter-task classification accuracies were highest for the 653 
language task (iGC: 97%, dGC:88%, n=316 timepoints) and lowest for the emotion task (iGC: 91%, dGC: 654 
77%, n=176 timepoints).Next, we performed an n-way classification analysis across all 7 tasks, again using 655 
linear SVM (Methods). Accuracies were significantly above chance (14.3% for 1-in-7 classification) for 656 
classifying among the seven tasks (Fig. 1F; maximum accuracy, iGC: 74.4% [73.3%-75.4%]; dGC: 47.6% 657 
[46.4%-48.7%]; p<0.001, permutation test; Statistical Tabled,e,f). These results indicate that functional 658 
connectivity was consistently estimated with GC, and reliably different across tasks. 659 
 660 
Second, each of the different tasks in the HCP database comprised of blocks of contiguous trials, each 661 
corresponding to one of (at least) two different sub-tasks (Barch et al., 2013; ED Figure 1-2). For example, 662 
the motor task comprised of blocks of movements of the right or left hand interleaved with blocks of trials 663 
involving movement of the right or left foot. Similarly, the working memory task comprised of interleaved 664 
blocks of 0-back and 2-back tasks. We asked, therefore, if GC connectivity could distinguish among subtler 665 
variations in brain states across sub-tasks within each task. We sought to classify across two sub-tasks for 666 
each of six tasks (ED Figure 1-2). In all cases, except one, both iGC and dGC connectivity discriminated 667 
between each pair of sub-tasks with higher than chance accuracies (Fig. 1G; maximum accuracy, iGC: 668 
89.2% [87.6% - 90.7%]; dGC: 80.1% [78.9% - 82.9%]; p<0.05 permutation test; Statistical Tableg). These 669 
results indicate that GC functional connectivity could accurately distinguish among sub-tasks within each 670 
task as well. 671 
 672 
Next, we tested whether GC connectivity estimated from slowly sampled fMRI data could accurately 673 
classify task and resting states. We downsampled the data to either one half (2x TR=1440 ms) or one third 674 
(3x TR=2160 ms) of its original sampling rate, by decimation, while also concatenating the decimated data 675 
to the end of the sub-sampled timeseries to preserve the overall number of timepoints (Methods). We 676 
repeated both of the previous classification analyses – pairwise task versus resting state classification (Fig. 677 
1H left), as well as n-way inter-task classification (Fig. 1H right). Following downsampling, we observed that 678 
classification accuracies were marginally higher than  accuracies in the original data, in the case of dGC 679 
(2x: p=0.02; 3x: p=0.06; Wilcoxon one-tailed signed rank test; Statistical Tableh) and were even higher than 680 
those in the original data, in the case of iGC (2x: p=0.01; 3x: p=0.01; Statistical Tablei), across tasks. These 681 
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results indicate that the superlative sampling rate of the HCP fMRI data was not the primary reason for 682 
these high classification accuracies for GC-based classification. 683 
 684 
We performed additional control analyses to confirm that these results were not due to data non-685 
stationarity, biases in GC estimation or head motion artifacts.  686 
 687 
As a first control analysis, we repeated the classification analyses including only subjects for whom the data 688 
passed tests of stationarity (Methods, ED Figure 1-7); typically, data from >99% of subjects passed three 689 
out of four tests of stationarity (except for the consistency test) across all tasks. Mean GC matrices for each 690 
task and resting scan closely resembled those of the population for subjects whose data passed all four 691 
tests of stationarity across all tasks (n=141, ED Figure 1-6A). Statistical tests revealed that dGC 692 
connectivity was only marginally different for this subset of subjects (proportion of significantly different 693 
connections: 6.3%±0.9%, mean ± std. error, across tasks; Kolmogorov-Smirnov test with Benjamini-694 
Hochberg correction for multiple comparisons) whereas iGC connectivity was substantially different 695 
(80.6%±8.0%, mean ± std. error). Nevertheless, accuracies for classifying task versus resting state, as well 696 
as for classifying among tasks, were very similar and, in fact, marginally higher for the subjects who passed 697 
tests of stationarity compared to the population (ED Figure 1-6B).  698 
 699 
As a second control, we repeated the same analyses by deriving GC estimates with a single full regression 700 
(one-stage GC), instead of with separate full and reduced regressions (two-stage GC; Methods); this 701 
analysis was necessary due to recent observations that the two-stage GC model can produce biased 702 
estimates, especially with incorrectly specified model orders (Stokes and Purdon, 2017; Barnett et al., 703 
2018).  Empirically, GC estimates for each of these methods were numerically different, but tightly 704 
correlated across subjects (ED Figure 1-6E) and tasks (ED Figure 1-6F): correlation values ranges 0.94-705 
0.97 for dGC (p<0.001, ED Figure 1-6D). As before, we observed a very similar pattern of classification 706 
accuracies with the single full regression model (n-way classification accuracy among 7 tasks computed 707 
with the Shirer et al 14-network parcellation (2012): 48.3% based on dGC, 56.4% based on iGC), versus 708 
when GC was estimated with separate full and reduced regressions (47.6% based on dGC, 56.2% based 709 
on iGC; chance accuracy: 14.3% for 1-of-7 classification).  710 
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 711 
As a third control, we sought to remove the contribution of motion artifacts to these superlative classification 712 
accuracies. HCP’s minimally pre-processed fMRI data are already motion corrected, based on FSL’s 713 
MCFLIRT algorithm (Van Essen et al., 2012). We further controlled for motion artifacts using “motion 714 
scrubbing” (Power et al., 2012), by discarding frames with framewise displacement (FD) values greater 715 
than 0.5 mm (see Methods). Overall, across all task and resting state scans less than 2% of frames were 716 
discarded with this approach (ED Figure 1-6G). We recomputed GC values on the motion scrubbed data, 717 
for each of the 1000 subjects (Methods), and repeated the task-vs-rest and n-way task classification 718 
analyses. Classification accuracies following motion scrubbing were closely similar and marginally (albeit 719 
significantly) higher than accuracies obtained with the original data (ED Figure 1-6C; p<0.01 one-tailed 720 
signrank test). 721 
 722 
As a fourth control, we sought to test how well the BOLD signal itself would classify among tasks, based on 723 
the mean and standard deviation of fMRI time series parcellated with the Shirer et al 14-network 724 
parcellation (2012) (see Methods). Accuracies for classifying a task state from rest were significantly lower 725 
[range: 62.7% - 67.7%; median: 65.9%] as compared to both dGC and iGC based classification accuracies 726 
(p<0.01 one-tailed signrank test;). In fact, n-way classification accuracy was 15.7%, only marginally above 727 
chance of 14.3%  728 
 729 
These results demonstrate that both iGC and dGC yielded task-specific signatures of functional 730 
connectivity even with slowly sampled fMRI data (TR~2000 ms): these estimates were consistent across 731 
subjects and reliably different across tasks to permit successful classification. Furthermore, these 732 
superlative classification accuracies were obtained despite widely held caveats concerning the application 733 
of GC to fMRI data (Stokes and Purdon, 2017) suggesting that even if individual fMRI-GC network 734 
connections are unreliably estimated for a given task, the difference in fMRI-GC network connectivity 735 
across tasks was sufficiently reliable and informative to permit accurate classification among them. 736 
 737 
 738 
Correlation-purged GC connectivity suffices for accurate task-state classification 739 



 

 29 

Correlation-based (zero-lag) connectivity measures (e.g. partial correlations or PC) have been widely 740 
applied to estimate functional connectivity from fMRI data (Liang et al., 2012; Ryali et al., 2012). In fact, 741 
several previous studies(Smith et al., 2011; Seth et al., 2013) have argued that correlation-based measures 742 
are more reliable and should be preferred to lag-based measures like GC(Seth et al., 2015), for estimating 743 
functional connectivity with fMRI data. We tested this claim here with a three-fold analysis approach.   744 
 745 
First, we asked how classification accuracies based on PC connectivity would compare with those reported 746 
above, based on GC connectivity. Maximum classification accuracies with PC connectivity ranged from 96-747 
99% for task versus resting state classification, and were consistently higher than accuracies with GC 748 
connectivity (Fig. 2A). These results are along expected lines: estimators based on same-time covariance, 749 
such as PC, are less susceptible to noise than those based on lagged covariance, such as GC (derived 750 
analytically in the Methods, section on Functional connectivity estimation and classification with partial 751 
correlations). In addition, as mentioned previously, GC is an information theoretic measure: classification 752 
accuracy with iGC and dGC increased systematically with more scan time points, asymptotically matching 753 
PC accuracies (ED Figure 1-5D). 754 
 755 
Second, we asked if lag-based connectivity could accurately classify task from resting state, once the data 756 
were purged of all instantaneous correlations. To accomplish this, we adopted two approaches: i) zero-757 
phase component analysis (ZCA) and ii) generalized eigenvalue decomposition (GEV) (Methods). Briefly, 758 
ZCA (or the Mahalanobis transformation) produces whitened time series data that is closest, in a least 759 
squares sense, to the original regional time series data. As an alternative approach, we decorrelated both 760 
task and resting state time series jointly by projecting them onto a single set of generalized eigenvectors 761 
(GEV). These approaches provided empirical upper and lower bounds on GC’s performance on correlation-762 
purged data (Methods).  763 
 764 
GC connectivity features sufficed to successfully classify all tasks from resting state, even in correlation-765 
purged data. With ZCA, iGC accuracies ranged from 84% to 96% whereas dGC accuracies ranged from 766 
82% to 96% across tasks. With GEV, iGC accuracies ranged from 60% to 71% whereas dGC accuracies 767 
ranged from 56% to 76% across tasks; in each case, classification accuracies were significantly above 768 
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chance (p<0.001, permutation test; Statistical Tablej). We confirmed that performance in each case was not 769 
an artifact of the decorrelation procedure (ZCA/GEV) by randomly interchanging task and resting state 770 
labels for each pair of datasets across subjects (Methods); shuffling labels reduced classification accuracy 771 
to chance. Note that in every case, classification performance based on PC connectivity was at chance 772 
(Fig. 2C), a direct consequence of removing instantaneous correlations from the data. Despite this, 773 
classification accuracies based on iGC connectivity were not at chance; in the next section, we discuss 774 
potential reasons for these differences between iGC and PC classification accuracies. 775 
 776 
Third, we asked if an unweighted directed graph (digraph) network representation – whose edges indicated 777 
the dominant direction, but not magnitude, of connectivity (Fig. 2D) – would suffice to distinguish task from 778 
resting brain states (Methods). Again, dGC directed graphs successfully distinguished each task from 779 
resting state well above chance. Classification accuracies ranged from 56% for the motor task versus 780 
resting state classification to 68% for the relational task versus resting state; for each task, classification 781 
accuracies were significantly above chance (p<0.001; permutation test; Statistical Tablek). Interestingly, we 782 
did not see a strong influence of the number of data points on classification accuracy in this case (Fig. 2D, 783 
purple dots). For instance the emotion task (n=176 timepoints) was classified with an accuracy of 62% from 784 
resting state, which was comparable to the classification accuracy of working memory (n=405 timepoints) 785 
from resting state (64%). Both iGC and PC, which are symmetric connectivity measures, could provide no 786 
directed connectivity information. 787 
 788 
These results demonstrate that lag-based connectivity contained sufficient information to classify task from 789 
resting state even when instantaneous correlations were entirely purged from the data. Moreover, 790 
unweighted directed connectivity graphs alone, indicating the direction, but not scalar magnitude, of GC 791 
connectivity, sufficed to accurately classify task from resting brain states. These findings indicate that 792 
directed functional connectivity measures, like dGC, provide connectivity information that is distinct from, 793 
and complementary to, what can be obtained with undirected functional connectivity measures, like PC. 794 
Instantaneous and directed GC identify complementary aspects of functional connectivity 795 
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What characteristics of functional connectivity are respectively identified by instantaneous and lag-based 796 
connectivity? And how can lag-based connectivity be reliably estimated with fMRI data, which is sampled at 797 
time scales orders of magnitude slower than neural timescales? We addressed both of these questions, 798 
first, with simulations (this section) and, then, with real data (next section). 799 
 800 
First, we tested the ability of GC to reliably recover functional interactions in simple, two-node feedforward 801 
networks operating at different timescales (Fig. 3A). We simulated fMRI data using a two-stage model 802 
(Methods): i) a latent variable model that describes the dynamics of the nodes (vector Ornstein-Uhlenbeck 803 
process; Ganguli et al., 2008); ii) a convolution of these neural dynamics with a hemodynamic response 804 
function to obtain the simulated fMRI time series (Smith et al., 2011; Seth et al., 2013). Based on this 805 
model, we simulated activity in two 2-node networks. In the first network, individual node decay timescales 806 
were set to 50 ms, whereas in the second network, these were set to 1000 ms (parameters in ED Figure 3-807 
1A). For convenience, we refer to these two network timescales as “fast” (50 ms) and “slow” (1000 ms). We 808 
then varied the sampling interval (Ts) of the simulated data from 50 ms to 1450 ms in steps of 100 ms. 809 
Connections at both “fast” and “slow” timescales were generally discovered by iGC regardless of sampling 810 
interval, although connections at slow timescales were less robustly detected than those at fast timescales 811 
(Fig. 3A). On the other hand, the connection in the “fast” timescale network was not discovered by dGC 812 
when the sampling interval was higher than 50 ms, in line with the results of Smith et al (2011). However, 813 
the connection in the “slow” timescale network was reliably discovered by dGC across a wide range of 814 
sampling intervals, upto, and exceeding 1000 ms (Statistical Tablel). In each case, dGC failed to discover 815 
the underlying interaction when the sampling interval was much higher than the slowest timescale in each 816 
network, consistent with recent theoretical results (Barnett and Seth, 2017). These findings suggest that 817 
dGC can detect slow neural processes, which operate at a timescale slower than TR, in fMRI data.  818 
 819 
How might such slow timescales, orders of magnitude slower than spike times and membrane time 820 
constants, arise in fMRI data? To answer this question, we availed of established results in random matrix 821 
theory. Connectivity in randomly connected E-I networks of neurons can produce slow timescales, without 822 
fine-tuning of network parameters (Rajan and Abbott, 2006; Ganguli et al., 2008; Friston et al., 2014). We 823 
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modeled sparse, random, net excitatory connectivity in a small network of (N=100) neurons with connection 824 
parameters drawn from previous studies (ED Figure 3-1B; Markram, 2000; Holmgren et al., 2003; Ganguli 825 
et al., 2008). The eigen spectrum of the network revealed that each network exhibited one eigenvalue close 826 
to zero corresponding to a slow timescale (~1000 ms or greater, Fig. 3B bottom left);the latter constitutes 827 
an emergent timescale associated with the dominant eigenmode that is a property of network 828 
connectivity(Methods). 829 
 830 
We modeled nine such networks, organized into three, non-interacting, clusters(Fig. 3B top right): a) a 831 
cluster with a purely feedforward connection across two networks, b) a cluster with recurrent excitatory (E-832 
E) feedback connections among two networks and c) a cluster with recurrent excitatory-inhibitory (E-I) 833 
feedback connections among two networks. In each case, connectivity across networks was mediated by a 834 
small proportion (5%) of neurons in each network (parameters in ED Figure 3-1B). This configuration 835 
mimics “small-world” connectivity in brain networks (Bassett and Bullmore, 2006), with locally-connected 836 
brain regions interacting through sparse, long-range connections (Sporns et al., 2004). The eigenspectra 837 
revealed that dynamics in all clusters operated at timescales of around 6000 ms, comparable to or slower 838 
than the individual network timescales (Fig. 3B bottom right). To simulate fMRI data we averaged the 839 
activity across all 100 neurons in each network and convolved it with a canonical HRF. As before, these 840 
nine timeseries were then sampled at various sampling intervals, including a 750 ms interval mimicking the 841 
scan TR, and analyzed with GC to detect significant connections. 842 
 843 
iGC and dGC identified complementary aspects of connectivity with these simulated data (Fig. 3C; 844 
Statistical Tablem). iGC robustly identified feedforward and excitatory (E-E) feedback connections. dGC 845 
also estimated these connections, albeit with the following differences: First, in the feedforward network 846 
dGC occasionally identified a spurious connection, albeit much weaker in magnitude, in the direction 847 
opposite to the true connection (Fig. 3C, left column, red dashed line). Second, when the E-E feedback 848 
connections were precisely balanced in strength (symmetric), dGC also failed to identify the connection 849 
reliably (ED Figure 3-2A). Yet, when these connections were of different strengths dGC reliably identified 850 
both connections, and their relative strengths (Fig. 3C, middle column, red). In contrast, when the 851 
connections were of different signs (E-I feedback) dGC robustly identified both connections, whereas iGC 852 
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failed to reliably detect this connection (Fig. 3C, right column, blue). Yet, taken together, iGC and dGC 853 
identified all three connection types reliably. 854 
 855 
Next, we compared the efficacy of connectivity estimation with partial correlations (PC). While PC robustly 856 
identified both feedforward and feedback E-E connections (Fig. 3C left and middle columns, black), it, 857 
surprisingly, failed to estimate feedback E-I connections, particularly when these were balanced in strength 858 
(Fig. 3C right column, black). When the E and I connection strengths were not balanced, but were strongly 859 
biased in favor of the E or the I connection, PC estimates varied with the sign of the more dominant 860 
connection (ED Figure 3-2B, right top). These results generalize beyond these particular simulations; in the 861 
ED Mathematical Note, Sections S2 and S3, we identify, analytically, network configurations for which PC 862 
estimates systematically deviates from ground-truth connectivity. We generated data with a seven node 863 
network, whose dynamics were described by a multivariate, autoregressive process. We systematically 864 
varied the covariance of the residuals of nodes 1 and 2 in the MVAR model (Y), which is a key factor in 865 
determining iGC magnitude (ED Mathematical Note, Section S3, equations 11 and 21). Next, we computed 866 
the covariance between the residuals (K) in the regression of activities of nodes 1 and 2 against all other 867 
nodes (controlling variables), which is a key factor in determining PC magnitude. Although connectivity 868 
estimates based on iGC and PC were highly correlated, PC estimates systematically deviated from iGC 869 
estimates in value (ED Figure 3-2C left). In fact, for iGC covariance (Y) values ranging from -0.3 to 0.0, 870 
indicating weak inhibitory functional connectivity, PC covariance (K) values were positive, ranging from 0 to 871 
0.3, indicating excitatory functional connectivity (ED Figure 3-2C right, open squares). For these 872 
configurations, therefore, PC connectivity deviated systematically from ground-truth. The analytical 873 
relationship between PC connectivity and iGC connectivity explains this pattern of systematic deviations 874 
(ED Mathematical Note, Section S3, equation 23). Briefly, the relationship indicates that PC reflects a 875 
mixture of instantaneous and lagged connectivity rather than solely instantaneous interactions. Removing 876 
lagged interactions restores the identity between iGC and PC (ED Figure 3-2C right, open circles), as 877 
evidenced by setting the coefficients of the AR matrix to zero (ED Mathematical Note, Section S3, equation 878 
11). These results highlight caveats with employing zero-lag correlation measures, like partial correlations, 879 
as compared to lag-based measures, like GC, for estimating connectivity with neural timeseries.  880 
 881 
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Taken together, these results indicate that instantaneous and lag-based connectivity measures can reveal 882 
complementary aspects of brain connectivity. In addition, the results challenge the notion that correlation-883 
based measures, like PC, should be favored over lag-based measures, like dGC for measuring functional 884 
connectivity in the brain (Smith et al., 2011). Rather, the strengths and weaknesses of each measure (GC 885 
and PC) must be recognized when seeking to apply these to brain imaging data.  886 
 887 
Identifying a cognitive core system based on GC connectivity 888 
Our classification analyses and simulations suggested that iGC and dGC reliably recover task-specific brain 889 
networks, the latter when slow-timescale processes occur within the network. We asked whether iGC and 890 
dGC connectivity merely reflected reliable statistical patterns of brain activity, or whether it would be 891 
relevant for understanding the nature of information flow in the brain, and its relationship to behavior. To 892 
answer this question, we investigated whether each measure would identify brain networks with consistent 893 
outflow and inflow hubs across tasks.  894 
 895 
Prior to analysis of real data, we validated RFE by applying it to estimate connectivity differences in two 896 
simulated networks (Fig. 4A,B). RFE accurately identified connections that differed in simulation ground-897 
truth: specifically, differences in fast timescale connections were reliably identified by iGC, and in slow 898 
timescale connections by dGC (Fig. 4B bottom). We also tested whether dGC and iGC would be able to 899 
accurately identify differences in directed information flow among network configurations, even with 900 
systematic differences in hemodynamic lags among network nodes. For this we estimated GC for 100 901 
simulated participants with the same two “ground-truth” network configurations (as shown in Fig. 4A), 902 
except with four different scenarios of hemodynamic lag differences (Methods): a) same mean HRF onset 903 
(μL= 3s) across all nodes; b) source node hemodynamic response function (HRF) onset lagging the 904 
destination node by 1s (μL-src > μL-dst); c) source node HRF onset leading destination node by 1s (μL-src > μL-905 
dst); and d) mixed latencies of lead and lag such that 50% of simulated participants had the source node 906 
lagging the destination node and vice versa for the remaining 50% simulated participants. We performed 907 
these simulations by sampling the onset latency for each participant from a normal distribution, with 908 
standard deviations (σL) ranging from 0-1s (in steps of 0.2s) across simulations (ED Figure 3-2D-E). The 909 
relative magnitudes of these HRF onset latency differences, and their standard deviations, are comparable 910 
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to their magnitudes observed in human data (Chang et al., 2008). RFE was then used to identify the most 911 
discriminative connections between the two networks.  912 
 913 
First, we observed that across the different onset latency scenarios, GC connection strength magnitude 914 
generally decreased with increasing σL values (ED Figure 3-2D); an interesting exception was iGC 915 
connection strengths when source HRF onset led the destination HRF (case c, above; ED Figure 3-2D; 916 
lower row, dark blue curves). For sub-network ABC, with fast (50 ms) timescales, dGC revealed the correct 917 
directionality of connectivity (positive ΔdGC; ED Figure 3-2D, upper row) consistently in only one of the four 918 
cases (case c), when the source node onset systematically led the destination node (ED Figure 3-2D, 919 
upper row, odd columns: dark blue curves). On the other hand, for sub-network DEF, with slow (1000 ms) 920 
timescales, dGC revealed the correct directionality of connectivity in three of the four cases (ED Figure 3-921 
2D, upper row, even columns: dark blue, light blue and black curves); all except case b, when the source 922 
node onset systematically lagged the destination node (ED Figure 3-2D, upper row, red).  923 
 924 
In line with these results, RFE with dGC features correctly identified directionality of the most discriminative 925 
connections in no case for the fast sub-network (ED Figure 3-2E, rows 1-2, ABC sub-network), but correctly 926 
identified the directionality of these connections in three out of four cases for the slow sub-network (ED 927 
Figure 3-2E, rows 1-2, DEF sub-network). RFE with iGC features, identified maximally discriminative 928 
connections (albeit not their directionality) in all cases (ED Figure 3-2E, rows 3-4). Thus, RFE based on 929 
dGC and iGC accurately identified the relevant connections, but not always their directionality, even when 930 
systematic variations in hemodynamic lag occurred across regions. Taken together, these results indicate 931 
that fMRI-GC can identify differences in connectivity at slow timescales despite systematic differences and 932 
heterogeneity in HRF onset latencies across brain regions. 933 
 934 
Next, with the real fMRI (HCP) data, we sought to identify a common core of “task-generic” connections 935 
across cognitive tasks. For this, we applied a feature selection approach – recursive feature elimination 936 
(Methods) – a technique that identifies a minimal set of features that provide maximal cross validation 937 
accuracy (generalization performance; Guyon and Elisseeff, 2003). We applied RFE to classify tasks 938 
versus resting state; we chose these six tasks (all tasks except the motor task) as being the most likely to 939 



 

 36 

engage common cognitive control mechanisms (Fig. 4C). For these RFE analyses we employed a 14 940 
network functional parcellation (Shirer et al., 2012), as it consistently gave good classification accuracies 941 
with both iGC and dGC connectivity (ED Figure 1-5B). Following RFE, we applied a binomial test across 942 
tasks (Methods) to identify a common core of task-generic connections, separately for iGC and dGC.  943 
 944 
RFE identified distinct task-generic networks with iGC and dGC, which comprised of connections that 945 
distinguished a majority of tasks from resting state. The iGC task-generic network revealed a visuospatial 946 
network hub, which connected with the anterior salience, dorsal DMN, higher visual and posterior salience 947 
networks (Fig. 4D, right). The dGC task-generic network confirmed the hub-like connectivity of the 948 
visuospatial network but, in addition, revealed consistent directed information outflow from the visuospatial 949 
network to the other networks (Fig. 4D, left). In addition, dGC revealed consistent inflow into the higher-950 
visual network across tasks, including from the visuospatial, right executive control, and auditory networks, 951 
consistent with the ability of top-down inputs from these networks to strongly modulate sensory encoding in 952 
higher visual cortex (Gilbert and Li, 2013). Finally, the higher-visual network projected consistently to the 953 
sensorimotor network, suggesting a final common pathway, across these tasks, for influencing behavior. 954 
Interestingly, the only network providing inflow into the visuospatial network hub was the anterior salience 955 
network, in line with a previous study that indicated a role for the salience network in controlling other task 956 
positive networks (Sridharan et al., 2008). 957 

 958 
Similarly, we asked whether iGC and dGC could identify connections that were maximally discriminative 959 
across tasks (“task-discriminative” networks). Because some network connections may not be present for 960 
any task, task-discriminative connections are not simply the complement of the task-generic connections. 961 
As before we repeated the RFE analysis, but this time based on an n-way classification across the six tasks 962 
(all except the motor task, Methods), seeking to identify connections that discriminated each task, from 963 
each of the other five tasks (Fig. 4E).  964 
 965 
This analysis identified iGC and dGC connections among the vast majority of networks as being important 966 
for discriminating among tasks. Specifically, with iGC, basal ganglia connectivity was the most task-967 
discriminative whereas for dGC, visuospatial network inflow and language network outflow were among the 968 
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most discriminative (Fig. 4F). Connections with the precunues were strongly discriminative across both iGC 969 
and dGC networks. Notable exceptions to these trends were the sensorimotor network and ventral default 970 
mode network (vDMN). The sensorimotor network exhibited very few task-discriminative connections based 971 
on iGC (1/13) and dGC (3/26), whereas the vDMN exhibited only (1/13) task discriminative connections 972 
based on iGC. We further observed that each task recruited a distributed pattern of connectivity across 973 
networks (Methods), which was sufficiently characteristic of each task to permit accurate classification (ED 974 
Figure 4-2A). We also correlated the beta weights of the 11 overlapping connections across iGC and dGC 975 
and found no significant correlations (r=-0.18, p=0.59). The results indicate that the task-discriminative 976 
information flow patterns, as measured by iGC or dGC connectivity, arise from distinct, distributed networks 977 
across the entire brain. 978 
 979 
We also tested whether partial correlation (PC) would identify task-generic and task-discriminative 980 
connections that were more in line with those identified by iGC or dGC or both (ED Figure 4-2B-D). Both 981 
task-generic and task-discriminative connections identified with PC revealed significant overlap with both 982 
iGC (task-generic: 75% overlap, and task-discriminative: 65.2% overlap, p<0.05 randomization test) and 983 
dGC (task-generic: 100% overlap, and task-discriminative: 78.3% overlap, p<0.05). These findings are 984 
consistent with our theoretical result that PC connectivity reflects a mixture of iGC and dGC connectivity. 985 
 986 
 987 
Predicting behavioral scores with GC connectivity 988 
To address GC’s relevance for understanding brain-behavior relationships we tested whether the strength 989 
of functional connections estimated with iGC and dGC could predict inter-individual variations in behavioral 990 
scores as measured by a standard cognitive battery (Methods; ED Figure 5-1).We employed a leave-one-991 
out prediction analysis based on multilinear regression followed by robust correlations of predicted and 992 
observed scores (Fig. 5A; p<0.05 with Benjamini-Yekutieli correction; Methods).  993 
 994 
Both iGC and dGC predicted key behavioral scores (Fig. 5C; Statistical Tablen). Several scores were 995 
predicted uniformly well by iGC across tasks (Fig. 5B, right; Fig. 5C, bottom; ED Figure 5-2B). Scores of 996 
fluid intelligence (Penn progressive matrices), spatial orientation (Penn line orientation test), grip strength, 997 
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endurance, and language (picture-vocabulary and reading; Fig. 5B right), were all well predicted by iGC 998 
.(ED Figure 5-2B, r:0.104 - 0.363; p<0.01). On the other hand, dGC-based predictions were more selective, 999 
in that several behavioral scores were best predicted by dGC based on specific tasks alone (Fig. 5B, left; 1000 
Fig. 5C, top; ED Figure 5-2A). For instance, dGC in the gambling task alone predicted self-report scores of 1001 
fear (r=0.139, p<0.001)  and dGC in the motor task alone predicted median reaction time in the fluid 1002 
intelligence test (r=0.123, p<0.001) and self-reported scores of perceived emotional support (r=0.113, 1003 
p<0.001). In addition, dGC in the working memory task predicted a range of scores in the “cognition” 1004 
category including list sorting (Fig. 5B, left,pink; r=0.119, p=0.000), fluid intelligence, picture discrimination 1005 
speed (Fig. 5C top, ED Figure 5-2A).  1006 
 1007 
Similarly, we employed PC functional connection strengths as features for predicting inter-individual 1008 
differences in behavioral scores. We observed that 129 behavioral scores were successfully predicted 1009 
based on PC connectivity (ED Figure 5-2C, following  BY correction for multiple comparisons), as 1010 
compared with  39 scores based on dGC connectivity (ED Figure 5-2A) and  92 scores based in iGC 1011 
connectivity (ED Figure 5-2B). Around 54% of the scores predicted well by PC (70/129) were also predicted 1012 
well by either dGC or iGC. On the other hand, behavioral scores were predicted well by PC, but not by GC 1013 
included reaction times in the Penn word memory test and Penn emotion recognition test, as well as 1014 
several scores of the language task (ED Figure 5-2C). 1015 
 1016 
Next, we compared the connection features that led to successful predictions based on GC and PC. For 1017 
this, we z-scored the connection strengths (individually) and repeated the prediction process (Methods) 1018 
separately with dGC features, iGC features and PC features derived from each of the 7 tasks. 17 of these 1019 
predictions were significant (following BY correction) across all three connectivity features (ED Figure 5-1020 
2A,B,C). We then correlated the beta weights for each entry of the iGC matrix, with those of the PC matrix, 1021 
across these 17 predictions. For dGC, the upper and lower triangular portions of the matrix were correlated 1022 
separately, with the corresponding PC connection weights. We then computed the mean correlation (r) 1023 
values across all 91 features (iGC versus PC) and 182 features (dGC lower and upper matrix versus PC). 1024 
 1025 
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We observed an interesting dissociation between PC, iGC and dGC. Connection features that were 1026 
relevant for behavioral predictions with PC overlapped highly with iGC features, but not with dGC features 1027 
(PC vs. iGC: r=0.39±0.02, mean±std; PC vs. dGC: r=0.03±0.02, p<0.001, ranksum test). The results 1028 
provide further empirical evidence for a clear distinction between connectivity computed with instantaneous 1029 
(PC, iGC) and lag-based (dGC) measures. 1030 
 1031 
Finally, we tested whether GC connectivity could predict a combined set of behavioral scores unique to 1032 
each subject. For this, we created a vector of all independent behavioral scores (composite score; 1033 
Methods), and confirmed that this composite behavioral score uniquely identified each subject in the 1034 
database, as evidenced by the highest values along the main diagonal of the inter-subject correlation 1035 
matrix (Fig. 5D top). Following this, we performed the leave-one-out prediction, as before, except that we 1036 
used dGC and iGC connectivity features from two of the tasks alone (working memory and relational; also 1037 
see ED Figure 5-2D). We then tested whether each subject’s predicted composite score would correlate 1038 
best with her/his own observed composite scores. Although we did not observe the highest correlation 1039 
values consistently along the main diagonal, the distribution of correlation coefficients along the diagonal 1040 
were significantly different (and higher) than the distribution of off-diagonal correlation coefficients (Fig. 5D 1041 
bottom; p<10-15, Kolmogorov-Smirnov test; Statistical Tableo). Inter-individual variation GC connectivity, 1042 
therefore, contained sufficient information to accurately identify subject-specific behavioral scores in this 1043 
cohort of subjects. 1044 
 1045 
In summary, the ability to successfully predict subject-specific behavioral scores suggests that GC 1046 
functional connectivity is relevant for understanding brain-behavior relationships. Moreover, connection 1047 
features that were relevant for behavioral predictions with PC overlapped highly with iGC, but not with dGC, 1048 
thereby validating our simulation results regarding the complementarity of iGC and dGC connectivity 1049 
estimates.   1050 
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Table 1. Statistical Table 1051 
 Figure 

Comparison 
Type of Test Statistic 

Confidence Interval or 
Power 

a 

1B 
 

Rest vs working memory best iGC 
classification accuracy value 

Binomial test 

Clopper-
Pearson 

confidence 
intervals 

[96.3 - 98.0%] 

b 
Rest vs working memory best dGC 

classification accuracy value 
[90.5 - 93.2%] 

c 
Rest vs Task maximum classification 

accuracy (each bar) vs. chance 
Permutation test p value p <0.001 

d 

1F 

n-way task classification maximum 
iGC accuracy value 

Binomial test 

Clopper-
Pearson 

confidence 
intervals 

[73.3%-75.4%] 

e 
n-way task classification maximum 

dGC accuracy value 
[46.4%-48.7%] 

f 
n-way task classification maximum 

accuracy values (each bar) vs. 
chance 

Permutation test p value p <0.001 

g 1G 
Subtask classification maximum 
accuracies (each bar) vs. chance 

Permutation test p value p <0.05 

h 
1H 

(left) 

Rest vs Task dGC classification 
accuracies with 2x, and 3x sampling 

rate (vs 1x) Wilcoxon one-tailed 
signed rank 

p value 

2x: p=0.02;  
3x: p=0.06 

i 
Rest vs Task iGC classification 

accuracies with 2x, and 3x sampling 
rate (vs 1x) 

2x: p=0.01;  
3x: p=0.01 

j 2C 
ZCA, GEV classification accuracy 

values with dGC and iGC vs chance 
Permutation test p value p <0.001 

k 2D 
Rest vs Task unweighted dGC 

classification accuracy value (each 
bar) vs chance 

Permutation test p value p <0.001 

l 
3A 

 

Each dGC, iGC, PC matrix 
connectivity value bound with black 

square vs corresponding null 
distribution 

Phase-scrambling p value p <0.05 

m 3C 

Each dGC, iGC, PC matrix 
connectivity value bound with black 

square vs corresponding null 
distribution of phase-scrambled 

surrogates 

Benjamini-Hochberg 
correction 

p value p <0.05 

n 5C 
Each prediction corr value with filled 

circle in stem plot 
Benjamini-Yekutieli 

correction 
p value p <0.05 

o 5D 

Correlation coefficients between 
observed and predicted composite 

scores, for the same subject vs 
across different subjects 

Kolmogorov-Smirnov 
test 

p value p <0.001 
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Discussion 1052 
Neural processes in the brain range from the timescales of milliseconds, for extremely rapid processes 1053 
(e.g. sound localization), to timescales of several seconds to minutes, for processes that require 1054 
coordination across diverse brain networks (e.g. when having a conversation) and hours to days for 1055 
processes that involve large-scale neuro-plastic changes (e.g. when learning a new language). 1056 
Coordinated activity among brain regions that mediate each of these cognitive processes should manifest 1057 
in the form of functional connectivity among these regions at the corresponding timescales. Our results 1058 
indicate that applying Granger-Geweke Causality (GC) with fMRI data permits estimating behaviorally 1059 
relevant functional connectivity at a timescale corresponding to the sampling rate of fMRI data (seconds). 1060 
 1061 
The application of GC to neuroscience is a contentious topic, for a variety of reasons (Chang et al., 2008; 1062 
Friston et al., 2013; Seth et al., 2013; Wen et al., 2013; Stokes and Purdon, 2017). One particular challenge 1063 
stems from the use of the word “causality”: the notion of causality in GC is different from the notion of 1064 
interventional causality (Pearl, 2011). Our use of the term Granger causality, here, purely reflects its 1065 
application as a marker of information flow among brain networks (Roebroeck et al., 2005; Seth et al., 1066 
2013), and is not meant to indicate causality in a physical, interventional sense.  1067 
 1068 
With this understanding, our results contain three key insights. First, we show that, either iGC or dGC 1069 
connectivity suffices to reliably classify task-specific cognitive states with superlative accuracies (Fig. 1B). 1070 
Instantaneous and directed GC – both measures of conditional linear dependence and feedback (Geweke, 1071 
1984) – were able to robustly estimate task-specific functional interactions even with slowly sampled fMRI 1072 
data. Our simulations suggest that GC connectivity is relevant for estimating slow, emergent interactions 1073 
among brain networks (Chang et al., 2008; Smith et al., 2011; Friston et al., 2013; Seth et al., 2013; Wen et 1074 
al., 2013). 1075 
 1076 
Second, we show that functional connections identified by iGC and dGC carry complementary information, 1077 
both in simulated and in real fMRI recordings, and we demonstrate key caveats with employing correlation-1078 
based measures of functional connectivity like partial correlations, despite superior classification accuracies 1079 
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with these latter measures. First, PC fails to correctly infer reciprocal excitatory-inhibitory interactions, which 1080 
can be accurately inferred with lag-based methods like dGC. Second, PC may yield incorrect estimates of 1081 
functional connectivity that do not match ground truth (ED Figure 3-2C). In particular, when the data are 1082 
well described by an autoregressive model framework our results suggest that instantaneous connectivity 1083 
measures, like iGC, provide more accurate descriptions of functional connectivity than PC. Third, even with 1084 
data completely purged of partial correlations, dGC connectivity was sufficient to classify task-specific 1085 
cognitive states (Fig. 2C). In fact, unweighted directed connectivity alone sufficed to produce accurate 1086 
classification at accuracies significantly above chance (Fig. 2D). These results indicate that information flow 1087 
mapped by GC connectivity can be complementary to that of PC, and highlights the need for examining 1088 
diverse measures, both instantaneous and lag-based, to obtain a complete picture of functional connectivity 1089 
in the brain. 1090 
 1091 
Third, differences in inter-individual iGC and dGC connectivity were able to explain inter-individual variation 1092 
in behavioral scores on various cognitive tasks, and to identify an individual-specific composite marker of 1093 
behavioral scores, with high accuracies. Perhaps because these behavioral scores were acquired in a 1094 
separate testing session outside the scanning session (Barch et al., 2013), the effect sizes were small 1095 
(albeit significant), and comparable to effect sizes in previous studies employing large, heterogeneous 1096 
subject cohorts (Smith and Nichols, 2018). Nevertheless, the results suggest that GC connectivity was both 1097 
individual-specific, and stable over timescales exceeding the scan session, to permit accurate prediction. 1098 
Moreover, in our analysis, each subject’s behavioral score was predicted based on her/his GC connectivity, 1099 
whereas the regression beta weights – representing the relationship between GC connectivity and behavior 1100 
– were computed from the population of all subjects excluding that subject (Fig. 5A). Successful 1101 
predictions, therefore, indicate a consistent mapping between GC connectivity and behavioral scores 1102 
across the population of subjects. These findings complement recent results showing that dynamic, resting-1103 
state functional connectivity, based on correlations, can explain significant variance in human behavioral 1104 
data (Liégeois et al., 2019), and indicate the relevance of lag-based connectivity measures for 1105 
understanding brain-behavior relationships. 1106 
 1107 
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Does GC’s discriminatory power rely on directed functional connectivity in the underlying neural response 1108 
or systematic distortions of this connectivity induced by subsampling (Seth et al., 2013) and hemodynamic 1109 
filtering (Lin et al., 2009; Solo et al., 2018)? While our findings cannot completely rule out the latter 1110 
hypothesis, we address, next, three key caveats raised by previous studies for estimating functional 1111 
connectivity with fMRI-GC, and argue why our results support the former hypothesis. 1112 
 1113 
First, several studies have shown that sub-sampling of neural time series, at the scale of fMRI TR, renders 1114 
functional connections undetectable with GC (Lin et al., 2009; Smith et al., 2011; Seth et al., 2013, 2015). 1115 
In these studies, GC was estimated with simulated fMRI time series, sampled at an interval (TR) of 1116 
seconds, and failed to recover underlying neural interactions, which occur at millisecond timescales (e.g. 1117 
Smith et al., 2011). However, these claims depended strongly on the nature and timescale of the 1118 
connectivity in the networks employed in these simulations. For instance, a widely cited study (Smith et al., 1119 
2011) employed purely feedforward connectivity matrices with a 50 ms neural timescale in their 1120 
simulations, and argued that functional connections are not reliably inferred with GC applied to simulated 1121 
fMRI data. In addition to being neurally implausible, such purely feedforward network configurations yield 1122 
eigenmodes whose slowest timescales are identical with the timescales of individual nodes (Sundaresan et 1123 
al., 2017). Therefore, such a configuration rendered lag-based measures like GC, irrelevant for estimating 1124 
neural interactions from slowly sampled fMRI data (Smith et al., 2011; Seth et al., 2013). Furthermore, such 1125 
connectivity precludes the occurrence of slower, behaviorally relevant timescales of seconds, which readily 1126 
emerge in the presence of feedback connections, both in simulations (Rajan and Abbott, 2006; Ganguli et 1127 
al., 2008) and in the real brain (Friston et al., 2014; Runyan et al., 2017; Vidaurre et al., 2017). Our 1128 
simulations show that slow timescale interactions emerge in networks with sparse, random, net excitatory 1129 
connectivity, mimicking connectivity in the neocortex (Markram, 2000; Holmgren et al., 2003; Ganguli et al., 1130 
2008). While earlier studies have employed large-scale, biologically plausible models (Deco et al., 2009; 1131 
Krishnan et al., 2018) to demonstrate the emergence of slow (<0.1 Hz) emergent functional interactions 1132 
among brain networks, our results build upon these previous findings and show that such emergent, , 1133 
functional interactions at slow timescales can be readily inferred from simulated fMRI data with GC. In fact, 1134 
GC connectivity continued to robustly classify distinct task states even when data were sampled at 2x or 3x 1135 
the original sampling interval of the fMRI data. Thus, while it is likely that GC applied to fMRI data is unable 1136 
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to detect connections at timescales faster than TR, our results show that sufficient distinguishing 1137 
information occurs in slow-timescale connections to enable accurate inter-task classification with fMRI-GC. 1138 
Sub-sampling alone may also produce spurious GC causality. The precise conditions under which spurious 1139 
GC arises for continuous time vector autoregressive processes, possibly with time delay in between the 1140 
nodes, is an area of active research, and must be addressed in future studies (Lin et al., 2009; Barnett and 1141 
Seth, 2017). 1142 
 1143 
Second, previous studies have shown that systematic differences in hemodynamic (HRF) lags (e.g. time to 1144 
onset, or time to peak) among brain regions may produce spurious dGC estimates (Friston, 2009; Seth et 1145 
al., 2013; Solo et al., 2018). With simulations we demonstrated that fMRI-GC could identify differences in 1146 
slow-timescale network connectivity, despite systematic differences and heterogeneity in HRF onset 1147 
latencies across nodes (ED Figure 3-2D-E). In all cases, applying recursive feature elimination with either 1148 
dGC or iGC features identified the precise subset of connections that distinguished distinct network 1149 
configurations. In a majority of cases, dGC also correctly identified the directionality of these connections. 1150 
In our simulations, the only scenario in which dGC features failed to identify the directionality of connections 1151 
correctly, was when the onset latency in the “destination” nodes were biased to be systematically earlier 1152 
than those in the “source” nodes. Nevertheless, in the real data it is unlikely that systematic inter-regional 1153 
HRF differences contributed to the observed superior classification accuracies. Variations in HRF delays 1154 
would indeed confound dGC connectivity estimates – if they occurred consistently between brain regions 1155 
across subjects and tasks (e.g. ED Figure 3-2D, red curves). Yet, such a scenario cannot account for the 1156 
high classification accuracies among tasks and sub-tasks based on dGC connectivity alone. In other words, 1157 
even if HRF latency differences did systematically bias dGC connectivity estimates, these estimates were 1158 
sufficiently and reliably different across task cognitive states to permit accurate classification among them. 1159 
To our knowledge, our study provides the first direct experimental validation of GC networks’ ability to 1160 
distinguish cognitive states, as a marker of their potential utility for identifying these states. Moreover, 1161 
network properties of key regions identified with fMRI-GC were consistent with their known functional 1162 
properties of these regions. For instance, dGC identified the visuospatial network as an information outflow 1163 
hub, across all six cognitive tasks (Fig. 4D left). The visuospatial network comprises frontal cortex regions, 1164 
including the frontal eye field, as well as posterior parietal cortex, which are both widely implicated in 1165 



 

 45 

visuospatial attention control (Corbetta et al., 1998; Behrmann et al., 2004; Schall, 2004; Thompson and 1166 
Bichot, 2004). In addition, the only network that provided task-generic incoming connections to the 1167 
visuospatial network was the anterior salience network comprising the anterior fronto-insular cortex and the 1168 
anterior cingulate cortex (Dosenbach et al., 2008; Chen et al., 2013), regions implicated in feature-based 1169 
attention and the suppression of distractors (Li et al., 2018). Information outflow from these key networks 1170 
identified by dGC is consistent with their role in attention and executive control. 1171 
 1172 
Third, simulations and theoretical results indicate that scanner noise can degrade, or even obliterate GC 1173 
connectivity estimates (Seth et al., 2013).On the other hand, our classification accuracies suggest that GC 1174 
estimates were sufficiently robust to scanner noise to permit accurate task and sub-task classification in 1175 
these data. In fact, we show that averaging dGC connectivity across as few as 5 subjects’ data improves 1176 
classification accuracy to over 95% for nearly all tasks (Fig. 1D). Such superlative classification accuracies 1177 
are unlikely to have occurred if scanner noise were to significantly degrade GC estimates.  1178 
 1179 
In sum, these results suggest that lag-based methods like GC, applied to fMRI data, can be used infer slow 1180 
functional interactions in the brain. While the directionality of interactions measured by GC may need to be 1181 
interpreted with care (Seth et al., 2015; Solo et al., 2018), our results suggest that fMRI-GC may be useful 1182 
for formulating hypothesis about the role of particular brain regions in providing “top-down” control signals, 1183 
for modulating activity in other brain regions (Sridharan et al., 2008; Ryali et al., 2011), as well as for 1184 
investigating the nature of information flow in cortical microcircuits with slow sampling rate techniques, such 1185 
as calcium imaging (Fallani et al., 2015).The causal role of these brain regions in behavior can then be 1186 
directly tested with interventional approaches such as transcranial magnetic stimulation, optogenetic 1187 
inactivation  or by examining patient populations with lesions in specific brain regions (Gaillard et al., 2006). 1188 
Such a systematic analysis will pave the way for a mechanistic understanding of how flexible functional 1189 
interactions among brain regions mediate complex cognitive behaviors.   1190 
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Figure Legends 1359 
Figure 1. Discriminating between task and resting state with instantaneous and directed GC 1360 
networks.  1361 
A. Schematic of task state classification based on instantaneous (iGC) and directed (dGC) Granger-1362 
Geweke Causality with fMRI data from 1000 subjects (see text for details; IDs in ED Figure 1-3).  1363 
B. Two-way classification accuracies (leave-one-out) for each of seven tasks versus resting state based on 1364 
GC. Red unfilled bars and blue filled bars: accuracies based on dGC and iGC features, respectively (task 1365 
key in ED Figure 1-1). Error-bars: Clopper-Pearson binomial confidence intervals. Chance accuracy: 0.5 1366 
(not shown).  1367 
C. Two-way task versus resting state classification accuracies based on dGC (red dots) and iGC (blue -1368 
dots), as a function of number of task scan time points (volumes). Dashed lines: linear fits.  1369 
D. Two-way task versus resting state classification accuracies based on dGC after averaging dGC matrices 1370 
over different numbers of subjects (x-axis). Each task is represented with a different color. Colored dashed 1371 
lines: biexponential fits. Black dashed horizontal and vertical lines: 95% accuracy and n=5 subjects’ 1372 
average, respectively.  1373 
E. Two-way classification accuracies across each pair of tasks. Cells: classification accuracies for each pair 1374 
of tasks based on dGC (lower triangular matrix) or iGC (upper triangular matrix). Diagonal cells: number of 1375 
task scan timepoints. Highlighted cells: lowest (dashed-line border) and highest (solid-line border) 1376 
accuracies achieved with dGC (red) and iGC (blue). 1377 
F. N-way classification accuracies among all seven tasks. Dashed line: chance accuracy (14.3%). Other 1378 
conventions are the same as in panel B.  1379 
G. Two-way sub-task classification accuracies (descriptions in ED Figure 1-2) based on GC. ns.: accuracy 1380 
not significantly above chance. Other conventions are the same as in panel B.  1381 
H. (Left) Two-way task versus resting state classification accuracies obtained with regional time series sub-1382 
sampled at 2x (filled symbols) and 3x (open symbols) of the TR (720 ms) (y-axis) plotted against 1383 
accuracies obtained with the original data (1x, x-axis) for each of 7 tasks. Red: dGC, Blue: iGC. Dashed 1384 
diagonal line: Line of equality (x=y). (Right) N-way classification accuracies among all seven tasks with data 1385 
sampled at 1x, 2x, 3x of the original TR. Other conventions are the same as in panel F. 1386 
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For panels B,E,F: accuracies correspond to highest values, across all parcellations tested, and 1387 
hyperparameter optimization was done for panel B. For panels C,G,H: accuracies correspond to Shirer et al 1388 
(2012) 14-network parcellation. For panel D: accuracies correspond to Shirer et al (2012) 90-node 1389 
parcellation. Further details and control analyses are presented in ED Figures 1-4 to 1-7. 1390 
 1391 
 1392 
Figure 2. Classification accuracies with GC purged of instantaneous correlations. 1393 
A. Two-way task versus resting state classification accuracies, based on partial correlations (PC; grey 1394 
unfilled bars). Numbers reported correspond to highest leave-one-out classification accuracies across 1395 
parcellations, obtained with hyperparameter optimization. Corresponding accuracies for dGC (red dots) and 1396 
iGC (blue dots) are shown for comparison. Other conventions are as in Fig. 1B.  1397 
B. Schematic illustrating procedure for purging data of instantaneous correlations. fMRI regional timeseries 1398 
were purged of instantaneous correlations by either whitening the data with zero-phase component 1399 
analysis (ZCA), separately for each task and resting state scan, or by projecting data into a space spanned 1400 
by the generalized eigenvectors (GEV), common to both task and resting state scans. GC and PC were 1401 
then estimated with the ZCA or GEV projections of the timeseries data, followed by classification analysis 1402 
based on GC or PC connection strength as features.  1403 
C. (Top) Two-way task versus resting state classification accuracies following ZCA-based decorrelation. 1404 
Gray circles: Classification accuracies based on PC. Other conventions are as in Figure 1B. Dashed line: 1405 
chance accuracy (50%).(Bottom) Same as in top panel, but for classification following GEV-based 1406 
decorrelation.  1407 
D. (Top) Schematic showing unweighted directed graph obtained from dGC; this digraph representation 1408 
encodes only the dominant direction of connectivity, and not its magnitude. (Bottom) Two-way task versus 1409 
resting state classification accuracies based on dGC digraph representations. Secondary ordinate (y-axis 1410 
on the right): number of scan timepoints for each task.(Panels C-D). GC features were estimated with the 1411 
Shirer et al (2012) 14-network parcellation. 1412 
 1413 
 1414 
 1415 
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Figure 3. Robustness of GC estimates depend on network timescales in simulated hemodynamic 1416 
data.  1417 
A. (Top) Two-node networks with fast (50 ms; left) or slow (1000 ms; right) decay timescales of individual 1418 
nodes (parameters in ED Figure 3-1A). Each subpanel shows ground truth connectivity either as a 1419 
schematic (left) or connectivity matrix (right).  In the matrix, a non-zero entry at cell (i, j) corresponds to a 1420 
connection from node j (source) to node i (destination).(Bottom) dGC (red), iGC (blue), and PC (black) 1421 
connection strengths as a function of sampling intervals. Filled circles and solid lines: Strengths of true 1422 
connections and curve (biexponential) fits, respectively. Open circles and dashed lines: Strengths of 1423 
spurious connections and curve fits, respectively. Dashed vertical line: Sampling interval of 750 ms, 1424 
mimicking the TR of the fMRI data. Matrices to the right of each plot show GC connection strengths 1425 
estimated at sampling interval of 750 ms. Black squares surrounding matrix cells denote significant 1426 
connections (Methods). For iGC and PC (symmetric connectivity), only the lower triangular matrix is shown, 1427 
for clarity.  1428 
B. (Top left) Schematic showing a cluster of neurons, each with timescale 50ms, connected with sparse, 1429 
random, net excitatory connectivity. Matrix: Connectivity among the 100 neurons in a representative cluster. 1430 
Red: excitatory connections; blue: inhibitory connections. Each such cluster forms one of the nine nodes in 1431 
the simulated network. (Top right) Connectivity among the nine nodes in the network (parameters in ED 1432 
Figure 3-1B). (Bottom left) Eigenspectrum (upper panel) of a representative 100 neuron cluster, showing 1433 
one slow emergent timescale corresponding to the real-part of one eigenvalue close to zero. Histogram 1434 
(lower panel) showing timescales of all eigenmodes, with the slowest eigenmode at >2000ms. (Bottom 1435 
right) Eigenspectrum (upper panel) of sub-network DEF exhibits multiple slow emergent timescales. 1436 
Histogram (lower panel) showing timescales of all eigenmodes, with three slow eigenmodes at ~1000-6000 1437 
ms. 1438 
C.  Same as in A, but for simulated 9-node networks (parameters in ED Figure 3-1B). (Left) Sub-network 1439 
ABC, (middle) sub-network DEF (see also ED Figure 3-2), (right) sub-network GHI. Other conventions are 1440 
as in panel A. 1441 
 1442 
 1443 
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Figure 4. Recursive feature elimination (RFE) identifies task-generic and task-discriminative 1444 
networks based on GC connectivity.  1445 
A. Schematic showing two simulated networks each with fast (50 ms; ABC) and slow (1000 ms; DEF) sub-1446 
networks, with distinct connectivity patterns. Network activity was simulated for 375 seconds with a 1447 
sampling interval of 5 ms, convolved with the hemodynamic response function and sub-sampled at 750 ms 1448 
to yield 500 simulated time points.  1449 
B. (Top) RFE curves, with classification accuracy as a function of remaining features, for classification 1450 
based on dGC (left) and iGC (right). (Bottom) Maximally discriminative features following RFE based on 1451 
dGC (left) and iGC (right). Entries denote average beta weights across RFE iterations.  1452 
C. RFE curve for two-way classification of each of six tasks (all tasks except Motor) versus rest, based on 1453 
dGC (top) and iGC (bottom). Color conventions are as in Figure 1D. Data points: RFE accuracies; solid 1454 
lines: piecewise linear fits. Vertical dashed line: location of the elbow for each RFE curve.  1455 
D. Task-generic connections following task-versus-resting RFE, based on dGC (left) and iGC (right) 1456 
features, using Shirer et al (2012) 14-network parcellation (details in ED Figure 4-1); each network is 1457 
indicated with a different color and a label. Directed dGC connections are shown as tapered links, broad at 1458 
the source node and narrow at the destination node. Undirected iGC connections are shown as 1459 
bidirectional links between the respective pair of nodes. Colors of the connections represent the color of the 1460 
destination node.  1461 
E. Same as in panel C, but for n-way classification across the six tasks. Color conventions are as in panel 1462 
B.  1463 
F. Same as in panel D, but for task-discriminative connections (see also ED Figure 4-2), which maximally 1464 
discriminated each task from the five others, following n-way RFE, based on dGC features (left) and iGC 1465 
features (right).  Other conventions are the same as in panel C. 1466 
 1467 
 1468 
Figure 5. GC connectivity explains inter-individual variations in behavioral scores. 1469 
A. (Left) Schematic of behavioral score prediction analysis. GC connectivity strengths for each task were 1470 
used as independent factors to predict behavioral scores using linear regression with a leave-one-out 1471 
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approach. 51 different behavioral scores (descriptions in ED Figure 5-1) were predicted, compared against 1472 
observed scores (upper right), and their correlation values plotted as a matrix (lower right).  1473 
B. Exemplar score predictions based on dGC (left panels) and iGC (right panels). In order (from left to 1474 
right): List Sorting score predicted from Working memory task dGC connectivity Picture Vocabulary score 1475 
from Language task dGC connectivity, Endurance score from Motor task iGC connectivity and Reading 1476 
score from Language task iGC connectivity.   1477 
C. (Top) Prediction statistics for selected scores based on dGC connectivity (all scores shown in ED Figure 1478 
5-2). Correlation coefficients (r values) between the predicted and observed scores are plotted in the top 1479 
half of each stem plot, and significance (p values) are plotted in the bottom half. Each score is denoted by a 1480 
different color, and each sub-panel shows predictions based on GC connectivity for a different task; Stems 1481 
with open symbols represent non-significant correlation coefficients, whose corresponding p-values are not 1482 
shown. p values are floored at 10-4 for ease of visualization. (Bottom) Same as in top panel, but predictions 1483 
based on iGC connectivity.  1484 
D. (Top) Inter-subject correlation matrix of composite behavioral scores. Row and column indices: subjects. 1485 
(Bottom)Cumulative distributions (solid lines) and density function estimates (filled area) of correlation 1486 
coefficients between observed and predicted composite scores, for the same subject (yellow) or across 1487 
different subjects (grey). Predictions were based on GC estimates from the relational and working memory 1488 
tasks. p-value: Kolmogorov-Smirnov test. 1489 
 1490 
Table Legend 1491 
Table 1. Statistical Table 1492 
  1493 
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Extended Data Legends 1494 
ED Figure 1-1. Task descriptions. 1495 
Description of fMRI scans and tasks used in the analysis 1496 
ED Figure 1-2. Description of sub-tasks 1497 
ED Figure 1-3. Subject identifiers 1498 
HCP IDs of 1000 subjects whose data was employed in the analysis. Relational processing scans were not 1499 
available for IDs marked in grey 1500 
ED Figure 1-4. Parcellations used in the analysis 1501 
ED Figure 1-5. GC classification accuracies for different parcellations and alternative classifiers 1502 
A. Surface renderings showing the 5 anatomical and functional parcellations employed in this study 1503 
network (ED Figure 1-3). 1504 
B. (Top row) Same as in Figure 1B (main text), but showing two-way task versus resting state leave-one-1505 
out classification accuracies based on each of the five parcellations (panel A), each in one column. 1506 
(Second and third rows) Same as top row, but showing precision (second row) and recall (third row). (Last 1507 
row) Same as top row, but showing K-fold (10-fold) cross-validation accuracies. Other conventions are as 1508 
in Figure 1B (main text).  1509 
C. Same as in Figure 1B (main text), but showing two-way task versus resting state classification 1510 
accuracies obtained using an SVM with an RBF (radial basis function) kernel (y-axis) against a 1511 
conventional SVM (x-axis). Classification accuracies were computed with the Shirer et al (2012) 14-network 1512 
parcellation (2012). Red and blue data: accuracies based on dGC and iGC features, respectively. Dashed 1513 
diagonal line: Line of equality (x=y). 1514 
D. (Top) Two-way classification accuracy for the Working memory task versus Resting state classification, 1515 
as a function of number of scan time points used to estimate GC. Red dots: dGC. Blue dots: iGC. Curves: 1516 
Sigmoid fits. Dashed horizontal line: chance accuracy (0.5). (Bottom) Same as in the top panel, but two-1517 
way classification accuracies for distinguishing between two simulated networks (shown in Fig. 4A, main 1518 
text). Other conventions are the same as in the left panel. 1519 
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ED Figure 1-6. Control analyses 1520 
A. Comparison of average GC connection strengths of all subjects (even rows), and subjects who passed 1521 
all tests of stationarity (odd rows), shown for each task (each column). Each 14x14 matrix depicts 1522 
connections between all pairs of the 14 networks in the Shirer et al parcellation (Shirer et al., 2012). Entry 1523 
in cell (i,j) corresponds to dGC connection from node j (source) to node i (destination) or iGC connections 1524 
between nodes i and j. Source of connection at column, and destination at row.  1525 
B.(Left) Comparison of two-way task versus resting state classification accuracies, for the cohort of all 1526 
subjects (x-axis) vs. for subjects who passed all tests of stationarity (y-axis). Other conventions are the 1527 
same as in ED Figure 1-5C.  (Right) Comparison of n-way classification accuracies across all 7 tasks, for 1528 
all subjects (right bars) and for subjects who passed all tests of stationarity (left bars). Other conventions 1529 
are the same as in Figure 1F (main text).  1530 
C. (Left) Comparison of two-way task versus resting state classification accuracies, without motion 1531 
scrubbing (x-axis) vs. after motion scrubbing (y-axis) for all subjects. (Right) Comparison of n-way 1532 
classification accuracies across all 7 tasks, without motion scrubbing (right bars) and after motion scrubbing 1533 
(left bars) for all subjects. Other conventions are the same as in panel B.  1534 
D. Comparison of dGC connection strengths calculated using 1-stage versus 2-stage methods, for all 1535 
seven tasks and resting state. Each point corresponds to the average strength, across subjects, of each 1536 
one of the 182 dGC connections (panel A). Diagonal line: line of equality (x=y). 1537 
E. Distribution, across all subjects, of correlation coefficients (r values) obtained by correlating 1-stage 1538 
versus 2-stage dGC estimates across connections for each subject. Distribution for each of the seven 1539 
tasks, and resting state are shown in different colors.  1540 
F. Distribution, across all connections, of correlation coefficients (r values) obtained by correlating 1-stage 1541 
versus 2-stage dGC estimates across subjects for each connection. Distribution for each of the seven 1542 
tasks, and resting state are shown in different colors. 1543 
G. Distribution of frame-wise displacement (FD) values (log-scale) across all tasks and resting scans of all 1544 
1000 subjects. Each color denotes one of the seven task (or resting) scans. Dotted line: threshold FD value 1545 
of 0.5mm. For panels A-F, accuracies and connectivity estimates were computed with the Shirer et al 14-1546 
network parcellation (2012).  1547 
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ED Figure 1-7. Number of subjects passing stationarity tests 1548 
ED Figure 3-1. Parameters of simulated networks 1549 
Parameters of 2-node and 9-node networks 1550 
ED Figure 3-2. Relationship between network connectivity, GC and partial correlations 1551 
A. Same as in Figure 3C (middle column panel; main text) except for a network with balanced recurrent 1552 
excitatory (E-E) feedback (Middle). Matrix shows the connections estimated at a sampling interval of 750 1553 
ms (Bottom). Other conventions are the same as Figure 3C (main text).  1554 
B. (Left) Schematic of a two-node network simulated with a discrete time vector autoregressive model. c 1555 
and d denote the strength of internode connections, and a and b denote strength of recurrent connections 1556 
within each node. Here, for simplicity, we assume a=b. (Right, top) Variation of zero-lag covariance (σ12), 1557 
which is the basis of computing PC, with varying values of c+d for three different values of a. Note that σ12 1558 
is zero when c=-d, regardless of a. (Right, bottom) Example simulations of node dynamics for c=-0.2 and 1559 
d=0.2. 1560 
C. Covariation of iGC (blue triangles), PC (filled black circles) and PC covariance (K; open squares) with 1561 
iGC covariance (Y) for simulations with a first-order vector autoregressive (AR) model, with both 1562 
instantaneous and lag-based connectivity (see ED Mathematical Note, Section S3, equation 11 and 1563 
equation 23). Open circles: PC covariance (K) for a system with no lag-based connectivity (AR coefficients 1564 
zero).  1565 
D. (Top) Difference in dGC estimates (ΔdGC) between connection in actual direction and connection in the 1566 
reverse direction, plotted against different standard deviations in onset latencies (σL). Each color denotes 1567 
one particular scenario of differences in onset HRF latencies (see text for details). Columns 1-2: Network A; 1568 
columns 3-4: Network B; odd columns: fast timescale (50 ms) sub-network (ABC); even columns: slow 1569 
timescale (1000 ms) sub-network (DEF) (refer Fig. 4A, main text). (Bottom) Same as in top panel, but for 1570 
iGC estimates. Errobars: standard error of the mean.  1571 
E. (Leftmost column). Ground truth connectivity matrix for the two networks. (Other columns) Same as in 1572 
Figure 4B (main text), but showing RFE curves (top sub-panel) and maximally discriminative features 1573 
following RFE (bottom sub-panel). Rows 1-2: RFE based on dGC features; Rows 3-4: RFE based on iGC 1574 
features. Filled circles: number of features at the “elbow” of each RFE curve. Each column corresponds to 1575 
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one of the four scenarios of onset latency differences (see panel D, and text for details). All panels: HRF 1576 
onsets sampled from a distribution with σL=0.4s. Other conventions are the same as in Figure 4B (main 1577 
text). 1578 
ED Figure 4-1. Network labels in the Shirer et al (2012) 14-network parcellation 1579 
ED Figure 4-2. Task generic and discriminative connections based on partial correlations (PC) 1580 
A. Task-discriminative connections based on dGC (top row), iGC (middle row) and PC (last row).  Other 1581 
conventions are as in ED Figure 1-6A. 1582 
B. (Top) Same as in Figure 4C (main text), but for RFE based on PC. (Bottom) Same as in Figure 4E (main 1583 
text), but for RFE based on PC. 1584 
C. Same as in Figure 4D (main text), but for task-generic connections based on PC. 1585 
D. Same as in Figure 4F (main text), but for task-discriminative connections based on PC. 1586 
ED Figure 5-1. Behavioral scores and descriptions 1587 
ED Figure 5-2. Behavioral score predictions based on GC connectivity strengths 1588 
A. Correlation between predicted and observed behavior scores based on dGC connectivity strengths. 1589 
Rows: Task scans from which GC estimates were derived; columns: behavior scores predicted (key: ED 1590 
Figure 5-1). Red-blue colorscale indexes positive and negative correlations, respectively. Black highlighted 1591 
squares: Significant p-values (p<0.05) following Benjamini-Yekutieli correction for multiple comparisons.  1592 
B. Same as in A, but predictions based on iGC connectivity strengths.  1593 
C. Same as in A, but predictions based on PC connectivity strengths.  1594 
D. Same as in Figure 5D bottom, but cumulative distributions of correlation coefficients, for composite score 1595 
predictions based on GC estimates from each task. Other conventions are the same as in Figure 5D (main 1596 
text). 1597 
ED Mathematical Note  1598 



 

 59 

Extended Data 1 1599 
The MATLAB codes to reproduce the results are available at https://figshare.com/s/9d9131a6780fc8197cf1 1600 
Separate folders correspond to each figure, and subfolders contain scripts for generating each panel in the 1601 
respective figure. The filenames are alphabetically ordered to provide a sequence for running the scripts. 1602 
The Multivariate Granger Causality toolbox (mvgc_v1.0; available at  1603 
http://users.sussex.ac.uk/~lionelb/downloads/mvgc_v1.0.zip ) is a pre-requisite. Data necessary to run the 1604 
scripts (both input and output) are placed in a ‘data’ subfolder within each figure folder. 1605 
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