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Abstract

Transformations between sensory representations are shaped by neural mechanisms at the
cellular and the circuit level. In the insect olfactory system encoding of odor information
undergoes a transition from a dense spatio-temporal population code in the antennal lobe
to a sparse code in the mushroom body. However, the exact mechanisms shaping odor
representations and their role in sensory processing are incompletely identified. Here, we
investigate the transformation from dense to sparse odor representations in a spiking model of
the insect olfactory system, focusing on two ubiquitous neural mechanisms: spike-frequency
adaptation at the cellular level and lateral inhibition at the circuit level. We find that
cellular adaptation is essential for sparse representations in time (temporal sparseness),
while lateral inhibition regulates sparseness in the neuronal space (population sparseness).
The interplay of both mechanisms shapes spatio-temporal odor representations, which are
optimized for discrimination of odors during stimulus onset and offset. Response pattern
correlation across different stimuli showed a non-monotonic dependence on the strength of
lateral inhibition with an optimum at intermediate levels, which is explained by two counter-
acting mechanisms. In addition, we find that odor identity is stored on a prolonged time
scale in the adaptation levels but not in the spiking activity of the principal cells of the

mushroom body, providing a testable hypothesis for the location of the so-called odor trace.

Significance Statement

In trace conditioning experiments, insects, like vertebrates, are able to form an associative
memory between an olfactory stimulus and a temporally separated reward. Forming this
association requires a prolonged odor trace. However, spiking responses in the mushroom
body, the principal site of olfactory learning, are brief and bound to the odor onset (tem-
poral sparseness). We implemented a spiking network model that relies on spike-frequency
adaptation to reproduce temporally sparse responses. We found that odor identity is reliably
encoded in the neurons’ adaptation levels, which are mediated by spike-triggered calcium
influx. Our results suggest that a prolonged odor trace is established in the calcium levels
of the relevant neuronal population. This prediction has found recent experimental support

in the fruit fly.
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Introduction

How nervous systems process sensory information is a key issue in systems neuroscience.
Animals are required to rapidly identify behaviorally relevant stimulus features in a rich
and dynamic sensory environment, and neural computation in sensory pathways is tailored
to this need. Sparse stimulus encoding has been identified as an essential feature of sensory
processing in higher brain areas in both, invertebrate (Perez-Orive et al., 2002; Szyszka
et al., 2005; Ito et al., 2008; Turner et al., 2008; Honegger et al., 2011) and vertebrate
(Hromadka et al., 2008; Vinje and Gallant, 2000; Wolfe et al., 2010; Isaacson, 2010) systems.
Sparse representations provide an economical means of neural information coding (Laughlin
and Sejnowski, 2003; Faisal et al., 2008) where information is represented by only a small
fraction of all neurons (population sparseness) and each activated neuron generates only few
action potentials (temporal sparseness) for a highly specific stimulus configuration (lifetime

sparseness) (Kloppenburg and Nawrot, 2014).

The nervous systems of insects have limited neuronal resources and thus require particularly
efficient coding strategies. The insect olfactory system is analogue to the vertebrate olfactory
system and has become a popular model system for the emergence of a sparse code. We
use a computational approach to study the transformation from a dense olfactory code in
the sensory periphery to a sparse code in the mushroom body (MB), a central structure of
the insect brain important for multimodal sensory integration and memory formation. A
number of recent studies emphasized the role of sparse coding in the MB. In locusts, sparse
responses were shown to convey temporal stimulus information (Gupta and Stopfer, 2012).
In Drosophila, sparse coding was found to reduce overlap between odor representations and
facilitate their discrimination (Lin et al., 2014). Consequently, sparse coding is an essential
feature of plasticity models for olfactory learning in insects (Huerta and Nowotny, 2009;
Wessnitzer et al., 2012; Ardin et al., 2016; Peng and Chittka, 2016; Miiller et al., 2017)
and theoretical work has emphasized the analogy of the transformation from a dense code
in projection neurons (PNs) to a sparse code in Kenyon cells (KCs) with dimensionality
expansion in machine learning methods (Huerta and Nowotny, 2009; Schmuker et al., 2014;

Mosqueiro and Huerta, 2014).

Central to our modeling approach are two fundamental mechanisms of neural computation
that are ubiquitous in the nervous systems of invertebrates and vertebrates. Spike-frequency
adaptation (SFA) is a cellular mechanism that has been suggested to support efficient and

sparse coding and to reduce variability of sensory representation (Benda and Herz, 2003;
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Farkhooi et al., 2011, 2013). Lateral inhibition is a basic circuit design principle that ex-
ists in different sensory systems, mediates contrast enhancement and facilitates stimulus
discrimination (Kuffler, 1953; Hartline et al., 1956; Fuchs and Brown, 1984; Oswald et al.,
2006). Both mechanisms are evident in the insect olfactory system. Responses of olfactory
receptor neurons (ORNs), local interneurons (LNs) and PNs in the antennal lobe (AL) show
stimulus adaptation (Nagel and Wilson, 2011; Bhandawat et al., 2007; Krofczik et al., 2009)
and strong adaptation currents have been identified in KCs (Wiistenberg et al., 2004; Dem-
mer and Kloppenburg, 2009). Lateral inhibition in the AL is mediated by inhibitory LNs
(Wilson, 2013). It is crucial for establishing the population code at the level of PNs (Wilson
et al., 2004; Olsen et al., 2010; Krofczik et al., 2009), for gain control (Stopfer et al., 2003;
Olsen and Wilson, 2008), for decorrelation of odor representations (Wilson and Laurent,
2005), and for mixture interactions (Krofczik et al., 2009; Deisig et al., 2010; Capurro et al.,
2012).

Taken together, we find that lateral inhibition and spike-frequency adaptation account for
the transformation from a dense to sparse coding, decorrelate odor representations, and

facilitate precise temporal responses on short and long time scales.

Methods

Spiking network model

A spiking network model with 3 layers (ORN, AL and MB, cf. Fig. 1A) was simulated using
Brian 1.4 (Goodman and Brette, 2009). The model includes 35 ORN types, 284 ORNSs per
type, 35 PNs and LNs, and 1000 KCs. Each of the 35 LN-PN pairs constitute a glomerulus.
Across insect species, the number of glomeruli varies from a few tens to several hundred, we
based our model on the lower end of this range. The ratio between the number of PNs and

KCs is roughly based on the data available in Drosophila (Turner et al., 2008).

The connections between the 3 network layers (ORNs, AL, MB) are feed-forward and exci-
tatory. Within the AL, LNs provide lateral inhibition to PNs. ORNs provide input to PNs
and LNs. All ORNSs of the same receptor type target the same, single glomerulus. Every LN
has inhibitory connections with all PNs, mediating unspecific lateral inhibition within the
AL. Every KC receives 12 PN inputs on average (Szyszka et al., 2005; Turner et al., 2008).
Connections between PNs and KCs were randomly drawn. Synaptic weights between all

neurons are given in Table 1 for four different simulation conditions.
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| | (1) | (i) ‘ (iii) | (iv) ‘
wor, | 1 nS 1 nS 1 nS 1 nS
wop | 1nS | 1.12nS | 1 nS | 1.12nS
wrp | 0nS 3 nS 0 nS 3 nS
wpr | 5 nS 5nS 5nS 5nS

Tab. 1 — Synaptic weights for wor, (ORN-LN), wop (ORN-PN), wyp (LN-PN) and wpi (PN-KC) con-
nections in different simulation conditions ((i)-(iv)).

Responses to a set of 7 stimuli, 50 trials each, and 3000 ms trial duration were simulated.
Stimuli had a duration of 1000 ms and were presented at t=1000 ms. All neurons were
initialized with membrane voltage set to the leak potential and the adaptation current set
to zero. In order to achieve steady state conditions , simulations were pre-run for 2000 ms

without recording the activity.

Receptor input

ORNSs were modeled as Poisson spike generators, with evoked firing determined by a receptor
response profile and a spontaneous baseline. In the absence of stimulus the spontaneous firing
rate of all ORNs is set to rgG = 20 Hz. In the presence of a stimulus the ORN firing rate

is given by the summation of the spontaneous rate and an activation Arg:

r8Y + Arg  for tyar <t < toop

(1)

rO (t) =

BG
o else

The intensity (amplitude) of ORN activation Arg is given by the receptor response profile
that depends on receptor type and stimulus identity. Receptor activation follows a sine

profile over half a period (0...7):

sin(zm) for0<az <1
Arp =40 Hz )

0 else

(kRT — ks) mod NRT
Njy+1 ’

where kg is the stimulus index, krp the receptor type index, Nrpr = 35 is the total number
of receptor types and N, = 11 is the number of receptor types activated by a stimulus.
Given these parameters 35 different odor responses can be simulated (kg = 0...34). This

profile ensures that odor responses are evenly distributed across receptor types, while the
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choice of the sine shape was arbitrary. If the difference between the index of two stimuli
Ak, is small, those two stimuli are called similar, because they elicit largely overlapping

responses. For Akg > 12 the responses do not overlap representing dissimilar stimuli.

Neuron model

PNs, LNs, and KCs were modeled as leaky integrate-and-fire neurons with conductance-
based synapses and a spike-triggered adaptation (Treves, 1993) current I4. We use the
same set of cell parameters for all neuron types (cf. Table 2). This supports the generic
character of our model and ensures that effects reported in this study are not a result of
neuron-type specific parameters. The membrane potential of the i-th neuron from the PN,

LN, and KC populations obeys:

Cm%”f = g1 (BL—v)+9°" (Bg — o) + ¢*F (Er —of) — I, (2)
d

emgptt = gn (B =) + 0" (B —vf) — I, 3)

CWL%%K = g (BL—vf)+g"" (EE_%K)—IZA. ()

Membrane potentials follow a fire-and-reset rule. The fire-and-reset rule defines the spike
trains of PNs, LNs and KCs denoted by 22 =3 50 (t — tﬁ) for the i-th neuron of type B.
The spike trains of the ORN neurons are generated by a Poisson process with spike times

tO

ij for the j-th receptor neuron of the k-th receptor type:

No/Ngiu Ngiu

()= D Y (-1t (5)
J k

Synaptic conductances g; obey:

d

TE%Q@'OP = —gP" + rpwopad (1), (6)
d

B agio L= —gP% + rpworaf (t), (7)
d NGiu

L _ LP L
159 = —g~ +Trwrp 2]: xj (), (8)
Ngiu

d
TEagiPK = =g 4 Y Wyal (t). 9)
7
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Adaptation currents I obey:

TA%J;‘ = I} + TaAAT x; (t) + 1 /27403E (1) . (10)
where 74 is the time constant and AI? the spike-triggered increase of the adaptation cur-
rent. This phenomenological model of spike-triggered adaptation is biologically motivated
by calcium-dependent outward potassium currents. Each action potential leads to an influx
of a fixed amount of calcium and intracellular calcium is removed only slowly, resulting in
an exponential decay of the intracellular calcium level. The last term reflects the diffusion
approximation of channel noise (Schwalger et al., 2010), where & (t) represents Gaussian,

white noise. The variance of the adaptation currents I is given by o2.

[ Neuron Parameters \ \ \

membrane capacitance Cm 289.5 pF
leak conductance gL 28.95 nS
leak potential Er -70 mV
reset potential Vgr -70 mV
threshold potential Vi -57 mV
refractory time Tref 5 ms

Synaptic Parameters

base synaptic weight wo 1 nS
PN-KC synaptic weight WpK 5 nS
excitatory synaptic potential | Fg 0 mV
excitatory time constant TR 2 ms
inhibitory synaptic potential | FEr -75 mV
inhibitory time constant TI 10 ms

Adaptation Parameters

spike triggered current AI* | 0.132 nA
adaptation time constant TA 389 ms
adaptation current variance o2 87.1 pA?

Tab. 2 — Parameters of the neuron model

Simulation conditions

Four different scenarios were simulated: without lateral inhibition and cellular adaptation
(i), with lateral inhibition (ii), with cellular adaptation (iii) and with lateral inhibition and
cellular adaptation (iv). We quantified the strength of lateral inhibition with a multiplicative

factor «, that set by the synaptic weight wrp in units of wor:

wLp = Q. (11)
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Lateral inhibition is a network effect, conveyed by synaptic transmission, and was therefore
compensated by scaling of synaptic weights. Weight scaling provides compensation during
spontaneous as well as evoked activity. The scenario without lateral inhibition acts as a

control condition, which deliberately does not include slow inhibitory synaptic dynamics.

In scenarios without cellular adaptation ((i), (ii)) the dynamic adaptation current was re-
placed by a compensatory static current I{“ = Ip = 0.38 nA in the PN and LN populations,
whereas in the KC population it was set to zero IiA = 0 nA. In scenarios without lateral
inhibition ((i),(iii)) the inhibitory weights wrp were set to zero by setting o = 0. The
synaptic weight wor, was adjusted to achieve a spontaneous LN firing rate of ~ 8 Hz that is

well within the experimentally observed range (Perez-Orive et al., 2002; Chou et al., 2010).

In all scenarios the spontaneous firing rate of PNs was set to ~ 8 Hz (Perez-Orive et al.,
2002; Chou et al., 2010; Meyer et al., 2013), by adjusting the synaptic weights between the
ORNs and the PNs wop.

Code Accessibility

Script files for model simulation are accessible at:
https://github.com/nawrotlab /SparseCodingInSpikingInsectModel.
Running the simulation requires Python 2.7, Brian 1.4 and numpy 1.11. All code was run

on a x86-64 Linux machine.

run_IF.py, run_salF.py - simulation scripts. Used to run the model in the absence and
presence of spike-frequency adaptation, respectively. All paramaters are contained within
the respective scripts. Runing the script file will save simulation results to file in the python

pickle format.

sim_code.py - code of the neuron, input and network models.

Data analysis

Population firing rate

The spike count of the i-th neuron, in the k-th time bin with size At is given by:
kAt

Nk = / dt x; (t) . (12)
(k=1)At
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Population firing rates were obtained from the spike count in a small time bin (At = 10 ms)

1
Pk = Kt <ni,k>i1
where (.), indicates the population average. In addition population firing rates were averaged

over 50 trials.

Sparseness measure

Sparseness of evoked KC responses was quantified by the widely used modified Treves—Rolls

measure (Treves and Rolls, 1991; Willmore and Tolhurst, 2001):

where a; indicates either the distribution of KC spike counts (population sparseness, for i
between 1 and 1000), or binned KC population firing rate (temporal sparseness, At = 50 ms,
for i between 1 and 20). The sparseness measure takes values between zero and one, high

values indicate sparse responses. Both measures were averaged over 50 trials.

Pattern overlap

We define the activation pattern for a given odor by a vector containing the evoked spike
count for every neuron in a population. Pattern overlap between two similar odors A and B

was calculated using an expression formally equivalent to Pearson’s correlation coefficient:

Npop D23 Mk Mk = 33 ik D5 Mik
2 2’
\/NPOP 3oind, — (2 max) \/Np0p Soimiy, — (32 mik)

0ABk = (13)

where n; and myy are the spike counts of the i-th neuron, k-th trial, in response to odor A
and odor B (Akg = 2) respectively, and N, is the number of neurons in the population.
The correlation coefficient was calculated both for the PN and the KC population, and

averaged over 50 trials and 5 network realizations with randomly drawn PN-KC connectivity.

In addition, we consider trial-averaged activation patterns n; = ﬁ Zk ni and m; =
ﬁ >k Mik. Based on these trial-averaged patterns, the overlap between those patterns

is given by:
Npop Zz it — Zz & Ej 7

e \/NPOP Ez ﬁzz - (Zz ﬁi)2\/NP0P Zz mzZ - (Zz mi)2'

(14)
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The overlap between the trial-averaged patterns was calculated both for the PN and the
KC population, and averaged over 5 network realizations with randomly drawn PN-KC

connectivity.

Lateral inhibition scaling with parameter o In order to test if the decrease of overlap was
robust for different strengths of lateral inhibition, the synaptic weight wop was adjusted as

follows:

wop = wo (1+ ab), (15)

where b was estimated from simulations under the condition that for a range of lateral

inhibition strengths (« € [0, 9]) the spontaneous PN firing rate was close to 8 Hz.

Decoding analysis

Odor identity was recovered from odor representations by Gaussian naive Bayes classification
(Rish, 2001), using the scikit-learn package (Pedregosa et al., 2012). Training and testing
data consisted of simulated odor representations for a set of seven stimuli (ks = 0,2,...,12),
50 trials each. Classification was repeated for every time bin (At = 50 ms, 60 bins total)
for PN spike counts, KC spike counts, or amplitudes of KC adaptations currents. Data was
divided into a training and testing set using a 3-fold cross-validation procedure. Decoding
accuracy was estimated by the mazimum a posteriori method and is given by the fraction

of successful classification trials divided by the total number of test trials.

Results

Spiking network model of the olfactory pathway with lateral inhibition

and spike-frequency adaptation

We designed a spiking network model that reduces the complexity of the insect olfactory pro-
cessing pathway to a simplified three-layer network (Fig. 1A) that expresses the structural
commonality across different insect species: an input layer of olfactory receptor neurons
(ORNS), subdivided into different receptor types, the AL, a first order olfactory processing
center, and the MB. Furthermore, the model combines two essential computational elements:

(i) lateral inhibition in the AL, and (ii) spike-frequency adaptation in the AL and the MB.
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The processing between the layers is based on excitatory feedforward connections. Converg-
ing receptor input from all ORNs of one type is received by spatially confined subunits of
the AL called glomeruli. In our model, glomeruli are represented by a single uniglomerular
PN and a single inhibitory local interneuron (LN). In the MB, each KC receives on average
12 PN inputs (Szyszka et al., 2005), based on a random connectivity between the AL and
the MB (Caron et al., 2013). All neurons in the AL and the MB were modeled as leaky
integrate-and-fire neurons with spike-triggered adaptation. Based on evidence from theo-
retical (Schwalger et al., 2010) and experimental studies (Fisch et al., 2012), adaptation
channels cause slow fluctuations. We accounted for this fact by simulating channel noise in

the slow adaptation currents (cf. Methods).

We simulated ORN responses to different odor stimuli. Single ORN responses were modeled
in the form of Poisson spike trains with firing rates dependent on the receptor type and
stimulus identity. The relationship is set by a receptor response profile (Fig. 1B left) which
determines ORN firing rates of all receptor types for a given stimulus. Responses to different
stimuli are generated by shifting the response profile along the receptor space. The offset
between any two stimuli reflects their dissimilarity - similar stimuli activate overlapping sets
of olfactory receptors, whereas dissimilar stimuli activate largely disjoint sets of receptors.

Stimuli were presented for one second, reflected by a step-like increase of ORN firing rate.

In the absence of stimuli, ORNs fired with a rate of 20 Hz reflecting their spontaneous
activation (Nagel and Wilson, 2011). Both LNs and PNs receive direct ORN input. We
tuned synaptic weights of the model to match physiologically observed firing rates of PNs
and LNs, which are both about 8 Hz (Perez-Orive et al., 2002; Chou et al., 2010; Meyer
et al., 2013) (for details see Methods). Lateral inhibition and spike-frequency adaptation,
the neural mechanisms under investigation, both provide an inhibitory contribution to a
neuron’s total input. In our model, spike-frequency adaptation is a cellular mechanism
mediated by a slow, spike-triggered, hyperpolarizing current in LNs;, PNs and KCs, whereas
a global lateral inhibition in the AL is mediated by LNs with fast synapses that receive input

from a single ORN type and inhibit all PNs in a uniform fashion.
Odor responses at the AL and the MB level of the spiking network
model

Figure 1B illustrates PN and KC responses to one odor. PNs driven by the stimulus showed

a strong transient response at the stimulus onset, a pronounced adaptation during the stimu-
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Fig. 1 — Olfactory network model structure and odor response. (A) Network structure resembles
the insect olfactory pathway with three main processing stages. In each glomerulus (dashed circles), a PN
(blue) and a LN receive convergent ORN input (red) by one receptor type (RT). Each LN provides unspecific
lateral inhibition to all PNs. KCs (orange) receive on average 12 inputs from randomly chosen PNs. (B)
Receptor response profile (red bars; AL input) depicts the evoked firing rate for each ORN type. Evoked PN
spike counts (dashed blue line; AL output) follow the ORN activation pattern. Raster plots depict single
trial responses of PNs (blue) and KCs (orange). Presentation of an odor during 1000 ms is indicated by the
shaded area. Population firing rates were obtained by averaging over 50 trials. PN spikes display a temporal
structure that includes evoked transient responses at stimulus on- and offset, and a pronounced inhibitory
post-odor response. PN population rate was averaged over PNs showing “on” responses (blue) and “off”
responses (cyan). KC spikes were temporally sparse with majority of the spikes occurring at the stimulus
onset. Supporting Fig. 1-1 and Fig. 1-2 (available online) show odor responses with adaptation disabled in
the KC and PN population, respectively.

lus, and a period of silence after stimulus offset due to the slow decay of the strong adaptation
current. This resembles the typical phasic-tonic response patterns of PNs (Bhandawat et al.,

2007; Nawrot, 2012; Meyer et al., 2013).

PNs receiving direct input from ORNSs activated by the stimulus, showed a strong response
at the stimulus onset. Interestingly, the population firing rate over these PNs revealed that
the “on” response follows a biphasic profile with an early and a late component. In addition,
PNs with no direct input from stimulated ORNs showed an “off” response at the stimulus
offset. Non-driven PNs were suppressed during a short period after stimulus onset, and
showed reduced firing during the tonic response. The PN population response consisted of
complex activations of individual PNs with phases of excitation and inhibition. Hence, in

the AL, odors were represented as spatio-temporal spike patterns across the PN population.

At the level of the MB, KCs typically show none or very little spiking during spontaneous
activity and respond to odors with only a few spikes in a temporally sparse manner (Perez-
Orive et al., 2002; Ito et al., 2008; Turner et al., 2008). In our model, synaptic weights
between PNs and KCs were tuned to match the very low probability of spontaneous firing.
Resulting KC responses were temporally sparse. Due to the negative feedback mediated
by strong spike-frequency adaptation, most KC spikes were confined to stimulus onset.
Notably, we also found that KCs sometimes exhibited “off” responses. These KC “off” spikes
occurred very rarely, because they are driven by the PN “off” response, which is much weaker
compared to the PN “on” response. Timing and amplitude of temporally sparse responses

are in good quantitative agreement with in vivo KC recordings (Ito et al., 2008).

Dense and dynamic odor representations in the AL

In order to explore effects of lateral inhibition and cellular adaptation on stimulus represen-

tations, we simulated odor responses in conditions in which we separately deactivated one
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or both mechanisms. Lateral inhibition was deactivated by setting the inhibitory synaptic
weight between LNs and PNs to zero and simultaneously reducing the value of the excita-
tory synaptic weight between ORNs and PNs, such that the spontaneous firing rate of 8 Hz
was kept. Adaptation was deactivated by replacing the dynamic adaptation current by a

constant current with an amplitude that maintained the average spontaneous firing rate.

Figure 2 illustrates the separate effects of lateral inhibition and adaptation on odor responses
in the PN population. In all conditions, PNs fired spontaneously before stimulation due to
spontaneous ORN activation. PNs driven by stimulation receive input from ORNs that
were activated by the presented odor. In the absence of adaptation and lateral inhibition
(Fig. 2 (i)) the stimulus response followed the step-like stimulation and showed no further
temporal structure. In the presence of lateral inhibition (Fig. 2 (ii)), PNs not driven by the
stimulus were strongly suppressed. Adaptation alone (Fig. 2 (iii)) resulted in a phasic-tonic
response profile with a high phasic peak amplitude immediately after stimulus onset. In
the presence of both mechanisms (Fig. 2 (iv)) we observed the characteristic phasic-tonic
PN response. The transient response was reduced in peak amplitude, and, interestingly,
followed a biphasic profile with an early and a late component.

Fig. 2 — Lateral inhibition and cellular adaptation shape PN odor response dynamics. (A)
Single trial PN spiking responses simulated with (right column) and without (left column) lateral inhibition,
and with (bottom row) and without (top row) adaptation. Presentation of a single odor during 1000 ms is
indicated by the shaded area. With adaptation PNs display a temporal structure that includes a transient
and a tonic response, and a pronounced inhibitory post-odor response. (B) Trial averaged population firing
rate: PNs driven by stimulation (blue) and remaining PNs (cyan). Panels (i)-(iv) indicate presence and
absence of lateral inhibition and adaptation as in (A). In the presence of lateral inhibition firing rates
during stimulation are reduced. In the presence of lateral inhibition and adaptation (iv) PNs show either

transient “on” responses (blue) or “off” responses (cyan). Panels A (iv) and B (iv) are reproduced in Fig.
1B. Supporting Fig. 2-1 (available online) shows PN tuning profiles and input-output relation.

In our model, the interaction of lateral inhibition and the intrinsic adaptation currents in LNs
and PNs accounts for biphasic PN responses. Because LNs are adapting, lateral inhibition
is strongest at stimulus onset. Most PNs were initially suppressed and showed a slightly
delayed response, whereas the initial response of PNs with strong input (early component)
was not affected. Fast and delayed PN responses have also been found experimentally in
the honeybee (Strube-Bloss et al., 2012). Model evidence for the interplay of cellular and
network mechanisms behind biphasic PN responses was found in the pheromone system of

the moth (Belmabrouk et al., 2011).
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Spike-frequency adaptation supports temporal sparseness in the MB

To isolate the contributions of adaptation and lateral inhibition (the latter present only
at the AL level) to odor responses at the MB level, we again tested the four conditions
by deactivating one or both mechanisms. In all four conditions, KCs were almost silent
and spiked only sporadically during spontaneous activity, whereas amplitude and temporal

profile of their odor response differed across conditions (Fig. 3).

In the presence of adaptation we observed temporally sparse responses (Fig. 3 (iii)-(iv)).
KCs typically responded with only 1-3 spikes (mean spikes per responding KC were slightly
above one, compare T in Fig. 3B (iii),(iv)). Due to the negative feedback mediated by strong

spike-frequency adaptation, most KC spikes were confined to stimulus onset.

In the absence of adaptation and regardless of the presence (Fig. 3 (i)) or absence (Fig. 3
(ii)) of lateral inhibition, responding KCs fired throughout stimulation, because they received
persistently strong input from PNs. Such persistent KC responses are in disagreement with
experimental observations (Perez-Orive et al., 2002; Ito et al., 2008; Turner et al., 2008).

Fig. 3 — Odor response dynamics of the KC population. Figure layout as in Fig. 2. (A) Single
trial population spike raster responses. (B) Trial averaged KC population firing rate. Numbers to the
right indicate the fraction of activated KCs (n,) and the mean number of spikes per activated KC during
stimulation (Z). Without adaptation (i,ii) KCs spike throughout stimulation because PN drive is strong and
persistent. The fraction of activated KCs drops in the presence of lateral inhibition (ii,iv). With adaptation
(iii,iv) most of KC spikes are confined to the stimulus onset, indicating temporally sparse responses. We

note that spontaneous KC activity is extremely low (0.03 Hz) in accordance with experimental results (Ito
et al., 2008). Panels A (iv) and B (iv) are reproduced in Fig. 1B.

We quantified temporal sparseness of KC responses by calculating a measure modified from
(Treves and Rolls 1991, cf. Methods). Comparison of temporal sparseness across the four
conditions confirms that KC responses were temporally sparse only in the presence of adap-
tation whereas lateral inhibition had no effect on temporal sparseness (Fig. 4A). Selective
absence of adaptation in the KC population (supporting Fig. 1-1) did not have an effect on
KC temporal sparseness (supporting Fig. 4-1A). This is due to high KC spiking threshold
that requires strong input and ensures sparse responses. Selective absence of adaptation in
the PN population (supporting Fig. 1-2) led to persistent tonic KC responses, in addition
to the onset KC responses. This is due to strong tonic PN input leading to reduced KC

temporal sparseness.
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Fig. 4 — Quantification of temporal and population sparseness in the KC population. Sparseness
was measured in the absence (o = 0) and presence (o = 3) of lateral inhibition, and the presence (black
bars) and absence (gray bars) of spike-frequency adaptation. The sparseness measure was averaged over 50
trials. Error bars indicate standard deviation. A value of one corresponds to maximally sparse responses.
(A) Adaptation promotes temporal sparseness. (B) Lateral inhibition in the AL promotes KC population
sparseness. Supporting Fig. 4-1 (available online) shows temporal sparseness when spike-frequency adapta-
tion was disabled in the PN or KC population, and population sparseness for different numbers of PN inputs
per KC.

Lateral inhibition supports population sparseness in the MB

We observed that the fraction of responding KCs was considerably lower in the presence of
lateral inhibition (compare n, across panels in Fig. 3B). We recall that lateral inhibition in
our model is acting on PNs. The transient PN population rate response showed a biphasic
peak in the presence of lateral inhibition. Effectively, the transient PN response was broad-
ened in time and its amplitude was reduced (compare Fig. 2B (iii),(iv)). As a result, KCs
received lower peak input from PNs. How does this affect KC responses on a population

level?

We visualized MB odor representations with activation patterns obtained by arranging KC
spike counts evoked by two similar odors on a 30x30 grid in arbitrary order (Fig. 5A). In the
absence of lateral inhibition (Fig. 5A top), a majority of the KC population was activated
by both tested odors Each of the 1000 KCs receives input from, on average, 12 PNs and thus
from about one third of the total PN population. KCs are readily activated by the strong PN
input within a short time window following stimulus onset. Matching experimental results,
KCs responded with 1-3 spikes. Turner et al. (2008) counted 2.2 - 4.9 KC response spikes in
Drosophila in-vivo intracellular recordings. Using extracellular single unit recordings, (Ito
et al., 2008) reported that moth KCs typically respond with a single spike and a maximum
of 5 spikes. These numbers correspond to the apparent KC responses in the locust displayed

in Broome et al. (2006).

In the presence of lateral inhibition (Fig. 5A bottom), the fraction of activated KCs was
reduced substantially (KCs activated, trial averaged: 9%, std: 3%). Again, this matches
well the experimentally reported fraction of stimulus activated KCs in the range of 5-10% as
measured in Drosophila (Turner et al., 2008; Honegger et al., 2011) and 6-11% in the locust
(Perez-Orive et al., 2002; Broome et al., 2006). In our model, due to the lower peak input
from PNs, only KCs with large numbers of PN inputs are likely to be activated. Therefore the
KC population responds more selectively. The range of individual KC responses (1-3 spikes)

was not affected. These activation patterns demonstrate that the MB odor representations
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are sparse on a population level, as each odor is represented by the activity of a small fraction
of the KC population.

Fig. 5 — Lateral inhibition in the AL facilitates population sparseness and reduces pattern
correlation in the MB. Spike counts (single trial) of 900 randomly selected KCs in response to two
similar odors (“Odor A” and “Odor B”) arranged on a 30x30 grid in the absence (top row) and in the
presence (bottom row) of lateral inhibition. Inactive KCs are shown in black. (4) In the absence of lateral
inhibition KCs readily responded to both odors, resulting in an activation pattern where most KCs are active.
In the presence of lateral inhibition both odors evoked sparse KC activation patterns. (B) Superposition
of responses to the two odors. KCs that were activated by both odors are indicated by hot colors (color
bar denotes spike count of the stronger response). KCs that were activated exclusively by one of the two
odors are indicated in gray. The fraction of KCs that show overlapping responses is reduced in the presence
of lateral inhibition. (C) Pattern correlation between the single trial responses in (A) to the two odors
obtained for PN (blue) and KC (orange) spikes counts, in the absence (o = 0) and presence (a = 3) of
lateral inhibition. Dashed line indicates pattern correlation of the input (ORNs). Pattern correlation was

retained at the AL and reduced at the MB level. Lateral inhibition in the AL reduced pattern correlation
in KCs but not in PNs.

To quantify population sparseness of odor representations in the MB, we again calculated a
sparseness measure (cf. Methods). Population sparseness increased in the presence of lateral
inhibition, independent of spike-frequency adaptation (Fig. 4B). In the presence of lateral
inhibition and spike-frequency adaptation, both population and temporal sparseness were in
qualitative and quantitative agreement with experimental findings (Perez-Orive et al., 2002;
Szyszka et al., 2005; Ito et al., 2008; Turner et al., 2008). We note that population sparseness
also depends on the connectivity parameters of the model (see Discussion). In particular, in-
creasing the average number of PN inputs per KC decreased population sparseness, whereas
reducing this number resulted in an increase of population sparseness (cf. supporting Fig.
4-1). However, lateral inhibition has a dominant effect on population sparseness, irrespective
of the PN-KC connectivity (cf. supporting Fig. 4-1). Taken together, odor representations
at the MB level were characterized by a small fraction of the KC population responding

with a small number of spikes.

Decorrelation of odor representations between AL and MB

In our model, lateral inhibition in the AL increased population sparseness of MB odor
representations. Does an increased KC population sparseness lead to less overlap between
MB odor representations? We visualized the overlap between odor representations in the
MB by overlaying KC activation patterns in response to two similar odors (Fig. 5B). KCs
responding exclusively to odor A or odor B are shown in gray, whereas KCs responding
to both odors are color coded. With lateral inhibition (Fig. 5B bottom), most of the
KC responses were unique to odor A or odor B and only few KCs were activated by both

odors. In contrast, with lateral inhibition deactivated (Fig. 5B top), the ratio of KCs with
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unique responses to the total number of activated cells was low, indicating highly overlapping
responses. We quantified the overlap between odor representations evoked by two similar
odors in the PN and the KC population. To this end, we calculated an overlap measure
(formally equivalent to Pearson’s correlation coefficient, cf. Methods) between spike count
patterns evoked by odors A and B (Fig. 5C). Interestingly, PNs retained the overlap of the
input, independent of lateral inhibition. In contrast, KC representations showed a reduced

overlap that decreased even further in the presence of lateral inhibition.

We tested how scaling of the lateral inhibition strength affected the pattern overlap in PN
and KC odor representations. To this end, we varied the strength of lateral inhibition
() in the AL by increasing the strength of inhibitory synapses and adjusting feedforward
weights (see Methods). In addition, we calculated pattern correlations in the absence of
adaptation. As before, pattern correlation was calculated for two similar odors that activated
an overlapping set of receptors. In the absence of adaptation, lateral inhibition decorrelated
odor representations in both populations (Fig. 6B). However, for increasing strength of
lateral inhibition this leads to an unphysiological regime with unrealistic low fraction of
KCs that show a response (supporting Fig. 6-1B). In the presence of adaptation, increasing
lateral inhibition had different effects on the PN and KC population (Fig. 6A). In PNs
the correlation of the input was retained for all tested values of lateral inhibition. In KCs
pattern correlation first decreased for weak to moderate lateral inhibition strength but then
increased for strong lateral inhibition. For an intermediate strength of the inhibitory weights
the pattern correlation between KC responses to similar odors attained a minimal value.
For comparison, the bottom panels of Fig. 6 show the overlap g between the trial-averaged
activation patterns, both in the presence (Fig. 6C) and absence (Fig. 6D) of adaptation. For
PN representations both measures (¢ and g), indicate the same overlap (compare blue lines
in (Fig. 6AB and 6CD). For KC representations, the measure based on averaged spike counts
(0) is generally higher, whereas the minimum for intermediate strength of lateral inhibition is
shallower (orange line in 6C). Overlap based on spike count patterns recorded in single trials
decreases when responses are subject to trial-to-trial variability. In contrast, by averaging
the patterns first, the effect of trial-to-trial variability is reduced. The comparison of both
overlap measures indicates that in our model KC representations are more variable across

trials compared with PN representations.

What is the explanation for the observed minimum in pattern overlap? The minimum of

pattern overlap for a« = 3 coincides with the minimum of the fraction of activated KCs
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(supporting Fig. 6-1). A lower fraction of responding KCs can be understood as increased
selectivity of KC responses. Both can be linked to changes of the PN input with two
counteracting effects. For low strengths of lateral inhibition the amplitude of transient PN
input decreases with lateral inhibition due to temporal dispersion of response spikes across
the PN population (cf. Fig. 2B (iv)). KC selectivity increases, whereas pattern overlap

decreases.

The increase of pattern overlap for o« > 4 is caused by common noise in KCs. The reason
for the common noise are cross-correlations of PN output spike-trains. Their mean pairwise
cross-correlation is zero in the absence of inhibition, and increases with a (cf. supporting
Fig. 6-2). Due to increased cross-correlation of their inputs, KCs are more easily activated.
However for a > 4, KC responses are increasingly stimulus unspecific due to common noise
and overlapping inputs. Taken together, for weak to intermediate lateral inhibition KC
selectivity increases, responses remain stimulus specific and become more sparse. For strong
lateral inhibition (o > 4 ), the fraction of activated KCs increases as KC responses become

more unspecific, driven by common noise.

In general, a reduction of pattern correlation from PN to KC representations is characteristic
for the insect MB (Laurent, 2002). Furthermore low overlap between KC representations
has been found to facilitate discrimination of odors (Campbell et al., 2013). We therefore
choose the intermediate strength of the inhibitory weights (o = 3) as a reference point in

our model.

Fig. 6 — Pattern correlation in the antennal lobe and the mushroom body depend on lateral
inhibition strength «. The correlation coefficient p4p between the response patterns to two similar odors
was calculated and averaged over 50 trials and 5 network realizations for PNs (blue) and KCs (orange).
Error bars indicate standard deviation over trials and network realizations. Pattern correlation of the input
is indicated by the dashed line. Input correlation is high because similar odors activate largely overlapping
set of receptors. (A) In the presence of adaptation, pattern correlation in PNs (blue) stays close to the
input correlation for all values of lateral inhibition strength. In KCs (orange) the correlation decreases
for small values of lateral inhibition strength, and increases for large values of lateral inhibition strength.
Pattern correlation in KCs is minimal for « = 3. (B) In the absence of adaptation, pattern correlation
decreases with the lateral inhibition strength both in PNs and KCs. The decrease is stronger in KCs. (CD)
Pattern correlation g4 was calculated based on evoked, trial-averaged spike counts in the presence (C) and
absence (D) of lateral inhibition. The correlation coefficient between the trial-averaged response patterns
to two similar odors was calculated and averaged over 5 network realizations. Error bars indicate standard
deviation over network realizations. In the presence of adaptation (C) the overlap between trial-averaged
KC representations of two similar odors (orange) shows a minimum for intermediate strengths of lateral
inhibition (1 < o < 3). At the minimum, the KC overlap is below the overlap between trial-averaged
PN representations. In the absence of adaptation the overlap between trial-averaged KC representations
is generally lower than the overlap between trial-averaged PN representations for all strengths of lateral
inhibition. Supporting Fig. 6-1 and Fig. 6-2 (available online) show the mean fraction of activated KCs and
mean pairwise KC cross-correlation, respectively.
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Odor encoding on short and long time scales

Next, we tested if in our model the information about stimulus identity is contained in AL
and MB odor representations by performing a decoding analysis in subsequent time bins of
50 ms (cf. Methods). In PNs decoding accuracy peaked during stimulus on- and offset (Fig.
7A). Both peaks coincide with a state of transient network activity caused by the odor on-
or offset. The “on” and the “off” responsive PNs establish odor representations optimized for
discrimination. After stimulus onset, decoding accuracy dropped but remained on a plateau
well above chance level. Remarkably, after stimulus offset, odor identity could be decoded
for an extended time period (several hundreds of ms) albeit with a reduced accuracy. Such
odor after effects have been demonstrated previously in experiments (Szyszka et al. (2011),

cf. Discussion).

In KCs decoding accuracy was above chance level only in the first 2-3 time bins (about
100 ms) after stimulus onset (Fig. 7B). In all other time bins decoding accuracy remained
at chance level. Because the spiking activity in the KC population is temporally sparse,
the continuous information at the AL output is lost in the MB spike count representation.
This raises the question whether and if so how the information could be preserved in the
MB throughout the stimulus. The intrinsic time scale of the adaptation currents might
potentially support prolonged odor representations (Fig. 7C). We therefore repeated the
decoding analysis on the adaptation currents measured in KCs (Fig. 7D). Indeed, the
stimulus identity could reliably be decoded based on the intensity of the adaptation currents
in subsequent time bins of 50 ms. Decoding accuracy peaked after stimulus onset and then
slowly decreased. Remarkably, the time scale of the decay is comparable during and after
stimulation. Because KCs show very little spontaneous activity, the decoding accuracy after
stimulation decays with the adaptation time constant. This is due to the exponential decay
of the adaptation currents evoked by stimulation, and the stochastic adaptation current
fluctuations in the background due to channel noise.

Fig. 7 — Decoding of odor identity indicates a prolonged and reliable odor information in KC
adaptation currents. (A4,B,D) Decoding accuracy was calculated for non-overlapping 50 ms time bins,
based on a set of seven stimuli (chance level ~ 0.14) presented for one second (shaded area). Blue shading
indicates standard deviation obtained from a cross-validation procedure (see Methods). (A) Decoding of
odor identity from PN spike counts. Decoding accuracy peaks at odor on- and offset, and remains high after
stimulation. (B) Decoding of odor identity from KC spike counts. Decoding accuracy is above chance only
in the first three bins following stimulus onset. (C) Adaptation current amplitudes (single trial, hot colors
in arbitrary units) of 100 selected KCs in response to “odor A” (top) and “odor B” (bottom). (D) Decoding

of odor identity from KC adaptation currents. Decoding accuracy peaks 150 ms after odor onset, then drops
during stimulation but remains high and is sustained after odor offset.
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Discussion

We investigated the transformation between dense AL and sparse MB odor representations in
a spiking network model of the insect olfactory system. Our generic model demonstrates lat-
eral inhibition and spike-frequency adaptation as sufficient mechanisms underlying dynamic
and combinatorial responses in the AL that are transformed into sparse MB representations.
To simulate responses to different odors we incorporated simple ORN tuning and glomerular
structure in our model. This approach allows us to investigate how different odors are rep-
resented in the AL and MB population activity and asses information about odor identity
contained in respective odor representations. We inspected overlap between odor represen-
tations in both populations. Sparse coding reduces overlap between representation, as has
been predicted on theoretical grounds (Marr, 1969; Albus, 1971; Kanerva, 1988) and shown
for MB odor representations (Szyszka et al., 2005; Turner et al., 2008; Lin et al., 2014).

Similarly, our model shows pattern decorrelation in the MB but not in the AL.

Post-odor responses

In our model, we found “on” and “off” responsive PNs. At the stimulus offset, the “off”
responsive PNs transiently increase, whereas the “on” responsive PNs transiently decrease
their firing rate (cf. Fig. 2). ”On” responsive PNs remain adapted beyond stimulus offset.
Their excitability thus stays reduced until the slow adaptation current has decayed. In
contrast, in “off” responsive PNs increased lateral inhibition during stimulation causes a
below-baseline adaptation level throughout the stimulus and thus an increased excitability.
In effect, the odor-evoked and the post-odor PN activation patterns are reversed, i.e. anti-
correlated (not shown). This result matches well the experimental observations in honeybee
(Szyszka et al., 2011; Nawrot, 2012; Stierle et al., 2013) and Drosophila (Galili et al., 2011)
PNs. Those results show highly correlated response patterns throughout stimulation, and

stable but anti-correlated post-odor response patterns.

Differential mechanism underlying temporal and population sparseness

in KCs

In our model, the two mechanisms underlying temporal sparseness and population sparseness

act independently.
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Temporal sparseness of KC responses in our model compares well to the experimentally
recorded spiking responses in Drosophila, locust and moth (Perez-Orive et al., 2002; Ito
et al., 2008; Turner et al., 2008), and to calcium imaging experiments in the honeybee
(Szyszka et al., 2005). The model proposed here solely relies on spike-frequency adaptation
for temporally sparse responses. On a cellular level, strong adaptation currents in KCs, which
are suitable for generation of sparse responses, have been found in the honeybee (Wiistenberg
et al., 2004) and cockroach (Demmer and Kloppenburg, 2009). In the model temporal
sparseness is not affected by the deactivation of lateral inhibition, a finding supported by a

previous study by Farkhooi et al. (2013).

Several studies have suggested that either feedforward inhibition (Assisi et al., 2007) or
feedback inhibition (Szyszka et al., 2005; Papadopoulou et al., 2011; Gupta and Stopfer,
2012; Lei et al., 2013; Kee et al., 2015) causes temporally sparse responses. The existence of
inhibitory feedback neurons in the MB has been demonstrated experimentally in different
insect species (cockroach: Takahashi et al. (2017), Drosophila: Liu and Davis (2009), honey-
bee: Griinewald (1999), locust: Papadopoulou et al. (2011)), whereas evidence for feedfor-
ward inhibition to the MB is lacking (Gupta and Stopfer, 2012). Our model demonstrates
that temporally sparse responses can be obtained without an inhibitory circuit motive.
There is further evidence for a GABA-independent mechanism for the temporal shortening
of KC responses. Calcium imaging studies in Drosophila (Lei et al., 2013; Lin et al., 2014)
and in the honeybee (Farkhooi et al., 2013; Froese et al., 2014) showed that the temporal

profile of KCs’ fast response dynamics is preserved even if GABAergic inhibition is blocked.

What could be the benefit of temporally sparse responses in KCs? We hypothesize that tem-
poral sparseness is an important strategy for the system to follow fast transient inputs rather
than representing static input. The typical lab experiment uses controlled odor stimuli that
are presented with static intensity for up to several seconds. However, in a natural setting,
olfactory inputs are highly dynamic (Vickers et al., 2001). Natural odor plumes do not rep-
resent a gradient intensity due to diffusion. Rather, odors distribute in space and time in a
filamentous structure (Celani et al., 2014; Vickers, 2000) and filaments from different odors
do not mix perfectly (Szyszka et al., 2012). Due to wind and animal movement - particu-
larly relevant for flying insects - the olfactory input will generally be highly dynamic in time
resulting in fast and steep changes of odor concentration whenever the animal encounters
an odor filament. In such an on-off scenario, temporally sparse responses in KCs might en-

able processing of rapid odor filament encounters. We hypothesize that the KC population
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provides a temporally sparse representation of each filament’s odor identity with a single or
few spikes in each KC. The system is thus able to track individual odor filament encounters
over time and the animal can adapt its behavior accordingly, e.g. during odor source loca-
tion in foraging flights (Budick, 2006; Van Breugel and Dickinson, 2014; Egea-Weiss et al.,
2018). At the periphery it has been shown that the olfactory receptor neurons in various
insect species are able to follow fast repeating olfactory input pulses even for high pulse
frequencies (Vickers et al., 2001; Szyszka et al., 2014). Our results show that the mechanism
of spike-frequency adaptation is able to generate temporally sparse responses to the onset of
an odor and thus to detect temporal changes in the olfactory input rather than encoding the
persistence of a stimulus. Adaptation has previously been implicated as a means to compute
the temporal derivative of sensory input (Tripp & Eliasmith, 2010; Lundstrom et al., 2008;
Farkhooi et al., 2013). A second advantageous property of spike frequency adaptation is
that it facilitates the reliability of individual responses and significantly reduces the vari-
ability in the number of response spikes across repeated stimulus representation (Farkhooi
et al., 2011; Farkhooi et al, 2013). Temporal sparseness is not limited to the insect MB and
has been discovered in diverse sensory systems, notably in mammalian sensory cortices (e.g.
Vinje and Gallant 2000; Hromadka et al. 2008; Wolfe et al. 2010; Isaacson 2010) where it
has also been linked to the encoding of temporally dynamic input in natural scences (e.g.
Yen et al. 2010; Haider et al. 2010). We suggest that spike-frequency adaptation is a general
mechanisms across sensory systems and taxa supporting reliable temporally sparse responses

under natural sensory input conditions.

The KC population sparseness in our model matches qualitatively and quantitatively with
experimental estimates from electrophysiological responses in locust and Drosophila (Perez-
Orive et al., 2002; Turner et al., 2008) and from calcium imaging in Drosophila (Honegger
et al., 2011). Our model shows sparse KC responses on a population level in the presence
but not in the absence of lateral inhibition. Calcium imaging experiments in the honeybee
(Froese et al., 2014) have shown that inactivating GABA transmission disrupts population
sparseness, in line with our modeling results. In Drosophila, feedback inhibition contributes
to the population sparseness of KCs, as blocking of feedback inhibition reduced population
sparseness and undermined the learned discrimination of similar odors (Lei et al., 2013; Lin
et al., 2014). In addition, cellular mechanism such as a high threshold for KC activation
in Drosophila (Turner et al., 2008) and active KC subthreshold properties in locust (Perez-
Orive et al., 2002; Jortner et al., 2007) have been shown to support population sparseness.

Moreover, plasticity of inhibitory feedback changing response patterns in the KC population
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might be crucial for associative learning (Liu and Davis, 2009; Haehnel and Menzel, 2010;
Filla and Menzel, 2015; Haenicke et al., 2018). We suggest that different neurophysiological
mechanisms of sparseness are not mutually exclusive but rather act in concert. Both lateral
inhibition in the AL and feedback inhibition in the MB are likely to be necessary for sparse

KC population responses.

Evidently, the sparse connectivity scheme between the PN and KC population is the anatom-
ical basis for population sparse response patterns in the KC layer (e.g. Nowotny et al. 2005;
Jortner et al. 2007; Huerta and Nowotny 2009). This connectivity is divergent-convergent
with an apparent high degree of randomness (Caron et al., 2013). In our model, connectiv-
ity is parametrized by the average number of inputs k per KC and by the synaptic weight
wpg. Experimental estimates indicate a small number of inputs per KC. Anatomical data
in Drosophila provided estimates of k ~ 13 (Turner et al., 2008) and k£ ~ 5 — 7 (Leiss
et al., 2009). Szyszka et al. (2005) estimated k& ~ 10 inputs per KC for the honeybee. For
our model we chose k = 12. Increasing or decreasing this number resulted in a decrease
or increase of population sparseness, respectively (cf. supporting Fig. 4-1). Importantly,
with respect to population sparseness, the physiological mechanisms of lateral inhibition and
anatomical connectivity parameters represent conceptionally distinct factors. Neuromodu-
lation can affect lateral inhibition on short (tens to hundreds of ms) time scales (Lizbinski
and Dacks, 2018). Our results indicate that this modulation could have a drastic effect on
population sparseness in the MB. The number of connections, in contrast, can be considered
stable on short time scales. However, on a long time scale (days) experience dependent
structural plasticity has been demonstrated within the synaptic densities of Drosophila MB

calyx, where KCs connect to presynpatic PN boutons (Kremer et al., 2010).

Decorrelation of odor representations between AL and MB

Decorrelation of stimulus representations has been postulated to be a fundamental prin-
ciple underlying sensory processing (Barlow, 1961, 2001). In particular, in the olfactory
system odor representations are transformed to decorrelate activity patterns evoked by sim-
ilar odors making them more distinct (Uchida et al., 2013; Friedrich and Wiechert, 2014;
Galizia, 2014). Transformations decreasing the overlap between representations are termed
pattern decorrelation. Less overlapping representations increase memory capacity (Treves
and Rolls, 1991) and make discrimination of odors easier (Campbell et al., 2013). In our

model, we found that AL odor representations preserved the similarity of the input, whereas
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representations of similar odors at the periphery became decorrelated in the MB.

We quantified the effects of lateral inhibition and adaptation on pattern correlations. We
found that decorrelation of activity patterns in the AL occurred only in the absence of
adaptation. Moreover, the amount of decorrelation depended on lateral inhibition strength.
Considering decorrelation of odor representations, the difference between lateral inhibition
and adaptation is substantial. In our model, lateral inhibition alone sharpens PN responses,
whereas adaptation leads to linearization of the input-output relation between the input
from ORNs and the PN output (cf. supporting Fig. 2-1). In computational studies lat-
eral inhibition was previously shown to decorrelate odor representations (Luo et al., 2010;
Schmuker et al., 2014). In a Drosophila study using single sensillum recordings from ORNs
and whole-cell recordings from PNs; lateral connection in the AL were found not to affect
correlations between glomerular channels (Bhandawat et al., 2007), but there is also evidence
for decorrelation of AL representations (Olsen et al., 2010). In our model, pattern correlation
between representations of similar odors was preserved at the level of the AL but reduced in
the MB. The observed counter-acting effect of adaptation on pattern decorrelation by lateral
inhibition in the AL is generally valid for strong adaptation. Strong adaptation currents
provide slow, negative feedback that has a linearizing effect on the input-output relation
(Ermentrout, 1998). As a consequence of strongly adapting PNs in our model, the pattern
correlation of AL odor representations is equal to the pattern correlation given by the tuning

profile of the ORN input (cf. Fig. 6).

Odor representation in adaptation currents

Early investigations of dynamical odor representations have shown that odor identity can be
reliably decoded from PN spike counts in 50 ms time bins (Stopfer et al., 2003; Mazor and
Laurent, 2005; Krofczik et al., 2009). We used this approach to show that odor represen-
tations were specific and reliable in our model, including both AL and MB odor represen-
tations. We found that odor representation were optimized for discrimination during odor
onset (Fig. 7BC). Optimal decoding during stimulus onset is in agreement with electro-
physiological evidence from locust and honeybee PNs (Mazor and Laurent, 2005; Krofczik
et al., 2009). In the auditory system, Hildebrandt et al. (2015) found that grasshoppers use
the onset of a sound pattern as the most reliable information for sound localization. Their
study provides behavioral evidence that, in the presence of adaptation, the onset response

preserves absolute stimulus levels. Our model shows that at the MB level, stimulus identity



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

646

25

could be decoded from KC spike counts only during a short time window after stimulus
onset (up to about 150 ms, cf. Fig. 7B). This is a consequence of the temporally sparse KC

responses.

Moreover, we found that KC adaptation currents retain a representation of stimulus iden-
tity, resembling a prolonged odor trace (Perisse and Waddell, 2011; Dylla et al., 2013). In
our model, an odor trace present in adaptation levels extends well beyond the brief spiking
responses. Adaptation currents constitute an internal dynamical state of the olfactory net-
work that is not directly accessible to downstream neurons - a “hidden state” (Buonomano
and Maass, 2009). However, adaptation levels influence the responses to (subsequent) stim-
uli (Farkhooi et al., 2013) and may also affect downstream processing through an indirect

pathway.

Our results suggest that odor representations are not exclusively found in the spiking activity.
The phenomenological model of spike-triggered adaptation used in this study (see Methods,
for review see Benda and Herz, 2003) is motivated by calcium activated outward potassium
currents. Those currents are activated by spike triggered calcium influx, which is only
slowly removed. We propose that information carried by temporally sparse KC spikes is
stored on prolonged time scales by the slowly decaying calcium concentration. We predict
long-lasting levels of calcium in the KC population that retain odor information and provide
a potential substrate for a short-term sensory memory. Therefore, classification of calcium
levels recorded in the MB should reveal odor identity on a time scale determined by the
decay of the intracellular calcium level. Indeed, a recent study by Liidke et al. (2018)
showed that prolonged calcium activity in KCs encoded odor information and could be
related to behavioral odor recognition performance in trace conditioning experiments where

a conditioned odor stimulus is followed by a temporally delayed reinforcement stimulus.

Acknowledgments

This research is supported by the German Research Foundation (grant no. 403329959)
within the Research Unit ’Structure, Plasticity and Behavioral Function of the Drosophila
mushroom body’ (DFG-FOR 2705, https://www.uni-goettingen.de/en/601524.html). RB
received a scholarship from the Research Training Group "Sensory Computation in Neural
Systems" (DFG-RTG 1589) funded by the German Research Foundation. We thank Farzad

Farkhooi for the initial network model and conceptual discussions.



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

26

References
Albus, J. S. (1971). A theory of cerebellar function. Math. Biosci., 10(1-2):25-61.

Ardin, P., Peng, F., Mangan, M., Lagogiannis, K., and Webb, B. (2016). Using an Insect Mushroom Body Circuit

to Encode Route Memory in Complex Natural Environments. PLoS Computational Biology, 12(2).

Assisi, C., Stopfer, M., Laurent, G., and Bazhenov, M. (2007). Adaptive regulation of sparseness by feedforward

inhibition. Nature neuroscience, 10(9):1176-84.

Barlow, H. (1961). Possible principles underlying the transformations of sensory messages. In Sensory communi-

cation, volume 6, pages 57-58.
Barlow, H. (2001). Redundancy reduction revisited. Network: Computation in Neural Systems, 12(3):241-253.

Belmabrouk, H., Nowotny, T., Rospars, J.-P., and Martinez, D. (2011). Interaction of cellular and network mecha-
nisms for efficient pheromone coding in moths. Proceedings of the National Academy of Sciences of the United

States of America, 108(49):19790-5.

Benda, J. and Herz, A. V. M. (2003). A universal model for spike-frequency adaptation. Neural computation,
15(11):2523-64.

Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L., and Wilson, R. I. (2007). Sensory processing in
the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nature

neuroscience, 10(11):1474-82.

Broome, B., Jayaraman, V., and Laurent, G. (2006). Encoding and decoding of overlapping odor sequences.

Neuron, pages 467-482.

Budick, S. A. (2006). Free-flight responses of Drosophila melanogaster to attractive odors. Journal of Ezperimental

Biology.

Buonomano, D. V. and Maass, W. (2009). State-dependent computations: spatiotemporal processing in cortical

networks. Nature Reviews Neuroscience, 10(2):113-125.

Campbell, R. a. a., Honegger, K. S., Qin, H., Li, W., Demir, E., and Turner, G. C. (2013). Imaging a population
code for odor identity in the Drosophila mushroom body. The Journal of neuroscience : the official journal

of the Society for Neuroscience, 33(25):10568-81.

Capurro, A., Baroni, F., Olsson, S. B., Kuebler, L. S., Karout, S., Hansson, B. S., and Pearce, T. C. (2012).
Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks. Frontiers in

neuroengineering, 5(April):6.

Caron, S. J. C., Ruta, V., Abbott, L. F., and Axel, R. (2013). Random convergence of olfactory inputs in the
Drosophila mushroom body. Nature, 497(7447):113-7.

Celani, A., Villermaux, E., and Vergassola, M. (2014). Odor landscapes in turbulent environments. Physical

Review X.

Chou, Y.-H., Spletter, M. L., Yaksi, E., Leong, J. C. S., Wilson, R. I., and Luo, L. (2010). Diversity and wiring

variability of olfactory local interneurons in the Drosophila antennal lobe. Nature neuroscience, 13(4):439-49.

Deisig, N., Giurfa, M., and Sandoz, J. C. (2010). Antennal lobe processing increases separability of odor mixture

representations in the honeybee. Journal of Neurophysiology, 103(4):2185-2194.

Demmer, H. and Kloppenburg, P. (2009). Intrinsic membrane properties and inhibitory synaptic input of kenyon

cells as mechanisms for sparse coding? Journal of neurophysiology, 102(3):1538-50.



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

725

726

27

Dylla, K. V., Galili, D. S., Szyszka, P., and Liidke, A. (2013). Trace conditioning in insects-keep the trace! Frontiers
in Physiology, 4 AUG(August):1-12.

Egea-Weiss, A., Renner, A., Kleineidam, C. J., and Szyszka, P. (2018). High Precision of Spike Timing across
Olfactory Receptor Neurons Allows Rapid Odor Coding in Drosophila. Science.

Ermentrout, B. (1998). Linearization of f-i curves by adaptation. Neural Comput., 10:1721.

Faisal, A. A., Selen, L. P. J., and Wolpert, D. M. (2008). Noise in the nervous system. Nature reviews. Neuroscience,

9(4):292.

Farkhooi, F., Froese, A., Muller, E., Menzel, R., and Nawrot, M. P. (2013). Cellular Adaptation Facilitates Sparse
and Reliable Coding in Sensory Pathways. PLoS computational biology, 9(10):¢1003251.

Farkhooi, F., Muller, E., and Nawrot, M. (2011). Adaptation reduces variability of the neuronal population code.
Physical Review B, 83(5):1-4.

Filla, I. and Menzel, R. (2015). Mushroom body extrinsic neurons in the honeybee (Apis mellifera) brain integrate

context and cue values upon attentional stimulus selection. Journal of neurophysiology, 114:2005-2014.

Fisch, K., Schwalger, T., Lindner, B., Herz, A., and Benda, J. (2012). Channel noise from both slow adaptation
currents and fast currents is required to explain spike-response variability in a sensory neuron. J. Neurosci.,

32:17332.

Friedrich, R. W. and Wiechert, M. T. (2014). Neuronal circuits and computations: pattern decorrelation in the
olfactory bulb. FEBS letters.

Froese, A., Szyszka, P., and Menzel, R. (2014). Effect of GABAergic inhibition on odorant concentration coding in

mushroom body intrinsic neurons of the honeybee. Journal of Comparative Physiology A, 200:183-195.

Fuchs, J. L. and Brown, P. B. (1984). Two-point discriminability: Relation to properties of the somatosensory

system. Somatosensory Research, 2(2):163-169.

Galili, D. S., Liidke, A., Galizia, C. G., Szyszka, P., and Tanimoto, H. (2011). Olfactory trace conditioning in
Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(20):7240—

7248.

Galizia, C. G. (2014). Olfactory coding in the insect brain: data and conjectures. The European journal of

neuroscience, (February):1-12.
Goodman, D. F. M. and Brette, R. (2009). The Brian Simulator. Frontiers in neuroscience, 3(2):192-197.

Griinewald, B. (1999). Morphology of feedback neurons in the mushroom body of the honey bee, Apis mellifera.
Journal of Comparative Neurology, 404(1):114-126.

Gupta, N. and Stopfer, M. (2012). Functional analysis of a higher olfactory center, the lateral horn. The Journal
of neuroscience : the official journal of the Society for Neuroscience, 32(24):8138-48.

Hachnel, M. and Menzel, R. (2010). Sensory Representation and Learning-Related Plasticity in Mushroom Body

Extrinsic Feedback Neurons of the Protocerebral Tract. Frontiers in Systems Neuroscience, 4(December):1-13.

Haenicke, J., Yamagata, N., Zwaka, H., Nawrot, M., and Menzel, R. (2018). Neural correlates of odor learning in

the presynaptic microglomerular circuitry in the honeybee mushroom body calyx. eNeuro, 5(3).

Haider, B., Krause, M. R., Duque, A., Yu, Y., Touryan, J., Mazer, J. A., and McCormick, D. A. (2010). Synaptic
and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field

Stimulation. Neuron.



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

28

Hartline, H. K., Wagner, H. G., and Ratliff, F. (1956). Inhibition in the eye of Limulus. The Journal of general
physiology, 39(5):651-73.

Hildebrandt, K. J., Ronacher, B., Hennig, R. M., and Benda, J. (2015). A Neural Mechanism for Time-Window
Separation Resolves Ambiguity of Adaptive Coding. PLoS Biology.

Honegger, K. S., Campbell, R. a. a., and Turner, G. C. (2011). Cellular-resolution population imaging reveals
robust sparse coding in the Drosophila mushroom body. The Journal of neuroscience : the official journal of

the Society for Neuroscience, 31(33):11772-85.

Hromadka, T., DeWeese, M. R., and Zador, A. M. (2008). Sparse representation of sounds in the unanesthetized
auditory cortex. PLoS biology, 6(1):e16.

Huerta, R. and Nowotny, T. (2009). Fast and robust learning by reinforcement signals: explorations in the insect

brain. Neural computation, 21(8):2123-51.

Isaacson, J. S. (2010). Odor representations in mammalian cortical circuits. Current opinion in neurobiology,

20(3):328-331.

Ito, I., Ong, R. C.-Y., Raman, B., and Stopfer, M. (2008). Sparse odor representation and olfactory learning.
Nature neuroscience, 11(10):1177-84.

Jortner, R. A., Farivar, S. S., and Laurent, G. (2007). A Simple Connectivity Scheme for Sparse Coding in an
Olfactory System. Journal of Neuroscience, 27(7):1659-1669.

Kanerva, P. (1988). Sparse Distributed Memory. MIT Press, Cambridge, MA.

Kee, T., Sanda, P., Gupta, N., Stopfer, M., and Bazhenov, M. (2015). Feed-Forward versus Feedback Inhibition in
a Basic Olfactory Circuit. PLOS Computational Biology, 11(10):€1004531.

Kloppenburg, P. and Nawrot, M. P. (2014). Neural coding: Sparse but on time. Current Biology, 24(19):R957—
R959.

Kremer, M. C., Christiansen, F., Leiss, F., Paehler, M., Knapek, S., Andlauer, T. F., Forstner, F., Kloppenburg,
P., Sigrist, S. J., and Tavosanis, G. (2010). Structural long-term changes at mushroom body input synapses.

Current Biology.

Krofczik, S., Menzel, R., and Nawrot, M. P. (2009). Rapid odor processing in the honeybee antennal lobe network.

Frontiers in computational neuroscience, 2(January):9.

Kuffler, S. W. (1953). Discharge Patterns and Functional Organization of Mammalian Retina. Journal of Neuro-

physiology, 16(1):37-68.

Laughlin, S. B. and Sejnowski, T. J. (2003). Communication in neuronal networks. Science (New York, N.Y.),
301(5641):1870-1874.

Laurent, G. (2002). Olfactory network dynamics and the coding of multidimensional signals. Nature Rev. Neurosci.,

3:884.

Lei, Z., Chen, K., Li, H., Liu, H., and Guo, A. (2013). The GABA system regulates the sparse coding of odors in

the mushroom bodies of Drosophila. Biochemical and Biophysical Research Communications, 436(1):35-40.

Leiss, F., Groh, C., Butcher, N. J., Meinertzhagen, I. A., and Tavosanis, G. (2009). Synaptic organization in the
adult Drosophila mushroom body calyx. J. Comp. Neurol., 517(6):808-824.

Lin, A. C., Bygrave, A. M., de Calignon, A., Lee, T., and Miesenbdck, G. (2014). Sparse, decorrelated odor coding

in the mushroom body enhances learned odor discrimination. Nature neuroscience, 17(4):559—-68.



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

29

Liu, X. and Davis, R. L. (2009). The GABAergic anterior paired lateral neuron suppresses and is suppressed by

olfactory learning. Nature neuroscience, 12(1):53-59.

Lizbinski, K. M. and Dacks, A. M. (2018). Intrinsic and Extrinsic Neuromodulation of Olfactory Processing.

Frontiers in Cellular Neuroscience.

Liidke, A., Raiser, G., Nehrkorn, J., Herz, A. V. M., Galizia, C. G., and Szyszka, P. (2018). Calcium in Kenyon Cell
Somata as a Substrate for an Olfactory Sensory Memory in Drosophila. Frontiers in Cellular Neuroscience,

12:128.

Luo, S. X., Axel, R., and Abbott, L. F. (2010). Generating sparse and selective third-order responses in the
olfactory system of the fly. PNAS, 107(23):10713-8.

Marr, B. Y. D. (1969). A theory of cerebellar cortex. J. Physiol., 202(617):437-470.

Mazor, O. and Laurent, G. (2005). Transient dynamics versus fixed points in odor representations by locust

antennal lobe projection neurons. Neuron, 48(4):661-73.

Meyer, A., Galizia, C. G., and Nawrot, M. P. (2013). Local interneurons and projection neurons in the antennal

lobe from a spiking point of view. Journal of neurophysiology, 110(10):2465-74.

Mosqueiro, T. S. and Huerta, R. (2014). Computational models to understand decision making and pattern

recognition in the insect brain. Current opinion in insect science, 6:30-85.

Miiller, J., Nawrot, M., Menzel, R., and Landgraf, T. (2017). A neural network model for familiarity and context
learning during honeybee foraging flights. Biological Cybernetics, pages 1-14.

Nagel, K. I. and Wilson, R. I. (2011). Biophysical mechanisms underlying olfactory receptor neuron dynamics.

Nature neuroscience, 14(2):208-16.
Nawrot, M. P. (2012). Dynamics of sensory processing in the dual olfactory pathway of the honeybee. Apidologie.

Nowotny, T., Huerta, R., Abarbanel, H. D., and Rabinovich, M. I. (2005). Self-organization in the olfactory system:

One shot odor recognition in insects. Biological Cybernetics.

Olsen, S. R., Bhandawat, V., and Wilson, R. I. (2010). Divisive normalization in olfactory population codes.
Neuron, 66(2):287-299.

Olsen, S. R. and Wilson, R. L. (2008). Lateral presynaptic inhibition mediates gain control in an olfactory circuit.
Nature, 452(7190):956-960.

Oswald, A.-M. M., Schiff, M. L., and Reyes, A. D. (2006). Synaptic mechanisms underlying auditory processing.

Current opinion in neurobiology, 16:371-376.

Papadopoulou, M., Cassenaer, S., Nowotny, T., and Laurent, G. (2011). Normalization for sparse encoding of odors

by a wide-field interneuron. Science (New York, N.Y.), 332(6030):721-5.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
‘Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,
E. (2012). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825-2830.

Peng, F. and Chittka, L. (2016). A Simple Computational Model of the Bee Mushroom Body Can Explain Seemingly
Complex Forms of Olfactory Learning and Memory. Current biology : CB, 0(0):2597-2604.

Perez-Orive, J., Mazor, O., Turner, G. C., Cassenaer, S., Wilson, R. L., and Laurent, G. (2002). Oscillations and

sparsening of odor representations in the mushroom body. Science (New York, N.Y.), 297(5580):359-65.

Perisse, E. and Waddell, S. (2011). Associative memory: Without a trace. Current Biology, 21(15):R579-R581.



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

30

Rish, I. (2001). An empirical study of the naive Bayes classifier. In Workshop on empirical methods in artificial

intelligence, volume 22230, pages 41-46.

Schmuker, M., Pfeil, T., and Nawrot, M. P. (2014). A neuromorphic network for generic multivariate data classifi-

cation. PNAS, 111(6):2081-6.

Schwalger, T., Fisch, K., Benda, J., and Lindner, B. (2010). How noisy adaptation of neurons shapes interspike

interval histograms and correlations. PLoS computational biology, 6(12):e1001026.

Stierle, J. S., Galizia, C. G., and Szyszka, P. (2013). Millisecond stimulus onset-asynchrony enhances information
about components in an odor mixture. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 33(14):6060-9.

Stopfer, M., Jayaraman, V., and Laurent, G. (2003). Intensity versus identity coding in an olfactory system.
Neuron, 39(6):991-1004.

Strube-Bloss, M. F., Herrera-Valdez, M. a., and Smith, B. H. (2012). Ensemble response in mushroom body output
neurons of the honey bee outpaces spatiotemporal odor processing two synapses earlier in the antennal lobe.

PloS one, 7(11):¢50322.

Szyszka, P., Demmler, C., Oemisch, M., Sommer, L., Biergans, S., Birnbach, B., Silbering, A. F., and Galizia, C. G.
(2011). Mind the gap: olfactory trace conditioning in honeybees. The Journal of Neuroscience, 31(20):7229-39.

Szyszka, P., Ditzen, M., Galkin, A., Galizia, C. G., Menzel, R., Ditzen, M., Galkin, A., and Giovanni, C. (2005).
Sparsening and Temporal Sharpening of Olfactory Representations in the Honeybee Mushroom Bodies. Journal

of neurophysiology, 94(2005):3303-3313.

Szyszka, P., Gerkin, R. C., Galizia, C. G., and Smith, B. H. (2014). High-speed odor transduction and pulse

tracking by insect olfactory receptor neurons. Proceedings of the National Academy of Sciences.

Szyszka, P., Stierle, J. S., Biergans, S., and Galizia, C. G. (2012). The speed of smell: odor-object segregation
within milliseconds. PloS one, 7(4):¢36096.

Takahashi, N., Katoh, K., Watanabe, H., Nakayama, Y., and Iwasaki, M. (2017). Complete identification of four
giant interneurons supplying mushroom body calyces in the cockroach Periplaneta americana. The Journal of

Comparative Neurology, 525(1):204-230.
Treves, A. (1993). Mean-field analysis of neuronal spike dynamics. Network: Comput. Neural Syst., 4:259.

Treves, A. and Rolls, E. T. (1991). What determines the capacity of autoassociative memories in the brain?

Network: Computation in Neural Systems, 2(4):371-397.

Turner, G. C., Bazhenov, M., and Laurent, G. (2008). Olfactory Representations by Drosophila Mushroom Body

Neurons. Journal of Neurophysiology, pages 734 —746.

Uchida, N., Poo, C., and Haddad, R. (2013). Coding and Transformations in the Olfactory System. Annual review
of neuroscience, (May):363-385.

Van Breugel, F. and Dickinson, M. H. (2014). Plume-tracking behavior of flying drosophila emerges from a set of

distinct sensory-motor reflexes. Current Biology.
Vickers, N. J. (2000). Mechanisms of animal navigation in odor plumes. Biological Bulletin.

Vickers, N. J., Christensen, T. A., Baker, T. C., and Hildebrand, J. G. (2001). Odour-plume dynamics influence

file brain’s olfactory code. Nature.

Vinje, W. E. and Gallant, J. L. (2000). Sparse coding and decorrelation in primary visual cortex during natural

vision. Science (New York, N.Y.), 287(5456):1273-1276.



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

31

Wessnitzer, J., Young, J. M., Armstrong, J. D., and Webb, B. (2012). A model of non-elemental olfactory learning

in Drosophila. Journal of computational neuroscience, 32(2):197-212.

Willmore, B. and Tolhurst, D. J. (2001). Characterizing the sparseness of neural codes. Network, 12(3):255-270.

Wilson, R. I. (2013). Early olfactory processing in Drosophila: mechanisms and principles. Annual review of

neuroscience, 36:217-41.

Wilson, R. I. and Laurent, G. (2005). Role of GABAergic inhibition in shaping odor-evoked spatiotemporal pat-
terns in the Drosophila antennal lobe. The Journal of neuroscience : the official journal of the Society for

Neuroscience, 25(40):9069-79.

Wilson, R. I., Turner, G. C., and Laurent, G. (2004). Transformation of olfactory representations in the Drosophila
antennal lobe. Science (New York, N.Y.), 303(5656):366-370.

Wolfe, J., Houweling, A. R., and Brecht, M. (2010). Sparse and powerful cortical spikes. Current opinion in
neurobiology, 20(3):306-312.

Wiistenberg, D. G., Boytcheva, M., Griinewald, B., Byrne, J. H., Menzel, R., and Baxter, D. a. (2004). Current- and
voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee. Journal of neurophysiology,

92(4):2589-603.

Yen, S.-C., Baker, J., and Gray, C. (2010). Heterogeneity in the responses of adjacent neurons to natural stimuli

in Cat striate cortex. Journal of Vision.



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

32

Figure Legends

Figure 1 - Olfactory network model structure and odor response. (A) Network
structure resembles the insect olfactory pathway with three main processing stages. In each
glomerulus (dashed circles), a PN (blue) and a LN receive convergent ORN input (red) by one
receptor type (RT). Each LN provides unspecific lateral inhibition to all PNs. KCs (orange)
receive on average 12 inputs from randomly chosen PNs. (B) Receptor response profile (red
bars; AL input) depicts the evoked firing rate for each ORN type. Evoked PN spike counts
(dashed blue line; AL output) follow the ORN activation pattern. Raster plots depict single
trial responses of PNs (blue) and KCs (orange). Presentation of an odor during 1000 ms is
indicated by the shaded area. Population firing rates were obtained by averaging over 50
trials. PN spikes display a temporal structure that includes evoked transient responses at
stimulus on- and offset, and a pronounced inhibitory post-odor response. PN population
rate was averaged over PNs showing “on” responses (blue) and “off” responses (cyan). KC
spikes were temporally sparse with majority of the spikes occurring at the stimulus onset.
Supporting Fig. 1-1 and Fig. 1-2 (available online) show odor responses with adaptation

disabled in the KC and PN population, respectively.

Figure 2 - Lateral inhibition and cellular adaptation shape PN odor response dy-
namics. (A) Single trial PN spiking responses simulated with (right column) and without
(left column) lateral inhibition, and with (bottom row) and without (top row) adaptation.
Presentation of a single odor during 1000 ms is indicated by the shaded area. With adapta-
tion PNs display a temporal structure that includes a transient and a tonic response, and a
pronounced inhibitory post-odor response. (B) Trial averaged population firing rate: PNs
driven by stimulation (blue) and remaining PNs (cyan). Panels (i)-(iv) indicate presence
and absence of lateral inhibition and adaptation as in (A). In the presence of lateral inhi-
bition firing rates during stimulation are reduced. In the presence of lateral inhibition and
adaptation (iv) PNs show either transient “on” responses (blue) or “off” responses (cyan).
Panels A (iv) and B (iv) are reproduced in Fig. 1B. Supporting Fig. 2-1 (available online)

shows PN tuning profiles and input-output relation.

Figure 3 - Odor response dynamics of the KC population. Figure layout as in Fig. 2.
(A) Single trial population spike raster responses. (B) Trial averaged KC population firing
rate. Numbers to the right indicate the fraction of activated KCs (n,) and the mean number
of spikes per activated KC during stimulation (Z). Without adaptation (i,ii) KCs spike

throughout stimulation because PN drive is strong and persistent. The fraction of activated
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KCs drops in the presence of lateral inhibition (ii,iv). With adaptation (iii,iv) most of KC
spikes are confined to the stimulus onset, indicating temporally sparse responses. We note
that spontaneous KC activity is extremely low (0.03 Hz) in accordance with experimental

results (Ito et al., 2008). Panels A (iv) and B (iv) are reproduced in Fig. 1B.

Figure 4 - Quantification of temporal and population sparseness in the KC pop-
ulation. Sparseness was measured in the absence (« = 0) and presence (o = 3) of lateral
inhibition, and the presence (black bars) and absence (gray bars) of spike-frequency adap-
tation. The sparseness measure was averaged over 50 trials. Error bars indicate standard
deviation. A value of one corresponds to maximally sparse responses. (A) Adaptation
promotes temporal sparseness. (B) Lateral inhibition in the AL promotes KC population
sparseness. Supporting Fig. 4-1 (available online) shows temporal sparseness when spike-
frequency adaptation was disabled in the PN or KC population, and population sparseness

for different numbers of PN inputs per KC.

Figure 5 - Lateral inhibition in the AL facilitates population sparseness and
reduces pattern correlation in the MB. Spike counts (single trial) of 900 randomly
selected KCs in response to two similar odors (“Odor A” and “Odor B”) arranged on a 30x30
grid in the absence (top row) and in the presence (bottom row) of lateral inhibition. Inactive
KCs are shown in black. (A) In the absence of lateral inhibition KCs readily responded to
both odors, resulting in an activation pattern where most KCs are active. In the presence
of lateral inhibition both odors evoked sparse KC activation patterns. (B) Superposition of
responses to the two odors. KCs that were activated by both odors are indicated by hot
colors (color bar denotes spike count of the stronger response). KCs that were activated
exclusively by one of the two odors are indicated in gray. The fraction of KCs that show
overlapping responses is reduced in the presence of lateral inhibition. (C) Pattern correlation
between the single trial responses in (A) to the two odors obtained for PN (blue) and KC
(orange) spikes counts, in the absence (o« = 0) and presence (a = 3) of lateral inhibition.
Dashed line indicates pattern correlation of the input (ORNs). Pattern correlation was
retained at the AL and reduced at the MB level. Lateral inhibition in the AL reduced

pattern correlation in KCs but not in PNs.

Figure 6 - Pattern correlation in the antennal lobe and the mushroom body
depend on lateral inhibition strength a. The correlation coefficient pap between
the response patterns to two similar odors was calculated and averaged over 50 trials and 5

network realizations for PNs (blue) and KCs (orange). Error bars indicate standard deviation
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over trials and network realizations. Pattern correlation of the input is indicated by the
dashed line. Input correlation is high because similar odors activate largely overlapping set
of receptors. (A) In the presence of adaptation, pattern correlation in PNs (blue) stays close
to the input correlation for all values of lateral inhibition strength. In KCs (orange) the
correlation decreases for small values of lateral inhibition strength, and increases for large
values of lateral inhibition strength. Pattern correlation in KCs is minimal for a = 3. (B) In
the absence of adaptation, pattern correlation decreases with the lateral inhibition strength
both in PNs and KCs. The decrease is stronger in KCs. (CD) Pattern correlation g4p was
calculated based on evoked, trial-averaged spike counts in the presence (C) and absence (D)
of lateral inhibition. The correlation coefficient between the trial-averaged response patterns
to two similar odors was calculated and averaged over 5 network realizations. Error bars
indicate standard deviation over network realizations. In the presence of adaptation (C) the
overlap between trial-averaged KC representations of two similar odors (orange) shows a
minimum for intermediate strengths of lateral inhibition (1 < o < 3). At the minimum, the
KC overlap is below the overlap between trial-averaged PN representations. In the absence
of adaptation the overlap between trial-averaged KC representations is generally lower than
the overlap between trial-averaged PN representations for all strengths of lateral inhibition.
Supporting Fig. 6-1 and Fig. 6-2 (available online) show the mean fraction of activated KCs

and mean pairwise KC cross-correlation, respectively.

Figure 7 - Decoding of odor identity indicates a prolonged and reliable odor
information in KC adaptation currents. (A,B,D) Decoding accuracy was calculated
for non-overlapping 50 ms time bins, based on a set of seven stimuli (chance level ~ 0.14)
presented for one second (shaded area). Blue shading indicates standard deviation obtained
from a cross-validation procedure (see Methods). (A) Decoding of odor identity from PN
spike counts. Decoding accuracy peaks at odor on- and offset, and remains high after
stimulation. (B) Decoding of odor identity from KC spike counts. Decoding accuracy is
above chance only in the first three bins following stimulus onset. (C) Adaptation current
amplitudes (single trial, hot colors in arbitrary units) of 100 selected KCs in response to
“odor A” (top) and “odor B” (bottom). (D) Decoding of odor identity from KC adaptation
currents. Decoding accuracy peaks 150 ms after odor onset, then drops during stimulation

but remains high and is sustained after odor offset.

Supporting Figure 1-1: Odor response with selective adaptation in the LN and the PN

population. Strong phasic PN input elicits phasic KC responses. High KC firing threshold
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ensures sparse responses in the absence of SFA in the KC population.

Supporting Figure 1-2: Odor response with selective adaptation in the LN and the KC
population. The absence of SFA in the PN population was compensated by a constant
current /o = 0.38 nA. PNs show a constant population rate response with a slightly delayed
onset due to inhibition by LNs. KCs show a strong onset population rate response and a

non-zero tonic firing rate.

Supporting Figure 2-1: In the absence of adaptation (A,B), lateral inhibition (B) sharp-
ens the PN tuning profile (blue). In the presence of adaptation (C,D) the PN tuning profile
is not affected by lateral inhibition. The tuning profile was obtained by averaging PN firing
rates during the one second stimulation window and across 50 trials. PNs receive input from
ORNS of the corresponding type according to the receptor response profile. The receptor re-
sponse profile (gray), rescaled between the minimum and maximum PN firing rate, is shown
in all panels for comparison. The insets show the input-output relation between the ORN
and the PN firing rates. Both, averaged (blue line) and single trial (gray crosses) PN firing

rates are shown.

Supporting Figure 4-1: (A) Temporal sparseness with SFA presence in selected popu-
lations. Black: PNs, LNs and KCs. White dashed: LNs and KCs. White: LNs and PNs.
Gray bars indicate simulation in the complete absence of SFA. (B) Population sparseness
depends on the mean number of PN inputs per KC k, both in the absence (a = 0, left) and
presence (a = 3) of lateral inhibition. In comparison with the default number of PN inputs
(k = 12, black bars), reducing the mean number of connections to k¥ = 9 (white dashed
bars) increased population sparseness, whereas increasing the mean number of connections
to k = 15 (white bars) decreased population sparseness. The gray bar corresponds to k = 12

in the absence of SFA and is given for reference.

Supporting Figure 6-1: Mean fraction of activated KCs for different strengths of lateral
inhibition. We obtained the fraction of activated KCs by counting KCs that have fired
at least one spike during one of the given epochs: one second of stimulation, one second
of spontaneous activity, and first 50 ms after stimulus onset (transient response). (A)
In the presence of spike-frequency adaption the mean fraction of activated KCs during
evoked activity (blue) shows a minimum for intermediate strength of lateral inhibition. At
the minimum, around 10% of the KCs responded to the stimulus. This fits well to the
experimentally reported values in the range of 5-11% (Turner et al., 2008; Honegger et

al., 2011). (B) In the absence of spike-frequency adaption the mean fraction of activated
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KCs decreases with lateral inhibition during evoked activity (blue). Note that for o > 4
the fraction of responding KCs is close to zero, or zero. In the absence of spike-frequency
adaption, and higher strengths of inhibition, KCs do not receive strong enough inputs to

spike.

Supporting Figure 6-2: Mean pairwise PN cross-correlation for different strengths of
lateral inhibition. For each PN, a vector obtained by binning the corresponding spike train
into 50 ms windows was calculated. Pairwise correlation between the vectors was calculated

and averaged over all PN pairs and 50 trials.
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