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Abstract12

Transformations between sensory representations are shaped by neural mechanisms at the13

cellular and the circuit level. In the insect olfactory system encoding of odor information14

undergoes a transition from a dense spatio-temporal population code in the antennal lobe15

to a sparse code in the mushroom body. However, the exact mechanisms shaping odor16

representations and their role in sensory processing are incompletely identified. Here, we17

investigate the transformation from dense to sparse odor representations in a spiking model of18

the insect olfactory system, focusing on two ubiquitous neural mechanisms: spike-frequency19

adaptation at the cellular level and lateral inhibition at the circuit level. We find that20

cellular adaptation is essential for sparse representations in time (temporal sparseness),21

while lateral inhibition regulates sparseness in the neuronal space (population sparseness).22

The interplay of both mechanisms shapes spatio-temporal odor representations, which are23

optimized for discrimination of odors during stimulus onset and offset. Response pattern24

correlation across different stimuli showed a non-monotonic dependence on the strength of25

lateral inhibition with an optimum at intermediate levels, which is explained by two counter-26

acting mechanisms. In addition, we find that odor identity is stored on a prolonged time27

scale in the adaptation levels but not in the spiking activity of the principal cells of the28

mushroom body, providing a testable hypothesis for the location of the so-called odor trace.29

Significance Statement30

In trace conditioning experiments, insects, like vertebrates, are able to form an associative31

memory between an olfactory stimulus and a temporally separated reward. Forming this32

association requires a prolonged odor trace. However, spiking responses in the mushroom33

body, the principal site of olfactory learning, are brief and bound to the odor onset (tem-34

poral sparseness). We implemented a spiking network model that relies on spike-frequency35

adaptation to reproduce temporally sparse responses. We found that odor identity is reliably36

encoded in the neurons’ adaptation levels, which are mediated by spike-triggered calcium37

influx. Our results suggest that a prolonged odor trace is established in the calcium levels38

of the relevant neuronal population. This prediction has found recent experimental support39

in the fruit fly.40
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Introduction41

How nervous systems process sensory information is a key issue in systems neuroscience.42

Animals are required to rapidly identify behaviorally relevant stimulus features in a rich43

and dynamic sensory environment, and neural computation in sensory pathways is tailored44

to this need. Sparse stimulus encoding has been identified as an essential feature of sensory45

processing in higher brain areas in both, invertebrate (Perez-Orive et al., 2002; Szyszka46

et al., 2005; Ito et al., 2008; Turner et al., 2008; Honegger et al., 2011) and vertebrate47

(Hromádka et al., 2008; Vinje and Gallant, 2000; Wolfe et al., 2010; Isaacson, 2010) systems.48

Sparse representations provide an economical means of neural information coding (Laughlin49

and Sejnowski, 2003; Faisal et al., 2008) where information is represented by only a small50

fraction of all neurons (population sparseness) and each activated neuron generates only few51

action potentials (temporal sparseness) for a highly specific stimulus configuration (lifetime52

sparseness) (Kloppenburg and Nawrot, 2014).53

The nervous systems of insects have limited neuronal resources and thus require particularly54

efficient coding strategies. The insect olfactory system is analogue to the vertebrate olfactory55

system and has become a popular model system for the emergence of a sparse code. We56

use a computational approach to study the transformation from a dense olfactory code in57

the sensory periphery to a sparse code in the mushroom body (MB), a central structure of58

the insect brain important for multimodal sensory integration and memory formation. A59

number of recent studies emphasized the role of sparse coding in the MB. In locusts, sparse60

responses were shown to convey temporal stimulus information (Gupta and Stopfer, 2012).61

In Drosophila, sparse coding was found to reduce overlap between odor representations and62

facilitate their discrimination (Lin et al., 2014). Consequently, sparse coding is an essential63

feature of plasticity models for olfactory learning in insects (Huerta and Nowotny, 2009;64

Wessnitzer et al., 2012; Ardin et al., 2016; Peng and Chittka, 2016; Müller et al., 2017)65

and theoretical work has emphasized the analogy of the transformation from a dense code66

in projection neurons (PNs) to a sparse code in Kenyon cells (KCs) with dimensionality67

expansion in machine learning methods (Huerta and Nowotny, 2009; Schmuker et al., 2014;68

Mosqueiro and Huerta, 2014).69

Central to our modeling approach are two fundamental mechanisms of neural computation70

that are ubiquitous in the nervous systems of invertebrates and vertebrates. Spike-frequency71

adaptation (SFA) is a cellular mechanism that has been suggested to support efficient and72

sparse coding and to reduce variability of sensory representation (Benda and Herz, 2003;73
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Farkhooi et al., 2011, 2013). Lateral inhibition is a basic circuit design principle that ex-74

ists in different sensory systems, mediates contrast enhancement and facilitates stimulus75

discrimination (Kuffler, 1953; Hartline et al., 1956; Fuchs and Brown, 1984; Oswald et al.,76

2006). Both mechanisms are evident in the insect olfactory system. Responses of olfactory77

receptor neurons (ORNs), local interneurons (LNs) and PNs in the antennal lobe (AL) show78

stimulus adaptation (Nagel and Wilson, 2011; Bhandawat et al., 2007; Krofczik et al., 2009)79

and strong adaptation currents have been identified in KCs (Wüstenberg et al., 2004; Dem-80

mer and Kloppenburg, 2009). Lateral inhibition in the AL is mediated by inhibitory LNs81

(Wilson, 2013). It is crucial for establishing the population code at the level of PNs (Wilson82

et al., 2004; Olsen et al., 2010; Krofczik et al., 2009), for gain control (Stopfer et al., 2003;83

Olsen and Wilson, 2008), for decorrelation of odor representations (Wilson and Laurent,84

2005), and for mixture interactions (Krofczik et al., 2009; Deisig et al., 2010; Capurro et al.,85

2012).86

Taken together, we find that lateral inhibition and spike-frequency adaptation account for87

the transformation from a dense to sparse coding, decorrelate odor representations, and88

facilitate precise temporal responses on short and long time scales.89

Methods90

Spiking network model91

A spiking network model with 3 layers (ORN, AL and MB, cf. Fig. 1A) was simulated using92

Brian 1.4 (Goodman and Brette, 2009). The model includes 35 ORN types, 284 ORNs per93

type, 35 PNs and LNs, and 1000 KCs. Each of the 35 LN-PN pairs constitute a glomerulus.94

Across insect species, the number of glomeruli varies from a few tens to several hundred, we95

based our model on the lower end of this range. The ratio between the number of PNs and96

KCs is roughly based on the data available in Drosophila (Turner et al., 2008).97

The connections between the 3 network layers (ORNs, AL, MB) are feed-forward and exci-98

tatory. Within the AL, LNs provide lateral inhibition to PNs. ORNs provide input to PNs99

and LNs. All ORNs of the same receptor type target the same, single glomerulus. Every LN100

has inhibitory connections with all PNs, mediating unspecific lateral inhibition within the101

AL. Every KC receives 12 PN inputs on average (Szyszka et al., 2005; Turner et al., 2008).102

Connections between PNs and KCs were randomly drawn. Synaptic weights between all103

neurons are given in Table 1 for four different simulation conditions.104
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(i) (ii) (iii) (iv)

wOL 1 nS 1 nS 1 nS 1 nS
wOP 1 nS 1.12 nS 1 nS 1.12 nS
wLP 0 nS 3 nS 0 nS 3 nS
wPK 5 nS 5 nS 5 nS 5 nS

Tab. 1 – Synaptic weights for wOL (ORN-LN), wOP (ORN-PN), wLP (LN-PN) and wPK (PN-KC) con-
nections in different simulation conditions ((i)-(iv)).

Responses to a set of 7 stimuli, 50 trials each, and 3000 ms trial duration were simulated.105

Stimuli had a duration of 1000 ms and were presented at t=1000 ms. All neurons were106

initialized with membrane voltage set to the leak potential and the adaptation current set107

to zero. In order to achieve steady state conditions , simulations were pre-run for 2000 ms108

without recording the activity.109

Receptor input110

ORNs were modeled as Poisson spike generators, with evoked firing determined by a receptor111

response profile and a spontaneous baseline. In the absence of stimulus the spontaneous firing112

rate of all ORNs is set to rBG
O = 20 Hz. In the presence of a stimulus the ORN firing rate113

is given by the summation of the spontaneous rate and an activation ΔrO:114

rO (t) =

⎧⎪⎪⎨
⎪⎪⎩
rBG
O +ΔrO for tstart < t < tstop

rBG
O else

. (1)

The intensity (amplitude) of ORN activation ΔrO is given by the receptor response profile115

that depends on receptor type and stimulus identity. Receptor activation follows a sine116

profile over half a period (0 . . . π):117

ΔrO = 40 Hz

⎧⎪⎪⎨
⎪⎪⎩
sin (xπ) for 0 < x < 1

0 else

,

118

x =
(kRT − kS) mod NRT

NA + 1
,

where kS is the stimulus index, kRT the receptor type index, NRT = 35 is the total number119

of receptor types and Na = 11 is the number of receptor types activated by a stimulus.120

Given these parameters 35 different odor responses can be simulated (kS = 0 . . . 34). This121

profile ensures that odor responses are evenly distributed across receptor types, while the122
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choice of the sine shape was arbitrary. If the difference between the index of two stimuli123

Δks is small, those two stimuli are called similar, because they elicit largely overlapping124

responses. For Δks > 12 the responses do not overlap representing dissimilar stimuli.125

Neuron model126

PNs, LNs, and KCs were modeled as leaky integrate-and-fire neurons with conductance-127

based synapses and a spike-triggered adaptation (Treves, 1993) current IA. We use the128

same set of cell parameters for all neuron types (cf. Table 2). This supports the generic129

character of our model and ensures that effects reported in this study are not a result of130

neuron-type specific parameters. The membrane potential of the i-th neuron from the PN,131

LN, and KC populations obeys:132

cm
d

dt
vPi = gL

(
EL − vPi

)
+ gOP

i

(
EE − vPi

)
+ gLP

(
EI − vPi

)
− IAi , (2)

cm
d

dt
vLi = gL

(
EL − vLi

)
+ gOL

i

(
EE − vLi

)
− IAi , (3)

cm
d

dt
vKi = gL

(
EL − vKi

)
+ gPK

i

(
EE − vKi

)
− IAi . (4)

Membrane potentials follow a fire-and-reset rule. The fire-and-reset rule defines the spike133

trains of PNs, LNs and KCs denoted by xB
i =

∑
k δ

(
t− tBik

)
for the i-th neuron of type B.134

The spike trains of the ORN neurons are generated by a Poisson process with spike times135

tOijk for the j-th receptor neuron of the k-th receptor type:136

xO
i (t) =

NO/Nglu∑
j

Nglu∑
k

δ
(
t− tOijk

)
. (5)

Synaptic conductances gi obey:137

τE
d

dt
gOP
i = −gOP

i + τEwOP x
O
i (t) , (6)

τE
d

dt
gOL
i = −gOL

i + τEwOLx
O
i (t) , (7)

τI
d

dt
gLP = −gLP + τIwLP

NGlu∑
j

xL
j (t) , (8)

τE
d

dt
gPK
i = −gPK

i + τE

NGlu∑
j

Wijx
P
i (t) . (9)
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Adaptation currents IAi obey:138

τA
d

dt
IAi = −IAi + τAΔIAxi (t) +

√
2τAσ2

I ξ (t) . (10)

where τA is the time constant and ΔIA the spike-triggered increase of the adaptation cur-139

rent. This phenomenological model of spike-triggered adaptation is biologically motivated140

by calcium-dependent outward potassium currents. Each action potential leads to an influx141

of a fixed amount of calcium and intracellular calcium is removed only slowly, resulting in142

an exponential decay of the intracellular calcium level. The last term reflects the diffusion143

approximation of channel noise (Schwalger et al., 2010), where ξ (t) represents Gaussian,144

white noise. The variance of the adaptation currents IAi is given by σ2
I .145

Neuron Parameters

membrane capacitance cm 289.5 pF
leak conductance gL 28.95 nS

leak potential EL -70 mV
reset potential VR -70 mV

threshold potential VT -57 mV
refractory time τref 5 ms

Synaptic Parameters
base synaptic weight w0 1 nS

PN-KC synaptic weight wPK 5 nS
excitatory synaptic potential EE 0 mV

excitatory time constant τE 2 ms
inhibitory synaptic potential EI -75 mV

inhibitory time constant τI 10 ms

Adaptation Parameters
spike triggered current ΔIA 0.132 nA

adaptation time constant τA 389 ms
adaptation current variance σ2

I 87.1 pA2

Tab. 2 – Parameters of the neuron model

Simulation conditions146

Four different scenarios were simulated: without lateral inhibition and cellular adaptation147

(i), with lateral inhibition (ii), with cellular adaptation (iii) and with lateral inhibition and148

cellular adaptation (iv). We quantified the strength of lateral inhibition with a multiplicative149

factor α, that set by the synaptic weight wLP in units of wOL:150

wLP = αw0. (11)
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Lateral inhibition is a network effect, conveyed by synaptic transmission, and was therefore151

compensated by scaling of synaptic weights. Weight scaling provides compensation during152

spontaneous as well as evoked activity. The scenario without lateral inhibition acts as a153

control condition, which deliberately does not include slow inhibitory synaptic dynamics.154

In scenarios without cellular adaptation ((i), (ii)) the dynamic adaptation current was re-155

placed by a compensatory static current IAi ≡ I0 = 0.38 nA in the PN and LN populations,156

whereas in the KC population it was set to zero IAi ≡ 0 nA. In scenarios without lateral157

inhibition ((i),(iii)) the inhibitory weights wLP were set to zero by setting α = 0. The158

synaptic weight wOL was adjusted to achieve a spontaneous LN firing rate of ∼ 8Hz that is159

well within the experimentally observed range (Perez-Orive et al., 2002; Chou et al., 2010).160

In all scenarios the spontaneous firing rate of PNs was set to ∼ 8 Hz (Perez-Orive et al.,161

2002; Chou et al., 2010; Meyer et al., 2013), by adjusting the synaptic weights between the162

ORNs and the PNs wOP .163

Code Accessibility164

Script files for model simulation are accessible at:165

https://github.com/nawrotlab/SparseCodingInSpikingInsectModel.166

Running the simulation requires Python 2.7, Brian 1.4 and numpy 1.11. All code was run167

on a x86-64 Linux machine.168

run_IF.py, run_saIF.py - simulation scripts. Used to run the model in the absence and169

presence of spike-frequency adaptation, respectively. All paramaters are contained within170

the respective scripts. Runing the script file will save simulation results to file in the python171

pickle format.172

sim_code.py - code of the neuron, input and network models.173

Data analysis174

Population firing rate175

The spike count of the i-th neuron, in the k-th time bin with size Δt is given by:176

ni,k =

kΔtˆ

(k−1)Δt

dt xi (t) . (12)
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Population firing rates were obtained from the spike count in a small time bin (Δt = 10 ms)177

ρk =
1

Δt
〈ni,k〉i ,

where 〈.〉i indicates the population average. In addition population firing rates were averaged178

over 50 trials.179

Sparseness measure180

Sparseness of evoked KC responses was quantified by the widely used modified Treves–Rolls181

measure (Treves and Rolls, 1991; Willmore and Tolhurst, 2001):182

s = 1−

(
1
N

∑N
i=1 ai

)2

1
N

∑N
i=1 a

2
i

,

where ai indicates either the distribution of KC spike counts (population sparseness, for i183

between 1 and 1000), or binned KC population firing rate (temporal sparseness, Δt = 50ms,184

for i between 1 and 20). The sparseness measure takes values between zero and one, high185

values indicate sparse responses. Both measures were averaged over 50 trials.186

Pattern overlap187

We define the activation pattern for a given odor by a vector containing the evoked spike188

count for every neuron in a population. Pattern overlap between two similar odors A and B189

was calculated using an expression formally equivalent to Pearson’s correlation coefficient:190

	AB,k =
Npop

∑
i nikmik −

∑
i nik

∑
j mik√

Npop

∑
i n

2
ik − (

∑
i nik)

2
√
Npop

∑
im

2
ik − (

∑
imik)

2
, (13)

where nik and mik are the spike counts of the i-th neuron, k-th trial, in response to odor A191

and odor B (ΔkS = 2) respectively, and Npop is the number of neurons in the population.192

The correlation coefficient was calculated both for the PN and the KC population, and193

averaged over 50 trials and 5 network realizations with randomly drawn PN-KC connectivity.194

In addition, we consider trial-averaged activation patterns n̂i = 1
Ntrial

∑
k nik and m̂i =195

1
Ntrial

∑
k mik. Based on these trial-averaged patterns, the overlap between those patterns196

is given by:197

	̃AB =
Npop

∑
i n̂im̂i −

∑
i n̂i

∑
j n̂j√

Npop

∑
i n̂

2
i − (

∑
i n̂i)

2
√
Npop

∑
i m̂

2
i − (

∑
i m̂i)

2
. (14)
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The overlap between the trial-averaged patterns was calculated both for the PN and the198

KC population, and averaged over 5 network realizations with randomly drawn PN-KC199

connectivity.200

Lateral inhibition scaling with parameter α In order to test if the decrease of overlap was201

robust for different strengths of lateral inhibition, the synaptic weight wOP was adjusted as202

follows:203

wOP = w0 (1 + αb) , (15)

where b was estimated from simulations under the condition that for a range of lateral204

inhibition strengths (α ∈ [0, 9]) the spontaneous PN firing rate was close to 8 Hz.205

Decoding analysis206

Odor identity was recovered from odor representations by Gaussian naive Bayes classification207

(Rish, 2001), using the scikit-learn package (Pedregosa et al., 2012). Training and testing208

data consisted of simulated odor representations for a set of seven stimuli (kS = 0, 2, . . . , 12),209

50 trials each. Classification was repeated for every time bin (Δt = 50 ms, 60 bins total)210

for PN spike counts, KC spike counts, or amplitudes of KC adaptations currents. Data was211

divided into a training and testing set using a 3-fold cross-validation procedure. Decoding212

accuracy was estimated by the maximum a posteriori method and is given by the fraction213

of successful classification trials divided by the total number of test trials.214

Results215

Spiking network model of the olfactory pathway with lateral inhibition216

and spike-frequency adaptation217

We designed a spiking network model that reduces the complexity of the insect olfactory pro-218

cessing pathway to a simplified three-layer network (Fig. 1A) that expresses the structural219

commonality across different insect species: an input layer of olfactory receptor neurons220

(ORNs), subdivided into different receptor types, the AL, a first order olfactory processing221

center, and the MB. Furthermore, the model combines two essential computational elements:222

(i) lateral inhibition in the AL, and (ii) spike-frequency adaptation in the AL and the MB.223
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The processing between the layers is based on excitatory feedforward connections. Converg-224

ing receptor input from all ORNs of one type is received by spatially confined subunits of225

the AL called glomeruli. In our model, glomeruli are represented by a single uniglomerular226

PN and a single inhibitory local interneuron (LN). In the MB, each KC receives on average227

12 PN inputs (Szyszka et al., 2005), based on a random connectivity between the AL and228

the MB (Caron et al., 2013). All neurons in the AL and the MB were modeled as leaky229

integrate-and-fire neurons with spike-triggered adaptation. Based on evidence from theo-230

retical (Schwalger et al., 2010) and experimental studies (Fisch et al., 2012), adaptation231

channels cause slow fluctuations. We accounted for this fact by simulating channel noise in232

the slow adaptation currents (cf. Methods).233

We simulated ORN responses to different odor stimuli. Single ORN responses were modeled234

in the form of Poisson spike trains with firing rates dependent on the receptor type and235

stimulus identity. The relationship is set by a receptor response profile (Fig. 1B left) which236

determines ORN firing rates of all receptor types for a given stimulus. Responses to different237

stimuli are generated by shifting the response profile along the receptor space. The offset238

between any two stimuli reflects their dissimilarity - similar stimuli activate overlapping sets239

of olfactory receptors, whereas dissimilar stimuli activate largely disjoint sets of receptors.240

Stimuli were presented for one second, reflected by a step-like increase of ORN firing rate.241

In the absence of stimuli, ORNs fired with a rate of 20 Hz reflecting their spontaneous242

activation (Nagel and Wilson, 2011). Both LNs and PNs receive direct ORN input. We243

tuned synaptic weights of the model to match physiologically observed firing rates of PNs244

and LNs, which are both about 8Hz (Perez-Orive et al., 2002; Chou et al., 2010; Meyer245

et al., 2013) (for details see Methods). Lateral inhibition and spike-frequency adaptation,246

the neural mechanisms under investigation, both provide an inhibitory contribution to a247

neuron’s total input. In our model, spike-frequency adaptation is a cellular mechanism248

mediated by a slow, spike-triggered, hyperpolarizing current in LNs, PNs and KCs, whereas249

a global lateral inhibition in the AL is mediated by LNs with fast synapses that receive input250

from a single ORN type and inhibit all PNs in a uniform fashion.251

Odor responses at the AL and the MB level of the spiking network252

model253

Figure 1B illustrates PN and KC responses to one odor. PNs driven by the stimulus showed254

a strong transient response at the stimulus onset, a pronounced adaptation during the stimu-255
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Fig. 1 – Olfactory network model structure and odor response. (A) Network structure resembles
the insect olfactory pathway with three main processing stages. In each glomerulus (dashed circles), a PN
(blue) and a LN receive convergent ORN input (red) by one receptor type (RT). Each LN provides unspecific
lateral inhibition to all PNs. KCs (orange) receive on average 12 inputs from randomly chosen PNs. (B)
Receptor response profile (red bars; AL input) depicts the evoked firing rate for each ORN type. Evoked PN
spike counts (dashed blue line; AL output) follow the ORN activation pattern. Raster plots depict single
trial responses of PNs (blue) and KCs (orange). Presentation of an odor during 1000 ms is indicated by the
shaded area. Population firing rates were obtained by averaging over 50 trials. PN spikes display a temporal
structure that includes evoked transient responses at stimulus on- and offset, and a pronounced inhibitory
post-odor response. PN population rate was averaged over PNs showing “on” responses (blue) and “off”
responses (cyan). KC spikes were temporally sparse with majority of the spikes occurring at the stimulus
onset. Supporting Fig. 1-1 and Fig. 1-2 (available online) show odor responses with adaptation disabled in
the KC and PN population, respectively.

lus, and a period of silence after stimulus offset due to the slow decay of the strong adaptation256

current. This resembles the typical phasic-tonic response patterns of PNs (Bhandawat et al.,257

2007; Nawrot, 2012; Meyer et al., 2013).258

PNs receiving direct input from ORNs activated by the stimulus, showed a strong response259

at the stimulus onset. Interestingly, the population firing rate over these PNs revealed that260

the “on” response follows a biphasic profile with an early and a late component. In addition,261

PNs with no direct input from stimulated ORNs showed an “off” response at the stimulus262

offset. Non-driven PNs were suppressed during a short period after stimulus onset, and263

showed reduced firing during the tonic response. The PN population response consisted of264

complex activations of individual PNs with phases of excitation and inhibition. Hence, in265

the AL, odors were represented as spatio-temporal spike patterns across the PN population.266

At the level of the MB, KCs typically show none or very little spiking during spontaneous267

activity and respond to odors with only a few spikes in a temporally sparse manner (Perez-268

Orive et al., 2002; Ito et al., 2008; Turner et al., 2008). In our model, synaptic weights269

between PNs and KCs were tuned to match the very low probability of spontaneous firing.270

Resulting KC responses were temporally sparse. Due to the negative feedback mediated271

by strong spike-frequency adaptation, most KC spikes were confined to stimulus onset.272

Notably, we also found that KCs sometimes exhibited “off” responses. These KC “off” spikes273

occurred very rarely, because they are driven by the PN “off” response, which is much weaker274

compared to the PN “on” response. Timing and amplitude of temporally sparse responses275

are in good quantitative agreement with in vivo KC recordings (Ito et al., 2008).276

Dense and dynamic odor representations in the AL277

In order to explore effects of lateral inhibition and cellular adaptation on stimulus represen-278

tations, we simulated odor responses in conditions in which we separately deactivated one279
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or both mechanisms. Lateral inhibition was deactivated by setting the inhibitory synaptic280

weight between LNs and PNs to zero and simultaneously reducing the value of the excita-281

tory synaptic weight between ORNs and PNs, such that the spontaneous firing rate of 8 Hz282

was kept. Adaptation was deactivated by replacing the dynamic adaptation current by a283

constant current with an amplitude that maintained the average spontaneous firing rate.284

Figure 2 illustrates the separate effects of lateral inhibition and adaptation on odor responses285

in the PN population. In all conditions, PNs fired spontaneously before stimulation due to286

spontaneous ORN activation. PNs driven by stimulation receive input from ORNs that287

were activated by the presented odor. In the absence of adaptation and lateral inhibition288

(Fig. 2 (i)) the stimulus response followed the step-like stimulation and showed no further289

temporal structure. In the presence of lateral inhibition (Fig. 2 (ii)), PNs not driven by the290

stimulus were strongly suppressed. Adaptation alone (Fig. 2 (iii)) resulted in a phasic-tonic291

response profile with a high phasic peak amplitude immediately after stimulus onset. In292

the presence of both mechanisms (Fig. 2 (iv)) we observed the characteristic phasic-tonic293

PN response. The transient response was reduced in peak amplitude, and, interestingly,294

followed a biphasic profile with an early and a late component.

Fig. 2 – Lateral inhibition and cellular adaptation shape PN odor response dynamics. (A)
Single trial PN spiking responses simulated with (right column) and without (left column) lateral inhibition,
and with (bottom row) and without (top row) adaptation. Presentation of a single odor during 1000 ms is
indicated by the shaded area. With adaptation PNs display a temporal structure that includes a transient
and a tonic response, and a pronounced inhibitory post-odor response. (B) Trial averaged population firing
rate: PNs driven by stimulation (blue) and remaining PNs (cyan). Panels (i)-(iv) indicate presence and
absence of lateral inhibition and adaptation as in (A). In the presence of lateral inhibition firing rates
during stimulation are reduced. In the presence of lateral inhibition and adaptation (iv) PNs show either
transient “on” responses (blue) or “off” responses (cyan). Panels A (iv) and B (iv) are reproduced in Fig.
1B. Supporting Fig. 2-1 (available online) shows PN tuning profiles and input-output relation.

295

In our model, the interaction of lateral inhibition and the intrinsic adaptation currents in LNs296

and PNs accounts for biphasic PN responses. Because LNs are adapting, lateral inhibition297

is strongest at stimulus onset. Most PNs were initially suppressed and showed a slightly298

delayed response, whereas the initial response of PNs with strong input (early component)299

was not affected. Fast and delayed PN responses have also been found experimentally in300

the honeybee (Strube-Bloss et al., 2012). Model evidence for the interplay of cellular and301

network mechanisms behind biphasic PN responses was found in the pheromone system of302

the moth (Belmabrouk et al., 2011).303
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Spike-frequency adaptation supports temporal sparseness in the MB304

To isolate the contributions of adaptation and lateral inhibition (the latter present only305

at the AL level) to odor responses at the MB level, we again tested the four conditions306

by deactivating one or both mechanisms. In all four conditions, KCs were almost silent307

and spiked only sporadically during spontaneous activity, whereas amplitude and temporal308

profile of their odor response differed across conditions (Fig. 3).309

In the presence of adaptation we observed temporally sparse responses (Fig. 3 (iii)-(iv)).310

KCs typically responded with only 1-3 spikes (mean spikes per responding KC were slightly311

above one, compare x in Fig. 3B (iii),(iv)). Due to the negative feedback mediated by strong312

spike-frequency adaptation, most KC spikes were confined to stimulus onset.313

In the absence of adaptation and regardless of the presence (Fig. 3 (i)) or absence (Fig. 3314

(ii)) of lateral inhibition, responding KCs fired throughout stimulation, because they received315

persistently strong input from PNs. Such persistent KC responses are in disagreement with316

experimental observations (Perez-Orive et al., 2002; Ito et al., 2008; Turner et al., 2008).

Fig. 3 – Odor response dynamics of the KC population. Figure layout as in Fig. 2. (A) Single
trial population spike raster responses. (B) Trial averaged KC population firing rate. Numbers to the
right indicate the fraction of activated KCs (na) and the mean number of spikes per activated KC during
stimulation (x̄). Without adaptation (i,ii) KCs spike throughout stimulation because PN drive is strong and
persistent. The fraction of activated KCs drops in the presence of lateral inhibition (ii,iv). With adaptation
(iii,iv) most of KC spikes are confined to the stimulus onset, indicating temporally sparse responses. We
note that spontaneous KC activity is extremely low (0.03 Hz) in accordance with experimental results (Ito
et al., 2008). Panels A (iv) and B (iv) are reproduced in Fig. 1B.

317

We quantified temporal sparseness of KC responses by calculating a measure modified from318

(Treves and Rolls 1991, cf. Methods). Comparison of temporal sparseness across the four319

conditions confirms that KC responses were temporally sparse only in the presence of adap-320

tation whereas lateral inhibition had no effect on temporal sparseness (Fig. 4A). Selective321

absence of adaptation in the KC population (supporting Fig. 1-1) did not have an effect on322

KC temporal sparseness (supporting Fig. 4-1A). This is due to high KC spiking threshold323

that requires strong input and ensures sparse responses. Selective absence of adaptation in324

the PN population (supporting Fig. 1-2) led to persistent tonic KC responses, in addition325

to the onset KC responses. This is due to strong tonic PN input leading to reduced KC326

temporal sparseness.327
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Fig. 4 – Quantification of temporal and population sparseness in the KC population. Sparseness
was measured in the absence (α = 0) and presence (α = 3) of lateral inhibition, and the presence (black
bars) and absence (gray bars) of spike-frequency adaptation. The sparseness measure was averaged over 50
trials. Error bars indicate standard deviation. A value of one corresponds to maximally sparse responses.
(A) Adaptation promotes temporal sparseness. (B) Lateral inhibition in the AL promotes KC population
sparseness. Supporting Fig. 4-1 (available online) shows temporal sparseness when spike-frequency adapta-
tion was disabled in the PN or KC population, and population sparseness for different numbers of PN inputs
per KC.

Lateral inhibition supports population sparseness in the MB328

We observed that the fraction of responding KCs was considerably lower in the presence of329

lateral inhibition (compare na across panels in Fig. 3B). We recall that lateral inhibition in330

our model is acting on PNs. The transient PN population rate response showed a biphasic331

peak in the presence of lateral inhibition. Effectively, the transient PN response was broad-332

ened in time and its amplitude was reduced (compare Fig. 2B (iii),(iv)). As a result, KCs333

received lower peak input from PNs. How does this affect KC responses on a population334

level?335

We visualized MB odor representations with activation patterns obtained by arranging KC336

spike counts evoked by two similar odors on a 30x30 grid in arbitrary order (Fig. 5A). In the337

absence of lateral inhibition (Fig. 5A top), a majority of the KC population was activated338

by both tested odors Each of the 1000 KCs receives input from, on average, 12 PNs and thus339

from about one third of the total PN population. KCs are readily activated by the strong PN340

input within a short time window following stimulus onset. Matching experimental results,341

KCs responded with 1-3 spikes. Turner et al. (2008) counted 2.2 - 4.9 KC response spikes in342

Drosophila in-vivo intracellular recordings. Using extracellular single unit recordings, (Ito343

et al., 2008) reported that moth KCs typically respond with a single spike and a maximum344

of 5 spikes. These numbers correspond to the apparent KC responses in the locust displayed345

in Broome et al. (2006).346

In the presence of lateral inhibition (Fig. 5A bottom), the fraction of activated KCs was347

reduced substantially (KCs activated, trial averaged: 9%, std: 3%). Again, this matches348

well the experimentally reported fraction of stimulus activated KCs in the range of 5-10% as349

measured in Drosophila (Turner et al., 2008; Honegger et al., 2011) and 6-11% in the locust350

(Perez-Orive et al., 2002; Broome et al., 2006). In our model, due to the lower peak input351

from PNs, only KCs with large numbers of PN inputs are likely to be activated. Therefore the352

KC population responds more selectively. The range of individual KC responses (1-3 spikes)353

was not affected. These activation patterns demonstrate that the MB odor representations354
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are sparse on a population level, as each odor is represented by the activity of a small fraction355

of the KC population.

Fig. 5 – Lateral inhibition in the AL facilitates population sparseness and reduces pattern

correlation in the MB. Spike counts (single trial) of 900 randomly selected KCs in response to two
similar odors (“Odor A” and “Odor B”) arranged on a 30x30 grid in the absence (top row) and in the
presence (bottom row) of lateral inhibition. Inactive KCs are shown in black. (A) In the absence of lateral
inhibition KCs readily responded to both odors, resulting in an activation pattern where most KCs are active.
In the presence of lateral inhibition both odors evoked sparse KC activation patterns. (B) Superposition
of responses to the two odors. KCs that were activated by both odors are indicated by hot colors (color
bar denotes spike count of the stronger response). KCs that were activated exclusively by one of the two
odors are indicated in gray. The fraction of KCs that show overlapping responses is reduced in the presence
of lateral inhibition. (C) Pattern correlation between the single trial responses in (A) to the two odors
obtained for PN (blue) and KC (orange) spikes counts, in the absence (α = 0) and presence (α = 3) of
lateral inhibition. Dashed line indicates pattern correlation of the input (ORNs). Pattern correlation was
retained at the AL and reduced at the MB level. Lateral inhibition in the AL reduced pattern correlation
in KCs but not in PNs.

356

To quantify population sparseness of odor representations in the MB, we again calculated a357

sparseness measure (cf. Methods). Population sparseness increased in the presence of lateral358

inhibition, independent of spike-frequency adaptation (Fig. 4B). In the presence of lateral359

inhibition and spike-frequency adaptation, both population and temporal sparseness were in360

qualitative and quantitative agreement with experimental findings (Perez-Orive et al., 2002;361

Szyszka et al., 2005; Ito et al., 2008; Turner et al., 2008). We note that population sparseness362

also depends on the connectivity parameters of the model (see Discussion). In particular, in-363

creasing the average number of PN inputs per KC decreased population sparseness, whereas364

reducing this number resulted in an increase of population sparseness (cf. supporting Fig.365

4-1). However, lateral inhibition has a dominant effect on population sparseness, irrespective366

of the PN-KC connectivity (cf. supporting Fig. 4-1). Taken together, odor representations367

at the MB level were characterized by a small fraction of the KC population responding368

with a small number of spikes.369

Decorrelation of odor representations between AL and MB370

In our model, lateral inhibition in the AL increased population sparseness of MB odor371

representations. Does an increased KC population sparseness lead to less overlap between372

MB odor representations? We visualized the overlap between odor representations in the373

MB by overlaying KC activation patterns in response to two similar odors (Fig. 5B). KCs374

responding exclusively to odor A or odor B are shown in gray, whereas KCs responding375

to both odors are color coded. With lateral inhibition (Fig. 5B bottom), most of the376

KC responses were unique to odor A or odor B and only few KCs were activated by both377

odors. In contrast, with lateral inhibition deactivated (Fig. 5B top), the ratio of KCs with378
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unique responses to the total number of activated cells was low, indicating highly overlapping379

responses. We quantified the overlap between odor representations evoked by two similar380

odors in the PN and the KC population. To this end, we calculated an overlap measure381

(formally equivalent to Pearson’s correlation coefficient, cf. Methods) between spike count382

patterns evoked by odors A and B (Fig. 5C). Interestingly, PNs retained the overlap of the383

input, independent of lateral inhibition. In contrast, KC representations showed a reduced384

overlap that decreased even further in the presence of lateral inhibition.385

We tested how scaling of the lateral inhibition strength affected the pattern overlap in PN386

and KC odor representations. To this end, we varied the strength of lateral inhibition387

(α) in the AL by increasing the strength of inhibitory synapses and adjusting feedforward388

weights (see Methods). In addition, we calculated pattern correlations in the absence of389

adaptation. As before, pattern correlation was calculated for two similar odors that activated390

an overlapping set of receptors. In the absence of adaptation, lateral inhibition decorrelated391

odor representations in both populations (Fig. 6B). However, for increasing strength of392

lateral inhibition this leads to an unphysiological regime with unrealistic low fraction of393

KCs that show a response (supporting Fig. 6-1B). In the presence of adaptation, increasing394

lateral inhibition had different effects on the PN and KC population (Fig. 6A). In PNs395

the correlation of the input was retained for all tested values of lateral inhibition. In KCs396

pattern correlation first decreased for weak to moderate lateral inhibition strength but then397

increased for strong lateral inhibition. For an intermediate strength of the inhibitory weights398

the pattern correlation between KC responses to similar odors attained a minimal value.399

For comparison, the bottom panels of Fig. 6 show the overlap 	̃ between the trial-averaged400

activation patterns, both in the presence (Fig. 6C) and absence (Fig. 6D) of adaptation. For401

PN representations both measures (	 and 	̃), indicate the same overlap (compare blue lines402

in (Fig. 6AB and 6CD). For KC representations, the measure based on averaged spike counts403

(	̃) is generally higher, whereas the minimum for intermediate strength of lateral inhibition is404

shallower (orange line in 6C). Overlap based on spike count patterns recorded in single trials405

decreases when responses are subject to trial-to-trial variability. In contrast, by averaging406

the patterns first, the effect of trial-to-trial variability is reduced. The comparison of both407

overlap measures indicates that in our model KC representations are more variable across408

trials compared with PN representations.409

What is the explanation for the observed minimum in pattern overlap? The minimum of410

pattern overlap for α = 3 coincides with the minimum of the fraction of activated KCs411
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(supporting Fig. 6-1). A lower fraction of responding KCs can be understood as increased412

selectivity of KC responses. Both can be linked to changes of the PN input with two413

counteracting effects. For low strengths of lateral inhibition the amplitude of transient PN414

input decreases with lateral inhibition due to temporal dispersion of response spikes across415

the PN population (cf. Fig. 2B (iv)). KC selectivity increases, whereas pattern overlap416

decreases.417

The increase of pattern overlap for α ≥ 4 is caused by common noise in KCs. The reason418

for the common noise are cross-correlations of PN output spike-trains. Their mean pairwise419

cross-correlation is zero in the absence of inhibition, and increases with α (cf. supporting420

Fig. 6-2). Due to increased cross-correlation of their inputs, KCs are more easily activated.421

However for α ≥ 4, KC responses are increasingly stimulus unspecific due to common noise422

and overlapping inputs. Taken together, for weak to intermediate lateral inhibition KC423

selectivity increases, responses remain stimulus specific and become more sparse. For strong424

lateral inhibition (α ≥ 4 ), the fraction of activated KCs increases as KC responses become425

more unspecific, driven by common noise.426

In general, a reduction of pattern correlation from PN to KC representations is characteristic427

for the insect MB (Laurent, 2002). Furthermore low overlap between KC representations428

has been found to facilitate discrimination of odors (Campbell et al., 2013). We therefore429

choose the intermediate strength of the inhibitory weights (α = 3) as a reference point in430

our model.

Fig. 6 – Pattern correlation in the antennal lobe and the mushroom body depend on lateral

inhibition strength α. The correlation coefficient ρAB between the response patterns to two similar odors
was calculated and averaged over 50 trials and 5 network realizations for PNs (blue) and KCs (orange).
Error bars indicate standard deviation over trials and network realizations. Pattern correlation of the input
is indicated by the dashed line. Input correlation is high because similar odors activate largely overlapping
set of receptors. (A) In the presence of adaptation, pattern correlation in PNs (blue) stays close to the
input correlation for all values of lateral inhibition strength. In KCs (orange) the correlation decreases
for small values of lateral inhibition strength, and increases for large values of lateral inhibition strength.
Pattern correlation in KCs is minimal for α = 3. (B) In the absence of adaptation, pattern correlation
decreases with the lateral inhibition strength both in PNs and KCs. The decrease is stronger in KCs. (CD)
Pattern correlation �̃AB was calculated based on evoked, trial-averaged spike counts in the presence (C) and
absence (D) of lateral inhibition. The correlation coefficient between the trial-averaged response patterns
to two similar odors was calculated and averaged over 5 network realizations. Error bars indicate standard
deviation over network realizations. In the presence of adaptation (C) the overlap between trial-averaged
KC representations of two similar odors (orange) shows a minimum for intermediate strengths of lateral
inhibition (1 ≤ α ≤ 3). At the minimum, the KC overlap is below the overlap between trial-averaged
PN representations. In the absence of adaptation the overlap between trial-averaged KC representations
is generally lower than the overlap between trial-averaged PN representations for all strengths of lateral
inhibition. Supporting Fig. 6-1 and Fig. 6-2 (available online) show the mean fraction of activated KCs and
mean pairwise KC cross-correlation, respectively.

431
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Odor encoding on short and long time scales432

Next, we tested if in our model the information about stimulus identity is contained in AL433

and MB odor representations by performing a decoding analysis in subsequent time bins of434

50 ms (cf. Methods). In PNs decoding accuracy peaked during stimulus on- and offset (Fig.435

7A). Both peaks coincide with a state of transient network activity caused by the odor on-436

or offset. The “on” and the “off” responsive PNs establish odor representations optimized for437

discrimination. After stimulus onset, decoding accuracy dropped but remained on a plateau438

well above chance level. Remarkably, after stimulus offset, odor identity could be decoded439

for an extended time period (several hundreds of ms) albeit with a reduced accuracy. Such440

odor after effects have been demonstrated previously in experiments (Szyszka et al. (2011),441

cf. Discussion).442

In KCs decoding accuracy was above chance level only in the first 2-3 time bins (about443

100 ms) after stimulus onset (Fig. 7B). In all other time bins decoding accuracy remained444

at chance level. Because the spiking activity in the KC population is temporally sparse,445

the continuous information at the AL output is lost in the MB spike count representation.446

This raises the question whether and if so how the information could be preserved in the447

MB throughout the stimulus. The intrinsic time scale of the adaptation currents might448

potentially support prolonged odor representations (Fig. 7C). We therefore repeated the449

decoding analysis on the adaptation currents measured in KCs (Fig. 7D). Indeed, the450

stimulus identity could reliably be decoded based on the intensity of the adaptation currents451

in subsequent time bins of 50 ms. Decoding accuracy peaked after stimulus onset and then452

slowly decreased. Remarkably, the time scale of the decay is comparable during and after453

stimulation. Because KCs show very little spontaneous activity, the decoding accuracy after454

stimulation decays with the adaptation time constant. This is due to the exponential decay455

of the adaptation currents evoked by stimulation, and the stochastic adaptation current456

fluctuations in the background due to channel noise.

Fig. 7 – Decoding of odor identity indicates a prolonged and reliable odor information in KC

adaptation currents. (A,B,D) Decoding accuracy was calculated for non-overlapping 50 ms time bins,
based on a set of seven stimuli (chance level ≈ 0.14) presented for one second (shaded area). Blue shading
indicates standard deviation obtained from a cross-validation procedure (see Methods). (A) Decoding of
odor identity from PN spike counts. Decoding accuracy peaks at odor on- and offset, and remains high after
stimulation. (B) Decoding of odor identity from KC spike counts. Decoding accuracy is above chance only
in the first three bins following stimulus onset. (C) Adaptation current amplitudes (single trial, hot colors
in arbitrary units) of 100 selected KCs in response to “odor A” (top) and “odor B” (bottom). (D) Decoding
of odor identity from KC adaptation currents. Decoding accuracy peaks 150 ms after odor onset, then drops
during stimulation but remains high and is sustained after odor offset.

457
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Discussion458

We investigated the transformation between dense AL and sparse MB odor representations in459

a spiking network model of the insect olfactory system. Our generic model demonstrates lat-460

eral inhibition and spike-frequency adaptation as sufficient mechanisms underlying dynamic461

and combinatorial responses in the AL that are transformed into sparse MB representations.462

To simulate responses to different odors we incorporated simple ORN tuning and glomerular463

structure in our model. This approach allows us to investigate how different odors are rep-464

resented in the AL and MB population activity and asses information about odor identity465

contained in respective odor representations. We inspected overlap between odor represen-466

tations in both populations. Sparse coding reduces overlap between representation, as has467

been predicted on theoretical grounds (Marr, 1969; Albus, 1971; Kanerva, 1988) and shown468

for MB odor representations (Szyszka et al., 2005; Turner et al., 2008; Lin et al., 2014).469

Similarly, our model shows pattern decorrelation in the MB but not in the AL.470

Post-odor responses471

In our model, we found “on” and “off” responsive PNs. At the stimulus offset, the “off”472

responsive PNs transiently increase, whereas the “on” responsive PNs transiently decrease473

their firing rate (cf. Fig. 2). ”On” responsive PNs remain adapted beyond stimulus offset.474

Their excitability thus stays reduced until the slow adaptation current has decayed. In475

contrast, in “off” responsive PNs increased lateral inhibition during stimulation causes a476

below-baseline adaptation level throughout the stimulus and thus an increased excitability.477

In effect, the odor-evoked and the post-odor PN activation patterns are reversed, i.e. anti-478

correlated (not shown). This result matches well the experimental observations in honeybee479

(Szyszka et al., 2011; Nawrot, 2012; Stierle et al., 2013) and Drosophila (Galili et al., 2011)480

PNs. Those results show highly correlated response patterns throughout stimulation, and481

stable but anti-correlated post-odor response patterns.482

Differential mechanism underlying temporal and population sparseness483

in KCs484

In our model, the two mechanisms underlying temporal sparseness and population sparseness485

act independently.486
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Temporal sparseness of KC responses in our model compares well to the experimentally487

recorded spiking responses in Drosophila, locust and moth (Perez-Orive et al., 2002; Ito488

et al., 2008; Turner et al., 2008), and to calcium imaging experiments in the honeybee489

(Szyszka et al., 2005). The model proposed here solely relies on spike-frequency adaptation490

for temporally sparse responses. On a cellular level, strong adaptation currents in KCs, which491

are suitable for generation of sparse responses, have been found in the honeybee (Wüstenberg492

et al., 2004) and cockroach (Demmer and Kloppenburg, 2009). In the model temporal493

sparseness is not affected by the deactivation of lateral inhibition, a finding supported by a494

previous study by Farkhooi et al. (2013).495

Several studies have suggested that either feedforward inhibition (Assisi et al., 2007) or496

feedback inhibition (Szyszka et al., 2005; Papadopoulou et al., 2011; Gupta and Stopfer,497

2012; Lei et al., 2013; Kee et al., 2015) causes temporally sparse responses. The existence of498

inhibitory feedback neurons in the MB has been demonstrated experimentally in different499

insect species (cockroach: Takahashi et al. (2017), Drosophila: Liu and Davis (2009), honey-500

bee: Grünewald (1999), locust: Papadopoulou et al. (2011)), whereas evidence for feedfor-501

ward inhibition to the MB is lacking (Gupta and Stopfer, 2012). Our model demonstrates502

that temporally sparse responses can be obtained without an inhibitory circuit motive.503

There is further evidence for a GABA-independent mechanism for the temporal shortening504

of KC responses. Calcium imaging studies in Drosophila (Lei et al., 2013; Lin et al., 2014)505

and in the honeybee (Farkhooi et al., 2013; Froese et al., 2014) showed that the temporal506

profile of KCs’ fast response dynamics is preserved even if GABAergic inhibition is blocked.507

What could be the benefit of temporally sparse responses in KCs? We hypothesize that tem-508

poral sparseness is an important strategy for the system to follow fast transient inputs rather509

than representing static input. The typical lab experiment uses controlled odor stimuli that510

are presented with static intensity for up to several seconds. However, in a natural setting,511

olfactory inputs are highly dynamic (Vickers et al., 2001). Natural odor plumes do not rep-512

resent a gradient intensity due to diffusion. Rather, odors distribute in space and time in a513

filamentous structure (Celani et al., 2014; Vickers, 2000) and filaments from different odors514

do not mix perfectly (Szyszka et al., 2012). Due to wind and animal movement - particu-515

larly relevant for flying insects - the olfactory input will generally be highly dynamic in time516

resulting in fast and steep changes of odor concentration whenever the animal encounters517

an odor filament. In such an on-off scenario, temporally sparse responses in KCs might en-518

able processing of rapid odor filament encounters. We hypothesize that the KC population519
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provides a temporally sparse representation of each filament’s odor identity with a single or520

few spikes in each KC. The system is thus able to track individual odor filament encounters521

over time and the animal can adapt its behavior accordingly, e.g. during odor source loca-522

tion in foraging flights (Budick, 2006; Van Breugel and Dickinson, 2014; Egea-Weiss et al.,523

2018). At the periphery it has been shown that the olfactory receptor neurons in various524

insect species are able to follow fast repeating olfactory input pulses even for high pulse525

frequencies (Vickers et al., 2001; Szyszka et al., 2014). Our results show that the mechanism526

of spike-frequency adaptation is able to generate temporally sparse responses to the onset of527

an odor and thus to detect temporal changes in the olfactory input rather than encoding the528

persistence of a stimulus. Adaptation has previously been implicated as a means to compute529

the temporal derivative of sensory input (Tripp & Eliasmith, 2010; Lundstrom et al., 2008;530

Farkhooi et al., 2013). A second advantageous property of spike frequency adaptation is531

that it facilitates the reliability of individual responses and significantly reduces the vari-532

ability in the number of response spikes across repeated stimulus representation (Farkhooi533

et al., 2011; Farkhooi et al, 2013). Temporal sparseness is not limited to the insect MB and534

has been discovered in diverse sensory systems, notably in mammalian sensory cortices (e.g.535

Vinje and Gallant 2000; Hromádka et al. 2008; Wolfe et al. 2010; Isaacson 2010) where it536

has also been linked to the encoding of temporally dynamic input in natural scences (e.g.537

Yen et al. 2010; Haider et al. 2010). We suggest that spike-frequency adaptation is a general538

mechanisms across sensory systems and taxa supporting reliable temporally sparse responses539

under natural sensory input conditions.540

The KC population sparseness in our model matches qualitatively and quantitatively with541

experimental estimates from electrophysiological responses in locust and Drosophila (Perez-542

Orive et al., 2002; Turner et al., 2008) and from calcium imaging in Drosophila (Honegger543

et al., 2011). Our model shows sparse KC responses on a population level in the presence544

but not in the absence of lateral inhibition. Calcium imaging experiments in the honeybee545

(Froese et al., 2014) have shown that inactivating GABA transmission disrupts population546

sparseness, in line with our modeling results. In Drosophila, feedback inhibition contributes547

to the population sparseness of KCs, as blocking of feedback inhibition reduced population548

sparseness and undermined the learned discrimination of similar odors (Lei et al., 2013; Lin549

et al., 2014). In addition, cellular mechanism such as a high threshold for KC activation550

in Drosophila (Turner et al., 2008) and active KC subthreshold properties in locust (Perez-551

Orive et al., 2002; Jortner et al., 2007) have been shown to support population sparseness.552

Moreover, plasticity of inhibitory feedback changing response patterns in the KC population553
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might be crucial for associative learning (Liu and Davis, 2009; Haehnel and Menzel, 2010;554

Filla and Menzel, 2015; Haenicke et al., 2018). We suggest that different neurophysiological555

mechanisms of sparseness are not mutually exclusive but rather act in concert. Both lateral556

inhibition in the AL and feedback inhibition in the MB are likely to be necessary for sparse557

KC population responses.558

Evidently, the sparse connectivity scheme between the PN and KC population is the anatom-559

ical basis for population sparse response patterns in the KC layer (e.g. Nowotny et al. 2005;560

Jortner et al. 2007; Huerta and Nowotny 2009). This connectivity is divergent-convergent561

with an apparent high degree of randomness (Caron et al., 2013). In our model, connectiv-562

ity is parametrized by the average number of inputs k per KC and by the synaptic weight563

wPK . Experimental estimates indicate a small number of inputs per KC. Anatomical data564

in Drosophila provided estimates of k ≈ 13 (Turner et al., 2008) and k ≈ 5 − 7 (Leiss565

et al., 2009). Szyszka et al. (2005) estimated k ≈ 10 inputs per KC for the honeybee. For566

our model we chose k = 12. Increasing or decreasing this number resulted in a decrease567

or increase of population sparseness, respectively (cf. supporting Fig. 4-1). Importantly,568

with respect to population sparseness, the physiological mechanisms of lateral inhibition and569

anatomical connectivity parameters represent conceptionally distinct factors. Neuromodu-570

lation can affect lateral inhibition on short (tens to hundreds of ms) time scales (Lizbinski571

and Dacks, 2018). Our results indicate that this modulation could have a drastic effect on572

population sparseness in the MB. The number of connections, in contrast, can be considered573

stable on short time scales. However, on a long time scale (days) experience dependent574

structural plasticity has been demonstrated within the synaptic densities of Drosophila MB575

calyx, where KCs connect to presynpatic PN boutons (Kremer et al., 2010).576

Decorrelation of odor representations between AL and MB577

Decorrelation of stimulus representations has been postulated to be a fundamental prin-578

ciple underlying sensory processing (Barlow, 1961, 2001). In particular, in the olfactory579

system odor representations are transformed to decorrelate activity patterns evoked by sim-580

ilar odors making them more distinct (Uchida et al., 2013; Friedrich and Wiechert, 2014;581

Galizia, 2014). Transformations decreasing the overlap between representations are termed582

pattern decorrelation. Less overlapping representations increase memory capacity (Treves583

and Rolls, 1991) and make discrimination of odors easier (Campbell et al., 2013). In our584

model, we found that AL odor representations preserved the similarity of the input, whereas585
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representations of similar odors at the periphery became decorrelated in the MB.586

We quantified the effects of lateral inhibition and adaptation on pattern correlations. We587

found that decorrelation of activity patterns in the AL occurred only in the absence of588

adaptation. Moreover, the amount of decorrelation depended on lateral inhibition strength.589

Considering decorrelation of odor representations, the difference between lateral inhibition590

and adaptation is substantial. In our model, lateral inhibition alone sharpens PN responses,591

whereas adaptation leads to linearization of the input-output relation between the input592

from ORNs and the PN output (cf. supporting Fig. 2-1). In computational studies lat-593

eral inhibition was previously shown to decorrelate odor representations (Luo et al., 2010;594

Schmuker et al., 2014). In a Drosophila study using single sensillum recordings from ORNs595

and whole-cell recordings from PNs, lateral connection in the AL were found not to affect596

correlations between glomerular channels (Bhandawat et al., 2007), but there is also evidence597

for decorrelation of AL representations (Olsen et al., 2010). In our model, pattern correlation598

between representations of similar odors was preserved at the level of the AL but reduced in599

the MB. The observed counter-acting effect of adaptation on pattern decorrelation by lateral600

inhibition in the AL is generally valid for strong adaptation. Strong adaptation currents601

provide slow, negative feedback that has a linearizing effect on the input-output relation602

(Ermentrout, 1998). As a consequence of strongly adapting PNs in our model, the pattern603

correlation of AL odor representations is equal to the pattern correlation given by the tuning604

profile of the ORN input (cf. Fig. 6).605

Odor representation in adaptation currents606

Early investigations of dynamical odor representations have shown that odor identity can be607

reliably decoded from PN spike counts in 50 ms time bins (Stopfer et al., 2003; Mazor and608

Laurent, 2005; Krofczik et al., 2009). We used this approach to show that odor represen-609

tations were specific and reliable in our model, including both AL and MB odor represen-610

tations. We found that odor representation were optimized for discrimination during odor611

onset (Fig. 7BC). Optimal decoding during stimulus onset is in agreement with electro-612

physiological evidence from locust and honeybee PNs (Mazor and Laurent, 2005; Krofczik613

et al., 2009). In the auditory system, Hildebrandt et al. (2015) found that grasshoppers use614

the onset of a sound pattern as the most reliable information for sound localization. Their615

study provides behavioral evidence that, in the presence of adaptation, the onset response616

preserves absolute stimulus levels. Our model shows that at the MB level, stimulus identity617
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could be decoded from KC spike counts only during a short time window after stimulus618

onset (up to about 150 ms, cf. Fig. 7B). This is a consequence of the temporally sparse KC619

responses.620

Moreover, we found that KC adaptation currents retain a representation of stimulus iden-621

tity, resembling a prolonged odor trace (Perisse and Waddell, 2011; Dylla et al., 2013). In622

our model, an odor trace present in adaptation levels extends well beyond the brief spiking623

responses. Adaptation currents constitute an internal dynamical state of the olfactory net-624

work that is not directly accessible to downstream neurons - a “hidden state” (Buonomano625

and Maass, 2009). However, adaptation levels influence the responses to (subsequent) stim-626

uli (Farkhooi et al., 2013) and may also affect downstream processing through an indirect627

pathway.628

Our results suggest that odor representations are not exclusively found in the spiking activity.629

The phenomenological model of spike-triggered adaptation used in this study (see Methods,630

for review see Benda and Herz, 2003) is motivated by calcium activated outward potassium631

currents. Those currents are activated by spike triggered calcium influx, which is only632

slowly removed. We propose that information carried by temporally sparse KC spikes is633

stored on prolonged time scales by the slowly decaying calcium concentration. We predict634

long-lasting levels of calcium in the KC population that retain odor information and provide635

a potential substrate for a short-term sensory memory. Therefore, classification of calcium636

levels recorded in the MB should reveal odor identity on a time scale determined by the637

decay of the intracellular calcium level. Indeed, a recent study by Lüdke et al. (2018)638

showed that prolonged calcium activity in KCs encoded odor information and could be639

related to behavioral odor recognition performance in trace conditioning experiments where640

a conditioned odor stimulus is followed by a temporally delayed reinforcement stimulus.641
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Figure Legends862

Figure 1 - Olfactory network model structure and odor response. (A) Network863

structure resembles the insect olfactory pathway with three main processing stages. In each864

glomerulus (dashed circles), a PN (blue) and a LN receive convergent ORN input (red) by one865

receptor type (RT). Each LN provides unspecific lateral inhibition to all PNs. KCs (orange)866

receive on average 12 inputs from randomly chosen PNs. (B) Receptor response profile (red867

bars; AL input) depicts the evoked firing rate for each ORN type. Evoked PN spike counts868

(dashed blue line; AL output) follow the ORN activation pattern. Raster plots depict single869

trial responses of PNs (blue) and KCs (orange). Presentation of an odor during 1000 ms is870

indicated by the shaded area. Population firing rates were obtained by averaging over 50871

trials. PN spikes display a temporal structure that includes evoked transient responses at872

stimulus on- and offset, and a pronounced inhibitory post-odor response. PN population873

rate was averaged over PNs showing “on” responses (blue) and “off” responses (cyan). KC874

spikes were temporally sparse with majority of the spikes occurring at the stimulus onset.875

Supporting Fig. 1-1 and Fig. 1-2 (available online) show odor responses with adaptation876

disabled in the KC and PN population, respectively.877

Figure 2 - Lateral inhibition and cellular adaptation shape PN odor response dy-878

namics. (A) Single trial PN spiking responses simulated with (right column) and without879

(left column) lateral inhibition, and with (bottom row) and without (top row) adaptation.880

Presentation of a single odor during 1000 ms is indicated by the shaded area. With adapta-881

tion PNs display a temporal structure that includes a transient and a tonic response, and a882

pronounced inhibitory post-odor response. (B) Trial averaged population firing rate: PNs883

driven by stimulation (blue) and remaining PNs (cyan). Panels (i)-(iv) indicate presence884

and absence of lateral inhibition and adaptation as in (A). In the presence of lateral inhi-885

bition firing rates during stimulation are reduced. In the presence of lateral inhibition and886

adaptation (iv) PNs show either transient “on” responses (blue) or “off” responses (cyan).887

Panels A (iv) and B (iv) are reproduced in Fig. 1B. Supporting Fig. 2-1 (available online)888

shows PN tuning profiles and input-output relation.889

Figure 3 - Odor response dynamics of the KC population. Figure layout as in Fig. 2.890

(A) Single trial population spike raster responses. (B) Trial averaged KC population firing891

rate. Numbers to the right indicate the fraction of activated KCs (na) and the mean number892

of spikes per activated KC during stimulation (x̄). Without adaptation (i,ii) KCs spike893

throughout stimulation because PN drive is strong and persistent. The fraction of activated894
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KCs drops in the presence of lateral inhibition (ii,iv). With adaptation (iii,iv) most of KC895

spikes are confined to the stimulus onset, indicating temporally sparse responses. We note896

that spontaneous KC activity is extremely low (0.03 Hz) in accordance with experimental897

results (Ito et al., 2008). Panels A (iv) and B (iv) are reproduced in Fig. 1B.898

Figure 4 - Quantification of temporal and population sparseness in the KC pop-899

ulation. Sparseness was measured in the absence (α = 0) and presence (α = 3) of lateral900

inhibition, and the presence (black bars) and absence (gray bars) of spike-frequency adap-901

tation. The sparseness measure was averaged over 50 trials. Error bars indicate standard902

deviation. A value of one corresponds to maximally sparse responses. (A) Adaptation903

promotes temporal sparseness. (B) Lateral inhibition in the AL promotes KC population904

sparseness. Supporting Fig. 4-1 (available online) shows temporal sparseness when spike-905

frequency adaptation was disabled in the PN or KC population, and population sparseness906

for different numbers of PN inputs per KC.907

Figure 5 - Lateral inhibition in the AL facilitates population sparseness and908

reduces pattern correlation in the MB. Spike counts (single trial) of 900 randomly909

selected KCs in response to two similar odors (“Odor A” and “Odor B”) arranged on a 30x30910

grid in the absence (top row) and in the presence (bottom row) of lateral inhibition. Inactive911

KCs are shown in black. (A) In the absence of lateral inhibition KCs readily responded to912

both odors, resulting in an activation pattern where most KCs are active. In the presence913

of lateral inhibition both odors evoked sparse KC activation patterns. (B) Superposition of914

responses to the two odors. KCs that were activated by both odors are indicated by hot915

colors (color bar denotes spike count of the stronger response). KCs that were activated916

exclusively by one of the two odors are indicated in gray. The fraction of KCs that show917

overlapping responses is reduced in the presence of lateral inhibition. (C) Pattern correlation918

between the single trial responses in (A) to the two odors obtained for PN (blue) and KC919

(orange) spikes counts, in the absence (α = 0) and presence (α = 3) of lateral inhibition.920

Dashed line indicates pattern correlation of the input (ORNs). Pattern correlation was921

retained at the AL and reduced at the MB level. Lateral inhibition in the AL reduced922

pattern correlation in KCs but not in PNs.923

Figure 6 - Pattern correlation in the antennal lobe and the mushroom body924

depend on lateral inhibition strength α. The correlation coefficient ρAB between925

the response patterns to two similar odors was calculated and averaged over 50 trials and 5926

network realizations for PNs (blue) and KCs (orange). Error bars indicate standard deviation927
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over trials and network realizations. Pattern correlation of the input is indicated by the928

dashed line. Input correlation is high because similar odors activate largely overlapping set929

of receptors. (A) In the presence of adaptation, pattern correlation in PNs (blue) stays close930

to the input correlation for all values of lateral inhibition strength. In KCs (orange) the931

correlation decreases for small values of lateral inhibition strength, and increases for large932

values of lateral inhibition strength. Pattern correlation in KCs is minimal for α = 3. (B) In933

the absence of adaptation, pattern correlation decreases with the lateral inhibition strength934

both in PNs and KCs. The decrease is stronger in KCs. (CD) Pattern correlation 	̃AB was935

calculated based on evoked, trial-averaged spike counts in the presence (C) and absence (D)936

of lateral inhibition. The correlation coefficient between the trial-averaged response patterns937

to two similar odors was calculated and averaged over 5 network realizations. Error bars938

indicate standard deviation over network realizations. In the presence of adaptation (C) the939

overlap between trial-averaged KC representations of two similar odors (orange) shows a940

minimum for intermediate strengths of lateral inhibition (1 ≤ α ≤ 3). At the minimum, the941

KC overlap is below the overlap between trial-averaged PN representations. In the absence942

of adaptation the overlap between trial-averaged KC representations is generally lower than943

the overlap between trial-averaged PN representations for all strengths of lateral inhibition.944

Supporting Fig. 6-1 and Fig. 6-2 (available online) show the mean fraction of activated KCs945

and mean pairwise KC cross-correlation, respectively.946

Figure 7 - Decoding of odor identity indicates a prolonged and reliable odor947

information in KC adaptation currents. (A,B,D) Decoding accuracy was calculated948

for non-overlapping 50 ms time bins, based on a set of seven stimuli (chance level ≈ 0.14)949

presented for one second (shaded area). Blue shading indicates standard deviation obtained950

from a cross-validation procedure (see Methods). (A) Decoding of odor identity from PN951

spike counts. Decoding accuracy peaks at odor on- and offset, and remains high after952

stimulation. (B) Decoding of odor identity from KC spike counts. Decoding accuracy is953

above chance only in the first three bins following stimulus onset. (C) Adaptation current954

amplitudes (single trial, hot colors in arbitrary units) of 100 selected KCs in response to955

“odor A” (top) and “odor B” (bottom). (D) Decoding of odor identity from KC adaptation956

currents. Decoding accuracy peaks 150 ms after odor onset, then drops during stimulation957

but remains high and is sustained after odor offset.958

Supporting Figure 1-1: Odor response with selective adaptation in the LN and the PN959

population. Strong phasic PN input elicits phasic KC responses. High KC firing threshold960
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ensures sparse responses in the absence of SFA in the KC population.961

Supporting Figure 1-2: Odor response with selective adaptation in the LN and the KC962

population. The absence of SFA in the PN population was compensated by a constant963

current I0 = 0.38 nA. PNs show a constant population rate response with a slightly delayed964

onset due to inhibition by LNs. KCs show a strong onset population rate response and a965

non-zero tonic firing rate.966

Supporting Figure 2-1: In the absence of adaptation (A,B), lateral inhibition (B) sharp-967

ens the PN tuning profile (blue). In the presence of adaptation (C,D) the PN tuning profile968

is not affected by lateral inhibition. The tuning profile was obtained by averaging PN firing969

rates during the one second stimulation window and across 50 trials. PNs receive input from970

ORNs of the corresponding type according to the receptor response profile. The receptor re-971

sponse profile (gray), rescaled between the minimum and maximum PN firing rate, is shown972

in all panels for comparison. The insets show the input-output relation between the ORN973

and the PN firing rates. Both, averaged (blue line) and single trial (gray crosses) PN firing974

rates are shown.975

Supporting Figure 4-1: (A) Temporal sparseness with SFA presence in selected popu-976

lations. Black: PNs, LNs and KCs. White dashed: LNs and KCs. White: LNs and PNs.977

Gray bars indicate simulation in the complete absence of SFA. (B) Population sparseness978

depends on the mean number of PN inputs per KC k, both in the absence (α = 0, left) and979

presence (α = 3) of lateral inhibition. In comparison with the default number of PN inputs980

(k = 12, black bars), reducing the mean number of connections to k = 9 (white dashed981

bars) increased population sparseness, whereas increasing the mean number of connections982

to k = 15 (white bars) decreased population sparseness. The gray bar corresponds to k = 12983

in the absence of SFA and is given for reference.984

Supporting Figure 6-1: Mean fraction of activated KCs for different strengths of lateral985

inhibition. We obtained the fraction of activated KCs by counting KCs that have fired986

at least one spike during one of the given epochs: one second of stimulation, one second987

of spontaneous activity, and first 50 ms after stimulus onset (transient response). (A)988

In the presence of spike-frequency adaption the mean fraction of activated KCs during989

evoked activity (blue) shows a minimum for intermediate strength of lateral inhibition. At990

the minimum, around 10% of the KCs responded to the stimulus. This fits well to the991

experimentally reported values in the range of 5-11% (Turner et al., 2008; Honegger et992

al., 2011). (B) In the absence of spike-frequency adaption the mean fraction of activated993
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KCs decreases with lateral inhibition during evoked activity (blue). Note that for α > 4994

the fraction of responding KCs is close to zero, or zero. In the absence of spike-frequency995

adaption, and higher strengths of inhibition, KCs do not receive strong enough inputs to996

spike.997

Supporting Figure 6-2: Mean pairwise PN cross-correlation for different strengths of998

lateral inhibition. For each PN, a vector obtained by binning the corresponding spike train999

into 50 ms windows was calculated. Pairwise correlation between the vectors was calculated1000

and averaged over all PN pairs and 50 trials.1001
















