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Abstract

Recent studies in posterior parietal cortex (PPC) have found multiple effectors and cognitive strategies
represented within a shared neural substrate in a structure termed “partially mixed selectivity” (Zhang
et al., 2017). In this study, we examine whether the structure of these representations are preserved
across changes in task context and is thus a robust and generalizable property of the neural population.
Specifically, we test whether the structure is conserved from an open-loop motor imagery task (training)
to a closed-loop cortical control task (online), a change that has led to substantial changes in neural
behavior in prior studies in motor cortex. Recording from a 4x4 mm electrode array implanted in PPC of
a human tetraplegic patient participating in a brain-machine interface (BMI) clinical trial, we studied the
representations of imagined/attempted movements of the left/right hand and compare their individual
BMI control performance using a one dimensional cursor control task. We found that the structure of
the representations is largely maintained between training and online control. Our results demonstrate
for the first time that the structure observed in the context of an open-loop motor imagery task is
maintained and accessible in the context of closed-loop BMI control. These results indicate that it is
possible to decode the mixed variables found from a small patch of cortex in PPC and use them
individually for BMI control. Furthermore, they show that the structure of the mixed representations is
maintained and robust across changes in task context.

Significance Statement

Multiple effectors and cognitive strategies are represented within a small patch of human posterior
parietal cortex (Zhang et al., 2017). However, it is unknown to what degree the structure of the
representations is maintained across different task contexts. Here, we focus on the task contexts of
brain-machine interface (BMI) training and online control, different contexts that have led to substantial
changes in neural behavior in prior studies in motor cortex. We find that the structure of the
representation of different movement conditions is largely maintained between the two contexts and
that the different representations can all be separately decoded and used for online BMI control.

Introduction
An important finding in systems neuroscience is that cortical neurons exhibit mixed selectivity, i.e.
individual neurons are tuned to multiple variables in idiosyncratic ways. Early studies examining the
representation of extrapersonal visual space in the posterior parietal cortex (PPC) of non-human
primates (NHPs) showed that individual neurons, instead of having eye position invariant receptive
fields, combined retinotopic receptive fields with eye position signals (Andersen and Mountcastle,
1983). These two signals often interacted multiplicatively and were referred to as “gain fields”
(Andersen et al., 1985). Neural networks trained to transform retinotopic receptive fields to craniotopic
receptive fields also formed gain fields similar to the neural data (Zipser and Andersen, 1988). PPC
neurons also mix head position (Brotchie et al., 1995) and vestibular signals (Snyder et al., 1998) for
potential transformations to body and world coordinates. Recent studies found random mixing of
modality (auditory and visual) in rat PPC (Raposo et al., 2014) as well as choice (sensory and rule) in NHP
prefrontal cortex (PFC) (Rigotti et al., 2013). Mixed selectivity allows a relatively small population of
neurons to encode a large variety of variables (Fusi et al., 2016).

Our lab has observed a form of mixed selectivity within human PPC (Zhang et al., 2017), finding
that cognitive strategy (imagine vs attempt) and body side (left vs right) variables were more
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overlapping in representation than the body part variable (hand vs shoulder). We termed this structure
where some variables are more or less overlapping “partially mixed selectivity”.

In parallel, studies have found that neural representations in high-level brain areas such as PPC
can vary with task context, such as the reward or value of an action (lyer et al., 2010; Platt and Glimcher,
1999) or a pro-/anti-reach mapping rule (Gail and Andersen, 2006; Westendorff et al., 2010). Another
such context is open-loop motor imagery vs closed-loop cortical control of a brain-machine interface
(BMI). Context here refers to prior information that changes factors surrounding the movement but not
the movement itself. Just as the value or mapping rule of an action might change planning and decision-
making processes without altering the motor movements, real-time feedback during closed-loop control
could do the same. Several studies have shown that the tuning of specific neurons can change from the
initial training task (open-loop) to the online control task (closed-loop) even though the underlying
intentions are qualitatively unchanged in motor cortex (Chase et al., 2009; Cunningham et al., 2011;
Taylor et al., 2002).

Nevertheless, BMI control based on representations measured during training is still possible,
albeit frequently using a protocol that updates decoder parameters to account for changes in neural
behavior under closed-loop control (Aflalo et al., 2015; Santhanam et al., 2006; Taylor et al., 2002).
These studies focused on directional tuning properties used for BMI control with respect to a single
effector or with different effectors in different sessions. To date, no studies have looked at how neural
coding for additional movement attributes, such as cognitive strategy or representations of different
effectors, compare between training and online control. Similarly, previous studies of mixed selectivity
have focused on neural activity in the absence of any BMI online control, only examining the data that
would be used to train a BMI decoder.

Thus, there remains an open question: how well is the structure of mixed representations
conserved across different task contexts? In this study, we focus on the contexts of training and online
control and test the BMI control performance of a C3/C4 tetraplegic participant in a 1D cursor control
task, decoding from single and multi unit activity recorded from a small 4x4 mm patch of the anterior
intraparietal cortex (AIP). The participant controlled the cursor using imagined or attempted movements
of the left (ipsilateral) or right (contralateral) hand. We find that all of the tested movement conditions
remain differentially represented during online control, with the structure of the representations largely
maintained. We also find that while attempted contralateral hand movements performed best, the
effect was primarily driven by differences in the number of units tuned rather than differences in the
consistency of the representations.

Materials & Methods

Subject Details

Subject NS is a 59 year-old female tetraplegic 7 years post-injury at the time of the experiment, with a
motor complete C3-C4 spinal lesion. She has no control or sensation of her hands, so attempted hand
movements refer to trying to activate the muscles of the hand while imagined hand movements refer to
mentally visualizing the movement (without any intended muscle activity or corresponding overt
movement). Subject NS was right-handed prior to injury. The study was approved by the California
Institute of Technology, Casa Colina Centers for Rehabilitation, and University of California, Los Angeles
Institutional Review Boards. We obtained informed consent after explaining the objectives of the study
and the possible risks involved. Subject NS was implanted with electrode arrays on 08/26/2014. The
recordings for the primary study occurred in the interval between 12/12/2016 and 1/30/2017 (slightly
over two years post implantation.) The recordings for the secondary study occurred in the interval
between 11/27/2017 and 12/22/2017 (slightly over three years post implantation.)
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Experimental Setup

Experimental sessions were performed at the Casa Colina Centers for Rehabilitation. Tasks were
performed in a similar setup as in Zhang et al. (2017), with NS seated in her motorized wheel chair in a
dimly lit room. Tasks were presented on a 27-inch LCD monitor occupying approximately 40 degrees of
visual angle, with stimulus presentation controlled using the Psychophysics Toolbox (Brainard 1997) and
MATLAB. No fixation was required or enforced.

Experimental Design

We used a one-dimensional point-to-point control paradigm as the BMI control task. The participant
was verbally instructed to control a cursor to move to the instructed target by “squeezing her hand to
push the cursor upwards, and relaxing her hand to let the cursor fall”. Movements were imagined or
attempted squeezes of the left or right hand. The neural signals from the squeezes were decoded into
an upward velocity signal such that magnitude of the upwards velocity was proportional to the
magnitude of the neural responses (see Neural Decoder for more details on the decoder specifications).
Thus, NS could control the vertical position of a cursor by keeping her hand squeezed to push the cursor
up and relaxed to move the cursor down, controlling the speed through her neural activity. The cursor
was bounded by the edges of the screen but targets were located such that overshooting was still
possible. We used this relatively simple task to allow enough time for data collection for all four
conditions within a single session.

The task was split into a training step (collecting data for the decoder training), and a testing
step (evaluating the decoder’s performance during online control), with each step being a different task
context. Separate training and testing steps were run for each of the four movement conditions
(imagined/attempted left/right hand squeezes). We verbally instructed NS which movement condition
to use prior to each training/online control run. For the training step, the cursor moved up and down
automatically between two points, while NS was instructed to squeeze (as per the movement condition)
in accordance with the direction of the cursor’s movement (i.e. squeezing when it was moving up, and
relaxing when it was moving down). We used this task paradigm because it was more similar to an open-
loop task where the movements are stereotyped and minimally affected by visual feedback (e.g.
squeezes are similar in timing from trial to trial). At the same time, the paradigm still allows us to have
more precise timing information on the movements to enable decoder training (e.g. the
squeeze/release state based on cursor position relative to the target). Targets alternated between the
two points, resulting in NS having to alternate between squeezes and releases consecutively. During the
training step, movement of the cursor was completely decoupled from the participant’s brain activity;
instead, movement of the cursor was determined by a linear quadratic regulator that was calibrated to
perform point-to-point movements to the target in a naturalistic manner, reaching the target in ~750ms
(Aflalo et al. 2015). Following movement, the cursor would rest on the target for the remaining trial
duration (3.3 seconds total). We ran 32 trials per movement condition, with each trial composed of a
squeeze and release phase.

For the testing step, NS was cued to move the cursor between 3 points oriented vertically in a
center-out paradigm (as opposed to two points). This modified 1D task made control more difficult for
NS than the previous two point task (e.g. requiring more precise control to smoothly reach each of the
three targets and minimize overshoot), and further emphasized a task context different from training. In
each trial, NS was given 6 seconds to move to the target. For each point-to-point movement, if the
allotted 6 seconds elapsed, then a secondary assist was activated, bringing the cursor to the target along
the ideal trajectory computed above. This was done so that the initial distance between the cursor’s
starting position and the target position was constant for each point-to-point movement and
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independent of the success/failure of the previous point-to-point movement. Between trials, the cursor
was held constant at the center for 2 seconds without any target being presented (the intertrial-interval,
ITI). Note that NS’s motor intentions could only affect the cursor position when a target was presented.
They could not affect the cursor position during the ITI, allowing her to relax during the ITI without it
affecting the cursor position. Following the ITI, NS could then continue relaxing to allow the cursor to
move downwards, or squeeze her hand to make the cursor move upwards. We ran 20 trials total for a
single movement condition at a time. This equated to 40 point-to-point cursor movements (each trial
split into a center-to-target and a target-to-center movement)—20 where the cursor was moving
upwards and 20 where the cursor was moving downwards. The experiment was run on 8 separate days,
with 593 units recorded total (assuming independent populations between days, 74.13+2.9 units per
day). We tested all four movement conditions each day, with the order of the movement conditions
changed each day to avoid potential order effects that could cause performance differences (e.g.
performance being better for early runs than late runs).

In the primary task design, each training run for a condition was immediately followed by online
control for the same condition (see Figure 4E). This prevented us from disambiguating whether some
results were driven by the conditions being closer in time or by the conditions being more
similar/matched. For example, recording nonstationarities (with units appearing or disappearing over
the course of a session) or neural responses dependent on the local history of task conditions could
introduce a temporal component to the neural data and cause consecutive pairs of runs to have more
similar neural representations than pairs further apart in time. This would make our result that the
representations are preserved from training to online control (Figure 4AB) ambiguous. The analysis for
that result compares different runs of the same condition but differing by context (e.g. ARH training and
ARH online control).

As a control for temporal order we collected data using a secondary task to determine how well
representations are maintained across a longer interval of time. This version was identical to the primary
task but with the order of the runs changed such that training and online control runs of the same
condition were no longer always temporally adjacent (see example blocks in Figure 4F). For example, in
each block of four runs, we interleaved two movement conditions A and B in the order: training for
Condition A, training for Condition B, online control for Condition B, online control for Condition A. This
experiment was run on 4 separate days, with 2 blocks of four runs per day (8 runs total), and 220 units
recorded in total (assuming independent populations between days).

Signal Recording Procedures

Two 96-channel Neuroport arrays (Blackrock Microsystems model numbers 4382 and 4383) were
implanted in the putative homologues of area AIP and Brodmann’s Area 5d. Preoperative fMRI was used
to identify array implant location (Aflalo et al., 2015). Only data recorded from the array implanted in
AIP (at Talairach coordinate [-36 lateral, 48 posterior, 53 superior]) were analyzed and presented here. A
Neuroport neural signal processor (NSP) amplified, digitized, and recorded the neural activity. The
Neuroport System (composed of both the NSP and the arrays) has FDA clearance for acute recordings
over a duration < 30 days. For this brain-machine interface clinical trial, we have received FDA IDE
clearance (IDE #G120096, G120287) to implant and record from PPC past the 30 day limit.

During recording, full-bandwidth signals were sampled at 30 kHz in the Central software suite
(Blackrock Microsystems) and high pass filtered (250 Hz cutoff). We used -3.5 times the root-mean-
square as the threshold for action potential detection. Each waveform was composed of 10 samples
prior to triggering and 38 samples after, with a total duration of 1.6 ms. Both sorted units and threshold
crossings without sorting on the AIP array (hereafter referred to altogether as “units”) were recorded
and analyzed. Units were sorted by hand at the session prior to any data collection using the Central
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software suite (Blackrock Microsystems), with only high quality, easily isolatable, single and multi units
being identified and sorted (26.6 + 2.58 sorted units per day). We wanted to analyze the neural data
recorded during a real-time online session as opposed to an offline analysis with intensive spike sorting.
This approach better emulates the conditions of a real-time BMI, so we purposefully did not perform
any additional offline sorting.

Decoding Procedures

We used a continuous decoder fit on the vertical velocity of the cursor as a linear function of the neural
population as a whole. The position of the cursor was bounded by the edges of the screen, but targets
were positioned such that it was still possible for the cursor to overshoot. Note that the decoder used
for control was trained on only one strategy-effector combination at a time, differentiating between the
squeeze state and release state for that particular condition.

For features, the velocity decoder used the z-scored firing rates of the units. Only units with a
minimum raw firing rate of at least 1 Hz were included (on average 96.3 + 0.2% of all units across all
sessions). Firing rates were sampled with a 50 ms sampling period and then smoothed by a causal
exponential filter with a 1.5 second duration (length of 30 samples) and a smoothing factor of 0.75 to
filter out high frequency noise.

For the regression, we used MATLAB's lasso function, which implements elastic net
regularization. This method tries to minimize the number of terms in the model based on an elastic net
mixing value that trades off between lasso and ridge regression (a mixing value of 1 is lasso regression,
while a mixing value of 0 is ridge regression). We used an elastic net mixing value of 0.05 for the model,
with the exact lambda (regularization coefficient) determined through cross-validation (across 15 values
of lambda).

Statistical Analysis

Comparisons between pairs or multiple distributions were performed using non-parametric one-way
ANOVA (Kruskal-Wallis), grouping by the different movement conditions being compared (either all four
or in the pairwise case two at a time). Samples were the values computed on a per day basis (Figure 3,
Figure 4A), per trial basis (Figure 7AB), per run basis (Figure 4CD, Figure 7C), or per unit basis (Figure 2,
Figure 6, Figure 7D).

Values shown in figures were computed from data sets after pooling across all days. Error bars
indicate bootstrapped confidence intervals on the pooled data. All such confidence intervals were
computed with 2000 bootstrap data samples.

All analyses were performed using MATLAB 2017a.

Unit Selection

Units were pooled across days assuming independent populations. Only units with mean firing rates
above 0.5 Hz and with a signal-to-noise ratio above 0.5 were included in the analyses to limit low firing
rate and noise effects.

Linear Model Analysis for Neural activity Characterization

For each individual unit, we fit a linear model to the unit’s firing rate when the hand was released and
squeezed. This was done for each movement condition separately (one model fit per condition, 8
models total). The hand was considered to be in a squeeze or release state based on the position of the
target relative to the cursor, and which action NS would need to perform to successfully complete the
trial. For the time window of neural activity, we wanted to minimize potential feedback corrections and
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isolate the movement intention signals. Based on single and multi unit event related averages from this
and past studies (Zhang et al., 2017), we chose a window of 500 ms to 1500 ms after cue onset to isolate
the majority of the neural modulatory activity. The significance value of the fit (p-value of the t statistic
for the beta coefficients) was used to determine tuning to the corresponding condition (significant if p <
0.05, FDR corrected). Because the linear model fits a unit’s firing rate as a function of whether the hand
was in a squeeze or release state, a unit is thus considered “tuned” if it’s firing rate significantly
modulates between when the hand is squeezed and released. We also analyzed the R? of the fit as a
measure of reliability of tuning (i.e. consistency in terms of trial to trial variability). Additionally, we
analyzed the beta coefficient of the model and its cross-validated standard error as another measure of
tuning magnitude (i.e. the magnitude of the firing rate modulation) and reliability.

Degree of Specificity

Prior to assessing any possible performance differences between the movement conditions, we needed
to verify that the conditions were differentially represented in our neural population. To do this, we
performed a degree of specificity analysis, characterizing the degree to which units were specific to
different levels of a variable in training and online control. We first looked at one level of a variable (e.g.
the right hand), and computed the degree of specificity to the levels of the other variable (e.g. specificity
to imagine and attempt). The degree of specificity was computed by taking the difference of the
absolute values of the relevant beta coefficients (those associated with the two levels being compared)
normalized by the sum of the absolute values of the beta coefficients. For example, to compute the
degree of specificity to imagine and attempt with the right hand, the equation would be:

|Bare| + | Bire]
where [ is the beta coefficients from the linear model fit above for the associated movement condition
divided by the standard error of the beta estimate. This degree of specificity analysis was done
separately for the training data and the online control data. We only included units tuned to at least one
of the conditions being compared (p < 0.05, FDR corrected). For each distribution, we performed a two-
sided sign test to determine whether the medians of the distributions were significantly different from 0
(i.e. if they were biased to one variable over another).
We also wished to show how well preferences were maintained on a per unit basis across training and
online control. As with degree of specificity, we first looked at one level of a variable (e.g. the right
hand), and computed the “condition preference” to the levels of the other variable (e.g. imagine and
attempt). We quantified the condition preferences of each unit as the differences between beta
coefficients normalized by their standard error. This is the same computation as the degree of
specificity, but without the normalization term in the denominator; a choice made given that we wanted
to look at individual unit changes from training to open loop and these changes are more interpretable
at their natural scale where normalization of small amplitude differences cannot obscure the magnitude
of condition differences. Condition preference values are displayed as a paired-point plot showing the
values for training and online control with a connecting line for each unit. The full distribution of the
condition preferences are shown as a violin plot. For each distribution, we performed a two-sided sign
test to determine whether the medians of the distributions were significantly different from O (i.e. if
they were biased to one variable over another). Finally, we computed the change in condition
preference from training to online control. To test whether the condition specificity was preserved, we
compared the fiducial values of the distances (e.g. between the same unit) with a null model in which
differences between training and online control were computed after shuffling unit identity. These two
distributions (fiducial differences versus shuffled) were compared using a two-sampled F-test for equal
variances.

Degree of Specificity =
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Correlation between Neural Representations
Besides the single and multi unit measures of how well representations were maintained, we also
wanted a population measure of the similarity between representations during training and online
control. Using correlation as a measure of similarity, we directly looked at the similarity of the neural
representations for each condition separately. We used correlation over other distance measures (such
as Euclidean or Mahalanobis distance) because correlation gives a normalized value of the similarity
between the representations and is invariant to gross baseline changes across the entire population.
The neural representations were the vector of normalized beta coefficients (one element for
each unit). The normalized beta coefficients are the beta coefficients (from the linear models above)
normalized by their 95% confidence intervals and thus are a trial average measure of each unit’s activity
weighted by its trial-to-trial variability.

Comparison of Representations Between Training and Online Control

The above analyses treat each condition separately, looking at how well representations were
maintained from training to online control. We also wanted to test how well the structure of the
representations of the movement conditions as a whole was preserved going from training to online
control (i.e. the relationships between the representations). We performed a cross-decoder analysis,
training a linear classifier (linear discriminant analysis, equal diagonal covariance matrices for each
condition) on just the training data (combined across condition) to classify the four movement
conditions, and then tested the ability of the classifier to generalize to the online control data. The
classifier used the modulation of the units’ firing rates from the release state to the squeeze state as
features. The classifier’s cross-validated performance on training data was also computed for
comparison. Also, a second classifier was trained on the online control data and tested on the training
data (testing generalization from online control representations to training representations). We
performed this cross decoding analysis independently for each of the experimental sessions, resulting in
a distribution of scores for the cross-validation/generalization scores of each classifier. For each score
distribution, we used a one-sided Wilcoxon signed rank test to determine if the scores were significantly
above a chance prediction score of 1 out of 4 (0.25, p < 0.05).

In order to look at how well the classifiers performed with each condition during generalization,
we also computed the confusion matrices for each of the generalization scores. For each trial, we
recorded the true condition type as well as the condition type predicted by the classifier. These true-
and predicted- condition pairs were counted up and tabulated into a matrix form and then normalized
by the number of trials per condition, resulting in the confusion matrix values shown in Figure 4B.

Analysis to Control for Order Effects

In order to control for the possibility that the results of the above analysis were driven by the temporal
adjacency of different conditions, we performed an additional control analysis. Looking at the primary
task data set, we compared the similarity between neural responses from training to online control
when the conditions were matched (and therefore adjacent due to the primary task’s design) against
the similarity when the conditions were mismatched but still adjacent in time. For example, consider the
set of runs in the sequence depicted in Figure 4E. We compared the similarity in the responses of
consecutive pairs with matched conditions (pairs marked in blue) against the consecutive pairs with
mismatched conditions (pairs marked in red). We measured similarity as the correlation between the
beta coefficients of the conditions. The distributions of the correlation values (computed on a per-pair
basis) were then compared between the two groups (matched vs mismatched) using a nonparametric
one-way ANOVA (Kruskal-Wallis).
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Analysis of Temporal Effects

We also wanted to examine whether representations between training and online control could be
maintained across extended periods of time. Analyzing data from the secondary experimental design,
we directly compared different pairs of runs within each block of four runs (see Experimental Paradigm,
Figure 4F). We compared the correlations between the second and third runs (pairs marked in blue,
matched by condition and closer together in time) against the correlations between the first and last
runs (pairs marked in yellow, matched by condition but farther apart in time). We could also compare
the above correlations with the pairs of training and online control runs with mismatched conditions by
computing the correlations between the first and third runs (pairs marked in red, mismatched by
condition). The distributions of the correlation values (computed on a per-pair basis) were again
compared with a nonparametric one-way ANOVA (Kruskal-Wallis).

Neural Performance

We used the performance of individual units during online control as a continuous measure of how well
units maintained their tuning. We used this measure instead of simply looking at how many units
maintained their tuning between training and online control. One drawback of only using tuning is that
it makes a binary determination of whether or not a unit is tuned. It is possible for a unit to be classified
as tuned during both training and online control but with different strengths (i.e. different beta
coefficient magnitudes). For example, a unit could be significantly modulated by a condition during both
training and online control but with significantly different firing rates.

To compute the performance of each individual unit, we looked at the direction of the unit’s
influence on the cursor within a time window (e.g. the above 500 ms to 1500 ms used in the above
linear analysis). For the given time window, the neural activity was projected through the corresponding
decoder weight (from a decoder trained on the training data) into an influence acting on the cursor. The
sign (direction) of the average influence across the time window indicated whether the unit was pushing
the cursor up or down on average during that interval. We then compared the direction of this influence
to the direction the cursor would need to move in to reach the target. In other words, we looked at
whether the unit was pushing the cursor in the correct direction on average. This influence was
computed on a trial-by-trial basis for the selected time window. The neural performance of an individual
unit was then defined as the fraction of trials where the unit was pushing the cursor in the correct
direction.

When aggregating these unit measures, we used a weighted average of neural performance
values, with weights taken from the corresponding population decoder used for online control. This
allows us to directly measure the generalization performance of each unit in the context of its effect on
online control performance. In other words, the weighted average is reflective of the performance of a
decoder trained on the units being pooled together. While comparing firing rates between training and
online control would also be informative of how well units maintained their tuning, it would not account
for the units’ actual influence on the online control. Note that for the decoder weights we used the
weights from the population decoder as opposed to the single-unit beta coefficients.

Behavioral Performance Metrics

We used two metrics to assess behavioral control performance. The first metric was simply the number
of successful trials divided by the total number of trials (success rate). A trial was considered successful
if the cursor reached the designated target and was held there for 1 second within the allotted 6
seconds (under NS’s own control). The second metric was the time required to reach success (not
including the 1 second hold time), looking only at successful trials.
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To get a sense of what constituted a “good” success rate, we used real neural data to simulate a
bound on chance performance. For each online control run, we simulated trials by randomly selecting a
mock target, randomly selecting a 6 second segment of neural data, applying the corresponding
decoder, and simulating the trajectory of the cursor. We then marked the simulated trial as a “success”
if the simulated trajectory reached the mock target and was held there for 1 second (the same criteria as
was used on the real online control trials). The mock targets were either the true target for a trial or the
target equidistant from the starting position but in the opposite direction as the true target (e.g. flipping
the direction) so that the travel distances would be the same. The cursor bounds keeping the cursor on
screen were also translated as needed so that the simulated trials had bounds symmetrical to the real
trial. For example, consider a true trial where the cursor moved from the top target down to the center
and with a boundary directly above the starting position, preventing it from moving upward too much. If
the mock target were above the starting position, then the boundary would be shifted so that there was
a boundary directly below the starting position, preventing it from moving downward too much. This
was done so that the effects of the boundaries on performance would be replicated in the simulation as
well. This simulation method allows us to determine whether our observed control performance was
significant, i.e. whether NS had control.

Results

As detailed in the methods section, we recorded from AIP of a female, C3/C4 tetraplegic participant (NS)
and compared neural responses of four movement conditions during the calibration (“training”) and
online control steps of a 1D BMI control task (Figure 1AB). The four movement conditions tested and
used for control were: attempted right hand movements (ARH), imagined right hand movements (IRH),
attempted left hand movements (ALH), and imagined left hand movements (ILH).

We first investigated how similarly the movement conditions were represented between
training and online control, as well as the degree to which the structure of these representations (i.e.
relationship between the representations) was maintained across the two contexts. We then examined
whether all the tested movement conditions are feasible for control and the factors involved in any
performance differences between the movement conditions, results particularly pertinent to the
contexts of BMI control.

Representations during Training and Online Control Contexts

We first wanted to verify that the four movement conditions were represented in the recorded
population, during both training and online control, by looking at the percent of the population tuned to
each condition. For each unit, movement condition, and context separately, we fit a linear model to the
unit’s firing rate modulation between the “release” to “squeeze” hand states (see Methods for more
details). A unit was considered tuned if the beta coefficient of the model was significantly different from
zero (p < 0.05, uncorrected). A significant fraction of the population was tuned to each of the conditions
(Figure 2A), indicating that they were indeed represented.

We used a specificity analysis to examine the degree of overlap between the populations
representing each condition (i.e. the degree to which the populations had shared/distinct
subpopulations of units). If populations were non-overlapping, we would expect to see most units
having high specificity values. On the other hand, if populations were overlapping, the distributions
would have lower specificity values (clustered around 0). Figures 2B-E (top row) show the distribution of
the specificity values focusing within one level of a variable at a time. For example, Figure 2C (top row)
looks at the degree of specificity of the units to attempt and imagine only for conditions involving the
right hand. In Figure 2C (top row), a value of 1 would correspond to a unit activated only by attempt and
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not at all for imagine, a value of -1 would correspond to a unit activated only by imagine and not
attempt, and a value of 0 would correspond to a unit activated similarly by both. Units not significantly
tuned to either were excluded from the analysis. We computed the distributions separately for the
training data (in blue) and the online control data (in orange). All computed distributions indicated
partially overlapping populations, with some units highly specific to a condition and other units equally
responsive to both.

In Figure 2B-E (middle row), we show how preferences of individual units are preserved from
training to online control in a paired-point plot: Each point shows the preference value for training and
online control and a connecting line enables tracking how the unit’s preference changes across contexts.
Figure 2B-E (bottom row) quantifies these changes by plotting a histogram of the online values
subtracted from the training values. To quantify whether preference values tend to be similar or change
across contexts, we compared the fiducial distribution of changes against a distribution constructed by
subtracting online from training data while scrambling unit ids. In each case, the fiducial distribution was
more narrowly distributed then the shuffled distributions (two-sampled F-test for equal variances,
p<0.05). Taken together, these results show that, at the individual unit level, preferences tend to be
maintained although changes, sometimes substantial, can also be found.

Given that all four tested movement conditions were represented in different but partially
overlapping populations, we first wanted to see how well the representations were maintained across
the population. Using correlation as a measure of similarity, we correlated the neural representations of
each condition during training to its corresponding representation during online control (see Methods
for more details). There were no significant differences between conditions going from training to online
control (Figure 2F, XX(3, N = 32) = 6.59, p = 0.087, Kruskal-Wallis).

The above analyses in Figure 2 suggest that the representations of all four conditions are largely
preserved between training and online control. The comparable level of maintenance between each of
the conditions also suggests that the structure of the representations itself is maintained. However, this
is not an obvious result. The above analyses treat each condition separately and do not look at how the
relationship between the conditions changes between training and online control. In Figure 3A-C we
show three main possible configurations of the structure of the representations going from training to
online control. (1) The structure of the representations is maintained and consistent between training
and online control, as the above results seem to suggest (structure maintained, Figure 3A); (2) all four
conditions are differently represented during online control but in a different structure than during
training (structure different, Figure 3B); and (3) the representations of the four conditions collapse into a
single representation that is invariant to which of the four conditions is being used, such as in a pure
intention or goal signal (structure collapsed, Figure 3C).

To more directly adjudicate between the three configurations, we performed a cross decoding
analysis to test how well the representations of the four conditions generalize across the contexts (i.e.
across training and online control). We trained a linear classifier on the training data to classify between
the four movement conditions and tested it on the training data (cross-validated performance) and the
online control data. Conversely, we also trained a classifier on the online control data and tested it on
the online control data (cross-validated performance) and the training data (see Methods for more
details).

The results of such an analysis can directly clarify which of the above three configurations fits
our data best. Idealized example results corresponding to each of the three configurations are shown in
Figures 3D-F. If the structure is maintained (Figure 3A), we would expect results similar to those in
Figure 3D. The training classifier in this case performs well within the trained-on training data (right blue
bar, cross-validated performance), as well as with the not-trained-on online control data (left blue bar).
Similarly, the online control classifier performs well both with the trained-on online control data (right
red bar, cross-validated performance) and with the not-trained-on training data set (left red bar). This
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pattern of performance indicates that the four conditions are differently represented in both training
and online control and that the structure of these representations is similar between the two contexts.
On the other hand, if the structure is different (Figure 3B), then we would expect results similar to those
in Figure 3E, where both cross-validated performances are significant, but generalization performance is
only chance-level. Finally, if the structure collapsed during online control (Figure 3C), we would still
expect cross-validated performance for the training classifier to be significant and generalization
performance to be chance-level, but we would also expect cross-validated performance for the online
control classifier to be chance-level, indicating that the representations are not differently represented
during online control (Figure 3F).

We found that the classifiers generalized from training to online control (and vice versa, Figure
4A). This suggests that the structure of the representations of the four movement conditions is
maintained and meaningful across the two contexts (structure maintained, Figure 3A). The confusion
matrices show that the representations of all four conditions tended to generalize equally well (Figure
4B).

In our experimental procedure, online control runs always occurred directly after the training
run of the corresponding condition. As a result, the above cross-decoding generalization could simply be
due to different contexts of the same condition type (e.g. ARH training and ARH online control) always
being temporally adjacent to each other. To take one example, non-stationarity in the structure of
representations on a time-scale longer than adjacent runs could account for temporally adjacent epochs
of neural data having more similar representations than temporally distant epochs.

To control for this possibility, we compared the correlations of the neural representations
between training and online control (pairs marked in blue in Figure 4D, temporally adjacent, “matched”
by condition), against the correlations between the other temporally adjacent condition combinations
(pairs marked in red, temporally adjacent, but “mismatched” by condition). In other words, we
compared the similarity of the neural representations between each training run and its following online
control run (matched and adjacent) against the similarity of each training run and its preceding online
control run (mismatched and adjacent). Despite all examined pairs of data sets being temporally
adjacent, the correlations between pairs matched by condition were significantly higher than those not
matched by condition (Figure 4C, x*(1, N = 56) = 20.88, p = 4.89e-6, Kruskal-Wallis).

We were also interested in whether the structure of the representations could be maintained
after extended periods of time. We collected several secondary data sets where we used the following
order in each “block” of runs: training for Condition A, training for Condition B, online control for
Condition B, online control for Condition A—where the Conditions A and B were each selected from the
four movement conditions (see Figure 5D for example blocks of runs). This ordering allowed us to
directly compare how well representations were maintained across training and online control runs
closer together in time with how well they were maintained across runs farther apart in time.
Importantly, we found that the classifiers generalized from training to online control (and vice versa,
Figure 5A,B) similar to the initial experimental configuration (Figure 4A,B). Further, We compared the
correlations between the neural representations (beta values) of the first and last runs of each block
(pairs marked in yellow in Figure 5D, same conditions, but farther apart in time) against the correlations
between the neural representations of the second and third runs (pairs marked in blue, same
conditions, but closer together in time). The correlation values were not significantly different across the
population (Figure 5C, X*(1, N = 16) = 0.044, p = 0.83, Kruskal-Wallis), suggesting that the
representations are similarly well maintained for runs nearer in time as for runs farther apart in time.

In addition to comparing how well representations were maintained across training and online
control for matched conditions, we also examined how well they were maintained for mismatched
conditions. The neural representations were more similar when the conditions were matching, rather
than when the conditions were mismatched, both when comparing against the condition pairs nearer in
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time (XX(1, N = 16) = 8.65, p = 0.0033, Kruskal-Wallis) and farther apart in time (x*(1, N=16) =9.28, p =
0.0023, Kruskal-Wallis). Altogether, the results of Figure 4C and 5C suggest that the “structure
maintained” configuration found in Figure 4A and 5A is not a result of the fact that the conditions were
temporally adjacent. Rather, the result was driven by the actual matching of the conditions.
Furthermore, the representations are maintained similarly well even after an extended period of time
with other conditions being tested.

The above results show that the structure of the representations of the different movements is
relatively consistent between training and online control, with significant generalization in the
organization from one context to the other. However, the generalization is not perfect, with the
generalization performance still lower than the cross-validated performance. Figure 4B already shows
that the representations generalize equally well for each of the movement conditions, albeit
imperfectly, meaning there is no single movement condition that causes the generalization performance
to drop.

The drop in generalization performance could also be due to a specific subset of units
generalizing poorly, rather than all units (regardless of tuning preference) generalizing imperfectly. Thus,
we next asked if there was a systematic difference in how well specific units generalized based on their
tuning preference. For example, do imagine-specific and attempt-specific units both maintain their
specificity equally well or does one type generalize to online control better?

To answer this question, we focused within one level of a variable at a time (e.g. the right hand),
categorized units by their specificity to the levels of the other variable during training (e.g. only tuned to
attempt, only tuned to imagine, or tuned to both), and then assessed their performance during online
control (Figure 6, see Neural Performance in Methods for more details). In general, units that were
specific to one condition maintained their specificity in terms of performance during online control. This
was true for each of the four conditions. Likewise, units that were non-specific between the compared
conditions (“Both”) performed equally well with either condition, maintaining their non-specificity. For
example, units that were tuned to ARH and not IRH during training performed above chance with ARH
and not with IRH and vice-versa (Figure 6B). Similarly, units that were responsive to both ARH and IRH
performed comparably well with both ARH and IRH during online control (Figure 6B). These results
indicate that the tuning preference of a specific unit does not affect how well it will generalize from
training to online control and that there is no specific functional variable that generalizes better than
another. These results also further emphasize that the unit tuning preferences observed during training
are largely maintained and meaningful during online control, consistent with our population results
above.

Comparison of movement conditions and online control performance
We also focused on whether all the tested movement conditions are feasible for online BMI control, the
degree to which performance differs between the movement conditions, and the possible causes of the
performance differences. For the context of BMI control, the ability to use the multiple movement
conditions and decode the many variables is particularly important.

We compared the performance of the movement conditions individually, looking at both trial
success rate (fraction of trials where NS successfully moved the cursor to the target within the allotted 6
seconds) and the time to successful trial completion. We found that all four combinations of strategy
and effector resulted in significant control performance compared to chance (Figure 7A). Interestingly,
the ARH condition performed significantly better than the other three (IRH, ALH, ILH). This was true
when using both trial success rate as a measure of performance (Figure 7A, x*(3, N = 1280) = 19.06, p =
2.66e-4, Kruskal-Wallis) and time to trial completion of the successful trials (Figure 7B, x3(3, N = 994) =
16.43, p = 9.24e-4, Kruskal-Wallis).
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Hypothetically, there are several possible explanations for why ARH performed better than the
other conditions. First, the representation of ARH during training might be more similar to its
corresponding representation during online control, either at a single unit level or a population level.
This would lead to the decoder trained on the ARH training data performing better during online
control. Second, more units could be tuned to ARH, resulting in a larger signal and thus better control
performance. Finally, the ARH tuned units might be more reliably tuned than the other conditions,
having more consistent neural responses trial-to-trial on a unit-by-unit basis, also leading to a larger
signal.

In regards to the first possibility, our above results already show that there are no differences in
how well the different movement representations are maintained. Not only are each of the
representations equally well maintained, but their structure is maintained, too (Figures 2B, 4).

Thus, we first sought to explain the performance differences simply as a function of the number
of units used for each decoder. There were significant differences in how many of the units were tuned
to each of the four conditions. Focusing on the training data, a test of equal tuning percentages for all
four conditions only trended towards significance (Figure 2A, x*(3, N = 2372) = 5.86, p = 0.12, Kruskal-
Wallis on the significance values of the linear model fits). However, a test of ARH compared to all other
conditions showed a significant difference (x*(1, N = 2372) = 4.35, p = 0.037, Kruskal-Wallis), consistent
with the observed performance differences.

We next asked whether there were any differences in reliability of tuning of the units tuned to
each condition. The performance differences could be driven not only by the greater number of ARH
tuned units, but also the ARH tuned units being more reliably tuned. We used the R?of the linear model
fits computed previously as a measure of the reliability of tuning. Once again focusing on only the
training data, while ARH tended to have more tuned units, on average, ARH tuned units were not any
more reliably tuned than units tuned to other conditions (Figure 7C, x¥3(3, N = 333) = 1.99, p = 0.58,
Kruskal-Wallis). These results suggest that on a unit-by-unit basis, there is nothing qualitatively special
about the units tuned to ARH compared to the units tuned to other conditions.

Previously, we found that the correlations of the movement conditions between training and
online control were also all comparable (Figure 3B) and that the structure of the representations is
largely maintained between training and online control (Figure 4,5). In light of these results, it makes
sense that any performance differences between the conditions existing during training might carry over
to online control. In other words, it should be possible to predict the online control performance trends
based on solely looking at the training data. To test this, we examined the cross-validated R* of each
movement condition’s decoder (decoders trained on data from the training runs, R computed from
regression of the predicted to the ideal trajectories, Figure 7D). ARH had a significantly higher cross-
validated R? than the other conditions (x*(3, N = 32) = 10.69, p = 0.014, Kruskal-Wallis). This is the same
trend as found in our performance measures (Figure 7AB). Consistent with the “structure maintained”
result, the properties of the movement conditions during training were also preserved in online control.

Discussion

In this study, we recorded from human AIP of a tetraplegic participant and investigated how well the
structure of the mixed representations was maintained between different task contexts. Focusing on the
task contexts of open-loop motor imagery (training) and closed-loop cortical control (online), we found
that the different tested effectors (left and right hand) and cognitive strategies (imagine and attempt)
could all be used for control, with performance differences primarily due to differences in the number of
units tuned to each movement condition during training.
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Consistency of representations across different task contexts

Our lab recently found partially mixed representations in human AIP, with strategy and body side
variables mixed and functionally segregated by body part (Zhang et al., 2017). Consistent with that
study, we found that a significant fraction of our recorded neural population encoded the tested
movement conditions during training (Figure 2A). Furthermore, populations tuned to each of the
variables were overlapping, with units having varying degrees of specificity to one variable over another
(Figures 2B-E), also consistent with the larger overlap between the variables found in Zhang et al. (2017).

Extending our previous study, we examined these representations not just in the absence of
closed-loop BMI control as the previous study did (“training”), but also during online control,
investigating the degree to which the representations change from one to the other. We found that the
representations of the movement conditions were largely maintained between training and online
control. Individual units tended to keep their tuning and specificity between training and online control
(Figure 6). Population representations as a whole also stayed relatively similar between the two contexts
(Figure 2F). Furthermore, we found that not only were the representations of the tested movement
conditions largely maintained, but the structure of their representations (i.e. the relationship between
the representations) was maintained and the movement conditions could be differentiated during both
training and online control (Figure 4AB, 5AB). This is especially remarkable because of the movement
conditions tested. The cognitive strategy (imagine vs attempt) and body side (left vs right) variables have
significantly more overlapping neural representations than body part (hand vs shoulder) (Zhang et al.,
2017). Thus, the movement conditions studied here are more difficult to differentiate. The structure is
also maintained despite the differences between the training and online control tasks (two targets vs
three targets, Figure 1), making the result even more significant.

The relative maintenance of representations from training to online control is consistent with the ability
to use recordings from AIP for brain control (Aflalo et al., 2015). While there can certainly be tuning
changes in some of the units when moving to online control (Chase et al., 2009; Cunningham et al.,
2011; Taylor et al., 2002), a percentage of the population must be relatively consistent in its behavior for
a decoder to generalize and perform online. That said, this previously consistency was found in the
directional tuning preferences of the neural population. It is not obvious a priori that the
representations of all the different movement conditions would be preserved between training and
online control. For example, there is good reason for the brain to largely preserve neural
representations of movement direction across open-loop and closed-loop conditions. The distinction
between other aspects of movement (e.g. cognitive strategies of imagine or attempt) when the subject
is actively controlling the cursor is not directly task relevant and the brain has less incentive to maintain
the distinction. Studies in NHP prefrontal cortex and PPC have observed context-dependent tuning
changes before. Specifically, they found that some variables can become more/less strongly tuned in
certain contexts than others, while other variables remain similarly well represented regardless of
context (Gail et al., 2009; Siegel et al., 2015; Wallis et al., 2001).

Our results in Figure 4AB and 5AB demonstrate condition-dependent intention signals in AIP,
with both the body part and cognitive strategy variables remaining distinct during online control.
Representations were not only still distinct during online control, but also in such a way that the
relationships between the representations are consistent between the two contexts. Our finding that
there is strong condition specificity, under two very different behavioral contexts, indicates that in
humans as in NHPs, the specific movement intention is a guiding feature of the population structure in
PPC.

The maintenance of the distinctions between the movement conditions and structure of their
representations also suggests that it is possible to control multiple effectors, at least when the
movements are performed individually, while recording from a single brain area. We were able to
successfully decode not just the onset of the movements (i.e. squeeze and release), but also the body
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side and cognitive strategy employed in the movement. To the best of our knowledge, past studies have
only looked at BMI control using multiple effectors (e.g. bimanual control) in the context of multiple
brain areas (Ifft et al., 2013). Note however that generalization between training and online control is
not perfect (Figure 4,5) as classification accuracy distinguishing the cognitive strategy and body-side
drops slightly. This indicates that classification parameters should be updated to optimize classification
accuracy during online control.

Performance of different effectors during online control

In this study we also assessed the online control performance of four movement conditions
(attempted/imagined movements of the left/right hand) and found that all performed significantly
above chance (Figure 7AB). While the representations of each of the conditions were similarly well
maintained between training and online control (Figure 3), attempted movements of the right hand
(ARH) performed significantly better than the other movement conditions. The reliability of individual
units did not significantly differ based on the movement condition either (Figure 7C).

The primary difference in the representations of ARH compared to the others was the greater
proportion of tuned units (Figure 2A) found in the training data. The maintenance of the structure of the
representations allows these differences to carry over to online control. Since the relationship between
the representations does not change, the pattern of performance differences predicted during training
would not significantly change during online control either. In other words, the maintenance of the
structure makes it possible to predict relative online control performance based on offline training data,
as demonstrated by the similarity in the trends between the decoder cross-validated R? (Figure 7D) and
the online control performance (Figure 7AB).

The greater proportion of units tuned to ARH is also consistent with our array recording
location. The array is located in left AIP, a region traditionally thought to encode grasp information of
the contralateral limb more specifically (Chang et al., 2008; Murata et al., 2000). Thus, a preference for
the right hand would be plausible in this brain region.

Furthermore, some studies on BMI control using EEG and other recording technologies found
attempted movements to perform better than imagined movements (Blokland et al., 2014; Lépez-Larraz
et al., 2012). This is consistent with our finding that the attempt strategy performed better than the
imagine strategy in the right hand (Figure 7AB) as well as the bias towards attempted over imagined
right hand movements in the degree of specificity of the individual units during online control (Figure
2C).

This study is part of a clinical trial composed of a variety of experimental tasks involving BMI
control beyond those presented here. Most of those studies involved attempted movements of the right
hand. Thus, at the time of data collection NS was significantly more practiced using attempted right
hand movements for control than imagined right hand movements or movements of the left hand.
Some studies have shown that neurons can change their tuning behavior and even reorganize with
extensive practice (Ganguly and Carmena, 2010; Matsuzaka et al., 2007). The greater amount of practice
with the right hand might also have affected our control performance results and would be an
interesting subject for future study. However, performance differences between effectors and strategies
was relatively small suggesting that extensive practice has, at most, a marginal effect on brain control
performance.

Our results suggest that the structure of the mixed representations is largely maintained across changes
in task context. While our study focused primarily on the BMI contexts of training and online control,

our results also have implications for other changes in task context as well. Parts of parietal cortex have
been known to modulate their neural responses as a function of other contextual task variables, such as
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the reward or value of an action (lyer et al., 2010; Platt and Glimcher, 1999), or the modality of the
stimuli cueing an action (Raposo et al., 2014). The generalization of the structure of the mixed
representations between training and online control suggests that the structure might generalize
between these other task contexts as well and thus be a robust organizing feature of neural coding.
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Figure Legends

Figure 1. Experimental paradigm
(A) Training task. The small red circle is the cursor, the gray circles are the possible targets, and the
yellow circle is the target for the specific trial. (B) Online control task.

Figure 2. Tuning of the population to the conditions

(A) Percent of units tuned to each movement condition (bootstrap 95% Cl, p < 0.05, uncorrected). (B)
(top row) Degree of specificity showing distribution of how much units exclusively code ILH or ALH.
Distribution during training shown in blue and distribution during online control shown in orange. For
each distribution, the median and the probability the median is different from 0 (two-sided sign test) are
shown in their corresponding colors. (middle row) Paired point plot showing how condition preferences
for individual units changed from training to online control. Distribution during training and online
control shown as a violin plot. For each distribution, the median and the probability the median is
different from O (two-sided sign test) are shown underneath their corresponding x-label. (bottom row)
Distributions showing change in preference values showing in the middle row between training and
online control while preserving unit identity (fiducial, blue) and when shuffling unit identity (shuffled,
grey). For each fiducial distribution, the median and the probability the median is different from 0 (two-
sided sign test) are shown underneath their corresponding x-label. (C) Similar to (B) but for IRH and ARH.
(D) Similar to (B) but for IRH and ARH. (E) Similar to (B) but for IRH and ARH. (F) Correlation between
movement representations during training and online control (bootstrap 95% Cl).

Figure 3. Possible configurations of representations and corresponding expected analysis
results

(A-C) Schematics for different possibilities in how the structure of the representations compares
between training and online control. (A) Schematic for the “structure maintained” case where the
structure is consistent between training (left) and online control (right). Representations of the four
movement conditions are separable during both training and online control, and in the same structure
(i.e. the same configuration, as represented by the consistent placement of the conditions). (B)
Schematic for the “structure different” case where the movement conditions are separable during both
training (left) and online control (right) but with different structures (i.e. different configurations). (C)
Schematic for the “structure collapsed” case where the movement conditions are separable during
training only (left) and collapse into a single representation (as represented by the conditions being no
longer separable in the online control case, right). (D-F) Ideal expected result from cross-decoding
analyses if the data follows the different schematics in Figure 3A-C. See Results for detailed explanation
of colors and bars. Red lines represent chance performance (0.25). Performances significantly above
chance are marked. (D) Ideal expected result in the “structure maintained” case of Figure 3A. (E) Ideal
expected result in the “structure different” case. (F) Ideal expected result in the “structure collapsed”
case.

Figure 4. Maintenance of structure of representations

(A) Results of the cross decode analysis performed on our data, presented as in Figure 3D-F.
Performances significantly above chance are marked (one-sided Wilcoxon signed rank test, p < 0.05, see
Methods for more details). (B) Confusion matrices showing classifier predictions when generalizing from
one context to the other, shown as the percent of trials per condition. Columns are the true condition
labels and rows are the predicted labels. Left matrix corresponds to the classifier trained on the online
control data and tested on the training data (Figure 4A, left red bar). Right matrix corresponds to the
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classifier trained on the training data and tested on the online control data (Figure 4A, right blue bar).
(C) Correlation between neural representations of pairs of runs where the runs were adjacent in time
and matched in condition (blue), compared to the correlation between pairs adjacent in time
mismatched in condition (red). Error bars are 95% bootstrapped confidence intervals. See Methods for
more details. (D) Example set of runs from a single session for the primary task paradigm (see Methods).
Pairs marked in blue are matched by condition and adjacent in time while pairs marked in red are
mismatched in condition but still adjacent in time.

Figure 5. Maintenance of structure of representations preserved for altered timing of
condition blocks.

(A) Results of the cross decode analysis performed on additional data in which training and online test
runs were collected with modified ordering of task conditions, presented as in Figure 4. Performances
significantly above chance are marked (one-sided Wilcoxon signed rank test, p < 0.05, see Methods for
more details). (B) Confusion matrices showing classifier predictions when generalizing from one context
to the other, shown as the percent of trials per condition. Columns are the true condition labels and
rows are the predicted labels. Left matrix corresponds to the classifier trained on the online control data
and tested on the training data (Figure 4A, left red bar). Right matrix corresponds to the classifier
trained on the training data and tested on the online control data (Figure 4A, right blue bar). (C)
Correlation between neural representations of pairs of runs matched by condition but farther apart in
time (blue) compared to pairs mismatched by condition but closer together in time (red). Error bars are
95% bootstrapped confidence intervals. See Methods for more details. (D) Example of two blocks of runs
(4 runs per block) for the secondary task paradigm used to control for an order effect (see Methods).
Pairs marked in blue are matched by condition but farther apart in time while pairs in red are
mismatched by condition but closer in time.

Figure 6. Maintenance of representations split by tuning preference

(A) Average single unit performance (weighted by the corresponding decoder weights) for
imagined/attempted left handed movements (bootstrap 95% Cl). Units are grouped by tuning only to
attempted movements, tuning only to imagined movements, and tuning to both. Performance was
evaluated for imagined left handed movements (blue bars) and attempted left hand movements (red
bars). Performances significantly above chance (one-sided sign test, p < 0.05, FDR corrected) are marked
and chance performance is marked by the solid line. (B) Similar to (A) but for right handed movements.
(C) Average single unit performance (weighted by the corresponding decoder weights) for left/right
handed movements using the attempt strategy. Units are grouped by specificity of tuning to the left or
right hand, with performance evaluated during left- and right-handed movements (blue and red bars,
respectively). Significant performances are marked. (D) Similar to (C) but for movements using the
imagine strategy.

Figure 7. Online control performance

(A) Performance of each movement condition, measured as the fraction of successful trials (bootstrap
95% Cl). Dashed line indicates simulated chance performance (see Methods). (B) Performance of each
movement condition, measured as the mean duration of successful trials (bootstrap 95% Cl). (C) Mean
R2 of units tuned to each movement condition from Figure 2A (bootstrap 95% Cl). (D) Cross-validated R2
of the decoder used for online control, trained on the training data for each condition (bootstrap 95%
Cl). Cross-validated R2 was computed for each condition and session separately.
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