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Abstract 29 

Estimated numerosity perception is processed in an approximate number system (ANS) 30 

that resembles the perception of a continuous magnitude. The ANS consists of a right 31 

lateralized frontoparietal network comprising the lateral prefrontal cortex (LPFC) and the 32 

intraparietal sulcus. Although the ANS has been extensively investigated, only few studies 33 

focus on the mental representation of retained numerosity estimates. Specifically, the 34 

underlying mechanisms of estimated numerosity working memory (WM) is unclear. Besides 35 

numerosities, as another form of abstract quantity, vibrotactile WM studies provide initial 36 

evidence that the right LPFC takes a central role in maintaining magnitudes. In the present 37 

fMRI MVPA study in numerosity WM, we designed a delayed-match-to-numerosity paradigm 38 

to test what brain regions retain approximate numerosity memoranda. In line with 39 

parametric WM results, our study found numerosity-specific WM representations in the 40 

right LPFC as well as in the supplemental motor area and the left premotor cortex extending 41 

into the superior frontal gyrus, thus bridging the gap in abstract quantity WM literature.  42 
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Significance Statement 43 

While the perception of approximate numerosities has been extensively investigated, 44 

research into the mnemonic representation during working memory (WM) are relatively 45 

rare. Here, we present the first study to localize WM information for approximate 46 

numerosities using functional magnetic resonance imaging (fMRI) in combination with 47 

multivariate pattern analysis (MVPA). Extending beyond previous accounts that used either a 48 

priori brain regions or electrocorticography (EEG) with poor spatial resolution and univariate 49 

analysis methods, we employed an assumption-free, time-resolved, whole-brain searchlight 50 

MVPA approach to identify brain regions which code approximate numerosity WM content. 51 

Our findings, in line with previous work, provide preliminary evidence for a higher level, 52 

modality- and format-independent abstract quantitative WM system which resides within 53 

the right lateral PFC.  54 

 55 
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Introduction 56 

Humans can tell whether a hundred people are a larger group than fifty people quite 57 

precisely without counting. This ability to quantify amount, size, length or other analog 58 

stimulus properties can be performed non-symbolically, independent of language (Dehaene, 59 

1992; Spitzer et al., 2014b). Indeed, human babies and several animals are able to 60 

approximate a variety of quantities (Nieder, 2005; Piazza et al., 2007, Piazza and Izard, 2009, 61 

Nieder and Dehaene, 2009), suggesting a common elemental mechanism, which has been 62 

termed the approximate number system (ANS; Gallistel and Gelman, 1992; Dehaene, 2011).  63 

While numerosity is a discrete stimulus property, the ANS allows an approximation of 64 

numerosity, resulting in an analog estimation. Thus, in contrast to the symbolic mental 65 

representation of numbers as classes or categories, it has been hypothesized that the ANS 66 

representation resembles that of continuous quantities or magnitudes such as intensities, 67 

lengths, or frequencies (Piazza et al., 2004; Nieder and Dehaene, 2009; Spitzer et al., 2014a). 68 

In support of this, neural representations underlying both the ANS and continuous quantities 69 

have been shown to be supramodal, implying a representation abstract in nature (Piazza et 70 

al., 2006; Spitzer and Blankenburg, 2012; Spitzer et al., 2014a; Vergara et al., 2016). 71 

Moreover, small numbers are rapidly and accurately identified without counting, known as 72 

subitizing (Kaufman et al., 1949). Thus, these numbers are represented as discrete values. If 73 

the number of items exceeds the subitizing threshold, counting is required to determine the 74 

exact amount. When there is insufficient time for counting, the ANS approximates the 75 

quantity in a fast and efficient manner.  76 

The functional anatomy of the ANS has been extensively characterized in both human 77 

and non-human primates (NHP). A frontoparietal network comprising the dorsolateral 78 
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prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC), specifically the 79 

intraparietal sulcus (IPS), is involved in approximating quantities during perception (Dehaene 80 

et al., 2004; Piazza et al., 2004; 2007; Cantlon et al., 2006; 2009; Jacob and Nieder, 2009; 81 

Knops and Wilmes, 2014). Moreover, the right hemisphere has been shown to be dominant 82 

with respect to quantity estimation (Kosslyn et al., 1989; McGlone and Davidson, 1973; 83 

Young and Bion, 1979), however recent studies have found that both hemispheres respond 84 

to approximate visual numerosity (Ansari et al., 2006; Piazza et al., 2004). Particularly in non-85 

symbolic numerosity perception, the IPS has been shown, to exhibit stronger numerosity-86 

selective responses than the PFC (Tudusciuc and Nieder, 2009) and the PPC, and especially 87 

IPS, responds to the non-symbolic numerosity processing (Piazza et al., 2004; Piazza et al., 88 

2007). 89 

The ANS literature is primarily focused on perception with relatively few NHP studies 90 

extending to investigate working memory (WM) representations of approximate quantities 91 

(see Nieder, 2016). As short-term maintenance of information is critical for higher-order 92 

cognitive functions such as decision making and reasoning, it is crucial to investigate beyond 93 

perception to the maintenance of approximate quantities in WM. In line with results from 94 

perception studies of the ANS, neurons in the frontoparietal network were found, 95 

specifically in the PFC and IPS, to exhibit numerosity-selective activity during WM (Jacob et 96 

al., 2018). Furthermore, supramodal coding of numerosity memoranda in the frontoparietal 97 

cortex has been identified (see Nieder, 2017). Interestingly, in contrast to perception, the 98 

proportion of numerosity selective neurons in the PFC and their tuning strength to 99 

numerosity have been more prominent than the ones in the PPC during WM retention. 100 

Moreover, neurons in the PFC remained selective and discriminated numerosities better 101 
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than neurons in the PPC during the WM delay (Nieder and Miller, 2004; Tudusciuc and 102 

Nieder, 2009; Nieder, 2016).  103 

To the best of our knowledge, only a single study has focused on the WM representation 104 

of numerosity in humans, although some approximate numerosity perception studies used 105 

fMRI-MVPA method with WM-related paradigms focusing on the perceptual processes 106 

instead of the WM retention (e.g., Eger et al., 2009; Borghesani, V. et al., 2018; Castaldi et 107 

al., 2019). Spitzer and colleagues (2014a) probed the oscillations underlying multimodal WM 108 

representations by training participants to estimate numerosity from sequential auditory, 109 

visual and tactile stimuli. They identified strong and long-lasting alpha oscillations in the PPC 110 

reflecting WM load whereas, in line with NHP results, beta-band activity in the right PFC 111 

showed numerosity-selective modulation.  112 

Nevertheless, whole-brain research regarding the localization of numerosity memoranda 113 

in humans is lacking. To this end, we designed a tactile delayed-match-to-numerosity 114 

(DMTN) task in combination with whole-brain, searchlight, multivariate-pattern analysis 115 

(MVPA) of human fMRI data (e.g., Christophel et al., 2012; Schmidt et al., 2017; Uluç et al., 116 

2018). Using this analysis approach, we localized brain regions maintaining approximate 117 

number content in WM. As per previous studies (e.g., Spitzer et al., 2014a; Nieder, 2016), we 118 

hypothesized that the content would be represented in frontal regions, specifically the right 119 

PFC.  120 
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Material and methods 121 

Participants 122 

 38 healthy volunteers participated in the study. The sample size was based on the 123 

successful use of similar sample sizes in earlier MVPA experiments with analog experimental 124 

designs and analyses (e.g., Schmidt et al., 2017; Christophel et al., 2018). In addition, it 125 

accords with recent theoretical work on power analysis for random field theory-based 126 

cluster-level statistical inference (Ostwald et al., 2019). The data of four participants was 127 

excluded due to low performance levels (≤ 60%) resulting in data from 34 participants (age: 128 

25.53 ± 5.43 mean years ± SD, 19 females) being further analyzed. All were right handed 129 

according to the Edinburgh Handedness Inventory with an index of 0.82 ± 0.14 (mean ± SD; 130 

Oldfield, 1971). The experimental procedure was approved by the local ethics committee 131 

and is in accordance with the Human Subject Guidelines of the Declaration of Helsinki. All 132 

participants provided written informed consent before the experiment and were 133 

compensated for their participation.  134 

Stimuli 135 

 Tactile stimuli consisted of trains of square-wave electric pulses (200 μs) delivered via a 136 

pair of surface-adhesive electrodes attached to the participant’s left wrist. A constant 137 

current neurostimulator (DS7A, Digitimer Ltd.) was used to deliver the stimuli. Subjects 138 

reported tactile sensations radiating to the thumb, index, and middle finger, verifying 139 

stimulation of the median nerve. Individual sensory thresholds were determined for each 140 

participant. The stimulus intensity was then adjusted to a target value of approximately 141 

200% of the sensory threshold (mean: 6.42 mA, SD: 1.20 mA).  142 
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A to-be-remembered stimulus sequence comprised either 7, 9, 11, or 13 pulses. In order 143 

to dissociate stimulus length and perceived pulse frequency (spacing of tactile pulses) from 144 

the numerosity of pulses, the duration of the stimulus varied, and the inter-pulse-intervals 145 

were randomized. To this end, we defined four stimulus durations (960, 1020, 1080 and 146 

1140 ms). Each duration was subdivided into 60 ms slots, resulting in 17, 18, 19 and 20 slots, 147 

respectively. The temporal distribution of the pulses was then randomized across the slots 148 

(see Figure 1A for illustrative stimuli). Within each run, each numerosity was presented in a 149 

short (17 or 18) and a long (19 or 20) duration resulting in 24 different numerosity-duration 150 

pairings (4 numerosities x 2 durations/run x 3 uncued numerosities). The different durations 151 

were balanced across runs. The alternatives for each cued numerosity were computed 152 

according to the respective sample (± 3 pulses). Additionally, the target stimulus and the 153 

cued sample never had the same duration ensuring that memorizing the duration or average 154 

frequency of the target does not help to perform the task. We also performed a Fourier 155 

transformation of the stimuli, which ensured that all stimuli were composed of similar 156 

combinations of frequencies. Therefore, this stimulus design ensured that participants had 157 

to memorize the stimulus numerosity since they could not use the temporal density of the 158 

pulses or the stimulus length as WM memoranda to solve the task.  159 

Task 160 

We employed a DMTN paradigm in which participants remembered the estimated 161 

numerosity of a stimulus. Each trial began with the presentation of two pulse sequences 162 

with different numerosities. Next, a retro-cue (“1” or “2”) indicated which of the two 163 

numerosities had to be remembered. To suppress potential perceptual residues, in the sense 164 

of afterimages (e.g. Sperling, 1960; Christophel and Haynes, 2014; Christophel et al., 2015), a 165 

mask consisting of the longest duration (1140 ms) with a pulse in each of the 20 slots, was 166 
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applied simultaneously with the onset of the retro-cue. Following a 12 s retention phase, 167 

two test stimuli were presented and a two-alternative forced-choice was given. Neither of 168 

the test stimuli were identical to the encoded stimulus, however, one had the same 169 

numerosity while the duration and the frequency were different. This ensured that 170 

participants used the approximated numerosity of the stimulus instead of some other 171 

stimulus feature to correctly match the test with the remembered stimulus. The numerosity 172 

of the alternative stimulus was 3 pulses ± the target stimulus. To ensure that the number of 173 

pulses in a sequence could not be easily counted, the lower alternative stimulus for the 174 

lowest to-be-remembered numerosity (7), was set to five (5) and thus above a previously 175 

established subitizing threshold of around four (for tactile modality, it was shown to be 3-4; 176 

e.g., Riggs et al., 2006; Plaisier et al., 2009; 2010; 2011; Spitzer et al., 2014a; Tian & Chen, 177 

2018). After the second target stimulus, participants had 1.5 s to indicate, via button-press 178 

with their right middle or index finger, which of the two stimuli had the same numerosity as 179 

the encoded stimulus (see Figure 1B for experimental design). Furthermore, the response 180 

mapping was counter-balanced across participants. In total, a trial lasted 21 s and an 181 

experimental run, consisting of all possible stimulus pairings presented equally often (12 182 

pairings x 4 presentations = 48 trials) in a randomized order, with inter-trial intervals of 1.5 183 

or 3.5 s, lasted 18.7 minutes. Four experimental runs were collected for each participant, 184 

resulting in a total recording time of 74.8 minutes. 185 

 Prior to the fMRI experiment, each participant was familiarized with the timing and 186 

structure of the task by performing up to two experimental runs outside the scanner.  187 
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 188 

Figure 1. Sample pulse sequences and experimental paradigm A. Sample Stimuli. Pulse sequences of 7, 9, 11 189 
and 13 were used as experimental stimuli. For each numerosity, there were four different durations (960, 1020, 190 
1080 and 1140 ms), where each duration was sub-divided into 60 ms slots. The distribution of pulses to slots 191 
was randomized for each stimulus presentation. The first and the last slot of each stimulus always contained a 192 
pulse. The stimuli displayed are for illustrative purposes. B. Experimental paradigm. A delayed-match-to-193 
numerosity task was employed, where two sample stimuli and a mask were presented consecutively. A visual 194 
retro-cue presented simultaneously with the mask indicated which of the numerosities should be retained for 195 
the 12 s delay. After the delay, participants performed a two-alternative forced-choice, indicating which of the 196 
two test stimuli had the same numerosity as the cued stimulus. The response period was 1.5 s. Please note that 197 
the stimulus duration and inter-stimulus-interval changed depending on the stimulus duration, but the onset of 198 
each event was locked to coincide with the onset of an image acquisition. 199 

 200 

Number naming test assessing countability 201 

 Subsequent to the fMRI session, we applied a number naming task to ensure that 202 

participants were unable to count the number of pulses employed in the stimulus set. 203 

Participants were asked to try to count the number of pulses. The stimuli ranged from 1 to 204 

15 pulses with 5 different duration and temporal pulse distribution combinations of each 205 
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numerosity tested, resulting in 75 trials. The counting test was performed after fMRI data 206 

acquisition so as to prevent biasing the participants towards counting the pulses in the main 207 

experiment. 208 

To ensure that the presented numerosities were above participants’ subitizing 209 

thresholds, we calculated the mean performance for each numerosity across participants 210 

and calculated each average estimated numerosity. We then compared the slope of 211 

accuracy for estimating numerosities with earlier studies that calculated subitizing 212 

thresholds for tactile stimuli (Riggs et al., 2006; Plaisier et al., 2009; 2010; 2011; Spitzer et al., 213 

2014a; Tian & Chen, 2018). We performed a linear trend analysis using linear regression to 214 

determine whether the distance between the true and estimated numerosity scales with 215 

increasing true numerosity in a linear fashion.  216 

fMRI data acquisition and pre-processing 217 

 fMRI data were acquired in 4 runs, with a Siemens 3 T Tim Trio MRI scanner (Siemens, 218 

Erlangen) equipped with a 32-channel head coil. In each run, 565 images were collected 219 

(T2*-weighted gradient-echo EPI: 37 slices; ascending order; 20% gap; whole brain; TR = 220 

2000 ms; TE = 30 ms; 3 x 3 x 3 mm³; flip angle = 70°; 64 x 64matrix). After the last functional 221 

run, a high-resolution structural scan was recorded using a T1-weighted MPRAGE sequence 222 

(1 x 1 x 1 mm³; TR = 1900 ms; TE = 2.52 ms; 176 sagittal slices).  223 

fMRI data preprocessing was performed using SPM12 (Wellcome Trust Centre for 224 

Neuroimaging, Institute for Neurology, University College London, London, UK). Functional 225 

images were slice-time corrected and spatially realigned to the mean image. In order to 226 

conserve the spatiotemporal structure of the fMRI data for the multivariate analyses, no 227 

smoothing or normalization was performed. For the univariate control analysis, functional 228 

images were normalized to MNI-space and smoothed with an 8 mm FWHM kernel. 229 
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First Level Finite Impulse Response Models 230 

 A time-resolved, multivariate searchlight analysis (Kriegeskorte et al., 2006, Schmidt et 231 

al., 2017) was used to identify brain regions encoding memorized numerosity information. 232 

First, a general linear model (GLM) with a set of finite-impulse-response (FIR) regressors was 233 

fit to each participant’s data to obtain run-wise parameter estimates of each WM content 234 

(numerosity value of 7, 9, 11 or 13). A single FIR regressor was estimated for each fMRI 235 

image or 2 s time bin (1 TR), thus, the 20 s trial was divided into 10 time bins. We 236 

additionally included the first five principal components accounting for the most variance in 237 

the cerebrospinal fluid (CSF) and white matter signal time courses respectively (Behzadi et 238 

al., 2007), and six head motion regressors, as regressors of no interest. Moreover, the data 239 

was filtered with a high-pass filter of 128 s. The resulting parameter estimates were used for 240 

the MVPA performed with The Decoding Toolbox v. 3.52 (TDT) (Hebart et al., 2015). 241 

 242 

 243 

Multivariate Pattern Analysis 244 

For the decoding of memorized numerosity information, a searchlight-based 245 

multivariate analysis using a support vector regression (SVR) approach was performed with 246 

the computational routines of LIBSVM (Chang and Lin, 2011), as implemented in TDT. SVR 247 

MVPA (see Kahnt et al., 2011 for more discussion; Schmidt et al., 2017) considers the 248 

variable of interest (memorized numerosity) as a continuous data vector with multiple 249 

independent variables (multi-variate BOLD activities) as opposed to the commonly used 250 

support vector machine approach that treats the variable of interest as a categorical object. 251 

This means that the SVR MVPA approach seeks a linear continuum for the numerosities in 252 

which their distance is proportional to the distances of the rank order. 253 
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We analyzed each time bin independently by implementing a searchlight decoding 254 

analysis with a spherical searchlight radius of 4 voxels. For a given voxel, z-scaled parameter 255 

estimates (across samples) corresponding to each WM condition were extracted from all 256 

voxels within the spherical searchlight for each run. This yielded 16 pattern vectors (4 WM 257 

contents x 4 runs), each corresponding to the BOLD activity pattern for a specific WM 258 

condition of a functional run. We then fitted a linear function to these pattern vectors such 259 

that the multivariate distribution for the different numerosities follows a linear mapping of 260 

numerosities. The z-scaled parameter estimates were entered into an SVR model with a 261 

fixed regularization parameter c that was set to 1.  262 

We used a leave-one-run-out cross-validation scheme for the subject-level decoding 263 

analysis. The SVR classifier was trained on three runs (12 pattern vectors) and tested on the 264 

data of the independent fourth run (4 pattern vectors) for how well it predicted the values of 265 

the remaining run. The allocation of training and test runs was iterated so that each of the 266 

four functional runs was used as a test run once, resulting in four cross-validation folds. The 267 

prediction performance from each cross-validation fold was reported by a Fisher’s z-268 

transformed correlation coefficient between the predicted and the actual numerosity 269 

information estimate. The mean prediction accuracy across cross-validation folds was 270 

assigned to the center voxel of the searchlight, and the center of the searchlight was moved 271 

voxel by voxel through the brain, resulting in a whole-brain prediction accuracy map. 272 

Consequently, we obtained one prediction accuracy map for each time bin for each 273 

participant, where the prediction accuracy reflects how well a linear ordering according to 274 

the associated numerosities could be read out from the locally distributed BOLD activity 275 

pattern at a given voxel location and time.  276 
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Next, prediction accuracy maps were normalized to MNI space and smoothed with an 277 

8 mm FWHM kernel. They were then entered into a second-level, repeated measures 278 

ANOVA analysis with subject and time (time bins) as factors. To assess which brain regions 279 

exhibit WM content-specific activation patterns during the delay period, we computed a t-280 

contrast across the 6 time bins corresponding to the 12 s WM delay (time bins 3-8). The 281 

results are presented at p < 0.05 family-wise error correction (FWE) at the cluster level with 282 

a cluster-defining threshold of p < 0.001. Cytoarchitectonic references are based on the SPM 283 

anatomy toolbox where possible (Eickhoff et al., 2005). Presented images, e.g. surface 284 

projections with applied color scales were created using MRIcron version9/9/2016 285 

(McCausland Center for Brain Imaging). 286 

Control analyses 287 

In the first control analysis, we examined whether the decoded numerosity 288 

information during WM retention was specific to WM or could be assigned to perceptual 289 

residues. To this aim, we defined a second, first-level model with FIR regressors for the non-290 

memorized stimulus. We then implemented the identical searchlight decoding procedure as 291 

the main analysis. Thus, this control analysis tested for the presence of numerosity 292 

information of the non-memorized stimulus.  293 

Next, we conducted a parametric univariate analysis to ensure that the decoded 294 

information in the main analysis is not due to the modulation of mean activity level. To this 295 

end, we fitted a standard GLM with 4 HRF-convolved regressors: one regressor to capture 296 

WM processes, a parametrically-modulated regressor for the numerosity content of the WM 297 

memoranda as well as 8 (4 numerosities x 2 (sample, test)) additional parametrically-298 

modulated regressors for each sample and test stimulus. First-level baseline contrasts for 299 
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the parametric effect of memorized numerosity were forwarded to a second-level one-300 

sample t-test.  301 

Finally, to test the specificity of the SVR analysis to the parametric order of the four 302 

numerosities, we performed exhaustive whole-brain SVR searchlight analyses for all possible 303 

permutations of numerosity labels. In order to achieve this, we computed distance rank 304 

order as a sum of the absolute difference of adjacent ranks (e.g., 11, 13, 7, 9 numerosity, is 305 

distance 5 (|3-4|+|4-1|+|1-2|) for all possible permutations of the numerosity-order. Then, 306 

the permutations were grouped according to their distance from the original rank order. We 307 

used 12 instead of 24 permutations as the distances of rank order permutations are 308 

symmetric. Including the permutation with the correct linear order, the 12 permutations are 309 

aggregated into five classes depending on their distance from the correct linear order. Then, 310 

for each permutation analysis, we extracted the prediction accuracies of the group-peak 311 

voxels that are defined in the original analysis. For statistical assessment, we calculated the 312 

mean prediction accuracy across related time bins (WM time bins 3-8) for each peak voxel 313 

for each distance group (Figure 3C).  314 
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Results 315 

Behavioral performance 316 

Determined on the basis of earlier MVPA experiments and our behavioral pilots, 34 317 

participants performed with 65.36 ± 3.29% (mean ± SD) accuracy in the demanding DMTN 318 

task across the four experimental runs (see Figure 2A). To test whether the behavioral 319 

performance differed for the four numerosity values, we performed a one-way repeated 320 

measures ANOVA with four levels, one for each numerosity. This test revealed a significant 321 

main effect (F(3,135)=7.52, p<0.001). Post-hoc t-tests (Bonferroni-corrected for multiple 322 

comparisons) between performances were significant for numerosity values 7 and 13 and 9 323 

and 13 (p < 0.05/6; see Figure 2A). This is expected because we did not control for the 324 

Weber-Fechner effect except for the lowest numerosity (which we did due to subitizing 325 

concerns). As a result, as the numerosity increases, it becomes more difficult to differentiate 326 

between the sample and alternative stimuli, thus resulting in a lower performance for high 327 

numerosities (Fechner, 1966) but is unlikely to affect WM processing. 328 

Behavioral performance on number naming test assessing countability 329 

 To test whether participants were able to count the numerosities employed in the 330 

current study, participants performed an additionally number naming test. Previous research 331 

in tactile numerosity indicated the subitizing threshold for comparable stimuli to be 4 pulses 332 

(Riggs et al., 2006; Plaisier et al., 2009; 2010; 2011; Spitzer et al., 2014a; Tian & Chen, 2018). 333 

The approximation of the subitizing threshold identified in the present study is in line with 334 

these reports (Figure 2B). As expected, participants’ perceptual accuracy decreased with 335 

increasing numerosity and performance decreased to 50% when more than 3 pulses were 336 
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presented. Similarly, the distance between the true and estimated numerosity increased 337 

with increasing numerosities (p < 0.001, linear trend analysis) (Figure 2C).  338 

 339 

Figure 2. A. Mean rate of correct responses across participants (n = 34) for different numerosities in main WM 340 
DMTN task. The figure shows that the WM performance decreases with increasing numerosity. Error bars 341 
represent standard deviation (SD). Asterisks indicate statistical significance for pair-wise t-tests, Bonferroni 342 
corrected for multiple comparisons (p < 0.05/6). B. Mean performance across subjects for estimated 343 
numerosity in number naming task (mean ± SD). C. True numerosities vs. mean numerosity estimations (error 344 
bars show SD).  345 
 346 

Multivariate mapping of regions that code numerosity as WM content 347 

The time-resolved, searchlight-based multivariate regression analysis was performed 348 

to identify brain regions representing estimated numerosity memoranda. The SVR MVPA 349 

analysis for the WM retention period revealed numerosity-specific responses in the left 350 

PMC, left middle frontal gyrus (MFG), left superior frontal gyrus (SFG) extending into 351 

bilateral supplementary motor areas (SMA), right SFG extending to the right frontal pole and 352 

right MFG extending into the pars triangularis of the right IFG. Results are reported at p < 353 

0.05, FWE-corrected at the cluster level with a cluster-defining threshold of p < 0.001 (Figure 354 

3 and Table 1).   355 

 For the sake of completeness, we investigated whether numerosity information could 356 

be decoded from the IPS at an uncorrected statistical threshold of p < 0.001. We found a 357 

cluster in the right PPC extending to the IPS (peak at MNI x = 36, y = -52, z = 36 mm, z-score = 358 
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3.89, k = 164), which was identified as hIP1 with a 39.5% probability and hIP3 with a 5.9% 359 

probability using the SPM anatomy toolbox (Eickhoff et al., 2005) at puncorrected < 0.001. 360 

 361 

 362 

 363 

Figure 3. A. Brain regions coding information for the memorized estimated numerosities. Group level results of 
a t-contrast testing the 12 s WM delay for above chance prediction accuracy. Brain regions carrying information 
about memorized scalar magnitudes are: IFG = inferior frontal gyrus, MFG = middle frontal gyrus, PMC = 
premotor cortex, SMA = supplementary motor area, SFG = superior frontal gyrus.  B. Time-courses of decoding 
accuracies of remembered (red) and non-remembered (grey) stimuli for all identified brain regions in the main 
analysis (Fig. 3A). Error bars indicate standard error. The figure shows that, for all clusters depicted in the main 
analysis, there is more numerosity-specific WM information for the remembered than forgotten numerosity 
and the information is present throughout the WM delay period. C. Results of the label-permutation tests. 5 
bars are shown for each brain region, respectively. Each bar displays the mean prediction accuracy estimated 
from the distance to correct order groups. The shade of the bar color, ranging from black to white, depicts the 
different distance to correct ordering. Black bars indicate the mean prediction performance of the group with 
the correct linear order, while white bars represent the mean prediction accuracy derived from the most 
linearly unordered data. Brain regions tested for label permutation are: IFG = inferior frontal gyrus, MFG = 
middle frontal gyrus, PMC = premotor cortex, SMA = supplementary motor area, SFG = superior frontal gyrus.  
Error bars indicate standard error of the mean. 
 364 



 

 20 

 365 

Table 1. SVR MVPA results for tactile numerosity WM task 

Anatomical label and MNI coordinates of brain areas depicting memorized numerosity information during WM. 
All results are reported at pFWE-Cluster < 0.05 with a cluster-defining threshold of p < 0.001. Mean prediction 
accuracy over the delay period is reported. Areas were, where possible, identified using the SPM anatomy 
toolbox (Eickhoff et al., 2005). IFG = inferior frontal gyrus, MFG = middle frontal gyrus, PMC = premotor cortex, 
MI = primary motor cortex, SMA = supplementary motor area, SFG = superior frontal gyrus.   
 366 

  Peak MNI coordinates   

Cluster size Anatomical region X Y Z z-score Prediction 
accuracy 

4557 Left PMC/MI -50 2 52 4.78 0.082 

 Left SFG -28 0 60 7.74 0.146 

 SMA -6 10 74 4.48 0.114 

1342 Right SFG 32 50 10 4.17 0.135 

 Right IFG (pars 
triangularis) 

60 24 2 4.17 0.075 

 Right MFG 40 50 30 3.69 0.069 
 367 

Control analyses 368 

 To test, if the identified decoded information is indeed specific to the memorized 369 

numerosity representation, we applied the same searchlight procedure to the non-370 

memorized numerosity stimulus. This analysis did not reveal any clusters with above-chance 371 

prediction accuracy at pFWE-Cluster < 0.05. 372 

 Additionally, we conducted a univariate parametric analysis to test whether the 373 

decoding results could be due to differences in activation strength between WM contents. A 374 

second level t-test revealed no significant voxels at pFWE-Cluster < 0.05, thus providing evidence 375 

for the multivariate nature of the numerosity representations identified in this study rather 376 

than the modulation of univariate mean activity.     377 

 Finally, we performed label-permutation tests in order to ensure the specificity of the 378 

linear ordering of stimuli in the SVR MVPA. Higher prediction accuracies were expected 379 
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when the activation patterns in a given brain region represented the correct order of the 380 

four numerosity labels, and it was expected to decrease with the distance from the correct 381 

ordering. As expected, the prediction accuracy during WM was the highest for the true-382 

labelled data and decreased with increasing distance from the correct ordering (Figure 3C). 383 
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Discussion 384 

The current study, to our knowledge, is the first to identify brain regions that code 385 

approximate numerosity WM content using human neuroimaging methods. Thus, this study 386 

extends the extensive literature on ANS perception to the maintenance of mental 387 

representations which can be used for higher-order cognitive functions. We employed a 388 

well-established, whole-brain, searchlight, DMTN paradigm to identify representations of 389 

tactile approximate numerosity memoranda. Specifically, we employed an SVR technique, 390 

which in contrast to support vector machines, treats the retained WM content as a 391 

continuous variable and thus predicts the ordering of content along the variable, rather than 392 

a singularly specific class label. Consequently, an above-chance prediction accuracy in a brain 393 

region means that the content-specific activation patterns follow a linear ordering according 394 

to the associated numerosity. Our searchlight analysis identified a distributed network 395 

spanning the left PMC, bilateral SFG, bilateral SMA and right MFG extending into right IFG. 396 

Therefore, these regions contain linearly-ordered, multivariate WM representations of the 397 

numerosities.  398 

Our results are in line with previous numerosity WM studies in NHPs and human EEG 399 

which have established the central role of the PFC. Indeed, previous uni- and multimodal 400 

studies have identified content-specific representations in the PFC (Nieder and Miller, 2004; 401 

Tudusciuc and Nieder, 2009; Nieder, 2016; Spitzer et al., 2014a; Jacob et al., 2018). More 402 

specifically, in humans, parametric modulation of upper-beta oscillations in the right lateral 403 

PFC has been shown to reflect analog numerosity estimation which has been derived from 404 

discrete sequences, both within and between stimulus modalities (Spitzer et al., 2014a). 405 

Thus, the numerosity representations in the PFC are likely to be supramodal in nature. 406 
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However, those studies used either electrophysiological recordings from an a priori brain 407 

region or EEG and have employed univariate data analysis methods. The present study 408 

extends the literature on numerosity WM in two ways: firstly, to whole-brain fMRI data, and 409 

secondly to multivariate data analysis methods, specifically the SVR MVPA. The benefits of 410 

multivariate over univariate analysis methods have been well-established (e.g., Haynes, 411 

2015). Multivariate analysis techniques are sensitive to the combinatorial aspects of voxel 412 

activity, thereby enabling the identification of spatially distributed representations (e.g., 413 

Haynes, 2015; Hebart and Baker, 2018). Thus, our results agree with and extend the previous 414 

NHP and human EEG numerosity WM findings to whole-brain, spatially distributed activity 415 

patterns, suggesting that estimated numerosity WM content is maintained in the LPFC 416 

(Nieder et al., 2002; Nieder and Miller, 2003; 2004; Tudusciuc and Nieder, 2009; Nieder, 417 

2016; Spitzer et al., 2014a).  418 

It should be noted that we used temporally distributed tactile numerosity stimuli as the 419 

WM memoranda, namely the numerosity was presented as a sequence of pulses. Evidence 420 

exists for potential differences in perceptual processing of spatially- and temporally-421 

distributed numerosities, where spatially-distributed stimuli appear to be processed in 422 

parietal regions while temporarily-distributed stimuli do not (Cavdaroglu and Knops, 2018). 423 

In line with the finding of Cavdaroglu and Knops (2018), we used temporally distributed 424 

stimuli did not find evidence of WM representations in posterior regions in our full brain 425 

FWE corrected analysis. However, a small cluster (k=164) extending to right IPS was 426 

observed to represent remembered numerosity content at an uncorrected threshold of p < 427 

0.001.  While our results agree with numerosity WM findings in NHPs that suggest frontal 428 

rather than parietal coding for spatial numerosity stimuli during WM retention (for review, 429 

see Nieder, 2016) further investigation is needed to conclusively decide for the role of the 430 
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IPS. The role of the IPS could be interpreted as specific to perceptual processing, and 431 

therefore only revealed at a lower threshold in our analysis, while the PFC contains WM 432 

instead. Alternatively, a potentially different nature of the neuronal code, e.g. spatial 433 

distribution of a multivariate code, in the IPS might lead to the observed findings (see Hebart 434 

and Baker, 2018). That is, it might be the temporarily-distributed nature of the applied 435 

stimuli that drives the effects in the PFC, and the IPS would be more specialized for spatially 436 

distributed presentations as used by most previous studies. A future direct comparison of 437 

our results with spatial numerosity stimuli is necessary to test for differences determined by 438 

the stimulus types. 439 

Moreover, while the literature relating to numerosity WM is limited, there is extensive 440 

work exploring the WM representation of abstract quantities more generally. Specifically, 441 

the frequency discrimination task has been systematically explored in a multitude of 442 

modalities with a wide range of methods (e.g., Romo et al., 1999; Spitzer at al., 2010; Lemus 443 

et al., 2009; Spitzer & Blankenburg, 2011; 2012; Fassihi et al., 2014; Vergara et al., 2016; von 444 

Lautz et al., 2017; Schmidt et al., 2017; Wu et al., 2018; Uluç et al., 2018). Numerosity and 445 

frequency share several traits, particularly they are both abstract magnitudes which may be 446 

represented in a supramodal fashion (Spitzer and Blankenburg, 2012; Vergara et al., 2016; 447 

Nieder, 2016; Miller, 2003). However, whether their underlying WM representations are 448 

maintained by a shared network has yet to be explored. The present study provides an initial 449 

step towards resolving this question by providing the first evidence that frequency and 450 

numerosity WM representations are maintained in overlapping brain regions. We identified 451 

numerosity-specific WM content in the right IFG, SMA and left PMC which is in agreement 452 

with results from frequency studies also using an fMRI-MVPA approach in humans (Schmidt 453 

et al., 2017; Wu et al., 2018; Uluç et al., 2018). Uni- and multimodal research in both NHPs 454 
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and humans has identified frequency-specific content in the right LPFC and SMA thereby 455 

suggesting the WM representations are modality independent in nature (e.g., Romo et al., 456 

1999; Hernandez et al., 2002; 2010; Barak et al., 2010; Spitzer et al., 2010; Spitzer & 457 

Blankenburg, 2011; 2012; Vergara et al., 2016; Schmidt et al., 2017; Wu et al., 2018). 458 

However, the explicit relationship between frequency and numerosity still needs to be 459 

explored, particularly with respect to the underlying neural codes of numerosity and 460 

frequency representations (see Nieder, 2017).   461 

Additionally, we identified numerosity-specific content in the left PMC. Previous findings 462 

from frequency WM fMRI-MVPA studies identified abstract quantity information in the PMC 463 

(Schmidt et al., 2017; Wu et al., 2018; Uluç et al., 2018). Moreover, the dorsal PMC has been 464 

shown to represent abstract numerical rules, such as comparison and calculation (Gruber et 465 

al., 2001; Eger et al., 2003; Nieder, 2005). This is in line with the present task which required 466 

the comparison of numerical quantities, suggesting representation of task-relevant, 467 

numerosity-specific information to be used in numerical comparison. 468 

In summary, the data at hand is in line with the suggestion of a domain general, abstract 469 

magnitude processing system. This abstract processing system can be identified by 470 

multivariate WM representations of tactile numerosity stimuli within the right PFC. Taken 471 

together with previous findings which found WM representations of tactile frequency 472 

(Spitzer et al., 2010; Spitzer and Blankenburg, 2012; Spitzer et al., 2014a; Schmidt et al., 473 

2017; Wu et al., 2018), visual flicker frequency (Spitzer and Blankenburg, 2012; Spitzer et al., 474 

2014a; Wu et al., 2018), and auditory frequency (Spitzer and Blankenburg 2012, Uluç et al., 475 

2018), and the reports of number coding (Nieder et al., 2002; Nieder and Miller, 2003; 2004; 476 

Tudusciuc and Nieder, 2009; Nieder, 2016) in the PFC, the present study provides additional 477 

evidence suggesting that the PFC is capable of representing both analog quantities as well as 478 
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parametric stimulus properties as frequencies. Thus, we provide preliminary evidence for a 479 

higher level, modality- and format-independent abstract quantitative WM system which 480 

resides within the PFC.  481 
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Legends 680 

Figure 1. Sample pulse sequences and experimental paradigm A. Sample Stimuli. Pulse 681 
sequences of 7, 9, 11 and 13 were used as experimental stimuli. For each numerosity, there 682 
were four different durations (960, 1020, 1080 and 1140 ms), where each duration was sub-683 
divided into 60 ms slots. The distribution of pulses to slots was randomized for each stimulus 684 
presentation. The first and the last slot of each stimulus always contained a pulse. The 685 
stimuli displayed are for illustrative purposes. B. Experimental paradigm. A delayed-match-686 
to-numerosity task was employed, where two sample stimuli and a mask were presented 687 
consecutively. A visual retro-cue presented simultaneously with the mask indicated which of 688 
the numerosities should be retained for the 12 s delay. After the delay, participants 689 
performed a two-alternative forced-choice, indicating which of the two test stimuli had the 690 
same numerosity as the cued stimulus. The response period was 1.5 s. Please note that the 691 
stimulus duration and inter-stimulus-interval changed depending on the stimulus duration, 692 
but the onset of each event was locked to coincide with the onset of an image acquisition. 693 
 694 
Figure 2. A. Mean rate of correct responses across participants (n = 34) for different 695 
numerosities in main WM DMTN task. The figure shows that the WM performance 696 
decreases with increasing numerosity. Error bars represent standard deviation (SD). 697 
Asterisks indicate statistical significance for pair-wise t-tests, Bonferroni corrected for 698 
multiple comparisons (p < 0.05/6). B. Mean performance across subjects for estimated 699 
numerosity in number naming task (mean ± SD). C. True numerosities vs. mean numerosity 700 
estimations (error bars show SD).  701 
 702 
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Figure 3. A. Brain regions coding information for the memorized estimated numerosities. 
Group level results of a t-contrast testing the 12 s WM delay for above chance prediction 
accuracy. Brain regions carrying information about memorized scalar magnitudes are: IFG = 
inferior frontal gyrus, MFG = middle frontal gyrus, PMC = premotor cortex, SMA = 
supplementary motor area, SFG = superior frontal gyrus.  B. Time-courses of decoding 
accuracies of remembered (red) and non-remembered (grey) stimuli for all identified brain 
regions in the main analysis (Fig. 3A). Error bars indicate standard error. The figure shows 
that, for all clusters depicted in the main analysis, there is more numerosity-specific WM 
information for the remembered than forgotten numerosity and the information is present 
throughout the WM delay period. C. Results of the label-permutation tests. 5 bars are shown 
for each brain region, respectively. Each bar displays the mean prediction accuracy 
estimated from the distance to correct order groups. The shade of the bar color, ranging 
from black to white, depicts the different distance to correct ordering. Black bars indicate 
the mean prediction performance of the group with the correct linear order, while white 
bars represent the mean prediction accuracy derived from the most linearly unordered data. 
Brain regions tested for label permutation are: IFG = inferior frontal gyrus, MFG = middle 
frontal gyrus, PMC = premotor cortex, SMA = supplementary motor area, SFG = superior 
frontal gyrus.  Error bars indicate standard error of the mean. 

 

Table 1 

Anatomical label and MNI coordinates of brain areas depicting memorized numerosity 
information during WM. All results are reported at pFWE-Cluster < 0.05 with a cluster-defining 
threshold of p < 0.001. Mean prediction accuracy over the delay period is reported. Areas 
were, where possible, identified using the SPM anatomy toolbox (Eickhoff et al., 2005). IFG = 
inferior frontal gyrus, MFG = middle frontal gyrus, PMC = premotor cortex, MI = primary 
motor cortex, SMA = supplementary motor area, SFG = superior frontal gyrus.   


