

Research Article: New Research | Cognition and Behavior

From state-to-trait meditation: Reconfiguration of central executive and default mode networks

https://doi.org/10.1523/ENEURO.0335-18.2019

Cite as: eNeuro 2019; 10.1523/ENEURO.0335-18.2019

Received: 28 August 2018 Revised: 3 October 2019 Accepted: 8 October 2019

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2019 Bauer et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

eNeuro Accepted Manuscript

1 From state-to-trait meditation: Reconfiguration of central executive

2 and default mode networks

- 3 Short title: Network reconfiguration by meditation
- 4 C.C.C. Bauer^{1,2,3,*}, S. Whitfield-Gabrieli^{1,4}, J.L. Díaz⁵, E.H. Pasaye², F.A. Barrios^{1,2,*}
 - ¹McGovern Institute for Brain Research, MIT, Cambridge, USA
- 6 ² Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, México
 - ³ Cognitive Neuroscience Laboratory at Boston VA Healthcare System, Brockton MA, USA
 - ⁴ Department of Psychology, Northeastern University, Boston, MA, USA
- ⁵ Universidad Nacional Autónoma de México, Facultad de Medicina, Ciudad de México, México
 10
- 11 *Correspondence: Fernando A Barrios, Ph.D. Universidad Nacional Autónoma de México,
- 12 Instituto de Neurobiología, Blvd. Juriquilla 3001, Juriquilla, Querétaro, 76230 Querétaro,
- 13 México. Telephone: +52(442)238-1053 E-mail: <u>fbarrios@unam.mx</u> and Clemens C.C. Bauer,
- 14 Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research,
- 15 Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Telephone: +1(617)324-
- 16 5124 E-mail: cccbauer@mit.edu

17

5

7

8

- 18 6. Number of Figures: 4
- 19 7. Number of Tables: 4
- 20 9. Number of words for Abstract: 250
- 21 10. Number of words for Significance Statement: 86
- 22 11. Number of words for Introduction: 1493
- 23 12. Number of words for Discussion: 2239

- 25 Author Contribution: Conceived and designed the experiments: CCCB FAB JLD. Performed
- 26 the experiments: CCCB FAB EP. Analyzed the data: CCCB SWG FAB. Contributed

materials/analysis tools: SWG FAB. Contributed to the writing of the manuscript: CCCB SWG
FAB JLD.

30 Acknowledgments: We thank the "Programa de Doctorado en Ciencias Biomédicas of the

31 Universidad Nacional Autónoma de México (UNAM)", for the funding received from The

32 National Council of Science and Technology, Mexico (Consejo Nacional de Ciencia y

33 Tecnología, CONACYT) CB167271, and for the CONACYT 250718 Doctoral fellowship. We

are also grateful to M.Sc. Leopoldo González-Santos, M.Sc. Juan J. Ortiz, Dr. Sarael Alcauter
 for technical support.

36

37 Conflict of Interest: The authors have NO affiliations with or involvement in any organization
38 or entity with any financial interest, or non-financial interest in the subject matter or materials
39 discussed in this manuscript.

40

Funding sources: National Council of Science and Technology, Mexico (Consejo Nacional de
Ciencia y Tecnología, CONACYT) CB167271, and for the CONACYT 250718 Doctoral
fellowship.

44

45 Key Words: Functional Connectivity, fALFF, CEN, DMN, Mindfulness, top-down control,

46 Resting State, experienced meditators, mind-wandering

47

49 Abstract

50 While brain default mode network (DMN) activation in human subjects has been associated with 51 mind wandering, meditation practice has been found to suppress it and to increase psychological 52 well-being. Additionally to DMN activity reduction, experienced meditators during meditation 53 practice show and increased connectivity between the DMN and the central executive network 54 (CEN). However, the gradual change between DMN and CEN configuration from pre-55 meditation, during meditation, and post-meditation are unknown. Here we investigated the 56 change in DMN and CEN configuration by means of brain activity and functional connectivity 57 analyses in experienced meditators across three back-to-back functional magnetic resonance 58 imaging scans: Pre-meditation baseline (trait), meditation (state), and post-meditation (state-to-59 trait). Pre-meditation baseline group comparison was also performed between experienced 60 meditators and healthy controls. Meditation trait was characterized by a significant reduction in 61 activity and functional connectivity within DMN and increased anticorrelations between DMN 62 and CEN. Conversely, meditation state and meditation state-to-trait periods showed increased 63 activity and functional connectivity within the DMN and between DMN and CEN. However, the 64 latter anticorrelations were only present in experienced meditators with limited practice. The 65 interactions between networks during these states by means of Positive Diametric Activity 66 (PDA) of the fractional Amplitude of Low-Frequency Fluctuations (fALFF) defined as $\overline{CEN \ fALFF} - \overline{DMN \ fALFF}$ revealed no trait differences, but significant increases during 67 68 meditation state that persisted in meditation state-to-trait. The gradual reconfiguration in DMN 69 and CEN suggest a neural mechanism by which the CEN negatively regulates the DMN and is 70 probably responsible for the long-term trait changes seen in meditators and reported 71 psychological well-being.

72 Significance Statement

We introduce a Positive Diametric Activity (PDA) metric to measure the relation between two anticorrelated rs-fMRI networks in experienced meditators. PDA as well as functional connectivity (FC) are increased during meditation compared to resting state and persists in the post meditation resting state. Conversely, meditation trait is characterized by positive PDA but with significant reduction in activity and functional connectivity within Default Mode Network (DMN) and increased anticorrelations between DMN and central executive network (CEN). PDA and FC between DMN and CEN distinguish meditation state-to-trait effects.

80

81 **1. Introduction**

82 What does the mind do when all physiological needs are taken care of and there are no 83 immediate demands? Does it part into an empty void, a dormant state to conserve resources until 84 something disturbs it and activity is needed? We all know that this is not the case. Every moment 85 of our waking experience challenges this explanation of mental life. When nothing requires 86 active cogitative processing, our mind generally tends to think about what is not going on in the 87 present moment, i.e., it wanders, recapitulates events that happened in the past, or fantasizes 88 about what might happen in the future, jumping from one thought to the next with amazing speed 89 and apparent randomness (Mason et al., 2007). Undeniably, this never stopping stream of 90 consciousness appears to be our brain's idle mode of being, our default mode when not otherwise 91 engaged (Christoff et al., 2016; Kane et al., 2017; Mason et al., 2007). Although this ability is as 92 an evolutionary achievement that allows us to learn, reason, and plan (Mantini et al., 2013; 93 Rilling, 2014), it swiftly fails to serve its adaptive function, and turns into a risk factor for health

94	and psychological well being whenever it becomes a rigid and inflexible pattern with
95	tremendous emotional costs (Jazaieri et al., 2015; Killingsworth and Gilbert, 2010a; Ottaviani et
96	al., 2013; Simon and Engström, 2015; Smallwood et al., 2009). Consequently, the underlying
97	mental processes that keep the brain active when not otherwise engaged have been a source of
98	significant theoretical surmise. Since the advent of neurophysiological recordings, it has been
99	determined that the brain is never truly at rest (Berger and Hans, 1933). From a functional
100	imaging perspective, the remarkable properties of the brain's intrinsic activity were first noted by
101	Biswal and colleagues (1995). They observed that the "noise" in the spontaneous functional
102	Magnetic Resonance Imaging (fMRI) blood oxygen level dependent (BOLD) signal exhibited
103	striking patterns of spatial coherence corresponding, in their case, to the sensorimotor regions of
104	the cerebral cortex. Subsequently, Raichle and colleagues first took notice that during the
105	commonly used "baseline" in research paradigms, the synchronous behavior of a number of
106	anatomic regions were observed to deactivate during task and thus initially identified as a
107	network of task-specific deactivations, later named the default mode network (DMN) (Buckner
108	et al., 2008; Gusnard et al., 2001). Soon it was determined that these task specific deactivations
109	of the DMN also showed patterns of coherent activation during periods of rest that included
110	anterior (medial prefrontal cortex, MPFC) and posterior midline structures (posterior cingulate,
111	PCC) as well as lateral temporal cortex (LTC) and the hippocampus. Additionally, in healthy
112	individuals, DMN activity has been shown to be anticorrelated (negatively correlated) with brain
113	regions activated during attention demanding tasks (e.g., the central executive network) (Fox et
114	al., 2005; Fransson, 2005a; Greicius et al., 2002; Kelly et al., 2008; Uddin et al., 2009).
115	Specifically, the Central Executive Network (CEN), typically including the dorsolateral
116	prefrontal cortex (DLPFC) and posterior parietal cortex (PPC), supports these attention

117	demanding tasks, i.e. attentional control and working memory. Across individuals greater
118	magnitude of DMN-CEN anticorrelations is associated with superior cognitive function such as
119	complex working memory (Hampson et al., 2010a; Keller et al., 2015a; Whitfield-Gabrieli et al.,
120	2009). (Hampson et al., 2010b; Keller et al., 2015b; Whitfield-Gabrieli et al., 2009). Abnormal
121	DMN activity - such as competitive, antagonistic DMN activation during CEN activity or
122	changes in connectivity between subregions of the DMN - has also been associated not only
123	with lower levels of happiness (Killingsworth and Gilbert, 2010b; Smallwood and O'Connor,
124	2011), but with a number of psychological disorders such as anxiety (Zhao et al., 2007),
125	depression (Sheline et al., 2009), schizophrenia (Bastos-Leite et al., 2015; Camchong et al.,
126	2011; Garrity, 2007; Pomarol-Clotet et al., 2008; Whitfield-Gabrieli et al., 2009), epilepsy (Liao
127	et al., 2011), autism (Assaf et al., 2010), attention deficit hyperactivity disorder (ADHD; Uddin
128	et al., 2008), and Alzheimer's disease (AD; Greicius et al., 2004; Sheline and Raichle, 2013).
129	Recent studies further suggest that abnormal DMN activity and connectivity plays a role in
130	neuropsychiatric disorders (Raichle, 2015; Whitfield-Gabrieli and Ford, 2012). These
131	associations have led to the suggestion of using the DMN as method by which to study mental
132	disorders, resulting in a growing body of literature concerning disorder-specific variations within
133	the DMN (Arens et al., 2003; Broyd et al., 2009; Fox and Greicius, 2010; Greicius, 2008; Simon
134	and Engström, 2015; Whitfield-Gabrieli and Ford, 2012).
135	Given the interrelationship between mind-wandering, DMN activity, and the risk to
136	health and psychological well being, a question arises: Is it possible to change this maladaptive
137	mode into one that is more pleasant and healthier? According to many philosophical and

138 contemplative traditions, yes, this is possible. Thus, these teach that happiness is to be found by

139 "living in the moment", i.e, to be here and now without losing oneself in past or future thought.

140	For more than two millennia, meditation has been practiced as a means of achieving this
141	ephemeral mind state, psychological equanimity and self-awareness, yet it has only recently
142	become the target of systematic western-world research for its relevance to mental and physical
143	health in fields such as medicine, psychology, and neuroscience (Van Dam et al., 2017).
144	Undeniably, meditation is becoming increasingly well regarded for its therapeutic promise
145	(Buchholz, 2015; Creswell, 2015; Gu et al., 2015; Simon and Engström, 2015) and meditation
146	methods have been beneficial in the treatment of psychological disorders such as schizophrenia
147	(Chien and Thompson, 2014), depression (Eisendrath et al., 2008; Kuyken et al., 2008; Ma and
148	Teasdale, 2004; Teasdale et al., 2000; Yang et al., 2016), anxiety (Baer, 2003; Grossman et al.,
149	2004; Ludwig and Kabat-Zinn, 2008; Shen et al., 2014), addiction (Bowen et al., 2014),
150	alcoholism (Garland et al., 2010; Witkiewitz et al., 2005), smoking (Tang et al., 2013), mild
151	cognitive impairment (MCI; Wells et al., 2013), and attention-deficit/hyperactivity disorder
152	(Bueno et al., 2015; Janssen et al., 2015; ADHD; Zylowska et al., 2008). Preliminary findings
153	have suggested that the effects of meditation include better emotion regulation (Lutz et al., 2014;
154	Prakash et al., 2015; Turner, 2014), self-regulation (Tang et al., 2014), awareness and self-
155	perception (Hölzel et al., 2011b), memory and cognition (Zeidan et al., 2010), attention (Moore
156	et al., 2012), working memory (Banks et al., 2015; Mrazek et al., 2013), as well as gray and
157	white matter differences in experienced meditators (Fox et al., 2014; Hölzel et al., 2011a; Luders
158	et al., 2009). Functional imaging studies on meditation practice have examined two distinct
159	effects of meditation. The first, called a state effect, refers to the short-term consequences of
160	meditation practice on the individual's state. This would include short lived changes in bodily
161	awareness, relaxation, emotion regulation, attention and in BOLD activation or functional
162	connectivity (FC) when measured with fMRI. During this active state of meditation, studies have

163 consistently found that within-network connectivity of the DMN as well as between-network 164 connectivity of DMN, CEN and salience network (SAL) are increased (Brewer et al., 2011; 165 Garrison et al., 2014; Jang et al., 2011; Jao et al., 2016). The second, called a trait effect, refers to 166 long-lasting changes in these same dimensions, which continue after practice and during the 167 meditator's daily life (Lutz et al., n.d.). However, the findings for this trait effect have not been 168 so clear when measured with resting state functional connectivity (rsFC), with mixed results (for 169 a recent review see Mooneyham et al., 2016). Furthermore, little to nothing is known about the 170 activity and connectivity change of DMN and CEN that intertwine the transitory state effects of 171 meditation with the lasting trait effects of meditation practice. 172 Here we hypothesized that activity of the CEN is an important modulator of DMN

173 activity and connectivity, both during the meditation state and during the transition phase post 174 meditation. Support for this idea comes on the one hand from correlational neuroimaging studies 175 looking into attentional and cognitive control (Anticevic et al., 2012; Dosenbach et al., 2007; Fox 176 et al., 2005; Fransson, 2005b; McKiernan et al., 2003; Northoff et al., 2007; Sonuga-Barke and 177 Castellanos, 2007; Sridharan et al., 2008), but specifically from a study by Chen et al (2013) that 178 provides direct evidence for this neural mechanism. In their study, they specifically tested this 179 mechanism by exciting or inhibiting nodes within the CEN using noninvasive brain stimulation 180 and observed the results using simultaneous brain imaging. They found that the DMN is under 181 inhibitory control specifically from a node in CEN (posterior middle frontal gyrus pMFG;BA 182 9/10). Accordingly, we predicted that brain activation in nodes of the CEN during meditation 183 would: (i) modulate activity of the DMN and increase connectivity between DMN and CEN, (ii) 184 this changes would persist after meditation and finally, (iii) that there are trait differences in 185 DMN and CEN activity and connectivity characteristic of meditation experience. To test these

predictions, we conducted three back-to-back functional magnetic resonance imaging (fMRI) runs in experienced meditators: Pre-meditation baseline (trait), meditation (state), and post-

meditation (state-to-trait). The pre-meditation baseline was also performed on a group of healthycontrols as a comparison.

190 2. Materials and Methods

191 **2.1.** Participants

186

187

199

After standard exclusion criteria for fMRI research were applied, 16 experienced meditators (EM; 6 female, mean age 41.12 years, SD 10.5, average of 1677 h +/- 367 h of Vipassana meditation experience) and 17 meditation naive healthy controls (HC; 7 female, mean age 35.70 years, SD 4.7) participated in the study. There was no significant age difference between groups (t(21) = -1.68, p = .10). All subject groups were recruited and scanned in the same time period as part of the same experiment and all subjects gave informed consent for the experimental procedure, and the protocol had IRB approval.

2.2. Experiment Design

BOLD fMRI data were collected from all participants during a five-minute, eyes-open restingstate period (rsBase). In addition, immediately following the rsBase scan, EM participants were
also scanned during a 20-minute, eyes-open period while engaged in vipassana meditation
(Med). Vipassana meditation emphasizes focused attention typically involving the deliberate
focus of attention to a chosen target—such as general body sensations or sensations related to
breathing— and the voluntary redirection of attention each time it lapses (Hart, 2011). Finally,
EM underwent a second five-minute eyes-open resting-state period (rsPost).

207 2.3. Meditation Trait, State and State-to-Trait Operationalizations (Austin, 1999; 208 Shapiro (Jr.) and Walsh, 1984; West, 2016): 209 Meditation Trait: the lasting changes in sensory, cognitive, and self-referential awareness and 210 their underlying brain activity and connectivity that persist in the meditator irrespective of being 211 actively engaged in meditation. Contrast HC rsBase < EM rsBase (Figure 1.C.a). 212 Meditation State: Refers to the altered sensory, cognitive, and self-referential awareness that can 213 arise *during* meditation practice and their underlying brain activity and connectivity. In the 214 present study this will correspond to the contrast EM rsBase < EM Med (Figure 1.C.b). 215 Meditation State-to-Trait: Refers to the changes in sensory, cognitive, and self-referential 216 awareness and their underlying brain activity and connectivity that persist in the meditator after 217 an active engaged meditation session. Contrast EM rsBase < EM rsPost (Figure 1.C.d).

2.4. MRI Data Acquisition

219 MRI imaging was performed on a 3.0T GE MR750 instrument (General Electric, Waukesha, WI) 220 using a 32-channel head coil. Functional imaging for resting state included 35 slices, acquired 221 using a T2*-weighted EPI sequence with TR/TE 2000/40 ms, a 64x64 matrix and 4-mm slice thickness, resulting in a 4x4x4 mm³ isometric voxel and a total of 151 volumes. For meditation 222 imaging included 35 slices, acquired using a T2*-weighted EPI sequence with TR/TE 1500/40 223 ms, a 64x64 matrix and 4-mm slice thickness, resulting in a 4x4x4 mm³ isometric voxel and a 224 225 total of 804 volumes. The shorter TR during meditation was chosen according to the parameters 226 in Hasenkamp et al. (2012a) to adhere to additional experiential sampling during meditation and 227 thus needed a faster acquisition. Importantly, this discrepancy has been shown not to affect 228 fractional ALFF (fALFF) nor functional connectivity correlation coefficients (CC) since multiple

repetition times have been empirically compared to address the issue of temporal mismatch (Wu et al., 2011). Additionally, High-resolution structural 3D-T1-weighted images were acquired for

anatomical localization (resolution of $1x1x1 \text{ mm}^3$, TR = 2.3 s, TE = 3 ms) covering the whole

brain. The images were acquired with an acceleration factor = 2.

233 2.5. Preprocessing

234 The preprocessing of resting state images was done using SPM 12 software

235 (http://www.fil.ion.ucl.ac.uk/spm) implemented in a MATLAB suite (Mathworks, Inc., Natick,

236 Massachusetts). It included slice time correction, head motion correction, co-registration to

237 subjects' structural images, segmentation, normalization, linear detrending and smoothing

238 (FWHM = 8 mm).

229

230

239 **2.6.** Brain Activity Analysis

240 In order to detect regional brain activity changes we used an improved approach of the

241 Amplitude of Low Frequency Fluctuations (ALFF) method, fractional ALFF (fALFF) (Zou et

242 <u>al., 2008</u>). This method takes the ratio of power spectrum of low-frequency (here: 0.008-0.09

243 Hz) to that of the entire frequency range. fALFF analysis was carried out with AFNI's 3dRSFC

244 (Taylor and Saad, 2013). Similar to the procedures of previous literature (Kong et al., 2015;

245 Shpaner et al., 2014; Zou et al., 2008), the time series of each voxel was transformed to a

246 frequency domain after the linear trend was removed without band-pass filtering. The square root

247 was then calculated at each frequency of the power spectrum, and finally the sum of amplitude

across 0.008-0.09 Hz was divided by that across the entire frequency range (0–0.25 Hz for TR =

249 2 sec and 0-0.33 Hz for TR = 1.5 sec, see fMRI Data Acquisition) to obtain fALFF. Importantly,

250 the TR discrepancy has been shown not to affect fractional ALFF (fALFF) since multiple

251	repetition times have been empirically compared to address the issue of temporal mismatch (Wu
252	et al., 2011). Next, we obtained the Meditation Trait differences of the fALFF maps of HC and
253	EM at baseline (rsBase) using two sample t-tests. The thresholded images were then converted
254	into binarized masks and were used as the target Regions of interest (ROI's) from which to
255	extract the mean fALFF maps for all subjects and states. All imaging analysis were performed
256	with FSL's randomise tool for nonparametric permutation (5000 permutations) inference on
257	neuroimaging data (Winkler et al., 2014) and masked with the binarized DMN & CEN templates
258	of Yeo et al (2011) and Threshold-Free Cluster Enhancement (TFCE: Smith and Nichols, 2009)
259	cluster corrected (P < 0.05). We first obtained the meditation trait differences of the fALFF
260	maps of HC and EM at baseline (rsBase) using two-sample t-test and then extracted the mean
261	fALFF maps for all subjects and states. The extracted values were converted to normally
262	distributed Z-scores to allow for second-level analyses using multilevel modeling one-way
263	repeated measures analysis of variance (ANOVA) and post hoc Tukey test. Statistical analysis
264	was performed with the open-source R package (www.R-project.org).

2.7. Positive Diametric Activity

To further assess the information processing during meditation we introduce a Positive Diametric Activity (PDA) metric in order to determine the activation change of CEN and DMN according to their mean fALFF. The PDA metric is based on the hypothesis that there is a causal neural mechanism by which the CEN negatively regulates the DMN (Chen et al., 2013). This is to say that when CEN activity is increased this produces an inhibitory effect on the DMN and its activity is decreased. Accordingly, we define the PDA as follows:

PDA = CEN fALFF - DMN fALFF

Where PDA will always be positive as long as the mean activity of CEN is greater than the mean activity of DMN, reflecting precisely this negative relation between CEN and DMN. Meditation trait differences of the PDA for HC and EM at baseline (rsBase) was assessed using two-sample t-tests. The PDA for EM rsBase, Med and rsPost were analyzed using multilevel modeling oneway repeated measures analysis of variance (ANOVA) and post hoc Tukey test.

2.8. Functional Connectivity Analysis

278 Functional connectivity analysis was performed using a seed-driven approach with in-house, 279 custom software CONN 16.b (Chai et al., 2012; Whitfield-Gabrieli et al., 2012). We performed 280 seed-voxel correlations by estimating maps showing temporal correlations between the BOLD 281 signal from the target ROIs and that of every brain voxel (i.e. Whole-Brain analysis). The 282 specific target ROI clusters were obtained from the previous fALFF analysis two sample t-tests 283 between HC and EM at rsBase for the DMN and CEN respectively (see Brain Activity Analysis 284 section). This yielded seed ROIs for the DMN in the medial prefrontal cortices (see clusters 1 & 285 2 in Figure 1.A.a and Table 1), which are nodes that have been implicated in processing of self-286 referential stimuli and in generating a model of the self (Northoff and Bermpohl, 2004) and for 287 the CEN in bilateral inferior frontal gyrus and inferior parietal lobule (see clusters 3, 4 & 5 in 288 Figure 1.A.a and Table 1). Physiological and other spurious sources of noise were estimated and 289 regressed out using the anatomical CompCor method (aCompCor) (Chai et al., 2012). Global 290 signal regression, a widely used preprocessing method, was not used because it artificially 291 creates negative correlations that prevent the interpretation of anticorrelation (Behzadi et al., 292 2007; Chai et al., 2012; Whitfield-Gabrieli et al., 2012) and can contribute to group differences 293 in positive correlations (Saad et al., 2012). Instead, aCompCor allows for interpretation of 294 anticorrelations and yields higher specificity and sensitivity compared with global signal

295	regression (Chai et al., 2012). A temporal band-pass filter of .008 Hz to .09 Hz was applied
296	simultaneously to all regressors in the model.We used methods that minimize the influence of
297	motion and artifact and that allow for valid identification of correlated and anticorrelated
298	networks (Behzadi et al., 2007; Chai et al., 2012; Whitfield-Gabrieli et al., 2012). To address the
299	spurious correlations in resting-state networks caused by head motion we used quality assurance
300	software Artifact Detection Tools (<u>http://www.nitrc.org/projects/artifact_detect;</u>
301	http://www.nitrc.org/projects/conn) (Whitfield-Gabrieli et al., 2012) to identify problematic time
302	points during the scan. Specifically, an image was defined as an outlier if the head displacement
303	in x, y, or z direction was greater than .5mm from the previous frame, or if the global mean
304	intensity in the image was greater than 3 standard deviations from the mean image intensity for
305	the entire resting scan. A single regressor for each outlier image was included in the first level
306	general linear model along with motion parameters and first order derivatives (there were no
307	significant differences between groups and runs, see Fig.S1). The anatomical image for each
308	participant was segmented into white matter, grey matter, and cerebrospinal fluid (CSF) masks
309	using SPM8. To minimize partial voluming with grey matter, the white matter and CSF masks
310	were eroded by one voxel, which resulted in substantially smaller masks than the original
311	segmentations (Chai et al., 2012). The eroded white matter and CSF masks were then used as
312	noise ROIs. Signals from the white matter and CSF noise ROIs were extracted from the
313	unsmoothed functional volumes to avoid additional risk of contaminating white matter and CSF
314	signals with grey matter signals. Previous results showed that aCompCor signals were
315	considerably different from the global signal, as regressing higher order principal components of
316	the global signal diminished both positive and negative correlations whereas regressing
317	aCompCor signals resulted in stronger anticorrelations and eliminated spurious correlations

318 (Behzadi et al., 2007). Time series of all the voxels within each seed were averaged, and first-319 level correlation maps were produced by extracting the residual blood oxygen level-dependent 320 time course from each seed and computing Pearson correlation coefficients between that time 321 course and the time course of all other voxels. Correlation coefficients were converted to 322 normally distributed Z-scores using the Fisher transformation to allow for second-level general 323 linear model analyses. Meditation Trait differences of HC and EM at baseline (rsBase) were 324 compared using two-sample t-tests. Second-level analyses for EM rsBase, Med and rsPost, were 325 compared using with a one-way repeated measures analysis of variance (ANOVA) implemented 326 in CONN. All contrasts are nonparametric (1000 permutations) with height threshold p<0.05 and 327 Cluster-Size FDR-corrected p<0.05, unless otherwise stated.

15

328

2.9. Correlation between PDA and FC

In order to assess if there is a relationship between Brain Activity (fALFF) and Functional
Connectivity (FC) we correlated the individual Positive Diametric Activity (PDA) scores (see
above) with differences in FC of DMN and CEN ROI's for the different meditation states.

332 **3. Results**

333 3.1. Meditation Trait Effects

334 **3.1.1.** fALFF analysis

335 <u>DMN</u>: EM showed reduced activity in the left Medial Temporal Gyrus (MTG; BA 21), right

336 Superior Frontal Gyrus (SFG; BA 6), left Medial Prefrontal Cortex (MPFC; BA 10, see Figure

- 1.A.a.1 and 1.A.a.2, blue box plots in 1.B [HC rsBase < EM rsBase] rs Base and Table 1).
- 338 <u>CEN:</u> EM showed reduced activity in bilateral Dorslolateral Prefrontal Cortex (DLPFC; BA 9,
- 339 see Figure 1.A.a.3 and 1.A.a.4; red box plots [HC rsBase < EM rsBase] in 1.B, Table 1) and left

- 340 Inferior Parietal Lobule (IPL; BA 40, Figure 1.A.a.5, Table 1). For this and all other fALFF
- 341 significant MNI coordinates see Table 1.
- **342 3.1.2. FC analysis**
- 343 <u>DMN</u>: EM showed reduced connectivity with left Superior Frontal Gyrus (SFG; BA 11), right
- 344 Medial Frontal Gyrus (MFG; BA 10), Inferior Parietal Lobule (IPL;BA 40) and Superior
- 345 Temporal Gyrus (STG; BA 38). Figure 2.A.a; blue box plots [HC rsBase < EM rsBase] in 2.B
- and Table 2. For this and all other significant connectivity coordinates see Table 2.
- 347 <u>CEN:</u> No differences were found.
- **348 3.1.3. PDA** analysis
- 349 No significant differences were found.
- 350 **3.1.4.** Correlations between PDA and FC
- 351 <u>DMN:</u> No significant correlations were found.
- 352 <u>CEN:</u> No significant correlations were found.

3.1.5. Correlations between Hours of Meditation practice and FC

354 <u>DMN</u>: No significant correlations were found.

355 <u>CEN</u>: Whole-Brain FC analysis revealed a significant correlation (R = .87) between the hours of

- 356 meditation practice and connectivity between CEN and MPFC at rsBase for EM (See Figure
- 357 4.A).

- 358 To better understand this positive correlation between meditation experience and increased
- 359 connectivity between CEN and MPFC, which also has been reported in other studies comparing
- 360 novice vs. expert meditators (Brewer et al., 2011; Jang et al., 2011; Shaurya Prakash et al.,

361	2013), we divided our EM group into two sub-groups (Median = 1130 hrs): experienced
362	meditators with more than 1130 hrs of daily practice (EM>1130; ~3 years) and intermediate
363	meditators (EM <1130) and conducted a multilevel modeling one-way repeated measures
364	ANOVA and post hoc Tukey test for the connectivity Z-scores between CEN and MPFC. The
365	results confirmed a significant difference between HC (mean = $.13$) and EM<1130 (mean = 04 ,
366	b = -0.16, $p < 1e-3$) but no difference between HC and EM>1130 (mean = .04, $b =09$, $p = .08$).
367	Furthermore, there was also a significant difference between EM<1130 (Median = -0.25) and
368	EM>1130 (Median =07, b = .17, p = .04). (Figure S2).
369	3.1.6. Correlations between Hours of Meditation practice and PDA
370	No significant correlations were found for Meditation Trait, State or State-to-Trait
371	PDA and meditation hours.
372	3.2. Meditation State Effects
373	3.2.1. fALFF analysis
374	DMN: No significant differences were found.
375	CEN: The multilevel modeling one-way repeated measures ANOVA yielded significant
376	variation among rsBase, Med and rsPost, $X^{2}(2) = 24.57$, p < 1e-04. The post hoc analysis showed
377	that CEN fALFF was significantly increased in bilateral Dorslolateral Prefrontal Cortex
378	(DLPFC; BA 9, Figure 1.A.b) during Med (M = $.3$) compared to rsBase (M = -0.55 , b = $.84$, p
379	<1e-04). See red box plots [EM rsBase < Med] in Fig.1.B.

380 3.2.2. FC analysis

381 <u>DMN:</u> No significant differences were found.

- 382
- 383 Inferior Parietal Lobule (IPL; BA 40). Figure 2.A.b and red box plot [EM rsBase < Med] of 2.B.
- 384

3.2.3. **PDA** analysis

385 The multilevel modeling one-way repeated measures ANOVA yielded that there was significant variation among rsBase, Med and rsPost, $X^{2}(2) = 12.54$, p = . 005. The post hoc analysis showed 386 that PDA was significantly increased during Med (M = .65) compared to rsBase (M=0.23, b =387 388 .57, p <.003) and rsPost (M = 0.36, b = 0.42, p <.02). See green box plots [EM rsBase < Med] in 389 Fig.1.B.

3.2.4. **Correlations between PDA and FC**

- DMN: No significant correlations were found. 391
- 392 <u>CEN</u>: There was positive correlation (R = .91, parametric stats with height threshold p<0.05 and
- 393 Cluster-Size FDR-corrected p<0.05) between PDA during Med and FC during Med of bilateral
- 394 Dorsolateral Prefrontal Cortex (DLPFC; BA 9) and left Posterior Cingulate Gyrus (PCC; BA 31),
- 395 left Inferior Frontal Gyrus (IFG;BA 45), left Superior Temporal Lobe (STG;BA 22) and left
- 396 Inferior Parietal Lobe (IPL;BA 40). See Figure 3.A. For this and all other significant correlation 397 analysis coordinates see Table 3.
- 398

3.2.5. **Correlations between Hours of Meditation practice and FC**

- 399 DMN: Whole-Brain FC analysis showed a significant correlation (R = .87) between the hours of 400 meditation and the increase in connectivity between rDLPFC and MPFC during meditation (See 401 Figure 4.B).
- 402 CEN: No significant correlations were found.

403	3.2.6. Correlations between Hours of Meditation practice and PDA
404	No significant correlations were found for Meditation Trait, State or State-to-Trait
405	PDA and meditation hours.
406	3.3. Meditation State-To-Trait Effects
407	3.3.1. fALFF analysis
408	<u>DMN:</u> No significant differences were found.
409	CEN: The multilevel modeling one-way repeated measures ANOVA yielded that there was
410	significant variation among rsBase, Med and rsPost, $X^2(2) = 24.57$, p < 1e-04. The post hoc
411	analysis showed that CEN fALFF was significantly increased in bilateral Dorsolateral Prefrontal
412	Cortex (DLPFC; BA 9, Fig.1.A.c) during rsPost (M = .09) compared to rsBase (M = -0.55, b =
413	0.63, p = .006; red box plots [EM rsBase < EM rsPost] in 1.B).
414	3.3.2. FC Analysis
415	<u>DMN:</u> No differences were found.
416	<u>CEN:</u> EM showed increased connectivity ($X^2(2) = 14.47$, p < .001) with the Precuneus (BA 23)
417	and right Angular Gyrus (BA 39) at rsPost compared to rsBase (Figure 2.A.c and red box plots
418	[EM rsBase < EM rsPost] of 2.B).
419	3.3.3. PDA analysis

- PDA: The multilevel modeling one-way repeated measures ANOVA yielded no significant
- differences. However a two-sample paired t-test showed a significant increase relative to rsBase

(t(15) = 1.97, p = .03, green box plots [EM rsBase < EM rsPost] of 1.B, uncorrected). 424 <u>DMN</u>: There was a significant negative correlation (R = -.70) between the change in PDA from

425 rsBase to rsPost and the change in functional connectivity from rsBase to rsPost between Medial

426 Prefrontal Cortex (MPFC; BA 10) and Posterior Cingulate Cortex (PCC; BA 31), Precuneus

427 (BA; 19) and Limic Lobe (BA 20) (See Figure 3.B).

3.3.5. Correlations between Hours of Meditation practice and FC

429 <u>DMN:</u> No significant correlations were found.

430 <u>CEN</u>: Whole-Brain FC analysis showed a significant correlation (R = .63) between the change in

431 CEN and PCC connectivity from rsBase to rsPost and the hours of meditation practice (See

432 Figure 4.C).

3.3.6. Correlations between Hours of Meditation practice and PDA

434 No significant correlations were found for Meditation Trait, State or State-to-Trait
435 PDA and meditation hours.

436

433

423

428

437 **4. Discussion**

438 Meditation trait was characterized by a significant reduction in activity and functional
 439 connectivity within the DMN and increased anticorrelations between DMN and CEN in

440 experienced meditators. However, the latter anticorrelations were only present in meditators with

441 less than 3 years of practice. Conversely, the meditation state and the meditation state-to-trait

- 442 periods showed increased activity and functional connectivity within the DMN and between
- 443 DMN and CEN. While there were no meditation trait Positive Diametric Activity metric (PDA)

differences, we found significant increase during meditation state that persisted in meditation
state-to-trait. The gradual reconfiguration in DMN and CEN suggest a neural mechanism by
which the CEN negatively regulates the DMN and is probably responsible for the long term trait
changes seen in meditators and reported psychological well-being.

To our knowledge, no previous study has directly compared trait, state and state-to trait conditions in experienced meditators using fALFF and FC. In so doing, our findings demonstrate the following for each stage:

451

Meditation Trait:

452 We found that meditation trait is characterized by a (i) significant reduction in brain 453 activity of specific nodes of the DMN, most prominently the MPFC and MTG as well as CEN 454 nodes in the right and left DLPFC and (ii) a reduction in functional connectivity, both within 455 DMN and between DMN and CEN. Thus, the former reduction in intrinsic DMN connectivity 456 would speak for trait reduced synchrony of DMN regions for meditators and is in accordance 457 with previous studies (Doll et al., 2015; Hasenkamp and Barsalou, 2012b) which found that a 458 region in MPFC showed decreased connectivity with the PCC in mindfulness experts compared 459 to novices. Similarly, the latter finding of reduced FC between DMN and CEN for meditators in 460 the baseline resting state is in accordance with two recent studies (Doll et al., 2015; Kemmer et 461 al., 2015), suggesting a critical interplay between DMN and CEN for repeated engagement of 462 attention on present moment experience. Hence, DMN activity and FC, instead of being engaged 463 in task-unrelated thought or mind-wandering, resulting in activation and synchronization of the 464 DMN (Mason et al., 2007), rather is again and again suppressed to re-engage in present moment 465 awareness and hence reflects the stronger anti-correlated coupling between CEN and DMN 466 (Marusak et al., 2017; Mooneyham et al., 2017). This is idea is in accordance with preliminary

467	analysis using dynamic functional connectivity on the Meditation State data that suggest that
468	meditation trait is characterized by more transitions between brain states (mindful vs. mind-
469	wandering) over time, and thus meditators probably spent overall less time in a mind-wandering
470	or a mindless state (Martinez et al., 2018). However, and most importantly, the additional
471	finding of a positive correlation between meditation experience and increased connectivity
472	between CEN and MPFC, which also has been reported in other studies comparing novice vs.
473	expert meditators (Brewer et al., 2011; Jang et al., 2011; Shaurya Prakash et al., 2013) and,
474	which at first seems to contradict the increase in anticorrelations for meditators in general, rather
475	is a subtle difference that points to additional network reconfiguration occurring as practice
476	increases for expert meditators (Brewer et al., 2011; Hasenkamp and Barsalou, 2012b). We then
477	disentangled this finding by searching for the differences between intermediate (<1130 hrs of
478	practice, ~3 years of 1 hour daily practice) and more experienced meditators (>1130 hrs)
479	functional connectivity in these nodes. The finding, hence suggests that the trait state of
480	intermediate meditators is characterized by a stronger reduction in DMN connectivity and
481	significant increases in anticorrelations between CEN and MPFC. In more experienced
482	meditators (>1130 hrs of practice) the reduction in DMN connectivity still remains, however the
483	anticorrelations have returned to a pre-meditation state. This finding, we think, is of major
484	importance and points to the evolution of brain activity and connectivity changes as meditation
485	progresses from an intermediate to more advanced stages, and that this change is rather a slow
486	one, with the final sole reduction of DMN activity and connectivity independent of CEN
487	suppression of at least 3 years of practice and can even evolve to a sustained increase in
488	connectivity between CEN and DMN in meditators with more than 3 years of experience
489	(Brewer et al., 2011; Creswell et al., 2016). Additionally, we think that this trait suppression of

490 DMN in more experienced meditators independent of anticorrelations with the CEN, is the 491 ultimate network reconfiguration without any active and repeated suppression of the DMN by 492 the CEN and thus, a more effective, consolidated effortless baseline, reflecting a completely 493 transformed and stable mindful state with suppression of DMN without the more active and 494 repeated transitions between mindful vs. mind-wandering brain states in intermediate meditators. 495 However, this hypothesis has to be tested in longitudinal studies.

496

Meditation State:

497 We found that meditation state is characterized by: (i) increase in the activity of specific CEN 498 nodes (bilateral DLPFC), (ii) increased FC between CEN nodes and DMN nodes (MPFC and 499 PCC), (iii) increased PDA, (iv) PDA positively correlates with the strength in FC between the 500 CEN and the DMN and (v) that meditation experience (meditation hours) positively correlates 501 with connectivity between MPFC and right DLPFC during meditation. These findings are in 502 accordance with previous literature (Brewer et al., 2011; Hasenkamp and Barsalou, 2012b) and 503 suggest that the neural mechanisms underlying the active meditation state is associated with 504 differential activation and connectivity of CEN nodes modulate activity and connectivity of the 505 DMN. Importantly, although we cannot rule out that other brain networks mediate the effect of 506 CEN on the DMN, our results indicate that activity in the CEN, specifically in the DLPFC 507 effects on the activity and connectivity of the DMN hub nodes, i.e. MPFC and PCC. This 508 hypothesis is in line with previous meditation studies (Brewer et al., 2011; Hasenkamp et al., 509 2012; Hasenkamp and Barsalou, 2012b) but is of particularly interest given a study by Chen et 510 al. (2013) where they used TMS and fMRI to demonstrate a directional causal relationship by 511 which a DLPFC node situated within the CEN inhibits the MPFC portion of the DMN. This in 512 turn is further supported by evidence of monosynaptic projections between CEN and DMN

513	structures in rhesus monkeys, which indicate that these efferent pathways are part of an elaborate
514	anatomical circuit which could mediate aspects of attention, memory, and external or internal
515	perception (Selemon and Goldman-Rakic, 1988). What is more, recent evidence has shown that
516	there is a direct relation between GABA-ergic inhibition within the mPFC and the reactivity of
517	amygdala during emotional processing. Delli Pizzi et al (2017) investigated the mPFC-amygdala
518	circuit both with resting-state fMRI (rs-fMRI) and proton MR spectroscopy (MRS) as well as
519	trait anxiety. Their results showed that the rs-fMRI signals of the amygdala and the mPFC were
520	significantly anti-correlated and that this negative functional coupling between the two regions
521	was inversely correlated with the GABA+/tCr level within the MPFC and the STAI-Y2 scores.
522	This suggests a close relationship between MPFC GABA levels and functional interactions
523	within the MPFC-amygdala- circuit. Although this is still an open question and needs additional
524	research with simultaneous MRS acquisition during and after meditation, we propose that a
525	meditation state: 1) increases activity within the CEN, 2) this increase in CEN activity directly
526	downregulates the two major DMN nodes (i.e. MPFC and PCC), 3) this down regulation of
527	MPFC is coupled with a reduction in GABA+/tCr levels and reduced amygdala reactivity which,
528	4) have a direct impact on anxiety scores and the physiology of emotion regulation.

529 Meditation State-to-Trait:

We found that the meditation state-to-trait is characterized by shoeing remnants of the meditation state effect both in activity and connectivity. Specifically, (i) increased activity of the CEN, (ii) increased FC between CEN nodes and DMN, although only with the PCC, which has been suggested to be more related to internal meditation practices (Scheibner et al., 2017) and (iii) a increased PDA. Moreover, the change in PDA from rsBase to rsPost was negatively correlated with change in intrinsic connectivity of the DMN (MPFC & PCC), i.e. the greater the

536	increase in PDA the less the intrinsic connectivity of the DMN at rsPost. This is also in line with
537	previous studies that suggest that the post-task resting state network activity and connectivity
538	reflect an aspect of the immediately preceding brain state (Waites et al., 2005) and that these
539	brain changes support the role of learning from a recently performed task as a concomitant
540	process in expertise development (Muraskin et al., 2016). Hence, it further supports the
541	hypothesis that the activity within CEN nodes (specifically DLPFC) actively suppresses DMN
542	nodes and that this suppression carries over during a restful state after meditation, although it
543	shifts to a more posterior node, namely the PCC, probably because this node is more engaged in
544	this particular type of meditation, i.e. internal focused meditation (Scheibner et al., 2017).
545	Finally, we found that meditation experience positively correlates with change in CEN-DMN
546	connectivity. Hence, the more experienced meditators seem to have a larger homeostatic rebound
547	after meditation in CEN-DMN connectivity (for a discussion of this hypothesis see below).
548	Finally, and because of the design of the present study, we propose that both, the
549	increased PDA as well as the increased connectivity between DMN and CEN during meditation,
550	as well as the remnants after meditation, at the beginning of practice, effectively produce a
551	"homeostatic rebound" to what we identify as the meditation trait, namely the reduced activity
552	and connectivity within DMN and between DMN and CEN. We think that brain activity, brain
553	connectivity and long term ensurance of homeostasis depend on intrinsic properties that
554	determine the functionality of these neuronal networks. Homeostatic factors are inherently
555	important and involve complex self-regulatory mechanisms (Davis, 2013). Consequently, it
556	seems reasonable to view this "homeostatic rebound" as the plasticity that results from a repeated
557	meditation practice within a context of otherwise stable network configurations. First, without
558	the existence of potent mechanisms that perturb this normal balance between networks, and

559	secondly, similarly potent mechanisms that in turn stabilize this perturbation, our capacity to
560	learn and change brain function would be lost. Hence, we suggest, that there is a two stage
561	reconfiguration or homeostatic plasticity (Davis, 2013; Hellyer et al., 2016), that evolves with
562	meditation practice. First, as meditation practice begins, it produces stronger anti-correlated
563	coupling between CEN and DMN (Marusak et al., 2017; Mooneyham et al., 2017) and thus
564	increases the frequency of repeated periods of DMN suppression, even without being actively
565	engaged in meditation, resulting in increased number of moments during the day of engagement
566	in present moment awareness and less mindlessness. This initial change is in accordance with
567	additional evidence showing that increased anticorrelations between DMN and CEN are
568	associated with a healthy development (Chai et al., 2014) and aging (Esposito et al., 2017; Keller
569	et al., 2015c), cognitive reserve (Franzmeier et al., 2017), superior cognitive performance (Chai
570	et al., 2014), reduced risk of psychopathology (Andrews-Hanna et al., 2014; Whitfield-Gabrieli
571	et al., 2009), increased emotional stability (Servaas et al., 2017), and overall physiological and
572	psychological well being (Fountain-Zaragoza and Prakash, 2017). As meditation increases, a
573	second reconfiguration occurs where the frequency of repeated periods of DMN suppression start
574	to overlap and rather become prolonged periods of engagement in present moment awareness up
575	until the point where it is just continued present moment awareness. Once this point has been
576	reached, we think that there is no more need of active monitoring if one is in a mindless state or
577	mindful state and thus the anticorrelations start to return to a normal pre-meditation level.
578	The plasticity resulting from a repeated meditation practice, i.e. the suggested
579	"homeostatic rebound", may also be the underlying mechanism of many of the benefits reported
580	with meditation practice (Goldberg et al., 2018) that depend on the top-down regulation of the

581 DMN by CEN (Chen et al., 2013; Garrison et al., 2015). In doing so, it is possible that functional

582 abnormalities in cortical and subcortical regions involved in emotion regulation such as anxiety, 583 depression or other types of psychopathology that relate to deficiencies in noradrenergic and 584 serotonergic function are also recalibrated and thus enhancing brain noradrenergic or 585 serotonergic transmission (Whitfield-Gabrieli and Ford, 2012; Willner et al., 2013). Meditation 586 training, thus, with time, may lead to observable changes in the brain and in neurotransmitter 587 levels (Guglietti et al., 2013; Jindal et al., 2013) accounting for its antidepressant effects and use 588 in psychotherapy. However, this last hypothesis has to be corroborated with further studies that 589 particularly look at this process. 590 We also want to note some limitations of this study. First off, when we talk about "activity" in 591 the present study we do this with complete knowledge of the limitations of Blood oxygenation 592 level dependent (BOLD) imaging as the standard technique used to generate images in fMRI 593 studies, and that relies on regional differences in cerebral blood flow to indirectly delineate 594 regional activity (Arthurs and Boniface, 2002; Huettel, 2004). Thus, "activity" in the present

595 study refers to BOLD activity. There were a modest number of participants. In turn, this 596 motivated a region-of-interest approach focused on specific nodes from the DMN and CEN, 597 based on the prior literature, so that a conservative level of statistics could be employed. A 598 strength of this study is that it represents a first step in elucidating the potential neurobehavioral 599 mechanisms mediating the practice of meditation on DMN activity and the FC. Specifically it 600 suggests that "homeostatic rebound" of anticorrelated DMN and CEN networks after meditation 601 could be the compensatory mechanisms operating in the brain that may account for the trait 602 changes in meditators. Finally,

603 **5.** Conclusion

604 Here we examined the brain changes underlying the State-to-Trait experience and training of 605 meditation. We focused on the activity and connectivity of the default and executive networks 606 given their respective roles in internal cognition, self-regulation, and awareness. The findings 607 presented reveal that active meditation practice deliberately engages networks related to 608 cognitive and attentional control that effectively directs the focus of attention and curbs our usual 609 mode of getting carried away by the endless stream of internal and external distractions. 610 Furthermore, we showed that this active state is carried over to an immediate and passive restful 611 state with similar network relationships than the active state. The trait effects of meditation 612 suggest a recalibration and reconfiguration of network structure, or homeostatic plasticity (Davis, 613 2013; Hellyer et al., 2016), that produces in particular reductions in DMN activity and 614 connectivity. However, the way this suppression is achieved depends on the stage of meditation. 615 Intermediate meditators show stronger anti-correlated coupling between CEN and DMN 616 (Marusak et al., 2017; Mooneyham et al., 2017), which suggests increased frequency between 617 states of mindlessness and mindfulness and thus moments of DMN suppression, even without 618 being actively engaged in meditation. Finally, with more experience in meditation, the moments 619 of mindfulness become so frequent that no more transitions are needed and thus become the new 620 default mode with sustained reduction in DMN activity and connectivity without effort. These, 621 we think are the trait characteristics that ultimately underlie the beneficial effects of meditation, 622 yet allowing the initial practitioner to increase the number of moments of mindful and clear 623 reality to finally achieve a sustained mindful state —even to see reality as it actually is, without 624 the perturbing vail of past or future illusion.

625

626 6. References

Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought:
component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci 1316:29–52.

Anticevic A, Cole MW, Murray JD, Corlett PR, Wang X-J, Krystal JH (2012) The role of default network
 deactivation in cognition and disease. Trends Cogn Sci 16:584–592.

Arens J, Moar KM, Eiden S, Weide K, Schmidt I, Mercer JG, Simon E, Korf H-W (2003) Age-dependent
 hypothalamic expression of neuropeptides in wild-type and melanocortin-4 receptor-deficient mice.
 Physiol Genomics 16:38–46.

Arthurs OJ, Boniface S (2002) How well do we understand the neural origins of the fMRI BOLD signal?
 Trends Neurosci 25:27–31.

Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, O'Boyle JG, Schultz RT, Pearlson
 GD (2010) Abnormal functional connectivity of default mode sub-networks in autism spectrum

disorder patients. Neuroimage 53:247-256.

- Austin JH (1999) Zen and the Brain: Toward an Understanding of Meditation and Consciousness. MIT
 Press.
- Baer RA (2003) Mindfulness Training as a Clinical Intervention: A Conceptual and Empirical Review.
 Clinical Psychology: Science and Practice 10:125–143.
- Banks JB, Welhaf MS, Srour A (2015) The protective effects of brief mindfulness meditation training.
 Conscious Cogn 33:277–285.
- Bastos-Leite AJ, Ridgway GR, Silveira C, Norton A, Reis S, Friston KJ (2015) Dysconnectivity within
 the default mode in first-episode schizophrenia: a stochastic dynamic causal modeling study with
 functional magnetic resonance imaging. Schizophr Bull 41:144–153.
- Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for
 BOLD and perfusion based fMRI. Neuroimage 37:90–101.
- Berger H, Hans B (1933) Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und
 Nervenkrankheiten 100:301–320.
- Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of
 resting human brain using echo-planar MRI. Magn Reson Med 34:537–541.
- 654 Bowen S, Witkiewitz K, Clifasefi SL, Grow J, Chawla N, Hsu SH, Carroll HA, Harrop E, Collins SE,
- 655 Lustyk MK, Larimer ME (2014) Relative efficacy of mindfulness-based relapse prevention, standard
- relapse prevention, and treatment as usual for substance use disorders: a randomized clinical trial.
- 657 JAMA Psychiatry 71:547–556.
- 658 Brewer JA, Worhunsky PD, Gray JR, Tang Y-Y, Weber J, Kober H (2011) Meditation experience is

associated with differences in default mode network activity and connectivity. Proc Natl Acad Sci U S A 108:20254-20259. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJS (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279-296. Buchholz L (2015) Exploring the Promise of Mindfulness as Medicine. JAMA 314:1327–1329. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The Brain's Default Network. Ann N Y Acad Sci 1124:1-38. Bueno VF, Kozasa EH, da Silva MA, Alves TM, Louzã MR, Pompéia S (2015) Mindfulness Meditation Improves Mood, Quality of Life, and Attention in Adults with Attention Deficit Hyperactivity Disorder. Biomed Res Int 2015:962857. Camchong J, MacDonald AW 3rd, Bell C, Mueller BA, Lim KO (2011) Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 37:640-650. Chai XJ, Castañón AN, Ongür D, Whitfield-Gabrieli S (2012) Anticorrelations in resting state networks without global signal regression. Neuroimage 59:1420-1428. Chai XJ, Ofen N, Gabrieli JDE, Whitfield-Gabrieli S (2014) Selective development of anticorrelated networks in the intrinsic functional organization of the human brain. J Cogn Neurosci 26:501-513. Chen AC, Oathes DJ, Chang C, Bradley T, Zhou Z-W, Williams LM, Glover GH, Deisseroth K, Etkin A (2013) Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc Natl Acad Sci U S A 110:19944-19949. Chien WT, Thompson DR (2014) Effects of a mindfulness-based psychoeducation programme for Chinese patients with schizophrenia: 2-year follow-up. Br J Psychiatry 205:52–59. Christoff K, Irving ZC, Fox KCR, Spreng RN, Andrews-Hanna JR (2016) Mind-wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci 17:718-731. Creswell JD (2015) Biological Pathways Linking Mindfulness with Health. Department of Psychology. Creswell JD, Taren AA, Lindsay EK, Greco CM, Gianaros PJ, Fairgrieve A, Marsland AL, Brown KW, Way BM, Rosen RK, Ferris JL (2016) Alterations in Resting-State Functional Connectivity Link Mindfulness Meditation With Reduced Interleukin-6: A Randomized Controlled Trial. Biol Psychiatry 80:53-61.

- Davis GW (2013) Homeostatic signaling and the stabilization of neural function. Neuron 80:718–728.
- Delli Pizzi S, Chiacchiaretta P, Mantini D, Bubbico G, Ferretti A, Edden RA, Di Giulio C, Onofrj M,
- Bonanni L (2017) Functional and neurochemical interactions within the amygdala-medial prefrontal cortex circuit and their relevance to emotional processing. Brain Struct Funct 222:1267-1279.
- Doll A, Hölzel BK, Boucard CC, Wohlschläger AM, Sorg C (2015) Mindfulness is associated with
- intrinsic functional connectivity between default mode and salience networks. Front Hum Neurosci

9:461.

694	Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, Fox MD, Snyder AZ,
695	Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and
696	stable task control in humans. Proc Natl Acad Sci U S A 104:11073-11078.
697	Eisendrath SJ, Delucchi K, Bitner R, Fenimore P, Smit M, McLane M (2008) Mindfulness-based
698	cognitive therapy for treatment-resistant depression: a pilot study. Psychother Psychosom 77:319-
699	320.
700	Esposito R, Cieri F, Chiacchiaretta P, Cera N, Lauriola M, Di Giannantonio M, Tartaro A, Ferretti A
701	(2017) Modifications in resting state functional anticorrelation between default mode network and
702	dorsal attention network: comparison among young adults, healthy elders and mild cognitive
703	impairment patients. Brain Imaging Behav.
704	Fountain-Zaragoza S, Prakash RS (2017) Mindfulness Training for Healthy Aging: Impact on Attention,
705	Well-Being, and Inflammation. Front Aging Neurosci 9:11.
706	Fox KCR, Nijeboer S, Dixon ML, Floman JL, Ellamil M, Rumak SP, Sedlmeier P, Christoff K (2014) Is
707	meditation associated with altered brain structure? A systematic review and meta-analysis of
708	morphometric neuroimaging in meditation practitioners. Neurosci Biobehav Rev 43:48-73.
709	Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst
710	Neurosci 4:19.
711	Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is
712	intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A
713	102:9673–9678.
714	Fransson P (2005a) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the
715	resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15-29.
716	Fransson P (2005b) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the
717	resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15-29.
718	Franzmeier N, Caballero MÁA, Taylor ANW, Simon-Vermot L, Buerger K, Ertl-Wagner B, Mueller C,
719	Catak C, Janowitz D, Baykara E, Gesierich B, Duering M, Ewers M, Alzheimer's Disease
720	Neuroimaging Initiative (2017) Resting-state global functional connectivity as a biomarker of
721	cognitive reserve in mild cognitive impairment. Brain Imaging Behav 11:368-382.
722	Garland EL, Gaylord SA, Boettiger CA, Howard MO (2010) Mindfulness training modifies cognitive,
723	affective, and physiological mechanisms implicated in alcohol dependence: results of a randomized
724	controlled pilot trial. J Psychoactive Drugs 42:177-192.
725	Garrison KA, Scheinost D, Constable RT, Brewer JA (2014) BOLD signal and functional connectivity
726	associated with loving kindness meditation. Brain Behav 4:337-347.

727	Garrison KA, Zeffiro TA, Scheinost D, Constable RT, Brewer JA (2015) Meditation leads to reduced
728	default mode network activity beyond an active task. Cogn Affect Behav Neurosci 15:712-720.
729	Garrity A (2007) Aberrant "Default Mode" Functional Connectivity in Schizophrenia. Am J Psychiatry
730	164:450.
731	Goldberg SB, Tucker RP, Greene PA, Davidson RJ, Wampold BE, Kearney DJ, Simpson TL (2018)
732	Mindfulness-based interventions for psychiatric disorders: A systematic review and meta-analysis.
733	Clin Psychol Rev 59:52–60.
734	Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol
735	21:424–430.
736	Greicius MD, Krasnow B, Reiss AL, Menon V (2002) Functional connectivity in the resting brain: A
737	network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences
738	100:253–258.
739	Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes
740	Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A
741	101:4637–4642.
742	Grossman P, Niemann L, Schmidt S, Walach H (2004) Mindfulness-based stress reduction and health
743	benefits. A meta-analysis. J Psychosom Res 57:35-43.
744	Guglietti CL, Daskalakis ZJ, Radhu N, Fitzgerald PB, Ritvo P (2013) Meditation-related increases in
745	GABAB modulated cortical inhibition. Brain Stimul 6:397-402.
746	Gu J, Strauss C, Bond R, Cavanagh K (2015) How do mindfulness-based cognitive therapy and
747	mindfulness-based stress reduction improve mental health and wellbeing? A systematic review and
748	meta-analysis of mediation studies. Clin Psychol Rev 37:1-12.
749	Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the
750	resting human brain. Nat Rev Neurosci 2:685-694.
751	Hampson M, Driesen N, Roth JK, Gore JC, Constable RT (2010a) Functional connectivity between task-
752	positive and task-negative brain areas and its relation to working memory performance. Magn Reson
753	Imaging 28:1051–1057.
754	Hampson M, Driesen N, Roth JK, Gore JC, Constable RT (2010b) Functional connectivity between task-
755	positive and task-negative brain areas and its relation to working memory performance. Magn Reson
756	Imaging 28:1051–1057.
757	Hart W (2011) The Art of Living: Vipassana Meditation as Taught by S.N. Goenka. Pariyatti.
758	Hasenkamp W, Barsalou LW (2012a) Effects of meditation experience on functional connectivity of
759	distributed brain networks. Front Hum Neurosci 6:38.

760 Hasenkamp W, Barsalou LW (2012b) Effects of meditation experience on functional connectivity of

761	distributed brain networks. Front Hum Neurosci 6:38.
762	Hasenkamp W, Wilson-Mendenhall CD, Duncan E, Barsalou LW (2012) Mind wandering and attention
763	during focused meditation: A fine-grained temporal analysis of fluctuating cognitive states.
764	Neuroimage 59:750–760.
765	Hellyer PJ, Clopath C, Kehagia AA, Turkheimer FE, Leech R (2016) Balanced activation in a simple
766	embodied neural simulation.
767	Hölzel BK, Carmody J, Vangel M, Congleton C, Yerramsetti SM, Gard T, Lazar SW (2011a)
768	Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res 191:36-
769	43.
770	Hölzel BK, Lazar SW, Gard T, Schuman-Olivier Z, Vago DR, Ott U (2011b) How Does Mindfulness
771	Meditation Work? Proposing Mechanisms of Action From a Conceptual and Neural Perspective.
772	Perspect Psychol Sci 6:537–559.
773	Huettel SA (2004) Linking Hemodynamic and Electrophysiological Measures of Brain Activity:
774	Evidence from Functional MRI and Intracranial Field Potentials. Cereb Cortex 14:165–173.
775	Jang JH, Jung WH, Kang D-H, Byun MS, Kwon SJ, Choi C-H, Kwon JS (2011) Increased default mode
776	network connectivity associated with meditation. Neurosci Lett 487:358-362.
777	Janssen L, Kan CC, Carpentier PJ, Sizoo B, Hepark S, Grutters J, Donders R, Buitelaar JK, Speckens
778	AEM (2015) Mindfulness based cognitive therapy versus treatment as usual in adults with attention
779	deficit hyperactivity disorder (ADHD). BMC Psychiatry 15:216.
780	Jao T, Li C-W, Vértes PE, Wu CW, Achard S, Hsieh C-H, Liou C-H, Chen J-H, Bullmore ET (2016)
781	Large-Scale Functional Brain Network Reorganization During Taoist Meditation. Brain Connect
782	6:9–24.
783	Jazaieri H, Hooria J, Lee IA, Kelly M, Thupten J, Doty JR, Gross JJ, Goldin PR (2015) A wandering
784	mind is a less caring mind: Daily experience sampling during compassion meditation training. J
785	Posit Psychol 11:37–50.
786	Jindal V, Gupta S, Das R (2013) Molecular mechanisms of meditation. Mol Neurobiol 48:808-811.
787	Kane MJ, Gross GM, Chun CA, Smeekens BA, Meier ME, Silvia PJ, Kwapil TR (2017) For Whom the
788	Mind Wanders, and When, Varies Across Laboratory and Daily-Life Settings. Psychol Sci
789	956797617706086.
790	Keller JB, Hedden T, Thompson TW, Anteraper SA, Gabrieli JDE, Whitfield-Gabrieli S (2015a) Resting-
791	state anticorrelations between medial and lateral prefrontal cortex: association with working
792	memory, aging, and individual differences. Cortex 64:271-280.

- 793 Keller JB, Hedden T, Thompson TW, Anteraper SA, Gabrieli JDE, Whitfield-Gabrieli S (2015b) Resting-
- state anticorrelations between medial and lateral prefrontal cortex: association with working

795	memory, aging, and individual differences. Cortex 64:271-280.
796	Keller JB, Hedden T, Thompson TW, Anteraper SA, Gabrieli JDE, Whitfield-Gabrieli S (2015c) Resting-
797	state anticorrelations between medial and lateral prefrontal cortex: association with working
798	memory, aging, and individual differences. Cortex 64:271-280.
799	Kelly AMC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008) Competition between functional
800	brain networks mediates behavioral variability. Neuroimage 39:527-537.
801	Kemmer PB, Guo Y, Wang Y, Pagnoni G (2015) Network-based characterization of brain functional
802	connectivity in Zen practitioners. Front Psychol 6:603.
803	Killingsworth MA, Gilbert DT (2010a) A wandering mind is an unhappy mind. Science 330:932.
804	Killingsworth MA, Gilbert DT (2010b) A wandering mind is an unhappy mind. Science 330:932.
805	Kong F, Hu S, Wang X, Song Y, Liu J (2015) Neural correlates of the happy life: the amplitude of
806	spontaneous low frequency fluctuations predicts subjective well-being. Neuroimage 107:136-145.
807	Kuyken W, Byford S, Taylor RS, Watkins E, Holden E, White K, Barrett B, Byng R, Evans A, Mullan E,
808	Teasdale JD (2008) Mindfulness-based cognitive therapy to prevent relapse in recurrent depression.
809	J Consult Clin Psychol 76:966–978.
810	Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, Luo C, Wang Z, Tan Q, Lu G, Chen H (2011)
811	Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and
812	DTI. Hum Brain Mapp 32:883–895.
813	Luders E, Toga AW, Lepore N, Gaser C (2009) The underlying anatomical correlates of long-term
814	meditation: larger hippocampal and frontal volumes of gray matter. Neuroimage 45:672-678.
815	Ludwig DS, Kabat-Zinn J (2008) Mindfulness in medicine. JAMA 300:1350-1352.
816	Lutz A, Antoine L, Dunne JD, Davidson RJ (n.d.) Meditation and the Neuroscience of Consciousness: An
817	Introduction In: The Cambridge Handbook of Consciousness, pp499-552.
818	Lutz J, Herwig U, Opialla S, Hittmeyer A, Jäncke L, Rufer M, Grosse Holtforth M, Brühl AB (2014)
819	Mindfulness and emotion regulationan fMRI study. Soc Cogn Affect Neurosci 9:776-785.
820	Mantini D, Corbetta M, Romani GL, Orban GA, Vanduffel W (2013) Evolutionarily novel functional
821	networks in the human brain? J Neurosci 33:3259–3275.
822	Martinez A, Bauer C, Gracia-Tabuenca Z, Alcauter S, Barrios F (2018) From Attention to Perception: A
823	Dynamic Functional Connectivity Study in Experienced Meditators.
824	Marusak HA, Thomason ME, Elrahal F, Peters CA, Kundu P, Lombardo MV, Calhoun VD, Goldberg
825	EK, Cohen C, Taub JW, Rabinak CA (2017) Mindfulness and dynamic functional neural
826	connectivity in children and adolescents.
827	Ma SH, Teasdale JD (2004) Mindfulness-based cognitive therapy for depression: replication and

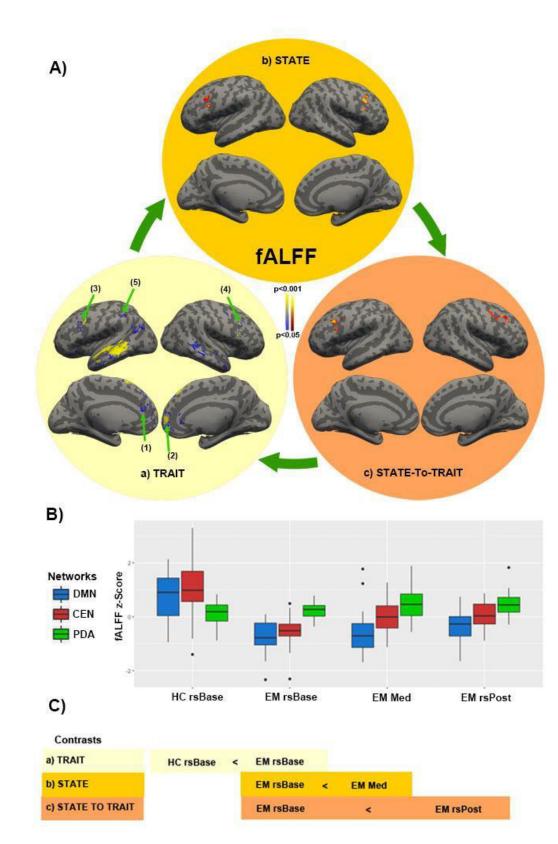
828 exploration of differential relapse prevention effects. J Consult Clin Psychol 72:31-40.

829	Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds:
830	the default network and stimulus-independent thought. Science 315:393-395.
831	McKiernan KA, Kaufman JN, Kucera-Thompson J, Binder JR (2003) A parametric manipulation of
832	factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15:394-
833	408.
834	Mooneyham BW, Mrazek MD, Mrazek AJ, Mrazek KL, Phillips DT, Schooler JW (2017) States of Mind:
835	Characterizing the Neural Bases of Focus and Mind-wandering through Dynamic Functional
836	Connectivity. J Cogn Neurosci 29:495–506.
837	Mooneyham BW, Mrazek MD, Mrazek AJ, Schooler JW (2016) Signal or noise: brain network
838	interactions underlying the experience and training of mindfulness. Ann N Y Acad Sci 1369:240-
839	256.
840	Moore A, Gruber T, Derose J, Malinowski P (2012) Regular, brief mindfulness meditation practice
841	improves electrophysiological markers of attentional control. Front Hum Neurosci 6.
842	Mrazek MD, Franklin MS, Phillips DT, Baird B, Schooler JW (2013) Mindfulness training improves
843	working memory capacity and GRE performance while reducing mind wandering. Psychol Sci
844	24:776–781.
845	Muraskin J, Dodhia S, Lieberman G, Garcia JO, Verstynen T, Vettel JM, Sherwin J, Sajda P (2016) Brain
846	dynamics of post-task resting state are influenced by expertise: Insights from baseball players. Hum
847	Brain Mapp 37:4454–4471.
848	Northoff G, Bermpohl F (2004) Cortical midline structures and the self. Trends Cogn Sci 8:102–107.
849	Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P (2007)
850	GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in
851	fMRI. Nat Neurosci 10:1515–1517.
852	Ottaviani C, Shapiro D, Couyoumdjian A (2013) Flexibility as the key for somatic health: From mind
853	wandering to perseverative cognition. Biol Psychol 94:38-43.
854	Pomarol-Clotet E, Salvador R, Sarró S, Gomar J, Vila F, Martínez A, Guerrero A, Ortiz-Gil J, Sans-Sansa
855	B, Capdevila A, Cebamanos JM, McKenna PJ (2008) Failure to deactivate in the prefrontal cortex in
856	schizophrenia: dysfunction of the default mode network? Psychol Med 38:1185-1193.
857	Prakash RS, Whitmoyer P, Aldao A, Schirda B (2015) Mindfulness and emotion regulation in older and
858	young adults. Aging Ment Health 1–11.
859	Raichle ME (2015) The Brain's Default Mode Network. Annu Rev Neurosci 38:433-447.
860	Rilling JK (2014) Comparative primate neuroimaging: insights into human brain evolution. Trends Cogn
861	Sci 18:46–55.

862 Saad ZS, Gotts SJ, Kevin M, Gang C, Jo HJ, Alex M, Cox RW (2012) Trouble at Rest: How Correlation

863	Patterns and Group Differences Become Distorted After Global Signal Regression. Brain Connect
864	2:25–32.
865	Scheibner HJ, Bogler C, Gleich T, Haynes J-D, Bermpohl F (2017) Internal and external attention and the
866	default mode network. Neuroimage 148:381-389.
867	Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral
868	prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural
869	network subserving spatially guided behavior. Journal of Neuroscience 8:4049-4068.
870	Servaas MN, Riese H, Renken RJ, Wichers M, Bastiaansen JA, Figueroa CA, Geugies H, Mocking RJ,
871	Geerligs L, Marsman J-BC, Aleman A, Schene AH, Schoevers RA, Ruhé HG (2017) Associations
872	Between Daily Affective Instability and Connectomics in Functional Subnetworks in Remitted
873	Patients with Recurrent Major Depressive Disorder. Neuropsychopharmacology.
874	Shapiro (Jr.) DH, Walsh RN (1984) Meditation: Classic and Contemporary Perspectives.
875	AldineTransaction.
876	Shaurya Prakash R, De Leon AA, Klatt M, Malarkey W, Patterson B (2013) Mindfulness disposition and
877	default-mode network connectivity in older adults. Soc Cogn Affect Neurosci 8:112-117.
878	Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson
879	RS, Raichle ME (2009) The default mode network and self-referential processes in depression. Proc
880	Natl Acad Sci U S A 106:1942–1947.
881	Sheline YI, Raichle ME (2013) Resting state functional connectivity in preclinical Alzheimer's disease.
882	Biol Psychiatry 74:340–347.
883	Shen H, Li Z, Zeng L-L, Yuan L, Chen F, Liu Z, Hu D (2014) Internetwork dynamic connectivity
884	effectively differentiates schizophrenic patients from healthy controls. Neuroreport 25:1344-1349.
885	Shpaner M, Kelly C, Lieberman G, Perelman H, Davis M, Keefe FJ, Naylor MR (2014) Unlearning
886	chronic pain: A randomized controlled trial to investigate changes in intrinsic brain connectivity
887	following Cognitive Behavioral Therapy. Neuroimage Clin 5:365-376.
888	Simon R, Engström M (2015) The default mode network as a biomarker for monitoring the therapeutic
889	effects of meditation. Front Psychol 6:776.
890	Smallwood J, Fitzgerald A, Miles LK, Phillips LH (2009) Shifting moods, wandering minds: negative
891	moods lead the mind to wander. Emotion 9:271–276.
892	Smallwood J, O'Connor RC (2011) Imprisoned by the past: unhappy moods lead to a retrospective bias to
893	mind wandering. Cogn Emot 25:1481–1490.
894	Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing,
005	

- threshold dependence and localisation in cluster inference. Neuroimage 44:83–98.
- 896 Sonuga-Barke EJS, Castellanos FX (2007) Spontaneous attentional fluctuations in impaired states and

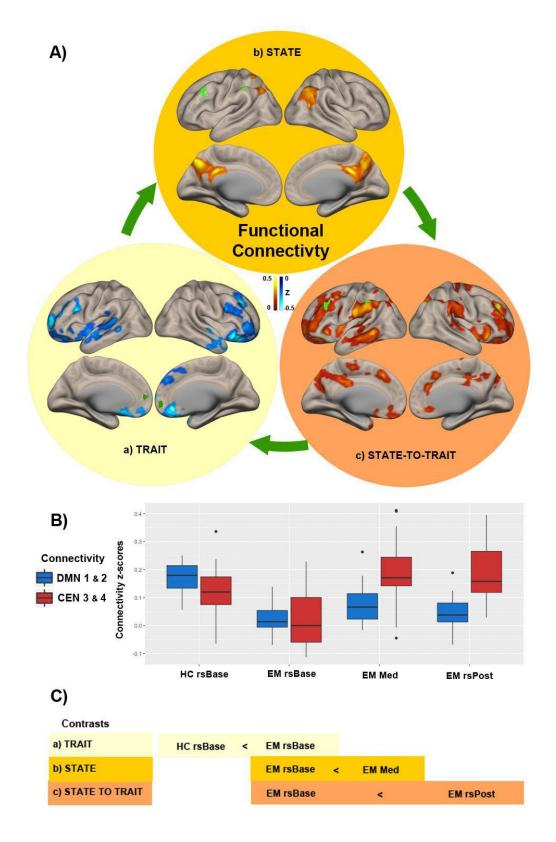

pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 31:977-986.
Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching
between central-executive and default-mode networks. Proc Natl Acad Sci U S A 105:12569-12574.
Tang Y-Y, Posner MI, Rothbart MK (2014) Meditation improves self-regulation over the life span. Ann
N Y Acad Sci 1307:104–111.
Tang Y-Y, Tang R, Posner MI (2013) Brief meditation training induces smoking reduction. Proc Natl
Acad Sci U S A 110:13971–13975.
Taylor PA, Saad ZS (2013) FATCAT: (an efficient) Functional and Tractographic Connectivity Analysis
Toolbox. Brain Connect 3:523–535.
Teasdale JD, Segal ZV, Williams JMG, Ridgeway VA, Soulsby JM, Lau MA (2000) Prevention of
relapse/recurrence in major depression by mindfulness-based cognitive therapy. J Consult Clin
Psychol 68:615–623.
Turner K (2014) Mindfulness Skills Training: A Pilot Study of Changes in Mindfulness, Emotion
Regulation, and Self-Perception of Aging in Older Participants. Act Adapt Aging 38:156-167.
Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP (2009) Functional connectivity of default
mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 30:625-
637.
Uddin LQ, Kelly AMC, Biswal BB, Margulies DS, Shehzad Z, Shaw D, Ghaffari M, Rotrosen J, Adler
LA, Castellanos FX, Milham MP (2008) Network homogeneity reveals decreased integrity of
default-mode network in ADHD. J Neurosci Methods 169:249-254.
Van Dam NT, van Vugt MK, Vago DR, Schmalzl L, Saron CD, Olendzki A, Meissner T, Lazar SW, Kerr
CE, Gorchov J, Fox KCR, Field BA, Britton WB, Brefczynski-Lewis JA, Meyer DE (2017) Mind

- the Hype: A Critical Evaluation and Prescriptive Agenda for Research on Mindfulness and
 Meditation. Perspect Psychol Sci 1745691617709589.
- Waites AB, Stanislavsky A, Abbott DF, Jackson GD (2005) Effect of prior cognitive state on resting state
 networks measured with functional connectivity. Hum Brain Mapp 24:59–68.
- 923 Wells RE, Kerr CE, Wolkin J, Dossett M, Davis RB, Walsh J, Wall RB, Kong J, Kaptchuk T, Press D,
- Phillips RS, Yeh G (2013) Meditation for adults with mild cognitive impairment: a pilot randomized
 trial. J Am Geriatr Soc 61:642–645.

926 West MA (2016) The Psychology of Meditation: Research and Practice. Oxford University Press.

- 927 Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in
- 928 psychopathology. Annu Rev Clin Psychol 8:49–76.
- 929 Whitfield-Gabrieli S, Susan W-G, Alfonso N-C (2012) Conn : A Functional Connectivity Toolbox for
- 930 Correlated and Anticorrelated Brain Networks. Brain Connect 2:125–141.

931	Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Shenton
932	ME, Green AI, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli JDE, Seidman LJ (2009)
933	Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree
934	relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 106:1279-1284.
935	Willner P, Scheel-Krüger J, Belzung C (2013) The neurobiology of depression and antidepressant action.
936	Neurosci Biobehav Rev 37:2331–2371.
937	Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the
938	general linear model. Neuroimage 92:381-397.
939	Witkiewitz K, Alan Marlatt G, Walker D (2005) Mindfulness-Based Relapse Prevention for Alcohol and
940	Substance Use Disorders. J Cogn Psychother 19:211–228.
941	Wu CW, Chen C-L, Liu P-Y, Chao Y-P, Biswal BB, Lin C-P (2011) Empirical evaluations of slice-
942	timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic
943	resonance imaging analyses. Brain Connect 1:401-410.
944	Yang C-C, Barrós-Loscertales A, Pinazo D, Ventura-Campos N, Borchardt V, Bustamante J-C,
945	Rodríguez-Pujadas A, Fuentes-Claramonte P, Balaguer R, Ávila C, Walter M (2016) State and
946	Training Effects of Mindfulness Meditation on Brain Networks Reflect Neuronal Mechanisms of Its
947	Antidepressant Effect. Neural Plast 2016:9504642.
948	Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW,
949	Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral
950	cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125-1165.
951	Zeidan F, Johnson SK, Diamond BJ, David Z, Goolkasian P (2010) Mindfulness meditation improves
952	cognition: evidence of brief mental training. Conscious Cogn 19:597-605.
953	Zhao X-H, Wang P-J, Li C-B, Hu Z-H, Xi Q, Wu W-Y, Tang X-W (2007) Altered default mode network
954	activity in patient with anxiety disorders: an fMRI study. Eur J Radiol 63:373-378.
955	Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, Wang Y-F, Zang Y-F (2008) An improved
956	approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI:
957	fractional ALFF. J Neurosci Methods 172:137-141.
958	Zylowska L, Ackerman DL, Yang MH, Futrell JL, Horton NL, Hale TS, Pataki C, Smalley SL (2008)
959	Mindfulness meditation training in adults and adolescents with ADHD: a feasibility study. J Atten
960	Disord 11:737–746.

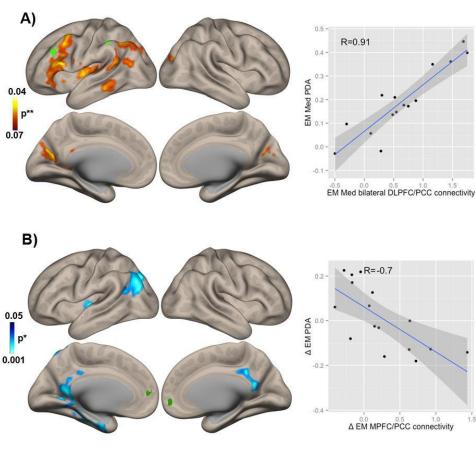


963	Figure 1.	
905	rigui e i.	

964	State-To-Trait meditation brain activity changes of the Fractional Amplitude of Low Frequency
965	Fluctuations (fALFF). A.a) Brain regions showing trait changes in fALFF between meditators
966	and healthy controls at baseline (HC rsBase < EM rsBase). A.b) Brain regions that show
967	significant changes in fALFF during the meditation state in meditators (EM rsBase < EM Med).
968	A.c) Brain regions that show significant changes in fALFF during the transition from state-to-
969	trait meditation in meditators (EM rsBase < EM rsPost). B) Boxplot showing the mean fALFF z-
970	scores in blue (DMN) and red (CEN) and Positive Diametric Activity scores in green during
971	baseline (rsBase), meditation (Med) and post meditation (rsPost) for healthy controls (HC) and
972	experienced meditators (EM). C) Schematic representation of State-To-Trait contrasts. All stats
072	shown are nonnerometric (5000 normulations) with brickt threshold $n < 0.05$ and Chuster Size

shown are nonparametric (5000 permutations) with height threshold p<0.05 and Cluster-Size

FDR-corrected p<0.05. Black dots represent subjects that lie beyond the whiskers.


977 Figure 2.

978 State-To-Trait meditation functional connectivity changes (FC). A.a) Brain regions showing trait 979 FC changes between meditators and healthy controls at baseline (HC rsBase < EM rsBase). A.b) 980 Brain regions that show significant FC changes during the meditation state in meditators (EM 981 rsBase < EM Med). A.c) Brain regions that show significant FC changes during the transition 982 from state-to-trait meditation in meditators (EM rsBase < EM rsPost). Dark green (DMN ROIs 1 983 & 2) and light green (CEN ROIs 3 & 4) clusters show in each case the seeds used to determine 984 the shown contrast (see Figure 1.A.a). B) Boxplot showing mean FC z-scores in blue (DMN 1 & 985 2) and red (CEN 3 & 4) during baseline (rsBase), meditation (Med) and post meditation (rsPost) 986 for healthy controls (HC) and experienced meditators (EM). C) Schematic representation of 987 State-To-Trait contrasts. All stats shown are nonparametric (1000 permutations) with height 988 threshold p<0.05 and Cluster-Size FDR-corrected p<0.05. Black dots represent subjects that lie

990

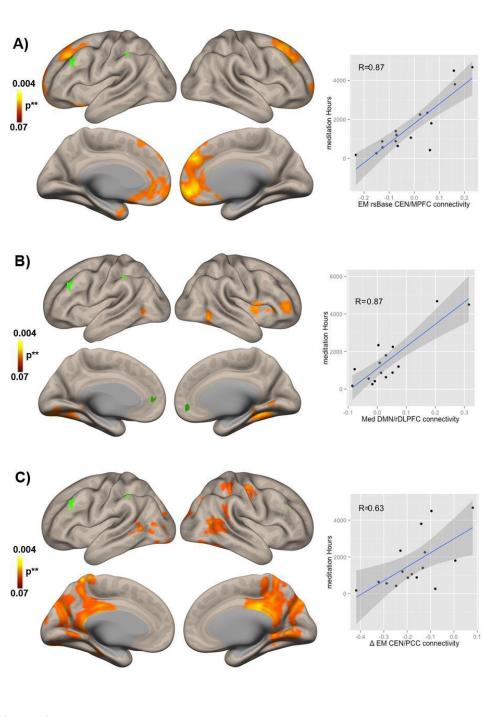
989

beyond the whiskers.

991992 Figure 3.

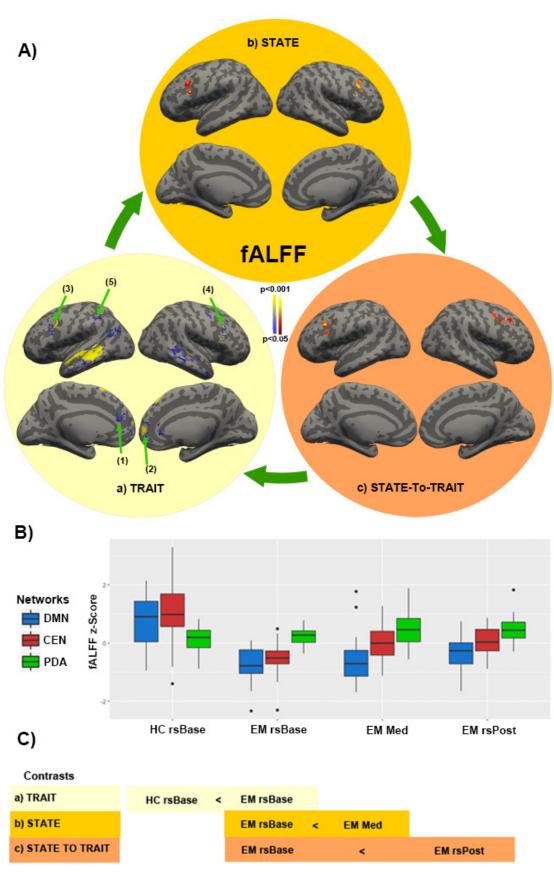
993 Correlations between Positive Diametric Activity (PDA) and Functional Connectivity (FC). A)

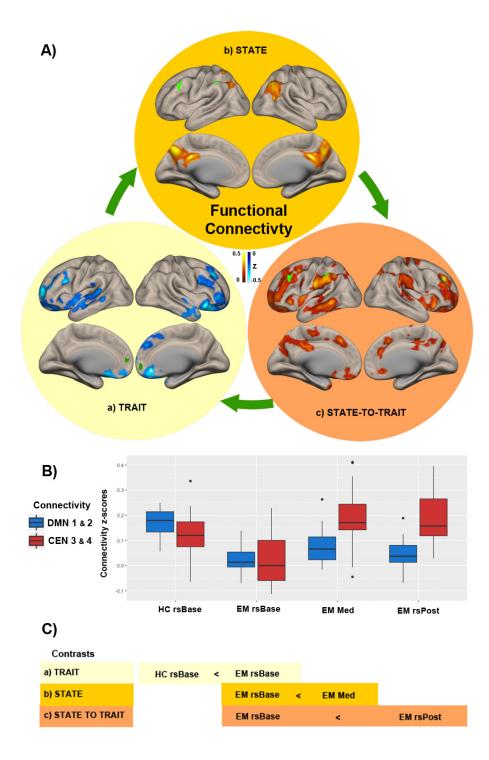
994 Brain regions that show significant correlation between PDA and FC during the meditation state

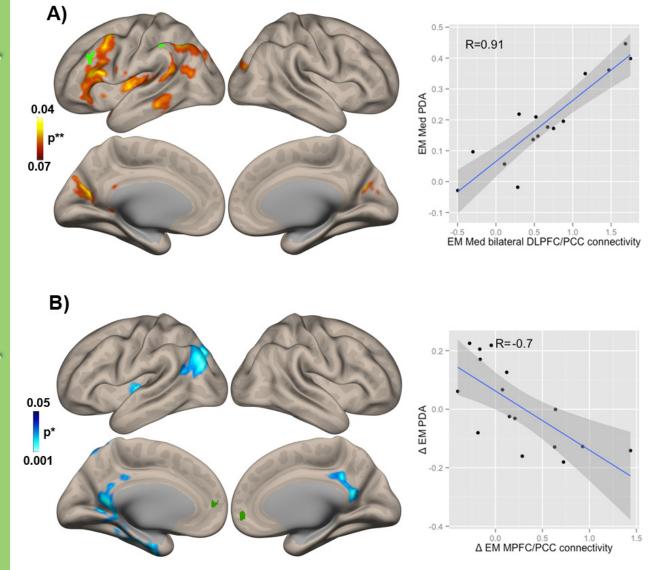

995 in meditators (EM Med). B) Brain regions that show significant correlation between the change

996 in PDA and change in FC during the transition from state-to-trait meditation (ΔEM=rsBase-

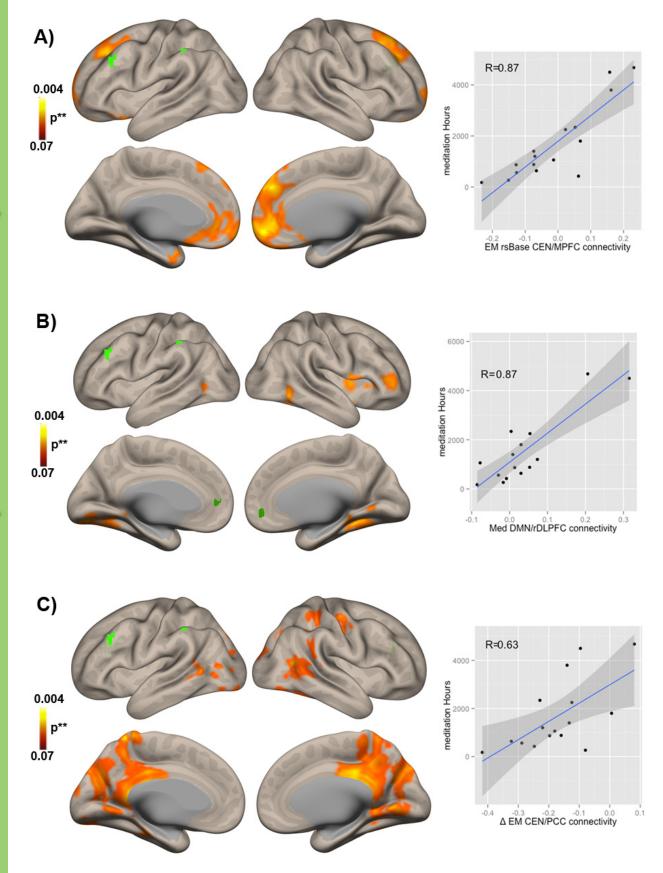
rsPost). Dark green (DMN ROIs 1 & 2) and light green (CEN ROIs 3 & 4) clusters show in each
case the seeds used to determine the shown contrast (see Figure 1.A.a).


*nonparametric (1000 permutations) with height threshold p<0.05 and Cluster-Size FDR-
corrected p<0.05.


1001 ** parametric stats with height threshold p<0.05 and Cluster-Size FDR-corrected p<0.05.


Figure 4.

1006	Correlations between meditation hours (MedHrs) and Functional Connectivity (FC). A) Brain
1007	regions showing the correlation of MedHrs and FC at baseline for meditators. B) Brain regions
1008	that show significant correlation between MedHrs and FC during the meditation state in
1009	meditators (EM Med). C) Brain regions that show significant correlation between MedHrs and
1010	the change in FC during the transition from state-to-trait meditation in meditators
1011	((Δ EM=rsBase-rsPost). Dark green (DMN ROIs 1 & 2) and light green (CEN ROIs 3 & 4)
1012	clusters show in each case the seeds used to determine the shown contrast (see Figure 1.A.a).
1013	** nonparametric (1000 permutations) with height threshold p<0.05 and Cluster-Size FDR-
1014	corrected p<0.05.
1015	
1016	
1017	
1018	



eNeuro Accepted Manuscript

eNeuro Accepted Manuscript

Table 1 Differences in fractional Amplitude of Low Frequency Fluctuations (fALFF) for the
different meditation states

Region	BA	Voxels	MNI (x,y,z mm)	p Value*
Meditation Trait Effects				
HC rsBase > EM rsBase				
DMN				
Medial Temporal Gyrus	L 21	1302	-66,-34 -6	0.02
Medial Prefrontal Cortex ¹	R 10	18	6, 60, 26	0.01
Medial Prefrontal Cortex ²	L 10	147	-2,58,12	0.05
CEN				
Inferior Frontal Gyrus ³	L 9	405	-34,6,34	0.01
Inferior Frontal Gyrus ⁴	R 9	144	54,20,20	0.03
Inferior Parietal Lobule ⁵	L 40	74	-54,-38,50	0.05
Meditation State Effects				
EM Med > EM rsBase				
DMN				
No significant differences	N/A	N/A	N/A	N/A
CEN				
Inferior Frontal Gyrus	R 9	115	46,18,30	0.02
Inferior Frontal Gyrus	L 9	82	-44,10,26	0.03
Meditation State-To-Trait Effects				
EM rsPost > EM rsBase				
DMN				
No significant differences	N/A	N/A	N/A	N/A
CEN				
Inferior Frontal Gyrus	L 9	17	-46,18,34	0.02

*All statistics are nonparametric (5000 permutations) with height threshold p<0.05 and Cluster-Size FDR-corrected p<0.05

Inferior Frontal Gyrus	R 9 4	50,28,38		0.05		
Table 2 Differences in Functional Connectivity for the different meditation states						
Region	Connectivity	BA	Voxels	MNI (x,y,z mm)	p Value	
Meditation Trait Effects						
EM rsBase > HC rsBase						
DMN seeds 1 & 2						
Superior Frontal Gyrus	Reduced	L 11	>1000	-16,60,26	0.01	
Middle Frontal Gyrus	Reduced	L 9	>200	-26 26 32	0.01	
Inferior Parietal Lobule	Reduced	L 40	>200	-38,-48,26	0.02	
Superior Temporal Gyrus	Reduced	R 38	>200	48,16,-20	0.03	
CEN seeds 3, 4 & 5						
No significant differences	N/A	N/A	N/A	N/A	N/A	
Meditation State Effects						
EM Med > EM rsBase						
DMN seeds 1 & 2						
No significant differences	N/A	N/A	N/A	N/A	N/A	
CEN seeds 3, 4 & 5						
Middle Frontal Gyrus	Increased	L 10	>200	-29,48,15	0.02	
Middle Frontal Gyrus	Increased	R 10	>200	31,52,12	0.02	
Anterior Cingulate Gyrus	Increased	L 32	>200	4,30,24	0.02	
Posterior Cingulate Gyrus	Increased	R 31	>200	3,-31,38	0.03	
Inferior Parietal Lobe	Increased	L 40	>200	-38,-46,46	0.03	
State-To-Trait Effects						
EM rsPost > EM rsBase						
DMN seeds 1 & 2						
No significant differences	N/A	N/A	N/A	N/A	N/A	
CEN seeds 3, 4 & 5						
Precuneus	Increased	L 23	>1000	-2,-42,28	0.02	
Angular Gyrus	Increased	R 39	>1000	50,-66,33	0.02	

* nonparametric (1000 permutations) with height threshold p<0.05 and Cluster-Size FDR-corrected p<0.05

 Table 3 Correlation between Positive Diametric Activity (PDA) and Functional Connectivity (FC)

Region	BA	Voxels	MNI (x,y,z mm)	p Value*
Meditation State Effects				
EM Med PDA & EM FC				
DMN seeds 1 & 2				
No corr	N/A	N/A	N/A	N/A
CEN seeds 3, 4 & 5				
Inferior Frontal Gyrus	L 45	>200	-56,14,18	0.01
Superior Temporal Lobe	L 22	>200	-46,-16,8	0.03
Posterior Cingulate Gyrus	L 31	>200	-12,43,23	0.01
Inferior Parietal Lobe	L40	>200	-48,-64,50	0.02
State-To-Trait Effects				
<u>Δ PDA & Δ FC</u>				
DMN seeds 1 & 2				
Posterior Cingulate Cortex	L 31	>200	0,-36,34	0.02
Precuneus	L 19	>200	-35,-74,34	0.02
Limbic Lobe, Uncus	L 20	>200	-28,-22,-34	0.03
CEN seeds 3, 4 & 5				
Medial Frontal Lobe	L 6	>200	-16,-12,60	0.02
Superior Temporal Lobe	R 22	>200	56,2,6	0.01

* nonparametric (1000 permutations) with height threshold p<0.05 and Cluster-Size FDR-corrected p<0.05

Table 4 Correlation between meditation hours and Functional Connectivity (FC)

Region	R	BA	Voxels	MN	II (x,y,z mm)	pValue*
Meditation State Effects						
DMN seeds 1 & 2						
Middle Frontal Gyrus	0.87	R 10	>200	45,4	14, 12	0.02
CEN seeds 3, 4 & 5						
No Correlations	N/A	N/A	N/A	N/A		N/A
State-To-Trait Effects						
DMN seeds 1 & 2						
No Correlations	N/A	Ν	I/A N	/A	N/A	N/A
CEN seeds 3, 4 & 5						
Posterior Cingulate Cortex	0.63	L	29 >	200	-06, -44, 14	0.03
Trait Effects						
DMN seeds 1 & 2						
No Correlations	N/A	Ν	I/A N	/A	N/A	N/A
CEN seeds 3, 4 & 5						
Medial Frontal Gyrus	0.87	L	10 >	200	-06, 44, 8	0.01

* nonparametric (1000 permutations) with height threshold p<0.05 and Cluster-Size FDR-corrected p<0.05