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Title: Characterization of nanoscale organization of F-actin in morphologically 35 
distinct dendritic spines in vitro using supervised learning 36 

Abstract: The cytoarchitecture of a neuron is very important in defining morphology 37 
and ultrastructure. Though there is a wealth of information on the molecular 38 
components that make and regulate these ultrastructures, there is a dearth of 39 
understanding of how these changes occur or how they affect neurons in health and 40 
disease. Recent advances in nanoscale imaging which resolve cellular structures at 41 
the scale of tens of nanometres below the limit of diffraction enable us to understand 42 
these structures in fine detail. However, automated analysis of these images is still in 43 
its infancy. Towards this goal, attempts have been made to automate the detection 44 
and analysis of the cytoskeletal organization of microtubules. To date, evaluation of 45 
the nanoscale organization of filamentous actin (F-actin) in neuronal compartments 46 
remains challenging. Here, we present an objective paradigm for analysis which 47 
adopts supervised learning of nanoscale images of F-actin network in excitatory 48 
synapses, obtained by single molecule based super-resolution light microscopy. We 49 
have used the proposed analysis to understand the heterogeneity in the organization 50 
of F-actin in dendritic spines of primary neuronal cultures from rodents. Our results 51 
were validated using ultrastructural data obtained from Platinum Replica Electron 52 
Microscopy. The automated analysis approach was used to differentiate the 53 
heterogeneity in the nanoscale organization of F-actin in primary neuronal cultures 54 
from wild type and a transgenic mouse model of Alzheimer’s Disease55 
(APPSwe/PS1ΔE9). 56 

Significance statement: Organization of F-actin in dendritic spines is known to be 57 
important in maintaining the structure and function of excitatory synapses. 58 
Multicolour super-resolution microscopy enables us to have better insights into its 59 
organization in health and disease. Here, we have combined novel methods for the 60 
analysis of nanoscale images of F-actin network using segmentation with pattern 61 
recognition based on supervised learning. This automated approach was validated 62 
using Platinum Replica Electron Microscopy images of F-actin organization in 63 
dendritic spines. Furthermore, we have explored the differences in the nanoscale F-64 
actin network in wild type and transgenic mouse models of Alzheimer's disease 65 
using this novel approach. 66 

67 
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Introduction 68 

Dendritic spines in neurons are important structures that mediate neuron to neuron 69 
communication. The morphology and molecular composition of spines determine the 70 
efficacy of signal transmission. The morphological changes during transmission are 71 
accompanied by an alteration in the composition of molecules, and thus the relative 72 
strength of the synapses. The filamentous form of the cytoskeletal molecule actin (F-73 
actin) is a morphological and functional determinant of individual spines (Hotulainen 74 
& Hoogenraad, 2010). The advent of high resolution microscopy techniques has 75 
revealed the assembly and architecture of F-actin in various sub-compartments of 76 
neurons (Chazeau, Mehidi et al., 2014, Efimova, Korobova et al., 2017, Frost, Shroff 77 
et al., 2010, Urban, Willig et al., 2011). The recent observations of actin rings have 78 
also highlighted the heterogeneity of F-actin organization in neuronal processes (Xu, 79 
Zhong et al., 2013). Though electron microscopy studies have shown the distribution 80 
of F-actin inside spines, very few attempts have been made to evaluate the F-actin 81 
organization using super-resolution light microscopy. Recent studies have indicated 82 
that F-actin in spines can be organized as outwardly radiating rods, and the 83 
organization of these rods can be affected very early during the onset of Alzheimer’s 84 
disease (Kommaddi, Das et al., 2018). However, high throughput and objective 85 
analysis to classify the synaptic actin cytoskeleton, derived from super-resolution 86 
imaging, is still missing.  87 

Platinum replica electron microscopy (PREM) has been instrumental in providing 88 
high resolution images of the actin cytoskeleton in dendritic spines. Thin filamentous 89 
structures, whose diameter fits that of F-actin, form the predominant cytoskeleton of 90 
the spine (Efimova et al., 2017). Using light microscopy, most of the morphological 91 
changes in the spine have been studied indirectly with the help of volume markers 92 
such as GFP or dextran conjugated dyes (Mancuso, Chen et al., 2013). Conjugating 93 
dyes to proteins of interest or creating fusion constructs can create undesirable 94 
effects due to excessive expression and steric interference with protein functions95 
(Ansari, Ahmed et al., 2016).  Alternatively, there have been advances in identifying 96 
chemical probes which can bind to F-actin, thus enabling a direct read-out of the F-97 
actin architecture from different sub-cellular compartments (Lukinavicius, Reymond98 
et al., 2014, Nanguneri, Flottmann et al., 2014). Thus, it is feasible for these probes 99 
to be used with regular immunocytochemistry along with other molecules to 100 
comprehend the fine organization of F-actin in different neuronal compartments. With 101 
a rising interest in investigating the role of F-actin morphology and spine 102 
compartmentalization in neurodegenerative diseases, it is essential to develop 103 
approaches that enable direct probing of F-actin assembly in spines (Androuin, 104 
Potier et al., 2018, Bamburg & Bernstein, 2016, Kommaddi et al., 2018). 105 

In this paper, a novel approach for the analysis of F-actin network in dendritic spines 106 
is presented using data from super-resolution light microscopy, namely direct 107 
Stochastic Optical Reconstruction Microscopy (dSTORM) (Heilemann, van de Linde 108 
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et al., 2008), in combination with an analytical method called Super-Resolution by 109 
Radial Fluctuations (SRRF). SRRF (Gustafsson, Culley et al., 2016) was used to 110 
image a postsynaptic density marker called Homer 1c at sub-diffraction resolution 111 
(Dani, Huang et al., 2010). Thus, dual color subdiffraction limited images of F-actin 112 
and Homer 1c were analyzed to reveal the nanoscale architecture of F-actin 113 
cytoskeleton in excitatory synapses. This analysis of branched F-actin network in 114 
spines was achieved in two steps. 1) A supervised learning tool, Trainable Weka 115 
Segmentation (TWS) (Arganda-Carreras, Kaynig et al., 2017), was used to identify 116 
F-actin enriched regions overlapping with Homer 1c, and a custom designed 117 
classifier was used to sort these regions into distinct subsets of spines based on 118 
their morphology. 2) A deep neural network (DNN) architecture called Artificial 119 
Neural Network Accelerated Photoactivated Localization Microscopy (ANNA-PALM), 120 
previously developed (Ouyang, Aristov et al., 2018) to predict linear features 121 
(tubular/rod-like), was used to extract actin distribution of these F-actin enriched 122 
compartments. The F-actin distribution thus obtained was analyzed within dendritic 123 
spines to distinguish between different morphological classes of spines. Extraction of 124 
F-actin networks from these single synapses permitted us to estimate the cumulative 125 
F-actin length, as well as to determine the levels of F-actin in the neck and head of 126 
individual spines. The present approach reported in this paper allows the observer to 127 
objectively probe morphological characteristics of spines based on F-actin changes.128 
This method has been validated using Platinum Replica Electron Microscopy 129 
(PREM) images revealing F-actin organization in spines. This supervised learning 130 
algorithm was then utilized to elucidate the differences in the properties of the F-actin 131 
network between neuronal cultures from wild type and a transgenic mouse model of 132 
Alzheimer’s disease.133 

Materials and Methods134 

Super-resolution Data135 

Single molecule based super-resolution data obtained from primary cortical cultures 136 
used for this paper has been obtained from a repository of images from a previously 137 
published manuscript (Kommaddi et al., 2018). Mixed sex primary cortical neurons 138 
were prepared from P0/P1 pups from both WT and APP/PS1(APPSwe/PS1ΔE9)139 
mouse, as described previously. 140 

Primary Neuronal cultures 141 

Mixed sex primary hippocampal cultures were prepared from P0/P1 rat pups 142 
(Sprague Dawley) using a similar protocol, as described previously (Kommaddi et 143 
al., 2018). The neuronal cultures were fixed at DIV 21 and labeled for F-actin and 144 
Homer 1c. All the necessary animal ethics protocols used in this study were obtained 145 
by the ethical committee of the institute. 146 

PREM Protocol 147 
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PREM was performed as described previously (Efimova et al., 2017, Svitkina, 2016).148 
In brief, dissociated rat embryo hippocampal neurons were cultured in Neurobasal 149 
media (Gibco) supplemented with 2% B27. At DIV 14-17, neurons were extracted 150 
with 1% Triton X-100 in PEM buffer (100 mM Pipes-KOH, pH 6.9, 1 mM MgCl2, and 151 
1 mM EGTA) containing 2% Polyethylene Glycol (molecular weight of 35,000), 2 μM152 
Phalloidin, and 10 μM Taxol for 3 min at room temperature. Detergent-extracted cells153 
were fixed sequentially with 2% Glutaraldehyde in 0.1 M Na-cacodylate buffer (pH 154 
7.3), aqueous 0.1% Tannic acid, and aqueous 0.2% Uranyl Acetate; critical point 155 
dried; coated with platinum and carbon; and transferred onto 50 mesh electron 156 
microscopic grids. Samples were analyzed using JEM 1011 transmission electron 157 
microscope (JEOL USA, Peabody, MA) operated at 100 kV. Images were captured158 
by ORIUS 832.10W CCD camera (Gatan, Warrendale, PA). PREM images are 159 
presented in inverted contrast.160 

Direct Stochastic Optical Reconstruction Microscopy (dSTORM) 161 

Primary neuronal cell culture experiments and dSTORM based super-resolution 162 
imaging were performed, as explained previously (Kommaddi et al., 2018). The 163 
super-resolution images of F-actin were obtained using ThunderSTORM, an Image J 164 
plugin (Ovesny, Krizek et al., 2014, Schneider, Rasband et al., 2012), and/or 165 
adapted from the existing repository of data that has been published previously.  166 

Super-Resolution by Radial Fluctuation (SRRF) 167 

SRRF is a collection of analytical methods for super-resolution light microscopy 168 
which is available as an ImageJ plugin called NanoJ SRRF (Gustafsson et al., 2016).169 
It is a fluctuation based method which overcomes the diffraction barrier by a factor of 170 
2. Images of conventional fluorophores such as GFP and many organic dyes can be 171 
analyzed with this method. In this study, we have used NanoJ to generate a sub-172 
diffraction image of Homer 1c labeled with Alexa 532 in dendritic spines. 173 

Super-Resolution Simulation (SuReSim) 174 

SuReSim (Venkataramani, Herrmannsdorfer et al., 2016) was used to simulate 175 
resolution matched dSTORM like images from PREM images of the cytoskeleton in 176 
spines. For this, segmented 10 nm thin filaments in PREM images were skeletonized 177 
manually and was exported as a *.wimp file at the same sampling as that of the 178 
PREM images (1 nm/px). The *.wimp file was later imported into the SuReSim 179 
interface for simulating resolution matched dSTORM images from the skeletonized 180 
images, with a similar sampling as that of regular reconstructed super-resolution 181 
images (20 nm/px). For the creation of resolution matched images, the width of the 182 
skeleton was approximated to be 10 nm. The epitope density, i.e. the frequency at 183 
which the epitope can be labeled on the skeletonized filament, was given as 0.25 184 
nm-1. Labeling efficiency was given as 100% at the best labeling. The on-off cycle to 185 
mimic single molecule blinking kinetics was given as 5 X 10-4 frames (corresponding 186 
to once every 2000 frames). Localization precision was given as 20 nm in line with 187 
experimental accuracy obtained for single molecules. In the reconstructed super-188 
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resolved images, the localization precision of the single molecules was provided as 189 
20 nm and a sampling size of the final images was given as 20 nm/pixel. These 190 
settings are provided in Basic settings 1 and 2 in the SuReSim module to generate 191 
the final image. 192 

Trainable Weka Segmentation (TWS)193 

Trainable Weka Segmentation is a supervised learning ImageJ plugin for image 194 
segmentation (Arganda-Carreras et al., 2017). Based on the heterogeneity of the 195 
signal from a microscopy image, the user defines three different classes of signals. 196 
Class 1 defines the structure of Interest, Class 2 defines the background and Class 197 
3, any other signal which does not fall in Class 1 or 2. This information is used to 198 
train a classifier to segregate the images into three categories, from which Class 1 is 199 
used for further processing. 200 

ANNA-PALM for Image Analysis201 

Artificial neural network accelerated – Photo activation localization microscopy 202 
(ANNA-PALM) is a machine learning based ImageJ plugin trained to predict 203 
correlative structures in super-resolution images (Ouyang et al., 2018). It is based on 204 
a  pix2pix architecture, which is used to predict correlative structures such as 205 
microtubules from a small subset of its localization.  We used F-actin super-206 
resolution images in ANNA-PALM to generate tubular structures (referred here as 207 
“ridges”) using the tubulin model published previously (Ouyang et al., 2018). We 208 
refer to this generalized protocol in our manuscript as a tubular model (Ouyang et al., 209 
2018). We cropped 512 x 512 px2 regions in the super-resolution images for this 210 
analysis. These images were used for subsequent ridge detection and feature 211 
analysis. 212 

Ridge Detection on continuous F-actin networks213 

Ridge detection is used to find the maxima of a signal in an image by approximating 214 
the signal to a range of intensity peaks and valleys. The points corresponding to the 215 
maximum intensity were approximated to a line which forms the skeleton of the 216 
maximum intensity of structures in any given area. The skeletonized structures of the 217 
map of intensity maximum depict the ridges that are detected in the image. In an F-218 
actin super-resolution image, it was used to find the extent of tubular structures. 219 
Here we have used ridge detection plugin from Image J (Steger, 1998) to map the 220 
maxima of tubular structures of networks detected by ANNA-PALM, indicating the 221 
skeleton of ridges of F-actin. In order to create ridges on the ANNA-PALM images, 222 
we have used a sigma of 2.81, and lower and upper thresholds of 0 and 0.83, 223 
respectively.  224 

Expert annotation of spines225 

An online annotation tool was used to get expert annotations on the putative spines 226 
extracted from the binary images. The annotation tool is accessible via the link 227 
https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html.  228 
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A total of 1056 spines were extracted from WT rat cultures and annotated into one of 229 
the four classes (mushroom, stubby, thin and forked spines). A spine was 230 
considered for further analysis only if at least 3 out of 4 annotators gave the same231 
label. A total of 762 spines passed this selection criterion, including 254 mushroom 232 
spines, 398 stubby spines, 102 thin spines, and 8 forked spines. As they were too 233 
few, forked spines were discarded from further analysis, bringing the total number of 234 
spines to 754. Similar annotation and selection procedure was used for WT mouse 235 
neurons (51 mushroom spines, 47 stubby spines and 11 thin spines for a total of 109 236 
spines) and APP/PS1 mouse neurons (17 mushroom spines, 70 stubby spines and 237 
18 thin spines for a total of 105 spines). 238 

Principal Component Analysis 239 

The shape filter from ImageJ was used to extract 22 different shape characteristics 240 
of the F-actin distribution in dendritic spines from binary images of spines such as 241 
area, perimeter, etc. (Wagner & Lipinski, 2013). The 22 shape-based features for 242 
754 and 214 spines from primary neuronal cultures from rat and mouse respectively, 243 
were collected in separate matrices, with each row representing the feature vector 244 
for a single spine. Each column of this matrix was normalized by z-scoring and 245 
submitted to PCA using the pca function in MATLAB (R2015b, academic license). It 246 
was found that the first five principal components explained ~90% of the variance in 247 
the original 22-dimensional data. The projection of the 22-dimensional data onto 248 
these five principal components was used for further clustering analysis. 249 

Classification of spines using a linear classifier 250 

A 3-way linear Support Vector Machine (SVM) classifier was trained on the principal 251 
component representation of 754 spines from rat cultures using the MATLAB 252 
function fitecoc. To avoid overfitting, a k-fold cross-validation approach was used 253 
with k=4. A slightly different procedure was used to classify spines from mouse 254 
cultures. A 3-way linear SVM classifier was trained on the principal component 255 
representation of 109 WT spines with 4-fold cross-validation. This linear SVM model 256 
was then used to classify APP/PS1 spines into mushroom, stubby or thin categories. 257 
However, the performance remained comparable even after training the classifier on 258 
the combined data set of 214 WT and APP/PS1 spines. 259 

Resolution Scaled Pearson’s Coefficient and Resolution Scaled Error-map  260 

Resolution Scaled Pearson’s correlation coefficient (RSP) and Resolution Scaled 261 
Error (RSE) were determined using the NanoJ SQUIRREL plugin of Image J (Culley, 262 
Albrecht et al., 2018) with the magnification parameter set as 263 
1(Venkatachalapathy, Belapurkar et al., 2019). 264 

Software Accessibility: 265 

All codes and data used for analysis in the paper are made available to the scientific266 
community at the following link: 267 
https://github.com/arty-p/auto-factin.git268 
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All Matlab (R2015b v8.6.0.267246, student license) scripts were run on a computer 269 
running Windows 10 pro N (64-bit) operating system with Intel i7-4770 CPU and 32 270 
GB RAM. 271 

Statistics 272 

We report the mean and the standard deviation for all parameters. However, while 273 
calculating the significance levels, we first test for normality and accordingly use t-274 
test when the distribution is normal, and rank sum test when the distribution is non-275 
normal. All the analyses were performed on the Matlab.276 

Results: 277 

Workflow for morphological characterization of spines and feature extraction 278 
from super-resolution images 279 

dSTORM imaging (20000 frames at 33Hz) was performed and super-resolution 280 
images of F-actin in primary neuronal cultures immunolabelled with Phalloidin-Alexa 281 
647 were reconstructed. A series of frames (4000 frames at 33Hz) were captured to 282 
record the intensity fluctuations of Alexa 532 labeled Homer 1c, which was later 283 
analyzed by SRRF. A schematic of the workflow for supervised learning based 284 
analysis to extract nanoscale features of F-actin from individual dendritic spines is 285 
depicted in Figure 1. Super-resolution images of F-actin were processed using TWS 286 
and ANNA-PALM in parallel steps to select for F-actin rich regions in neuronal 287 
processes, and to create a tubular model of F-actin network, respectively. The super-288 
resolution image of F-actin is considered as the “input”. The SRRF image of Homer 289 
1c, marking the postsynaptic compartment, is referred to as the “reference”290 
(Figure1).291 

The input (Figure 1-1a)  was treated by TWS to extract F-actin rich compartments 292 
from the dSTORM image (Figure 1-1b). Here, the user defines three classes of F-293 
actin signals on the image for segmentation. A binary image of the Class 1 signal 294 
was generated as an outcome of this segmentation and is referred to as the mask 295 
(Figure 1-1c). The mask represented all the F-actin rich compartments in the 296 
neuronal processes (Figure 1-1c). Presence of Homer 1c was used to confirm the 297 
presence of dendritic spines (Figure 1-1d). To identify the Homer 1c enriched 298 
compartments, the reference image was segmented through TWS. Similar to the 299 
input, Class 1 signal of the reference was binarized (Figure 1-1e). This binarized 300 
image is referred to as the filter (Figure 1-1f). The filter represented the sites of the 301 
postsynaptic density and was used to identify the regions colocalizing with the mask 302 
generated from the input image (Figure 1-1g). The extracted Homer 1c positive mask 303 
was automatically classified using a supervised learning protocol into different 304 
classes of dendritic spines based on their morphological features, as explained in the 305 
following section (Figure 1-1h). The classified spines were graphically represented 306 
and color coded based on their morphological identity and is depicted as Output 1 307 
(Figure 1). We verify that the segmented Homer 1c puncta are distributed with a 308 
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mean area of  0.048±0.024 μm2. This value compares with the reported average 309 
PSD area of 0.069 μm2 (Harris & Weinberg, 2012).310 

In parallel, the input was processed using ANNA-PALM to generate a network of F-311 
actin distribution using the tubular model (Figure 1-2). This tubular model was 312 
generated through supervised learning of tubular/rod-like network. This image 313 
generated by ANNA-PALM was overlaid with the corresponding mask positive for 314 
Homer 1c, marking excitatory synapses (Figure 1-2). The regions of the F-actin 315 
network corresponding to individual excitatory synapses were extracted and 316 
analyzed according to their morphology. The properties of F-actin network such as 317 
the cumulative length of F-actin are plotted as Output 2 (Figure 1).  318 

Classification of spines into different morphological classes using supervised 319 
learning 320 

After identifying F-actin masks which were positive for dendritic spines, we 321 
developed an automated tool based on supervised learning for morphological 322 
characterization of dendritic spines (as mushroom, stubby or thin), which has never 323 
been performed on dSTORM images.  For the purpose, we computed 22 shape-324 
based features (such as area, perimeter, aspect ratio, etc.) using the Shape Filter 325 
ImageJ plug-in for 754 spines from primary rat hippocampal cultures. We reduced 326 
the dimensionality of this feature representation to 5 dimensions using Principal 327 
Component Analysis (PCA) to classify spines from the dSTORM data (Figure 2a).328 
These five dimensions captured around ~ 90% of the variance in the data. We 329 
trained an SVM classifier on these 5 dimensions and sorted the spines into three 330 
different categories. The agreement between human experts is presented in Figure 331 
2b.  The trained classifiers had an accuracy of 82.6% (on 754 spines with 4-fold 332 
cross-validation) compared to the performance by the human experts. The graphical 333 
representation of Principal Component Analysis after supervised learning was color 334 
coded for different morphological classes of spines (Figure 2c).335 

Extraction and validation of branched F-actin networks from dendritic spines 336 

In order to approximate the F-actin network (Figure 1-2a) to a tubular/rod-like 337 
distribution, we used ANNA-PALM to generate a tubular network model on dSTORM 338 
images of F-actin (Figure 1-2b). This gave a continuous network architecture for F-339 
actin in neuronal processes, which was limited by the resolution of our experimental 340 
system.  We performed the ridge detection analysis to identify the distribution of F-341 
actin rods in the ANNA-PALM image (Figure 1-2c). The ridges were detected in all 342 
regions where the F-actin network could be resolved (Figure 1-2c). In order to 343 
analyze the distribution of F-actin in individual spines (Figure1-2 d), synapse-specific 344 
ridges were extracted from the mask of F-actin-rich regions overlapping with the 345 
postsynaptic marker Homer 1c (Figure1-2e). Branched F-actin distribution was 346 
isolated based on the morphology of individual spines, as indicated in the previous 347 
section (Figure1-2f).348 
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The ridges extracted from dendritic spines of super-resolution images of F-actin 349 
presented a highly branched structure, which was variable between spines (Figure1-350 
2f). We evaluated if this structure was indeed present in spines or if it was an artifact 351 
of dSTORM imaging. We verified this using Platinum Replica Electron microscopy 352 
(PREM) images of F-actin obtained from rat hippocampal neurons (Figure 3a, Figure 353 
3-1a,b,c, (Efimova et al., 2017). The sampling for super-resolution images obtained 354 
by dSTORM was 20 nm/px, while that obtained from PREM was 1 nm/px. The 355 
PREM images were a mix of different kinds of filamentous structures that are 356 
observed inside neurons (Figure 3a). However, only the filaments which were 357 
smaller than 10 nm including the platinum layer represented F-actin. To overcome 358 
the sampling difference, we extracted exclusively F-actin thin filaments (<10 nm) 359 
from PREM images using TWS and used ANNA-PALM to fit the segmented image 360 
by a tubular model (Figures 3b and 3c). The ridge detection module was then 361 
applied to identify the skeleton of this distribution, which we refer to as ridges (Figure 362 
3d). We found that the ridges overlapped with the F-actin network with a correlation 363 
of 0.89 (Figure 3e, inset 1,2), indicating that F-actin in spines could be fit with the 364 
tubular model and the detected ridges represented the skeleton of the F-actin 365 
network in spines.366 

At 20 nm/px sampling, the dense network of F-actin was undersampled, resulting in 367 
loss of resolution of F-actin features.The difference in the lateral resolution between 368 
a PREM image (1 nm/px, Resolution 2.5 nm) and a dSTORM image (20 nm/px, 40-369 
45 nm) is 16-20 times. Using SuReSim, we simulated a dSTORM image of the370 
PREM image to mimic the loss of resolution (Figure 3-1, d,e,f). We performed 371 
ANNA-PALM on the simulated image to verify the cumulative content of F-actin after372 
ridge detection. The cumulative length of F-actin from ridges was 64.8 - 71.7 μm at 1 373 
nm/pixel in contrast to 4.3 – 6.6 μm at 20 nm/px. This suggested that despite a374 
resolution difference of 20 times between PREM and super-resolution light 375 
microscopy, the average change in the detected ridges of F-actin was only 10-12376 
fold. This indicated that though the same PREM data sampled at different resolutions 377 
provided reduced information, this reduction was much less compared to the change 378 
in resolution between these regimes. Interestingly, super-resolution experiments in379 
primary rat hippocampal neurons estimated the cumulative F-actin content in 380 
mushroom spines to be 4-6 μm (data not shown), corresponding well with the range 381 
predicted by the simulated experiments above. This confirmed that the resolution 382 
was consistent between simulation and experiment, validating the robustness of383 
dSTORM despite its lower resolution compared to PREM. Furthermore, when we 384 
compared the simulated dSTORM image at 20nm/px to its corresponding tubular 385 
model of F-actin network, the Resolution Scaled Pearson's correlation coefficients 386 
was 0.89 (Figure 3-1 k,l,m), indicating a high correlation between experimentally 387 
observed dSTORM images and their corresponding tubular model (0.90). This 388 
correlation between simulation and the experiment reiterated the validity of dSTORM 389 
in extracting branched network features of F-actin through a combination of ANNA-390 
PALM and ridge detection.391 
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To further validate the robustness of our data, super-resolution images were 392 
acquired from neurons co-labeled with Phalloidin-Alexa 647 (dSTORM) and Homer 393 
1c (Alexa 532). The localization precision of the experimental system generated was 394 
19 nm, with a sampling of 20 nm/px (similar to simulated dSTORM images), and the 395 
final experimental resolution of the image was calculated to be 44 nm/px (Kommaddi 396 
et al., 2018). Similar to the analysis performed for the PREM images, we quantified 397 
the extent of mismatch between the tubular model and the dSTORM super-398 
resolution image (Figure 4). For this, we calculated the Resolution Scaled Pearson’s 399 
correlation coefficient (RSP) (Figure 4d) and Resolution Scaled Error (RSE) (Figure 400 
4e) between the original super-resolution image of F-actin corresponding to the 401 
dendritic spines extracted through TWS segmentation, and the tubular model 402 
obtained by ANNA-PALM, respectively (Figures 4 a-c). We found that RSP of super-403 
resolution image of F-actin with either the tubular model or the mask obtained 404 
through TWS was above 0.90, indicating a good correlation. On evaluating the 405 
Resolution Scaled Error, the ANNA-PALM modeling showed the least error with the 406 
dSTORM data, indicating a good fit between the network model and super-resolution 407 
image, further validating the robustness of the analysis in the experimental408 
conditions (Figure 4). 409 

Quantification of F-actin architecture in dendritic spines of primary cortical 410 
neuronal cultures derived from the transgenic mouse model of AD 411 

Using the supervised learning classification method established previously in rat 412 
primary hippocampal neurons, we investigated F-actin distribution in dendritic spines 413 
of primary cortical neurons of wild type (WT) mice (Figure 5a). The labeling of spines 414 
was obtained through expert human annotations with the pairwise agreement of 88% 415 
(Figure 5-1a). Further, the linear SVM classifier reached an accuracy of 86.2% for 416 
the same, with four-fold cross-validation (Figure 5-1a). The mask of super-resolution 417 
images of dendritic spines was a better marker for their morphology. It was possible 418 
to classify mushroom spines with shorter necks and oddly shaped thin spines with 419 
intricate morphologies which would otherwise have fallen into the category of stubby 420 
spines if acquired by conventional light microscopy (Figure 5-2). We applied the 421 
same analysis for spines obtained from cultures of transgenic mice (APPSwe/PS1ΔE9 422 
[APP/PS1]) encoding genetic mutations in Amyloid Precursor Protein (APP) and 423 
Presenilin 1 (PS1). This enabled a direct comparison of spine shapes based on F-424 
actin content across healthy and diseased conditions. This automated classification 425 
showed a reduction of mushroom spines from 47% to 16%, and a corresponding 426 
increase in both stubby and thin spines from 43% and 10% to 67% and 17%, 427 
respectively, from WT to transgenic mice (Figure 5b and 5c). 428 

The previous report had shown specific differences in the cumulative length of F-429 
actin in WT and APP/PS1 spines. Here, we validated our analysis paradigm by 430 
replicating this result. We first classified the cumulative length of branched F-actin 431 
based on different spine morphologies (Figure 6a). The average cumulative length of  432 
F-actin in the mushroom spines of WT and the APP/PS1 cultures were 5634.5±2034 433 
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nm and 3665.1±1299.2 nm, respectively. On the other hand, stubby and thin spines 434 
displayed a negligible change from 2288.5±982.6 nm and 2927.3±2023.5 nm in WT435 
conditions to 2045.4±763.9 nm and 3098.9±1439.9 nm in APP/PS1 cultures, 436 
respectively. Since the cumulative F-actin content of mushroom spines from WT and 437 
APP/PS1 mice showed a significant difference in contrast to the other spine classes, 438 
the former was selected for further investigation (Table1). We then explored if the 439 
reduction of F-actin in the mushroom spines were predominantly from the spine head 440 
or from the neck. For this, we used an additional classification to spatially annotate 441 
the spine head and the neck (Figure 6b). The branch points of the F-actin filaments 442 
closer to the centroid of the Homer 1c staining was denoted as the endpoint for the 443 
actin branches in the head, while the farthest endpoint of the actin filament from the 444 
Homer 1c was denoted as the endpoint of the spine neck. This procedure enabled 445 
us to extract cumulative F-actin lengths from the head and neck regions of the spine. 446 
Head region showed a significant reduction of cumulative length of F-actin from 447 
5075.7±2048.6 nm in WT to 3126.2±1284.3 nm in APP/PS1, while in the neck region 448 
the values remained unaltered (Table 1, Figure 6c). 449 

Our results match well with the subjective evaluation of F-actin distribution reported 450 
previously (Kommaddi et al., 2018), which presented only the cumulative length of F-451 
actin from mushroom spines. In addition to the F-actin distribution, we have 452 
presented an automated morphological classifier which separated the spines using 453 
shape-based-features. This morphological classifier enabled us to separate the F-454 
actin distribution in mushroom, thin and stubby spines. Furthermore, we were able to 455 
extract the cumulative F-actin length from subspine compartments like spine head 456 
and spine neck, which was also not reported earlier. We show that the objective 457 
paradigm that we present in the manuscript describes an unbiased quantification of 458 
nanoscale organization of F-actin from individual spines, which can be used to 459 
analyze large datasets. 460 

Discussion 461 

Due to a growing need to analyze the role of F-actin cytoskeleton in morpho-462 
functional changes in spines, automated analysis is required to obtain an objective 463 
measure of changes in F-actin organization at the level of individual synapses. 464 
Though super-resolution imaging (20-150 nm) is routinely used in many laboratories, 465 
most of the morphological characterization of spines is still performed using volume 466 
markers and conventional microscopy, either alone or co-labeled with synaptic 467 
markers. Thin spines with complex orientation or mushroom spines with shorter neck 468 
could also be mislabelled when imaged by a conventional light microscope. This 469 
argues for a need to acquire super-resolution light microscopy images in order to 470 
increase the accuracy of shape-based classification of spines (Bartol, Bromer et al., 471 
2015, Kasthuri, Hayworth et al., 2015, Tonnesen, Katona et al., 2014). Here, we 472 
explain a user guided objective protocol whose results are comparable to subjective 473 
analysis. This paradigm is automated and can be used for high throughput analysis, 474 
thus making it efficient and reproducible. We have illustrated this using data of 475 
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spines from primary hippocampal (rat) and cortical (mice) cultures co-labeled for F-476 
actin and the postsynaptic marker Homer 1c. We have also compared differences in 477 
the F-actin distribution in individual synapses between WT and a transgenic model 478 
for Alzheimer’s disease (APP/PS1). A key feature of this automated paradigm is its 479 
ability to extend the morphological classes to include stubby and thin spines in 480 
super-resolution images. This has enabled us to classify spines in neurons under 481 
different conditions, which was difficult with conventional light microscopy. We show 482 
that in primary cortical cultures of WT versus transgenic, the predominant effect on 483 
the cumulative length of F-actin was observed in mushroom spines, while the same 484 
in stubby and thin spines remain unaltered. In addition, the paradigm enabled 485 
quantification of F-actin length from subspine compartments such as head and neck, 486 
where there was a significant reduction of cumulative F-actin in the spine head. In 487 
the transgenic, there was also a notable reduction in the proportion of mushroom 488 
spines with a corresponding increase in stubby and thin spines. This validates the 489 
previous observation in hippocampal slices, where there was an augmentation of 490 
stubby spines in the transgenic mouse model of AD in comparison to the wild type. 491 
However, those experiments performed on hippocampal slices were from 3 month 492 
old animals (Androuin et al., 2018), while the effect observed in this work is at a 493 
much earlier stage as DIV 21. This indicated that besides a large change in494 
morphological features of spines, the major regulation of  F-actin during early stages 495 
of AD occurs predominantly in the head region of mushroom spines.  496 

Automated spine classification by supervised learning has been recently used to 497 
classify spines imaged by conventional light microscopy (Ghani, Mesadi et al., 2017, 498 
Zhang, Zhou et al., 2007). Here, we show that by exploiting F-actin dSTORM signal 499 
in primary neuronal cultures, the supervised learning approach can also be extended 500 
to any sub-diffraction limited image. In the future, attempts could be made to use 501 
predictive tools to guess how F-actin network organization would appear at electron 502 
microscopic resolution using super-resolution images as input (Ouyang & Zimmer, 503 
2017). This would imply that the F-actin characteristics that we define could be504 
improved at an even better resolution. Here, we present significant differences in F-505 
actin organization in subsets of spines in different conditions. Future experiments 506 
combining correlative electron microscopy and 3D super-resolution light microscopy 507 
would be optimal to confirm these results, which is beyond the scope of the present 508 
study. 509 

In the present work, we have quantified changes in the branched F-actin network in510 
spines and evaluated some of the early changes predicted to occur during the onset 511 
of AD. Most of the neurodegenerative diseases, genetic disorders and changes in 512 
the strength of the synapses are correlated with changes in spine morphology and F-513 
actin organization. Thus, it is interesting to see if this paradigm could be used as a 514 
common resource to analyze large data sets that can be obtained for different 515 
conditions. It remains to be seen if the same model of analysis could also be used 516 
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for understanding branched F-actin networks in the growth cone, axonal boutons and 517 
inhibitory synapses.518 

Conclusion 519 

The supervised learning protocols as predictive models in well-characterized 520 
systems is an efficient tool for high throughput analysis of the nanoscale 521 
organization. In the present case, using supervised learning along with effective 522 
segmentation strategies, we have characterized both morphologies of spines and523 
nanoscale organization of F-actin cytoskeleton. Future work may focus on acquiring 524 
and analyzing F-actin structures in spines in 3D at an improved resolution to allow 525 
more accurate identification of changes accompanying plasticity or 526 
neurodegenerative diseases.527 
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616 

Figure Legends 617 

Figure 1: Schematic representation of the workflow for generating an objective 618 
classification of F-actin organization in dendritic spines: The super-resolution 619 
image of F-actin generated using dSTORM microscopy is considered as the input. 1) 620 
Using the Trainable Weka Segmentation on input, a segmented image was created. 621 
2) The segments of interest were color coded and a binary image was obtained for 622 
F-actin enriched regions (Mask). 3) The super-resolution image of Homer 1c was 623 
generated for the same region of interest as that of input. 4) The segmented image 624 
of input was spatially correlated with the postsynaptic marker Homer 1c to select for 625 
dendritic spines. 5) The spines obtained from step (4) were further categorized as 626 
mushroom, stubby, and thin using supervised learning. 6) The final data were 627 
categorized and plotted into different classes as Output 1. 7) The tubular model of 628 
the input image was generated using ANNA-PALM. 8) and 9) Two processing steps 629 
were converged to understand the nanoscale distribution of F-actin in dendritic 630 
spines generated from the tubular model, which was spatially correlated with Homer 631 
1c positive regions obtained in step (4). 10) Spine specific ridges were extracted in 632 
the regions identified positive for excitatory synapses. 11) The spine specific 633 
parameters of the ridges were measured and plotted as Output 2. 634 

Figure 1-1: Feature-based supervised learning approach for structure 635 
identification a) A dSTORM image of F-actin from neuronal culture. b) Feature-636 
based segmentation of the dSTORM signal of F-actin and segregation into Class1 637 
(green), Class 2 ( purple) and Class3 (red). c) Mask of segmented F-actin signal 638 
which contains putative spines. d) SRRF image of the postsynaptic marker Homer 639 
1c. e) Feature-based segmentation of the SRRF signal of Homer 1c and segregation 640 
into Class 1 (green), Class 2 (purple) and Class 3 (red). f) Mask of a segmented 641 
signal indicating the nanoscale localization of postsynaptic density. Scale: 500 nm. 642 
g) Colocalization of the mask of segmented F-actin with that of Homer 1c. h) 643 
Categorization of F-actin enriched compartments with PSD as spines (green), which 644 
were exported for further shape-based analysis.  Scale: 500 nm 645 

Figure 1-2: Identifying F-actin organization using ridge detection in single 646 
spines a) Feature-based segmentation of the dSTORM signal of F-actin and 647 
segregation into Class1 (green), Class 2 (purple) and Class 3 (red). b) The input 648 
dSTORM images were transformed into the tubular model using ANNA-PALM. c) 649 
The ANNA-PALM image was transformed and skeletonized using ridge detection 650 
module to represent the F-actin ridges. (d) The segmented regions colocalizing with 651 
the postsynaptic marker Homer 1c were extracted. e) The F-actin mask was used to 652 
selectively filter spine specific F-actin ridges (black) in (c). f) The selected ridges 653 
(black) depicted bundled F-actin within each spine (red). Scale: 500 nm  654 
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655 

Figure 2: Supervised learning algorithm for morphological characterization of 656 
spines from primary rat hippocampal neurons. a) A gallery of different 657 
morphologies of F-actin enriched compartments in primary rat hippocampal neurons 658 
identified as spines. Scale: 1 μm. b) A matrix which depicts pair-wise agreement 659 
between different experts to classify spines into distinct morphological classes. The 660 
pseudocolor bar depicting the pairwise agreement is shown below. c) A 2-661 
dimensional representation of the classification using two principal components 662 
showing that the morphological characterization of spines forms three 663 
nonoverlapping regions. The morphological features were used for cataloging F-actin 664 
structure into a distinct spine category.665 

Figure 3: Analysis of nanoorganization of F-actin at 1nm/px sampling:  a)666 
PREM image of cytoskeletal distribution within a spine. Scale: 200 nm. b) The 667 
segmented image selecting only the thin filaments in PREM indicate the F-actin668 
distribution.  c) ANNA-PALM simulation of the F-actin network using tubular model. 669 
d)  Extraction of ridges by skeletonizing the ANNA-PALM image.  e) Overlay of an 670 
image obtained by PREM (green) and ridges that mark the F-actin network (red) of 671 
the spine. Scale: 200 nm.  f), g) Magnified views of sections within the spine. The 672 
ridges overlapped with the PREM images with a correlation of more than 89%. 673 
Scale: 50 nm 674 

Figure 3-1: Simulation of dSTORM like images of F-actin from Platinum Replica 675 
Electron Microscopy (PREM) images: a), b), c) Examples of PREM images with 1 676 
nm/px sampling of a subsection of a neuronal process, where the red region 677 
indicates the presence of a spine. d), e), f) Simulation of single molecule based 678 
super-resolution images using SuReSim, with 20nm/px sampling, of F-actin 679 
cytoskeleton in spines identified by PREM. g), h), i) Approximation of tubular rod like 680 
distribution of F-actin nanoscale images using ANNA-PALM. j), k), l) Error of 681 
mismatch between the tubular model and the simulated single molecule based 682 
super-resolution image. The mean RSP between the model and the simulated 683 
dSTORM image was 0.89 ± 0.03. The pseudocolor bar ranging from purple to yellow 684 
indicates low to high error. Scale: 200 nm  685 

Figure 4: Tubular model of F-actin represents its actual distribution in spines.686 
a) Super-resolution image of F-actin in neurons obtained by dSTORM. Scale: 1 μm687 
b) Mask of F-actin rich compartments in neuronal processes. c) Tubular model of F-688 
actin obtained by ANNA-PALM. d) Resolution Scaled Error Maps indicating the 689 
correlation between dSTORM image and F-actin mask. e) Resolution Scaled Error 690 
Maps of the dSTORM image with a tubular model of F-actin. Scale: 1 μm. The 691 
pseudocolor bar ranging from purple to yellow indicates low to high error. g) 692 
Resolution Scaled Pearson’s correlation of dSTORM image with the F-actin mask 693 
(red) and with the tubular model of F-actin from ANNA-PALM (blue). i) Resolution 694 
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Scaled Error of the dSTORM image with the F-actin mask (red) and with the tubular 695 
model of F-actin from ANNA-PALM (blue).  696 

Figure 5: Comparison of morphological features of spines obtained by 697 
supervised learning algorithm from wild type and APP/PS1 primary mice 698 
cortical neurons: a) A gallery of different morphologies of F-actin enriched 699 
compartments in primary mice cortical cultures identified as spines. Scale: 1 μm. b) 700 
A pie-chart representing proportion of mushroom, stubby and thin spines in WT. c) A 701 
pie-chart representing proportion of mushroom, stubby and thin spines in the entire 702 
population of dendritic spines in APP/PS1. 703 

Figure 5-1: Supervised learning algorithm for morphological characterization 704 
of spines from primary mice cortical neurons. a) A matrix which depicts pair-wise 705 
agreement between different experts to classify spines into distinct morphological 706 
classes. The pseudocolor bar depicting the pairwise agreement is shown below. b) A 707 
2-dimensional representation of the classification using two principal components 708 
showing that the morphological characterization of spines forms three non-709 
overlapping regions. A 2 dimensional representation of the classification using two 710 
principal components shows that there exist 3 categories of spines in both WT and 711 
APP/PS1, and thus can be used for predicting if a given structure belongs to any of 712 
the 3 categories (red ‘o’– WT mushroom, maroon ‘o’ – APP/PS1 mushroom; dark 713 
blue ‘+’– WT stubby, light blue ‘+’ – APP/PS1 stubby; dark green ‘o’– WT thin, light 714 
green ‘o’ – APP/PS1 thin).  715 

Figure 5-2: A gallery of super-resolution images of mushroom and thin spines: 716 
The top panel depicts mushroom spines with very short necks, which would be 717 
classified as a different morphological entity by conventional light microscopy. The 718 
bottom panel depicts oddly oriented thin spines, which would be characterized as 719 
stubby spines by conventional microscopy. Scale bar: 500 nm720 

Figure 6: Objective paradigm for segmentation and feature detection in 721 
dendritic spines: a) Representative gallery of different classes of dendritic spines 722 
are depicted with each class containing 6 representative spines. Scale 500 nm. We 723 
found that the cumulative length of F-actin filaments in mushroom spines were 724 
significantly higher in WT spines compared to APP/PS1 spines (average actin 725 
filament length: WT mushroom = 5634.5 ± 2034 nm; and APP/PS1 mushroom = 726 
3665.1 ± 1299.2 nm; p < 0.005 for a rank sum test on cumulative F-actin filament 727 
lengths for individual spines of WT and APP/PS1 groups), while there was no728 
significant difference in the lengths of the F-actin networks in stubby and thin spines 729 
(WT stubby = 2288.5 ± 982.6 nm; APP/PS1 stubby = 2045.4 ± 763.9 nm; WT thin 730 
= 2927.3 ± 2023.5 nm; APP/PS1 thin = 3098.9 ± 1439.9 nm; p = 0.12 and 0.42  for a 731 
rank sum test on cumulative F-actin lengths of stubby and thin spines, respectively. 732 
b) The paradigm for feature extraction was performed in 2 steps. (1) The branch 733 
endpoints of the detected ridge of the spine were compared to the centroid of the 734 
Homer puncta to define the neck (yellow) and head regions (cyan) of the spine. 2) 735 
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The length of the ridges was plotted for analysis. b) The difference in the cumulative 736 
F-actin filament lengths in mushroom spines was due to difference in their lengths in 737 
the head region, rather than the neck (average actin filament length: 5075.7 ± 2048.6 738 
nm and 3126.2 ± 1284.3 nm for WT and APP/PS1 head regions respectively, p < 739 
0.005 for a rank sum test; 558.7 ± 331.7 nm and 538.9 ± 404.5 nm for WT and 740 
APP/PS1 neck regions respectively, p = 0.31 for a rank sum test). 741 

742 

743 

744 
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745 

Extended Data 1 746 

On the GitHub repository, there are two folders titled rat and mice. 747 

Folder rat: 748 

Subfolder xls: 749 

Contents of xls are: 1) shape_info.xlsx 2) class_01.xlsx, 3) class_02.xlsx, 4) 750 
class_03.xlsx, and 5) class_04.xlsx. 751 

Shape_info.xlsx contain the 22 features identified using Shape Filter plugin in 752 
ImageJ 753 

class_01.xlsx, class_02.xlsx, class_03.xlsx, and class_04.xlsx contain annotations of 754 
spines from four human experts respectively of all the 1056 spines. 755 

MATLAB code files: 756 

shapeinfo_cluster.m – reduces shape information to 5 dimensions using PCA. These 757 
5 dimensions are used for training a support vector machine (SVM) using MATLAB 758 
function fitecoc to classify the spines into 3 categories. 759 

get_head_neck_regions.m – computes cumulative branch lengths for head and neck 760 
regions separately from the image input. 761 

compare_head_neck_len.m – this code plots the lengths of the branches from head 762 
and neck regions as a histogram using nhist.m function. 763 

The F-actin images of dendritic spines from rat neuronal cultures is in the folder 764 
spines.rar 765 

Folder mice: 766 

Subfolder xls: 767 

Contents of xls are: 1) shape_info_mice.xlsx 2) class_01.xlsx, 3) class_02.xlsx, 4) 768 
class_03.xlsx, and 5) class_04.xlsx. 769 

Shape_info_mice.xlsx contain the 22 features identified using Shape Filter plugin in 770 
ImageJ 771 

class_01.xlsx, class_02.xlsx, class_03.xlsx, and class_04.xlsx contain annotations of 772 
spines from four human experts respectively of all the 249 spines. 773 

MATLAB code files: 774 

shapeinfo_cluster.m – reduces shape information to 5 dimensions using PCA. These 775 
5 dimensions are used for training a support vector machine (SVM) using MATLAB 776 
function fitecoc to classify the spines into 3 categories. 777 
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get_head_neck_regions.m – computes cumulative branch lengths for head and neck 778 
regions separately from the image input. 779 

compare_head_neck_wt_tg.m – this code plots the lengths of the branches from 780 
head and neck regions as a histogram using nhist.m function. 781 

cumlen_wt_tg_stubbythin.m – computes cumulative F-actin lengths for stubby and 782 
thin 783 

The F-actin images of dendritic spines from mice neuronal cultures is in the folder 784 
spines.rar 785 

786 
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Table 

  

Cumulative length of F-actin (nm)

Spine Type Subspine 
compartment

Wild type APP/PS1 Significance

Mushroom - 5634.5±2034 3665.1±1299.2 <0.005, Yes

Spine Head 5075.7±2048.6 3126.2±1284.3 <0.005, Yes

Spine Neck 558.7 ± 331.7 538.9 ± 404.5 0.31, No

Stubby - 2288.5±982.6 2045.4±763.9 0.12, No

Thin - 2927.3±2023.5 3098.9±1439.9 0.42, No

Table 1: Cumulative length of F-actin in spines and subspine compartments 

 


