eNeuro

Research Article: New Research | Disorders of the Nervous System

p11 in cholinergic interneurons of the nucleus accumbens is essential for dopamine responses to rewarding stimuli

Y. Hanada¹, Y. Kawahara¹, Y. N. Ohnishi¹, T. Shuto¹, M. Kuroiwa¹, N. Sotogaku¹, P. Greengard², Y. Sagi² and A. Nishi^{1,2}

¹Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011 Japan ²Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10065, USA

DOI: 10.1523/ENEURO.0332-18.2018

Received: 27 August 2018

Revised: 4 October 2018

Accepted: 9 October 2018

Published: 16 October 2018

Author Contributions: KY, GP, SY and NA Designed Research; HY, KY, OYN, ST, KM, SN and SY Performed Research; HY, GP, SY and NA Wrote the Paper.

Funding: http://doi.org/10.13039/501100001691Japan Society for the Promotion of Science (JSPS) 16H05135

Funding: US Department of Defense-USAMRMC W81XWH-16-1-0681 W81XWH-14-1-0130 W81XWH-09-1-0401

Funding: http://doi.org/10.13039/100007457JPB Foundation #475

Funding: Black Family Foundation

The authors declare no competing financial interests.

Corresponding Author: Akinori Nishi, M.D., Ph.D., Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan. Tel: +81-942-317545; Fax: +81-942-317696; e-mail: nishia@med.kurume-u.ac.jp

Cite as: eNeuro 2018; 10.1523/ENEURO.0332-18.2018

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

Copyright © 2018 Hanada et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

1		
2	p11 in cholinergic inter	neurons of the nucleus accumbens is essential for dopamine responses to
3	rewarding stimuli.	
4		
5	Abbreviated tittle: p11 m	ediates dopamine responses to reward
6		
7	Hanada Y ¹ , Kawahara Y	, Ohnishi YN^1 , Shuto T^1 , Kuroiwa M^1 , Sotogaku N^1 , Greengard P^2 , Sagi Y^2
8	and Nishi A ^{1,2}	
9	¹ Department of Pharmace	ology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011
10	Japan.	
11	² Laboratory of Molecula	and Cellular Neuroscience, The Rockefeller University, New York, NY 10065,
12	USA.	
13 14 15 16 17 18 19 20 21 22 23		Y, GP, SY and NA Designed Research; HY, KY, OYN, ST, KM, SN and SY , GP, SY and NA Wrote the Paper. Akinori Nishi, M.D., Ph.D. Department of Pharmacology Kurume University School of Medicine 67 Asahi-machi Kurume, Fukuoka 830-0011, Japan Tel: +81-942-317545
24 25		Fax: +81-942-317696 e-mail: nishia@med.kurume-u.ac.jp
26 27 28 29 30 31 36 27	Number of Figures: 7 Number of Tables: 2	 Number of words for Abstract: 250 Number of words for Significance Statement: 115 Number of words for Introduction: 706 Number of words for Discussion: 1109
37 38 39 40 41	Japan Society for the Pro Defense- USAMRMC to	s research was supported by a Grant-in-Aid for Scientific Research from the motion of Science to A.N. (16H05135), and grants from US Department of P.G. (W81XWH-16-1-0681), W81XWH-14-1-0130 and W81XWH-09-1-0401 o P.G. (#475) and the Black Family Foundation to P.G.
42 43	Conflict of interest: The	authors declare no competing financial interests.

46 A recent study showed that p11 expressed in cholinergic interneurons (CINs) of the nucleus accumbens (NAc) is a key regulator of depression-like behaviors. Dopaminergic neurons projecting to the NAc are 47 48 responsible for reward-related behaviors, and their function is impaired in depression. The present study 49 investigated the role of p11 in NAc CINs in dopamine responses to rewarding stimuli. The extracellular 50 dopamine and acetylcholine (ACh) levels in the NAc were determined in freely moving male mice using 51 in vivo microdialysis. Rewarding stimuli (cocaine, palatable food and female mouse encounter) induced 52 an increase in dopamine efflux in the NAc of wild-type mice. The dopamine responses were attenuated 53 (cocaine) or abolished (food and female mouse encounter) in constitutive p11 KO mice. The dopamine 54 response to cocaine was accompanied by an increase in ACh NAc efflux, whereas the attenuated 55 dopamine response to cocaine in p11 KO mice was restored by activation of nicotinic or muscarinic ACh receptors in the NAc. Dopamine responses to rewarding stimuli and ACh release in the NAc were 56 57 attenuated in mice with deletion of p11 from cholinergic neurons (ChAT-p11 cKO mice), whereas gene 58 delivery of p11 to CINs restored the dopamine responses. Furthermore, chemogenetic studies revealed 59 that p11 is required for activation of CINs in response to rewarding stimuli. Thus, p11 in NAc CINs 60 plays a critical role in activating these neurons to mediate dopamine responses to rewarding stimuli. The 61 dysregulation of mesolimbic dopamine system by dysfunction of p11 in NAc CINs may be involved in 62 pathogenesis of depressive states.

63

64 Significance Statement

p11 is a critical regulator of CIN activity as measured by the dopamine response of the mesolimbic dopamine pathway to rewarding stimuli. p11 is required for reward-mediated NAc CIN activation and induction in ACh release, resulting in the enhancement of dopamine release. The reduction of p11 expression in NAc CINs is tightly associated with anhedonia as well as other depression-like symptoms of behavioral despair. To improve therapeutic efficacy of antidepressants for anhedonia, a new type of antidepressant directly or indirectly acting on the mesolimbic dopamine pathway needs to be developed.

- 71 For this purpose, therapeutic strategies that increase the function of p11 and its signaling pathway in
- 72 NAc CINs may have an impact on antidepressant efficacy.

74 Introduction

75 Depressive patients show a variety of mood-related symptoms: increased negative affect (e.g., depressed 76 mood, guilt, anxiety) and decreased positive affect [e.g., anhedonia (loss of interest or pleasure), 77 decreased motivation] (Clark and Watson, 1991). Although antidepressants, which upregulate serotonin 78 and/or noradrenaline neurotransmission, effectively alleviate negative affect, they are relatively 79 ineffective at improving positive affect (Shelton and Tomarken, 2001; Craske et al., 2016). The 80 ineffectiveness can be explained by the fact that anhedonia is associated with a deficit in the dopamine 81 reward circuit (Der-Avakian and Markou, 2012; Russo and Nestler, 2013). Since anhedonia is a 82 predictor of poor long-term outcomes including poor treatment response and suicide (Craske et al., 83 2016), further understanding of the neurobiology of anhedonia in depression is required to improve 84 therapeutic efficacy of current antidepressant treatments.

85 p11 (S100A10) is a member of the S100 EF-hand protein family, and is known to play pivotal 86 roles in the pathophysiology of depression (Svenningsson et al., 2006; Svenningsson et al., 2013). 87 Extensive studies on the function of p11 revealed that p11 potentiates serotonin neurotransmission via 88 multiple mechanisms including recruitment of 5-HT_{1B} and 5-HT₄ receptors at the cell surface 89 (Svenningsson et al., 2006; Warner-Schmidt et al., 2009), and regulates depression-like behaviors and 90 responses to antidepressants (Svenningsson et al., 2013; Medrihan et al., 2017). Constitutive p11 91 knockout (KO) mice show depression-like behaviors, including increased behavioral despair and 92 anhedonia (Svenningsson et al., 2006; Warner-Schmidt et al., 2009; Alexander et al., 2010). p11 is 93 expressed in various brain regions (Milosevic et al., 2017), and p11 expressed in the nucleus accumbens 94 (NAc) (Alexander et al., 2010; Warner-Schmidt et al., 2012), cerebral cortex (Schmidt et al., 2012; Seo 95 et al., 2017b), hippocampus (Egeland et al., 2010; Oh et al., 2013; Medrihan et al., 2017) and habenula 96 (Seo et al., 2017a) affects depression-like behaviors via a variety of neural mechanisms. Furthermore, in 97 depressed patients, the expression of p11 is reduced in the anterior cingulate cortex and NAc 98 (Svenningsson et al., 2006; Alexander et al., 2010).

99 The NAc receives dopaminergic input from the ventral tegmental area (VTA) and has been
100 implicated as a key brain region of the reward system (Russo and Nestler, 2013; Hu, 2016). In the NAc,

p11 is expressed in a cell-type specific manner: low levels in medium spiny neurons (MSNs) and high
levels in cholinergic interneurons (CINs) (30-fold higher than non-cholinergic neurons)
(Warner-Schmidt et al., 2012). p11 in CINs has been shown to be a key regulator of depression-like
behavior: (1) mice with p11 knockdown in NAc show depression-like behaviors (Alexander et al., 2010)
and (2) p11 knockout mice in choline acetyltransferase (ChAT) cells (ChAT-p11 cKO mice) show
depression-like behaviors and the behaviors are rescued by overexpression of p11 in NAc CINs

107 (Warner-Schmidt et al., 2012).

108 Cholinergic tone in the mesolimbic dopamine system plays an important role in behavioral 109 responses to psychostimulants and natural reward (Hoebel et al., 2007; Williams and Adinoff, 2008). In 110 the NAc, psychostimulants increase the activity of CINs (Berlanga et al., 2003; Witten et al., 2010) and ACh release (Consolo et al., 1999). Feeding induces a gradual increase in ACh, which is known to have 111 a role in the onset of satiation (Hoebel et al., 2007). Effects of cholinergic neurotransmission on 112 113 responses to psychostimulants and natural reward-related behaviors are highly dependent on 114 physiological and experimental conditions (Consolo et al., 1999; Gonzales and Smith, 2015) and 115 contradictory (Hikida et al., 2001; Hoebel et al., 2007; Witten et al., 2010; Grasing, 2016). Graising et al. 116 proposed a threshold model to explain the inverted U-shape dose response of ACh, in which moderate 117 activation of CINs increases the reward probability, whereas activation of CINs above a certain 118 threshold reduces it (Grasing, 2016).

p11 KO mice show altered cocaine conditional place preference (CPP) (Arango-Lievano et al., 2014; Thanos et al., 2016), suggesting that p11 plays a pivotal role in the regulation of reward. However, a role for p11 in NAc dopamine neurotransmission has not been established. Therefore, we investigated the role of p11 in dopamine neurotransmission in the NAc and prefrontal cortex (PFC) after exposing mice to cocaine or to natural rewards. The present study demonstrates that p11 is required to activate CINs to increase ACh release in response to rewarding stimuli in the NAc, leading to activation of the mesolimbic (VTA-NAc) dopamine system.

127 Materials and methods

128 Animals

129 Male constitutive p11 KO (Svenningsson et al., 2006), ChAT-Cre (GENSAT, GM60) and ChAT-p11

130 cKO (Warner-Schmidt et al., 2012) mice at 8-12 weeks of age were used. ChAT-p11 cKO mice were

131 generated by breeding floxed p11 mice with ChAT-Cre mice (Warner-Schmidt et al., 2012). Mice were

housed 2-5 per cage and maintained on a 12-h light/dark cycle (lights on from 7:00 am to 7:00 pm) with

133 access to standard mouse chow and water ad libitum. All mice used in this study were handled in

134 accordance with the Guide for the Care and Use of Laboratory Animals as adopted by the US National

135 Institutes of Health, and the specific protocols were approved by the Institutional Animal Care and Use

136 Committee. All efforts were made to minimize the number of animals used.

137

138 **Drugs**

139 Cocaine (Takeda Pharmaceutical companies, Osaka, Japan), nicotine (Sigma-Aldrich, St. Louis, MO),

140 oxotremorine (Sigma-Aldrich), dihydro-β-erythroidin (DHβE; Sigma-Aldrich), atropine

(Sigma-Aldrich) and clozapine N-oxide (CNO; Cayman Chemical, Ann Arbor, MI) were dissolved inRinger's solution for local infusion.

143

153

144 Surgery and brain dialysis

145 Microdialysis was performed with an I-shaped cannula. Microdialysis probes were implanted in the

unilateral NAc (exposed length 1.5 mm) or PFC (exposed length 3.5 mm) of 12-week-old mice under

147 pentobarbital (50 mg/kg i.p.) and xylazine (8 mg/kg i.p.) anesthesia and local application of 10%

148 lidocaine. The coordinates of the implantation into the NAc were A/P +1.4 mm, L/M 0.6 mm from the

149 Bregma and V/D 4.5 mm from the dura at an angle of 0° in the coronal plane (Figure 1a). The

150 coordinates of the implantation into the PFC were A/P + 1.9 mm, L/M 0.3 mm from the bregma and V/D

151 2.8 mm from the dura at an angle of 0° in the coronal plane (Figure 1b). After surgery, the mice were

housed individually in plastic cages $(30 \times 30 \times 40 \text{ cm})$.

Microdialysis experiments were conducted 24-48 h after implantation of the probe, as

154 previously described (Kaneko et al., 2016). An on-line approach for real-time quantification 155 of dopamine was used, in which the probes were perfused with Ringer's solution at a flow rate of 2.0 μ l/min. The 20 min sample fractions collected through dialysis probes were directly injected to 156 157 high-performance liquid chromatography using a reverse-phase column (150×4.6 mm; Supelco LC18, 158 Bellefonte, PA) with electrochemical detection. An EP-300 pump (EICOM, Kyoto, Japan) was used in 159 conjunction with an electrochemical detector (potential of the first cell, +180 mV; potential of the 160 second cell, -180 mV) (ESA, Chelmsford, MA). The mobile phase was a mixture of 4.1 g/L sodium 161 acetate adjusted to pH 5.5, 50 mg/L Na₂EDTA, 140 mg/L octanesulfonic acid and 10% methanol. The 162 flow rate was 0.4 ml/min. The detection limit of assay was about 0.3 fmol per sample (on-column). The 163 composition of the Ringer's solution (in mM) was: NaCl 140.0, KCl 4.0, CaCl₂ 1.2, and MgCl₂ 1.0. At the end of the experiment, the mice were given an overdose of sevoflurane and brains were fixed with 164 4% paraformaldehyde via intracardiac infusion. Coronal sections (50 μm) were cut and dialysis probe 165 166 placement was localized using the atlas of Paxinos and Franklin (Paxinos and Franklin, 2001) as 167 reference. Mice in which dialysis probes were misplaced, were not included in data analysis.

For analysis of ACh, the microdialysis probes were perfused with Ringer's solution at a flow
rate of 1.0 μl/min. The 10 min dialysate fractions were collected, and ACh content was detected using
HPLC-ECD system with AC-GEL separation column (2.0 ID X 150 mm) with a platinum working
electrode (Eicom-USA, CA) as previously reported (Virk et al., 2016). ACh content in each dialysate
sample was determined using subsequent standards with known amounts of ACh. The threshold for
detection was 2.44 fmol/min ACh. Neostigmine (100 nM) was added to the dialysis solution to establish
continuous ACh efflux.

175

176 ChAT cell-specific expression of p11, rM4D(Gi-DREADD) and rM3D(Gs-DREADD) using AAV

177 vectors

178 For overexpression of p11 in ChAT cells of the NAc in ChAT-p11 cKO mice,

- 179 AAV-loxP-RFP/stop-loxP-p11 (2.7×10¹² virus molecules/ml) and its control vector,
- 180 AAV-loxP-RFP/stop-loxP-YFP (5.2×10¹² virus molecules/ml), were used (Warner-Schmidt et al., 2012).

181 RFP was expressed in Cre recombinase-negative cells such as MSNs, and p11 or YFP was expressed in

182 ChAT cells of the NAc, where the Cre recombinase was expressed under control of ChAT promoter.

For chemogenetic modulation of ChAT cell functions, *rAAV2/hsyn-DIO-rM3D(Gs)-mCherry* (6.6×10¹² virus molecules/ml), *rAAV2/hsyn-DIO-rM4D(Gi)-mCherry* (3.7×10¹² virus molecules/ml) and
 its control vector, *rAAV2/Ef1a-DIO-mCherry* (3.2×10¹² virus molecules/ml), purchased from University
 of North Carolina (UNC) Vector Core, were used.

187 Viruses were infused bilaterally into the NAc in ChAT-p11 cKO mice at 8 weeks old, under 188 pentobarbital (50 mg/kg i.p.) and xylazine (8 mg/kg i.p.) anesthesia and local application of 10% lidocaine. The coordinates of the infusions into the NAc were A/P +1.4 mm, L/M ± 0.6 mm from the 189 190 bregma, and V/D 3.7 mm from the dura at an angle of 0° in the coronal plane. All infusions were performed using a 5 µl Hamilton syringe with a 33 G needle attached at a rate of 0.1 µl/min. To prevent 191 192 reflux after infusion, the injection needle was left in the place for 15 min. The needle was withdrawn a 193 short distance (0.3 mm) every 3 min, and this procedure was repeated until the needle was completely 194 removed. Four weeks later, the microdialysis probe was implanted and in vivo microdialysis assessments 195 were performed.

196

197 Rewarding stimuli

198 **Cocaine infusion:** Cocaine infusion at 1 μ M into the NAc induced the increase of extracellular 199 dopamine (150-200 % of basal level), which is similar to the increase of dopamine in the NAc induced 200 by systemic cocaine administration (at low to moderate doses) with rewarding effects (Brown et al., 201 1991; Tourino et al., 2012). During the experimental period, cocaine at 1 μ M was infused into the NAc 202 or PFC through the dialysis membrane for 140 min after obtaining three stable consecutive samples of 203 dopamine differing by <10%.

Palatable food: After microdialysis probe implantation, flavored serial food (Asahi Food & Healthcare
Co., Tokyo, Japan), to which mice exhibit palatability, was introduced to the mice in the acrylic box 24 h
before the start of the experiment to promote habituation (Kawahara et al., 2013). Flavored serial food
was removed 1 h before the start of experiments on the day of the experiments, whereas mice had free

access to regular food. During the experimental period, after obtaining three stable consecutive samples
of dopamine, regular food was removed and then mice were exposed to palatable food for 20 min. **Exposure to a female mouse:** During the experimental period, male mice were exposed to female
C57BL/6N mice at the same age, purchased from Japan SLC (Shizuoka, Japan), after obtaining three
stable consecutive samples of dopamine. Female mice enclosed in a clear acrylic cage (10×10×20 cm)
with 1 cm slits were placed in the plastic cage (30×30×40 cm) of male mouse for 20 min, and thereafter
the female mouse and the clear acrylic cage were removed.

215

216 Immunohistochemistry

217 Mice were deeply anesthetized with sodium pentobarbital and transcardially perfused with 4% 218 paraformaldehyde in phosphate buffer (0.1 M, pH 7.4). Three to four hours after perfusion, the brains were removed and further fixed with 4% paraformaldehyde overnight at 4°C. Coronal sections of the 219 220 NAc (50 µm in thickness) were cut with a vibrating blade microtome (VT1000S, Leica Microsystems, 221 Nussloch, Germany). Sections were processed for immunohistochemistry using the free-floating method, 222 as described previously (Fukuda et al., 1996). Sections were incubated with a goat anti-p11 (S100A10) 223 antibody (Cat# AF2377, RRID:AB_2183469; 1:200 dilution; R&D Systems, Minneapolis, MN) or a 224 goat anti-ChAT antibody (Cat# AB144P, RRID:AB 2079751; 1:500 dilution; Millipore, Temecula, CA) 225 for 1 week at 20°C. Antibody binding was visualized with Alexa Fluor 488 or 647-conjugated donkey 226 anti-goat IgG (1:800 dilution; Jackson ImmunoResearch Laboratories, West Grove, PA). Sections were 227 mounted using antifade media (Vectashield; Vector Laboratories, Burlingame, CA) and examined with a 228 confocal laser-scanning microscope, LSM 5 PASCAL (Zeiss, Oberkochen, Germany) or FV-1000 229 (Olympus, Tokyo, Japan).

230

231 Statistical Analysis

The data are displayed as the mean ± S.E.M. For analyses of microdialysis data, all values were
expressed as a percentage of the basal values (100%) for each group, obtained as the average of three
and six stable baseline samples for dopamine and ACh, respectively. The values obtained after rewarding

- 236 Bonferroni's correction was applied for multiple comparisons using the SAS MIMED procedure
- 237 (Version 9.4, SAS Institute, Cary, NC, USA). Repeated measures two-way ANOVA were used to
- compare the experimental groups (JMP Pro, SAS Institute). The basal values of dopamine and/or its
- 239 metabolites were compared with unpaired Student's *t*-test (Table 1), and the effects of clozapine-N-oxide
- 240 (CNO) on dopamine levels in ChAT-p11 cKO mice with Gs DEADD viral injection were compared with
- 241 one-way ANOVA followed by Neuman-Keuls post hoc test (Figure 6b). The analyses were performed
- using Prism 5.0 software (GraphPad, San Diego, CA, USA). p < 0.05 was considered to be significant.
- 243 Details of the statistical analysis are listed in Table 2.
- 244

246 Dopamine responses to rewarding stimuli in the NAc and PFC of constitutive p11 KO mice 247 The levels of dopamine in the NAc in response to a drug of abuse, cocaine, and exposure to natural 248 rewarding stimuli, a palatable food or female mouse, were determined with in vivo microdialysis. The 249 basal extracellular levels of dopamine and its metabolites [3,4-dihydroxy-phenylacetic acid (DOPAC) 250 and homovanilic acid (HVA)] in the NAc and PFC were similar between wild-type (WT) and 251 constitutive p11 KO (p11 KO) mice (Table 1). Cocaine infusion (1 µM) into the NAc increased the 252 levels of dopamine to 150% of control in the NAc of WT mice, but the dopamine response to cocaine 253 infusion was largely attenuated in p11 KO mice (Figure 1c). Exposure to a palatable food or female 254 mouse increased the dopamine levels similarly to cocaine infusion in the NAc of WT mice (Figure 1d-e). The dopamine response to the palatable food or female mouse was abolished in the NAc of p11 KO 255 256 mice. In the PFC, all the rewarding stimuli increased the dopamine levels to the same extent in WT and 257 p11 KO mice (Figure 1f-h). These results indicate that p11 is selectively involved in the regulation of 258 the mesolimbic (VTA-NAc) dopamine system, but not in the regulation of the mesocortical (VTA-PFC) 259 dopamine system.

260

Effects of a nicotinic or muscarinic receptor agonist on the attenuated dopamine response to cocaine in the NAc of constitutive p11 KO mice

p11 is highly expressed in NAc CINs (Warner-Schmidt et al., 2012) and is involved in the regulation of 263 264 ACh release (Virk et al., 2016). In addition, ACh has been shown to stimulate dopamine release via 265 activation of $\alpha 4\beta 2$ nicotinic ACh receptors (nAChRs) (Wonnacott et al., 2000; Hamada et al., 2004) and 266 M5 muscarinic receptors (Bendor et al., 2010; Kuroiwa et al., 2012) at dopaminergic axon terminals. 267 These observations suggest that p11 regulates mesolimbic dopamine release by regulating cholinergic 268 signaling at dopaminergic axon terminals We therefore investigated whether activation of nAChRs or 269 muscarinic receptors could restore the dopamine responses to cocaine in the NAc of p11 KO mice 270 (Figure 2a-b). When cocaine was co-infused into the NAc $(1 \ \mu M)$ with either nicotine $(1 \ \mu M)$ or the 271 non-selective muscarinic receptor agonist, oxotremorine (0.1 μ M), it was able to increase the dopamine

levels in the NAc of p11 KO mice, similarly to those of WT mice. Infusion of either nicotine (1 µM) or
oxotremorine (0.1 µM) alone did not affect the levels of dopamine in the NAc of WT or p11 KO mice.
These results suggest that lack of p11 may reduce ACh release and ACh-mediated effects, resulting in
the attenuation of the dopamine responses to cocaine in the NAc of p11 KO mice.

276

277 Role of p11 in NAc CINs in the dopamine responses to rewarding stimuli

278 To directly investigate the role of p11 in choline acetyltransferase (ChAT) expressing cells, the 279 dopamine responses to rewarding stimuli were evaluated in the NAc of ChAT cell-specific p11 KO mice 280 (ChAT-p11 cKO mice), which were obtained by mating p11 floxed mice with ChAT-Cre mice 281 (Warner-Schmidt et al., 2012). The basal extracellular levels of dopamine in the NAc were not affected 282 by deletion of p11 in ChAT cells (Table 1). Cocaine infusion $(1 \mu M)$ into the NAc or exposure to a palatable food or female mouse increased the extracellular levels of dopamine in the NAc of control 283 mice (ChAT-Cre^{-/-} p11^{flox/flox} mice) (Figure 3). The dopamine responses to the rewarding stimuli were 284 attenuated or completely abolished in the NAc of ChAT-p11 cKO mice (ChAT-Cre⁺ p11^{flox/flox} mice). 285 286 These results indicate that p11 in ChAT cells plays a critical role in the dopamine responses to 287 rewarding stimuli.

288 ChAT-positive cells or axon fibers in the NAc correspond to CINs, and therefore p11 in NAc 289 CINs likely regulates the dopamine responses. However, there is a possibility that p11 expressed in 290 ChAT cells of other brain regions such as basal forebrain cholinergic neurons 291 and pontomesencephalic cholinergic neurons may indirectly affect the VTA-NAc dopamine system. To 292 rule out this possibility, p11 was overexpressed in CINs by injecting AAV-loxP-RFP/stop-loxP-p11 293 (AAV-p11) in the NAc of ChAT-p11 cKO mice (Warner-Schmidt et al., 2012), and the dopamine responses to rewarding stimuli were evaluated. Injection of p11 overexpressing virus (AAV-p11) into the 294 NAc induced the expression of RFP in ChAT-Cre^{-/-} cells such as medium-sized spiny neurons and 295 296 GABAergic interneurons (Figure 4a). In ChAT-Cre⁺ cells, p11 was expressed in RFP-negative 297 large-sized neurons. As control virus, AAV-loxP-RFP/stop-loxP-YFP (AAV-YFP) was injected into the 298 NAc. YFP expression induced by ChAT-Cre was indeed observed in RFP-negative ChAT expressing

cells (Figure 4b). These immunohistochemical analyses revealed that p11 is selectively overexpressed in
NAc CINs. Overexpression of p11, but not of YFP, in NAc CINs restored the dopamine responses to
rewarding stimuli in the NAc of ChAT-p11 cKO mice (Figure 4c-e). These results suggest that NAc
CINs have the ability to regulate the mesolimbic dopamine reward system via p11-dependent
mechanisms.

304

305 Role of p11 in NAc CINs in the cocaine-induced ACh release

306 Pharmacological analyses suggested that p11 in NAc CINs is required for the dopamine responses to 307 rewarding stimuli presumably via mechanisms involving ACh release from CINs and activation of 308 dopaminergic terminals by ACh. We therefore measured the extracellular levels of ACh after cocaine infusion in the NAc of WT and ChAT-p11 cKO mice (Figure 5). Cocaine infusion (1 µM) into the NAc 309 310 increased the levels of ACh to 130-140% of control in the NAc of WT mice, but failed to increase them in the NAc of ChAT-p11 cKO mice. These results confirm that cocaine induces the release of ACh from 311 312 CINs and that p11 is essential for the cocaine-induced release of ACh. It is likely that the released ACh 313 together with the inhibition of dopamine transporter by cocaine increases the extracellular levels of 314 dopamine in the NAc.

315

Effects of chemogenetic activation of NAc CINs on the dopamine responses to cocaine in ChAT-p11 cKO mice.

318 Our studies using p11 KO and ChAT-p11 cKO mice with pharmacological and viral tools strongly 319 suggested that cholinergic regulation of dopamine release is attenuated following deletion of p11 in NAc 320 CINs. Next we investigated whether chemogenetic activation of NAc CINs may restore the attenuated 321 dopamine responses to cocaine in ChAT-p11 cKO mice. Gs-DREADD (AAV-DIO-rM3D(Gs)-mCherry) 322 or control (AAV-DIO-mCherry) virus was injected into the NAc of ChAT-p11 cKO mice. After 4 weeks 323 of Gs-DREADD viral injection, mCherry was expressed in ChAT-positive large-sized neurons in the 324 NAc (Figure 6a), suggesting the expression of rM3D(Gs) in CINs. Clozapine-N-oxide (CNO) was 325 locally infused into the NAc via the microdialysis probe. CNO infusion of 3 µM did not affect the basal

326 levels of dopamine in ChAT-p11 cKO mice with Gs-DREADD viral injection (Figure 6b). CNO infusion 327 at a higher concentration $(10 \,\mu\text{M})$ increased the average of dopamine levels at 40, 60 and 80 min of CNO infusion in the NAc of ChAT-p11 cKO mice with Gs-DREADD viral injection, but not with 328 329 control viral injection. These results suggest that chemogenetic activation of CINs alone induces the 330 release of dopamine in the NAc, only when a high concentration of CNO (10 μ M) was infused. 331 We next evaluated the effects of chemogenetic activation of CINs on the dopamine responses to 332 cocaine. After observing that CNO infusion (3 µM) for 140 min did not affect the basal levels of 333 dopamine, cocaine infusion (1 µM) into NAc was started. Cocaine infusion together with CNO infusion

(3 µM) induced the dopamine responses in the NAc of ChAT-p11 cKO mice with Gs-DREADD viral
injection (Figure 6c). Restoration of dopamine responses was not achieved in animals treated with
Gs-DREADD plus cocaine without CNO or in animals treated with mCherry plus cocaine/CNO. These
results suggest that activation of CINs is required for dopamine responses to rewarding stimuli in the
NAc, and that p11 is essential for CIN activation.

339

340 Effects of chemogenetic inhibition of NAc CINs on the dopamine responses to cocaine in

341 control mice.

We further investigated whether the inhibition of NAc CINs by Gi-DREADD could suppress the
dopamine response to cocaine infusion in the NAc of ChAT-Cre mice injected with Gi-DREADD virus
(*AAV-DIO-rM4D(Gi)-mCherry*) or control virus (*AAV-DIO-mCherry*). In ChAT-Cre mice expressing
Gi-DREADD, CNO infusion (3 µM) into the NAc attenuated the dopamine response to cocaine infusion
(1 µM). CNO infusion into the NAc of ChAT-Cre mice without Gi-DREADD expression did not affect
the dopamine response to cocaine infusion.

350 Discussion

351 In this study, we demonstrated that p11 expressed in CINs of the NAc is a critical regulator of the dopamine reward system. In vivo microdialysis analyses in constitutive p11 KO mice revealed that lack 352 353 of p11 induced the attenuation of dopamine responses to rewarding stimuli including a drug of abuse and natural rewards. The attenuation of the dopamine responses in the mesolimbic (VTA-NAc) dopamine 354 355 system, but not in the mesocortical (VTA-PFC) dopamine system, suggested the importance of p11 in 356 the NAc. The dopamine responses were attenuated in ChAT-p11 cKO mice, and the attenuated responses 357 were restored by the overexpression of p11 in NAc CINs, indicating the critical role of p11 in NAc CINs. 358 Furthermore, lack of p11 in NAc CINs results in the attenuation of ACh release in response to cocaine 359 and the subsequent decrease in nicotinic and muscarinic ACh receptor signaling at dopaminergic 360 terminals, leading to the suppressed dopamine responses to cocaine and possibly other rewarding stimuli. The function of p11 in CINs was confirmed by the chemogenetic studies: CIN activation by 361 362 Gs-DREADD restored the dopamine responses in ChAT-p11 cKO mice, whereas CIN inhibition by 363 Gi-DREADD suppressed the dopamine response in control (ChAT-Cre) mice. Thus, p11 in NAc CINs is 364 required for the dopamine response of the mesolimbic rewarding system. These findings provide 365 insights into the neural mechanisms of anhedonia in depression.

366

367 Selective regulation of the mesolimbic dopamine pathway by p11

368 p11 regulates the dopamine response to rewarding stimuli in the mesolimbic dopamine pathway, but not 369 in the mesocortical dopamine pathway. Selective regulation of the mesolimbic dopamine pathway is 370 enabled by action of p11 in CINs of the NAc. PFC receives cholinergic innervation from the basal 371 forebrain (Ballinger et al., 2016), and ChAT cells in the basal forebrain also express p11 (Milosevic et al., 372 2017). Although p11 in ChAT cells of the basal forebrain is deleted in ChAT-p11 cKO mice, the deletion 373 of p11 did not alter the dopamine response in the mesocortical dopamine pathway. A possible role for 374 p11 in the cholinergic neurons of the basal forebrain needs to be explored in other brain functions such 375 as cognition (Ballinger et al., 2016). Furthermore, the fact that the lack of p11 in VTA dopamine neurons 376 of p11 null mice did not affect the dopamine responses in the mesocortical dopamine pathway suggests a

limited role for p11 in regulating the activity of the dopaminergic neurons of the VTA. In fact, this
interpretation is consistent with the low expression of p11 in the VTA (Milosevic et al., 2017). Thus, p11
in CINs is a critical regulator of the dopamine response to rewarding stimuli in the mesolimbic
dopamine pathway.

381

382 Functional role of p11 in the regulation of CIN activity and ACh release in the NAc

383 Cholinergic tone in the mesolimbic dopamine system plays an important role in behavioral responses to 384 psychostimulants and natural reward (Hoebel et al., 2007; Williams and Adinoff, 2008). It has been 385 demonstrated that silencing CIN activity induces depression-like behaviors and that p11 in NAc CINs 386 shows antidepressant effects (Warner-Schmidt et al., 2012). Our findings indicate that, in the NAc, 387 activation of CINs and the subsequent release of ACh are required for dopamine responses to rewarding 388 stimuli, and that p11 is essential for CIN activation in response to reward. It is likely that ACh released 389 from CINs in a p11-dependent manner activates the dopamine release machinery via activation of $\alpha 4\beta 2$ 390 nAChRs (Wonnacott et al., 2000; Hamada et al., 2004) and M5 muscarinic receptors (Bendor et al., 391 2010; Kuroiwa et al., 2012) at dopaminergic axon terminals, leading to the enhancement of the increase 392 in extracellular dopamine induced by cocaine, a dopamine reuptake inhibitor. Furthermore, 393 p11-dpenendent activation of CINs and ACh release seems to be optimal to enhance the dopamine 394 reward probability, because the inverted U-shape threshold model suggests that activation of CINs 395 above a certain threshold reduces it (Grasing, 2016). This is in line with a previous report that basal ACh 396 release is unchanged in ChAT-p11 cKO mice (Virk et al., 2016). Interaction of p11 with its binding 397 proteins such as the 5-HT_{1B} receptor, 5-HT₄ receptor and mGluR5 are required for antidepressant action (Svenningsson et al., 2006; Warner-Schmidt et al., 2009; Lee et al., 2015), but the precise p11-mediated 398 399 mechanisms for CIN activation were unknown. The interaction of p11 with 5-HT_{1B} receptors in CINs 400 may induce the inhibition of CIN activity (Virk et al., 2016), but this mechanism cannot explain our 401 findings. Future studies should determine the molecular mechanisms by which p11 and presumably the 402 p11 complex may activate CINs.

404 Role of p11 in CINs of the NAc in anhedonic behaviors of depression

405 Anhedonia is a core symptom of depression. It has been shown that anhedonia is associated with a deficit in the mesolimbic dopamine circuit (Der-Avakian and Markou, 2012; Russo and Nestler, 2013). 406 407 Current antidepressants are relatively ineffective for treating anhedonia (Craske et al., 2016), probably 408 because depressive patients are treated with antidepressants primarily acting on 5-HT and/or 409 noradrenaline transmission (Dunlop and Nemeroff, 2007). To develop a new type of antidepressant 410 effective for anhedonia, it is extremely important to elucidate the mechanism by which the mesolimbic 411 dopamine reward circuit is dysregulated in depression. In this study, we clearly demonstrated that p11 in 412 NAc CINs is a critical regulator of the mesolimbic dopamine response to rewarding stimuli. The 413 findings suggest that p11, which is required for activation of CINs and the ACh release in response to 414 rewarding stimuli, plays a pivotal role in the pathophysiology of anhedonia in depression (Svenningsson 415 et al., 2006).

416 Deletion of p11 in ChAT cells, p11 knockdown in the NAc or silencing NAc CINs induces 417 anhedonic behavior, and overexpression of p11 in NAc CINs reverses anhedonic behavior in 418 constitutive p11 KO mice (Alexander et al., 2010; Warner-Schmidt et al., 2012). In addition, p11 419 expression in the NAc is reduced in depressed patients (Svenningsson et al., 2006; Alexander et al., 420 2010). Thus, the reduction of p11 expression in NAc CINs is tightly associated with anhedonia as well 421 as other depression-like symptoms of behavioral despair. Therapeutic strategies that increase the 422 expression of p11 and the signaling of the p11 complex in NAc CINs may have impact on current 423 antidepressant treatment.

424

In conclusion, p11 is a critical regulator of CIN activity as measured by the dopamine response of the mesolimbic dopamine pathway to rewarding stimuli. p11 is required for reward-mediated NAc CIN activation and induction in ACh release, resulting in the enhancement of dopamine release. To improve therapeutic efficacy of antidepressants for anhedonia, a new type of antidepressant directly or indirectly acting on the mesolimbic dopamine pathway needs to be developed. For this purpose, p11 and its complex in the NAc CINs may be good therapeutic targets.

431 References

- Alexander B, Warner-Schmidt J, Eriksson T, Tamminga C, Arango-Lievano M, Ghose S, Vernov M,
 Stavarache M, Musatov S, Flajolet M, Svenningsson P, Greengard P, Kaplitt MG (2010) Reversal
 of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med
 2:54ra76.
- Arango-Lievano M, Schwarz JT, Vernov M, Wilkinson MB, Bradbury K, Feliz A, Marongiu R, Gelfand
 Y, Warner-Schmidt J, Nestler EJ, Greengard P, Russo SJ, Kaplitt MG (2014) Cell-type specific
 expression of p11 controls cocaine reward. Biol Psychiatry 76:794-801.
- Ballinger EC, Ananth M, Talmage DA, Role LW (2016) Basal Forebrain Cholinergic Circuits and
 Signaling in Cognition and Cognitive Decline. Neuron 91:1199-1218.
- Bendor J, Lizardi-Ortiz JE, Westphalen RI, Brandstetter M, Hemmings HC, Jr., Sulzer D, Flajolet M,
 Greengard P (2010) AGAP1/AP-3-dependent endocytic recycling of M5 muscarinic receptors
 promotes dopamine release. EMBO J 29:2813-2826.
- Berlanga ML, Olsen CM, Chen V, Ikegami A, Herring BE, Duvauchelle CL, Alcantara AA (2003)
 Cholinergic interneurons of the nucleus accumbens and dorsal striatum are activated by the
 self-administration of cocaine. Neuroscience 120:1149-1156.
- Brown EE, Finlay JM, Wong JT, Damsma G, Fibiger HC (1991) Behavioral and neurochemical
 interactions between cocaine and buprenorphine: implications for the pharmacotherapy of
 cocaine abuse. J Pharmacol Exp Ther 256:119-126.
- 450 Clark LA, Watson D (1991) Tripartite model of anxiety and depression: psychometric evidence and
 451 taxonomic implications. J Abnorm Psychol 100:316-336.
- 452 Consolo S, Caltavuturo C, Colli E, Recchia M, Di Chiara G (1999) Different sensitivity of in vivo
 453 acetylcholine transmission to D1 receptor stimulation in shell and core of nucleus accumbens.
 454 Neuroscience 89:1209-1217.
- 455 Craske MG, Meuret AE, Ritz T, Treanor M, Dour HJ (2016) Treatment for Anhedonia: A Neuroscience
 456 Driven Approach. Depress Anxiety 33:927-938.
- 457 Der-Avakian A, Markou A (2012) The neurobiology of anhedonia and other reward-related deficits.

459 Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen 460 Psychiatry 64:327-337.

- 461 Egeland M, Warner-Schmidt J, Greengard P, Svenningsson P (2010) Neurogenic effects of fluoxetine are
 462 attenuated in p11 (S100A10) knockout mice. Biol Psychiatry 67:1048-1056.
- 463 Fukuda T, Aika Y, Heizmann CW, Kosaka T (1996) Dense GABAergic input on somata of
 464 parvalbumin-immunoreactive GABAergic neurons in the hippocampus of the mouse. Neurosci
 465 Res 26:181-194.
- Gonzales KK, Smith Y (2015) Cholinergic interneurons in the dorsal and ventral striatum: anatomical
 and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 1349:1-45.
- 468 Grasing K (2016) A threshold model for opposing actions of acetylcholine on reward behavior:
 469 Molecular mechanisms and implications for treatment of substance abuse disorders. Behav Brain
 470 Res 312:148-162.
- Hamada M, Higashi H, Nairn AC, Greengard P, Nishi A (2004) Differential regulation of dopamine D1
 and D2 signaling by nicotine in neostriatal neurons. J Neurochem 90:1094-1103.
- 473 Hikida T, Kaneko S, Isobe T, Kitabatake Y, Watanabe D, Pastan I, Nakanishi S (2001) Increased
 474 sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc Natl Acad Sci U S
 475 A 98:13351-13354.
- 476 Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine-acetylcholine balance in approach and
 477 avoidance. Curr Opin Pharmacol 7:617-627.

478 Hu H (2016) Reward and Aversion. Annu Rev Neurosci 39:297-324.

Kaneko F, Kawahara Y, Kishikawa Y, Hanada Y, Yamada M, Kakuma T, Kawahara H, Nishi A (2016)
Long-term citalopram treatment alters the stress responses of the cortical dopamine and
noradrenaline systems: the role of cortical 5-HT1A receptors. Int J Neuropsychopharmacol.

482 Kawahara Y, Kaneko F, Yamada M, Kishikawa Y, Kawahara H, Nishi A (2013) Food reward-sensitive
483 interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system.
484 Neuropharmacology 67:395-402.

485 Kuroiwa M, Hamada M, Hieda E, Shuto T, Sotogaku N, Flajolet M, Snyder GL, Hendrick JP, Fienberg

- A, Nishi A (2012) Muscarinic receptors acting at pre- and post-synaptic sites differentially
 regulate dopamine/DARPP-32 signaling in striatonigral and striatopallidal neurons.
 Neuropharmacology 63:1248-1257.
- Lee KW, Westin L, Kim J, Chang JC, Oh YS, Amreen B, Gresack J, Flajolet M, Kim D, Aperia A, Kim
 Y, Greengard P (2015) p11 regulates the surface localization of mGluR5. Mol Psychiatry
 20:1485.
- Medrihan L, Sagi Y, Inde Z, Krupa O, Daniels C, Peyrache A, Greengard P (2017) Initiation of
 Behavioral Response to Antidepressants by Cholecystokinin Neurons of the Dentate Gyrus.
 Neuron 95:564-576.e564.
- Milosevic A, Liebmann T, Knudsen M, Schintu N, Svenningsson P, Greengard P (2017) Cell- and
 region-specific expression of depression-related protein p11 (S100a10) in the brain. J Comp
 Neurol 525:955-975.
- Oh YS, Gao P, Lee KW, Ceglia I, Seo JS, Zhang X, Ahn JH, Chait BT, Patel DJ, Kim Y, Greengard P
 (2013) SMARCA3, a chromatin-remodeling factor, is required for p11-dependent antidepressant
 action. Cell 152:831-843.
- 501 Paxinos G, Franklin KB (2001) Mouse brain in stereotaxic coordinates, 2nd Edition. San Diego:
 502 Academic Press.
- Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci
 14:609-625.
- Schmidt EF, Warner-Schmidt JL, Otopalik BG, Pickett SB, Greengard P, Heintz N (2012) Identification
 of the cortical neurons that mediate antidepressant responses. Cell 149:1152-1163.
- Seo JS, Zhong P, Liu A, Yan Z, Greengard P (2017a) Elevation of p11 in lateral habenula mediates
 depression-like behavior. Mol Psychiatry.
- Seo JS, Wei J, Qin L, Kim Y, Yan Z, Greengard P (2017b) Cellular and molecular basis for
 stress-induced depression. Mol Psychiatry 22:1440-1447.
- 511 Shelton RC, Tomarken AJ (2001) Can recovery from depression be achieved? Psychiatr Serv

eNeuro Accepted Manuscript

52:1469-1478.

512

513 Svenningsson P, Kim Y, Warner-Schmidt J, Oh YS, Greengard P (2013) p11 and its role in depression
514 and therapeutic responses to antidepressants. Nat Rev Neurosci 14:673-680.

515 Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M, Vaugeois JM, Nomikos GG,
516 Greengard P (2006) Alterations in 5-HT1B receptor function by p11 in depression-like states.
517 Science 311:77-80.

Thanos PK, Malave L, Delis F, Mangine P, Kane K, Grunseich A, Vitale M, Greengard P, Volkow ND
(2016) Knockout of p11 attenuates the acquisition and reinstatement of cocaine conditioned
place preference in male but not in female mice. Synapse 70:293-301.

Tourino C, Valjent E, Ruiz-Medina J, Herve D, Ledent C, Valverde O (2012) The orphan receptor GPR3
modulates the early phases of cocaine reinforcement. Br J Pharmacol 167:892-904.

Virk MS, Sagi Y, Medrihan L, Leung J, Kaplitt MG, Greengard P (2016) Opposing roles for serotonin in
 cholinergic neurons of the ventral and dorsal striatum. Proc Natl Acad Sci U S A 113:734-739.

Warner-Schmidt JL, Flajolet M, Maller A, Chen EY, Qi H, Svenningsson P, Greengard P (2009) Role of
 p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J Neurosci 29:1937-1946.

527 Warner-Schmidt JL, Schmidt EF, Marshall JJ, Rubin AJ, Arango-Lievano M, Kaplitt MG, Ibanez-Tallon

I, Heintz N, Greengard P (2012) Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc Natl Acad Sci U S A 109:11360-11365.

530 Williams MJ, Adinoff B (2008) The role of acetylcholine in cocaine addiction.
531 Neuropsychopharmacology 33:1779-1797.

Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P, Gradinaru V, Ramakrishnan C,
 Deisseroth K (2010) Cholinergic interneurons control local circuit activity and cocaine
 conditioning. Science 330:1677-1681.

Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors
modulating dopamine release in the rat striatum. Eur J Pharmacol 393:51-58.

537 538

528

539 Figure legends

Figure 1. The dopamine response to rewarding stimuli in the NAc and PFC of constitutive p11 KO mice.

542 (a,b) Representative location of a microdialysis probe placed in the mouse NAc (a) and PFC (b) 543 (Paxinos and Franklin, 2001). The position of dialysis membrane is indicated with yellow color. (c-h) 544 The effects of cocaine infusion $(1 \mu M)$ into the NAc (c) or PFC (f), exposure to palatable food (d,g), 545 and exposure to female mice (e,h) on the extracellular levels of dopamine (DA) in the NAc (c,d,e) and 546 PFC (f.g,h) of wild-type (WT) and constitutive p11 KO mice. The DA levels were determined with in 547 vivo microdialysis. The basal values for each group were obtained as the average of three stable baseline 548 samples, and all values are calculated as a percentage of the basal values within the same group (100%). Data represent mean \pm S.E.M. *p<0.05, ** p<0.01, ***p<0.001 vs. WT mice; two-way ANOVA and 549 Bonferroni multiple comparison test. $^{\dagger}p < 0.05$, $^{\dagger\dagger}p < 0.01$, $^{\dagger\dagger\dagger}p < 0.001$ vs. the basal levels of dopamine in 550 551 the same group. The number of mice is indicated in parentheses.

552

Figure 2. The dopamine response to cocaine infusion in the NAc in constitutive p11 KO mice is restored by nicotinic or muscarinic receptor stimulation in the NAc.

555 Effects of local infusion of cocaine $(1 \ \mu M)$ and/or nicotine $(1 \ \mu M)$ (a) or cocaine $(1 \ \mu M)$ and/or 556 non-selective muscarinic receptor agonist, oxotremorine $(0.1 \ \mu M)$ (b) into the NAc on the extracellular 557 levels of dopamine (DA) in the NAc of constitutive p11 KO mice. The dose of nicotine or oxotremorine 558 without effects on the dopamine levels was used. Data for cocaine infusion alone were reproduced from 559 Fig. 1a for comparison. The basal values for each group were obtained as the average of three stable 560 baseline samples, and all values are calculated as a percentage of the basal values within the same group (100%). Data represent mean \pm S.E.M. ** p<0.01, ***p<0.001 vs. the cocaine group; two-way ANOVA 561 and Bonferroni multiple comparison test. $^{\dagger}p < 0.05$, $^{\dagger\dagger\dagger}p < 0.001$ vs. the basal levels of dopamine in the 562 563 same group. The number of mice is indicated in parentheses under each experimental condition.

564

565 Figure 3. The dopamine response to rewarding stimuli in the NAc of ChAT-p11 conditional

566 knockout (cKO) mice.

567 The effects of cocaine infusion $(1 \mu M)$ into the NAc (a), exposure to palatable food (b), and exposure to female mice (c) on the extracellular levels of dopamine (DA) in the NAc of wild-type (WT: ChAT-Cre^{-/-} 568 p11^{flox/flox}) and ChAT-p11 cKO (ChAT-Cre⁺ p11^{flox/flox}) mice. The basal values for each group were 569 570 obtained as the average of three stable baseline samples, and all values are calculated as a percentage of the basal values within the same group (100%). Data represent mean ± S.E.M. *p<0.05, **p<0.01, 571 ***p<0.001 vs. WT mice; two-way ANOVA and Bonferroni multiple comparison test. $^{\dagger}p$ <0.05, $^{\dagger\dagger}p$ <0.01, 572 $^{\dagger\dagger\dagger}p < 0.001$ vs. the basal levels of dopamine in the same group. The number of mice is indicated in 573 574 parentheses.

575

576 Figure 4. Overexpression of p11 in ChAT cells of the NAc restores the dopamine response to 577 rewarding stimuli in ChAT p11 cKO mice.

578 (a) Immunohistochemical detection of RFP (red) and p11 (green) in the NAc of ChAT-p11 cKO mice injected with p11 overexpressing virus [AAV-loxP-RFP/stop-loxP-p11, (AAV-p11)] into the NAc. RFP is 579 expressed in ChAT-Cre^{-/-} cells, and p11 was expressed in ChAT-Cre⁺ cells. In images with low 580 581 magnification (left panel), RFP-positive area in the shell of the NAc corresponds to the area of viral 582 injection. In images with high magnification (right panel), p11 is overexpressed in RFP-negative neurons. Arrows indicate cells overexpressing p11. (b) Immunohistochemical detection of RFP (red), 583 584 YFP (green) and ChAT (blue) in the NAc of ChAT-p11 cKO mice injected with control virus [AAV-loxP-RFP/stop-loxP-YFP (AAV-YFP)]. RFP was expressed in ChAT-Cre^{-/-} cells, and YFP was 585 expressed in ChAT-Cre⁺ cells. YFP expression overlapped with ChAT staining. Arrow indicates 586 587 ChAT-positive cholinergic interneurons expressing YFP. (c,d,e) The effects of cocaine infusion $(1 \ \mu M)$ into the NAc (c), exposure to palatable food (d), and exposure to female mice (e) on the extracellular 588 589 levels of dopamine (DA) in the NAc of ChAT-p11 cKO mice injected with control (AAV-YFP) or p11 590 overexpressing (AAV-p11) virus. The basal values for each group were obtained as the average of three 591 stable baseline samples, and all values are calculated as a percentage of the basal values within the same 592 group (100%). Data represent mean ± S.E.M. *p<0.05, **p<0.01, ***p<0.001 vs. ChAT-p11 cKO mice

with control virus injection; two-way ANOVA and Bonferroni multiple comparison test. $^{\dagger}p<0.05$, $^{\dagger\dagger}p<0.01$, $^{\dagger\dagger\dagger}p<0.001$ vs. the basal levels of dopamine in the same group. The number of mice is indicated in parentheses.

596

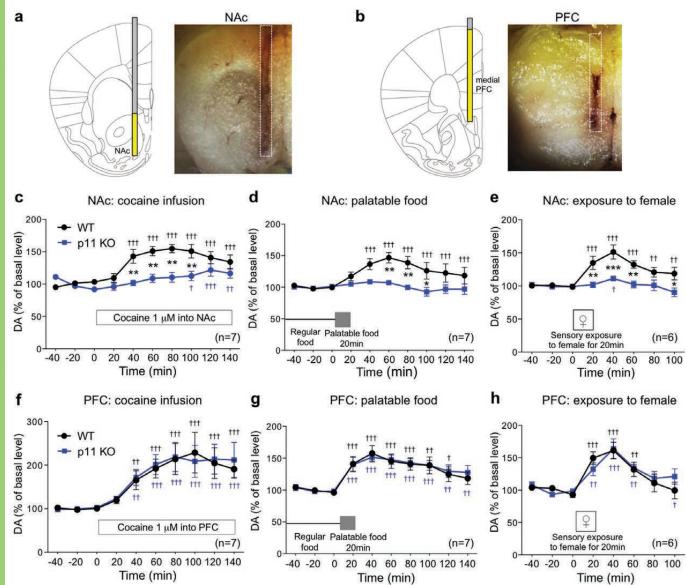
597 Figure 5. The ACh responses to cocaine infusion in the NAc of ChAT-p11 cKO mice.

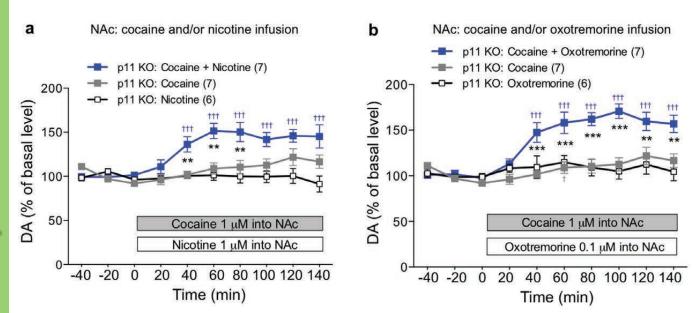
The extracellular levels of ACh in the NAc were measured with *in vivo* microdialysis after infusion of cocaine (1 μ M) into the NAc of wild-type (WT; ChAT-Cre^{-/-} p11^{flox/flox}) and ChAT-p11 cKO (ChAT-Cre⁺ p11^{flox/flox}) mice. The basal values for each group were obtained as the average of six stable baseline samples, and all values are calculated as a percentage of the basal values within the same group (100%). Data represent mean \pm S.E.M. **p*<0.05 vs. WT mice; two-way ANOVA and Bonferroni multiple comparison test. [†]*p*<0.05, ^{††}*p*<0.01, ^{†††}*p*<0.001 vs. the basal levels of ACh in the same group. The number of mice is indicated in parentheses under each experimental condition.

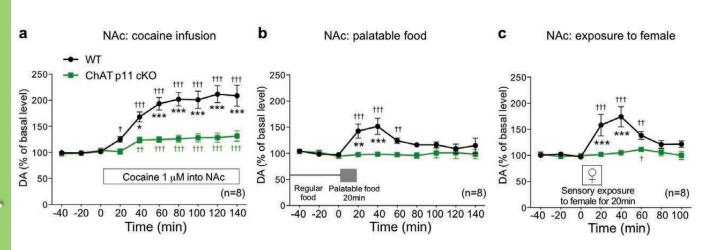
605

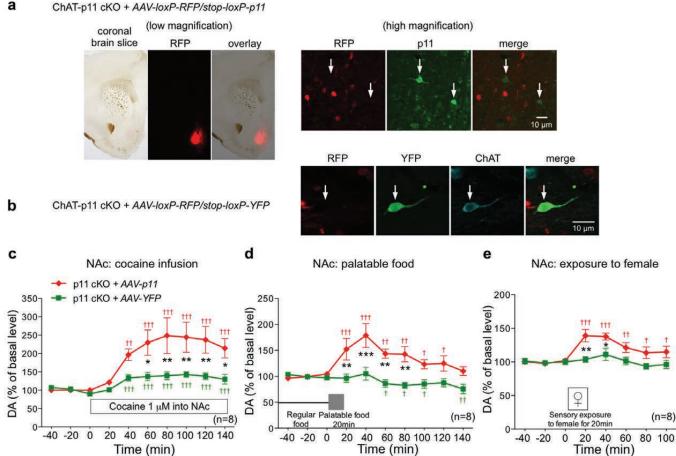
Figure 6. Activation of ChAT cells in the NAc using a chemogenetic technique restores the dopamine response in ChAT p11 cKO mice.

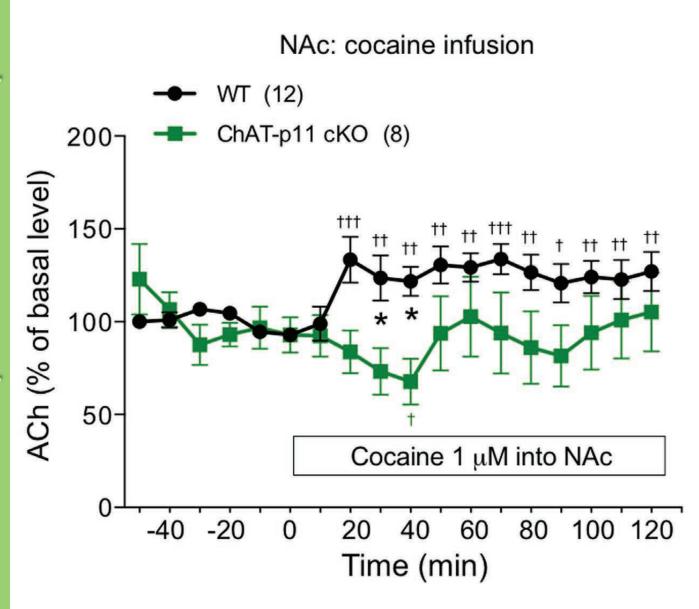
608 (a) Immunohistochemical detection of mCherry (red) and ChAT (green) in the NAc of ChAT-p11 cKO 609 mice injected with Gs-DREADD virus [AAV-DIO-rM3D(Gs)-mCherry (AAV-rM3D(Gs))] into the NAc. 610 In images with low magnification (left panel), mCherry-positive cells are aparsely dstributted in the NAc 611 (arrow head). In images with high magnification (right panel), mCherry is expressed in ChAT-positive 612 cholinergic interneurons. Arrows indicate ChAT-positive cholinergic interneurons expressing 613 rM3D(Gs). (b) The effects of clozapine N-oxide (CNO) infusion at 3 or 10 μ M into the NAc on the 614 extracellular levels of dopamine (DA) in the NAc of ChAT-p11 cKO mice injected with control [AAV-DIO-mCherry (AAV-mCherry)] or Gs-DREADD virus. The DA levels were determined as the 615 616 average of those at 40, 60 and 80 min of CNO infusion. Data represent mean \pm S.E.M. **p<0.01; 617 one-way ANOVA and Newman-Keuls multiple comparison test. (c) The effects of CNO infusion $(3 \mu M)$ 618 into the NAc on the cocaine-induced increases in dopamine (DA) in the NAc of ChAT-p11 cKO mice 619 injected with control (AAV-mCherry) or Gs-DREADD virus. The basal values for each group were


625


obtained as the average of three stable baseline samples, and all values are calculated as a percentage of the basal values within the same group (100%). Data represent mean \pm S.E.M. **p*<0.05, ***p*<0.01, ****p*<0.001 vs. ChAT-p11 cKO mice with control virus injection; two-way ANOVA and Bonferroni multiple comparison test. [†]*p*<0.05, ^{††}*p*<0.01, ^{†††}*p*<0.001 vs. the basal levels of dopamine in the same group. The number of mice is indicated in parentheses under each experimental condition.


Figure 7. Inhibition of ChAT cells in the NAc using a chemogenetic technique suppresses the dopamine response in control mice.


628 Gi-DREADD virus [AAV-DIO-rM4D(Gi)-mCherry (AAV-rM4D(Gi))] control or virus 629 [AAV-DIO-mCherry (AAV-mCherry)] was injected into the NAc of ChAT-Cre mice. The effects of 630 clozapine N-oxide (CNO) infusion (3 µM) into the NAc on the cocaine-induced increases in dopamine (DA) in the NAc were examined. The basal values for each group were obtained as the average of three 631 632 stable baseline samples, and all values are calculated as a percentage of the basal values within the same group (100%). Data represent mean \pm S.E.M. *p<0.05, **p<0.01, ***p<0.001 vs. ChAT-p11 cKO mice 633 with control virus injection; two-way ANOVA and Bonferroni multiple comparison test. $^{\dagger\dagger}p < 0.01$, 634 635 $^{\dagger\dagger\dagger}p<0.001$ vs. the basal levels of dopamine in the same group. The number of mice is indicated in 636 parentheses under each experimental condition.



а eNeuro Accepted Manuscript (low magnification) sagittal brain slice b 200 DA (% of basal level) mCherry mCherry AAV CNO 3 µM (6)

ChAT-p11 cKO + AAV-DIO-rM3D(Gs)-mCherry

mCherry

**

rM3D

(Gs)

10 µM

(6)

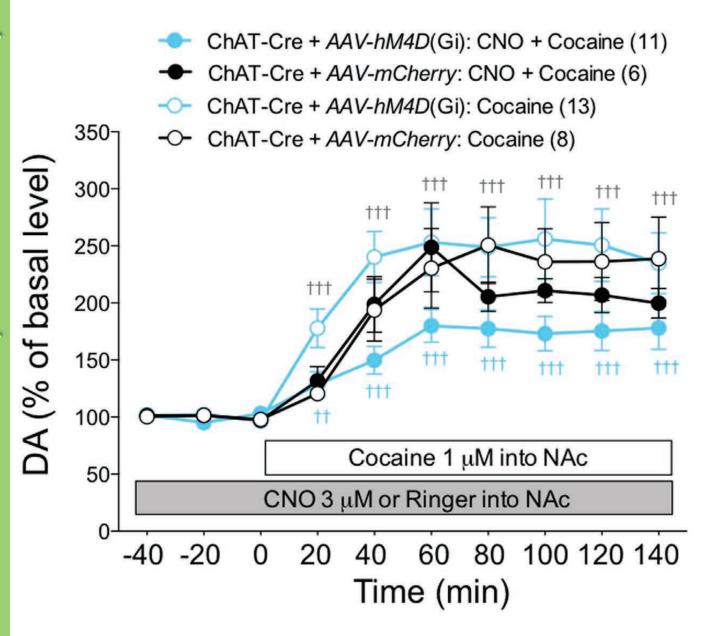
Ĩ

.

rM3D

(Gs)

3 µM


(6)

10 µM

(6)

(high magnification) mCherry ChAT merge 10 µm С NAc: cocaine and CNO infusion ChAT-p11 cKO + AAV-rM3D(Gs): CNO + Cocaine (6) ChAT-p11 cKO + AAV-mCherry: CNO + Cocaine (6) ChAT-p11 cKO + AAV-rM3D(Gs): Cocaine (6) -0-*** 350 -O- ChAT-p11 cKO + AAV-mCherry: Cocaine (6) 111 DA (% of basal level) 300 t†† **†**† 250 200 150 100 Cocaine 1 µM into NAc 50-CNO 3 µM or Ringer into NAc 0 -40 -20 40 60 80 100 120 140 0 20 Time (min)

NAc: cocaine and CNO infusion

Table 1. Basal levels of dopamine, dopamine metabolites and acetylcholine

.

mouse	brain region	DA (f mol/sample)	DOPAC (p mol/sample)	HVA (p mol/sample)	ACh (f mol/sample)
WT	NAc	41.28 ± 5.47 (22)	5.725 ± 0.592 (21)	12.73 ± 2.49 (15)	nd
p11 KO (constitutive p11 KO)	NAc	42.35 ± 6.31 (17)	5.777 ± 0.917 (16)	13.57 ± 2.47 (9)	nd
WT	PFC	12.00 ± 4.44 (8)	0.894 ± 0.121 (7)	4.863 ± 1.447 (3)	nd
p11 KO (constitutive p11 KO)	PFC	6.35 ± 1.77 (7)	1.020 ± 0.142 (7)	5.143 ± 0.743 (4)	nd
WT (ChAT-cre ^{-/-} P11 ^{flox/flox})	NAc	46.72 ± 9.94 (8)	6.549 ± 1.264 (8)	nd	428.7 ± 75.65 (12)
ChAT p11 cKO (ChAT-cre P11 ^{flox/f}	NAc	64.13 ± 11.63 (8)	6.485 ± 0.857 (8)	nd	557.0 ± 116.6 (8)
ChAT p11 cKO + AAV-YFP	NAc	29.19 ± 6.45 (8)	nd	nd	nd
ChAT p11 cKO + AAV-p11	NAc	35.35 ± 10.08 (8)	nd	nd	nd
ChAT p11 cKO + AAV-mCherry	NAc	54.18 ± 21.21 (6)	nd	nd	nd
ChAT p11 cKO + AAV-rM3D (Gs)	NAc	50.77 ± 22.85 (6)	nd	nd	nd
ChAT p11 cKO + AAV-mCherry	NAc	117.8 ± 37.19 (8)	nd	nd	nd
ChAT p11 cKO + AAV-hM4D (Gi)	NAc	77.90 ± 21.02 (13)	nd	nd	nd

Data represent Mean ± S.E.M. The numbers of experiments are shown in the parentheses. DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid; HVA, homovanillic acid; ACh, acetylcholine; nd, not determined.

c: DA levels in the NAc with coca	Set of data	Type of statistical an		
	ine infusion into the NAc Two-way ANOVA for WT and p11 KO mice			
	Two-way ANOVA for WT and p11 KO mice group effect	Two-way ANOVA	F _(1, 120) =49.4312 F _(9, 120) =9.4748 F _(9, 120) =4.1100	p<0.000
	time effect group-time interaction	Two-way ANOVA Two-way ANOVA	F _(9, 120) =9.4748	p<0.000
		Two-way ANOVA	P (9, 120)-4.1100	p=0.000
: DA levels in the NAc with coca	aine infusion into the NAc (WT mice)			
	basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models	t(54)=1.2	p=0.235
	basal vs. 40 min basal vs. 60 min	mixed linear models mixed linear models	t ₍₅₄₎ =5.5 t ₍₅₄₎ =6.54	p<0.000 p<0.000
	basal vs. 80 min	mixed linear models		p<0.000
	basal vs. 100 min	mixed linear models	t ₍₅₄₎ =6.53 t ₍₅₄₎ =5.23	p<0.000
	basal vs. 120 min basal vs. 140 min	mixed linear models mixed linear models	t ₍₅₄₎ =5.23	p<0.000 p<0.000
	Dasarvs. 140 mm	mixed inear models	t ₍₅₄₎ =4.39	p<0.000
: DA levels in the NAc with coca	aine infusion into the NAc (p11 KO mice)			
	basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models	$t_{(54)} = -0.69$ $t_{(54)} = 0.3$ $t_{(54)} = 1.54$ $t_{(54)} = 1.79$	p=0.4942
	basal vs. 40 min	mixed linear models	$t_{(54)} = 0.5$ $t_{(54)} = 1.54$	p=0.128
	basal vs. 60 min basal vs. 80 min	mixed linear models	t ₍₅₄₎ =1.79	p=0.078
	basal vs. 100 min basal vs. 120 min	mixed linear models		
	basal vs. 120 min basal vs. 140 min	mixed linear models mixed linear models	$t_{(54)} = 3.78$ $t_{(54)} = 2.86$	p=0.002 p=0.000
		mixed inteal models	(54) 2.00	p=0.005
d: DA levels in the NAc with expo	sure to palatable food			
	Two-way ANOVA for WT and p11 KO mice group effect	Two-way ANOVA	F=37 1184	n<0.000
		Two-way ANOVA	F _(9,120) =3.4984	p=0.000
	group-time interaction	Two-way ANOVA	F _(1, 120) =37.1184 F _(9, 120) =3.4984 F _(9, 120) =2.3706	p=0.016
t DA lovels in the NAs with ever	osure to palatable food (WT mice)			
2. DA levels in the NAC with expo	basal vs. 20 min	mixed linear models	t ₍₅₄₎ =2.08	p=0.042
	basal vs. 40 min	mixed linear models	t ₍₅₄₎ =4.42	p<0.000
	basal vs. 60 min basal vs. 80 min	mixed linear models	$\begin{array}{c}t_{(54)}=\!$	p<0.000
	basal vs. 80 min basal vs. 100 min	mixed linear models mixed linear models		p<0.000 p<0.000
	basal vs. 100 min basal vs. 120 min	mixed linear models	$t_{(54)}=3.13$ $t_{(54)}=2.71$ $t_{(54)}=2.23$	p<0.000
	basal vs. 140 min	mixed linear models	t ₍₅₄₎ =2.23	p<0.000
d DA levels is the NAs with sure	osure to palatable food (p11 KO mice)			
2. STORES IN THE INAC WILL EXPO	basal vs. 20 min	mixed linear models	t _{/54} =1.15	p=0.254
	basal vs. 20 min basal vs. 40 min	mixed linear models	t ₍₅₄₎ =2.03	p=0.047
	basal vs. 60 min	mixed linear models	t(54)=1.72	p=0.091
	basal vs. 80 min basal vs. 100 min basal vs. 120 min	mixed linear models mixed linear models	$t_{(54)} = 1.72$ $t_{(54)} = 2.03$ $t_{(54)} = 1.72$ $t_{(54)} = -0.07$ $t_{(54)} = -1.7$	p=0.941 p=0.095
	basal vs. 100 min	mixed linear models		n=0.476
	basal vs. 140 min	mixed linear models	$t_{(54)} = -0.72$ $t_{(54)} = -0.74$	p=0.464
e: DA levels in the NAc with expo	Two-way ANOVA for WT and p11 KO mice			
	group effect time effect	Two-way ANOVA	F _(1.80) =39.2674 F _(7,80) =7.0594 F _(7,80) =3.7936	p<0.000
	time effect	Two-way ANOVA	F(7, 80)=7.0594	p<0.000
	group-time interaction	Two-way ANOVA	F(7,80)=3.7936	p=0.001
e: DA levels in the NAc with expo	osure to female mice (WT mice)			
	basal vs. 20 min basal vs. 40 min	mixed linear models	t ₍₃₅₎ =5.69	p<0.000
	basal vs. 40 min basal vs. 60 min	mixed linear models mixed linear models	t ₍₃₅₎ =8.36	p<0.000 p<0.000
	basal vs. 60 min	mixed linear models	t ₃₅₎ =3.39	n=0.001
	basal vs. 80 min basal vs. 100 min	mixed linear models	$\begin{array}{c} t_{(35)} = 3.69 \\ t_{(35)} = 8.36 \\ t_{(35)} = 5.29 \\ t_{(35)} = 3.39 \\ t_{(35)} = 3.06 \end{array}$	p=0.004
e: DA levels in the NAc with expo	osure to female mice (p11 KO mice) basal vs. 20 min	mixed linear models	t ₍₃₅₎ =0.33	p=0.742
	basal vs. 40 min basal vs. 60 min	mixed linear models	t ₍₃₅₎ =2.21 t ₍₃₅₎ =0.46	p=0.033 p=0.648
	basal vs. 60 min	mixed linear models	t ₍₃₅₎ =0.46	p=0.648
	basal vs. 80 min basal vs. 100 min	mixed linear models mixed linear models	t ₍₃₅₎ =0.17 t ₍₃₅₎ =-1.9	p=0.865 p=0.552
	Dasarvs. 100 min	mixed inear models	(35) 1.0	p=0.552
f: DA levels in the PFC with coca	ine infusion			
	Two-way ANOVA for WT and p11 KO mice group effect	Two-way ANOVA	-0.00070	0.756
	group effect	Two-way ANOVA	F(1, 120)=0.00970 F(1, 120)=8.8283	p=0.756
	group-time interaction	Two-way ANOVA Two-way ANOVA	F _(1, 120) =0.00970 F _(9, 120) =8.8283 F _(9, 120) =0.00895	p=0.999
		-		
: DA levels in the PFC with coca	ine infusion into the PFC (WT mice)	mixed linear models	t ₍₅₄₎ =0.9	p=0.371
	basal vs. 20 min basal vs. 40 min	mixed linear models	$t_{(54)}=0.9$ $t_{(54)}=3.04$	p=0.371 p=0.003
		mixed linear models	$t_{(54)} = 3.04$ $t_{(54)} = 4.29$	p<0.000
	basal vs. 80 min basal vs. 100 min basal vs. 120 min	mixed linear models	t=5.3	p<0.000
			+ -F 00	p<0.000
	basal vs. 120 min	mixed linear models mixed linear models	t ₍₅₄₎ =5.98 t ₍₅₄₎ =4.86	p<0.000
	basal vs. 120 min basal vs. 140 min	mixed linear models mixed linear models mixed linear models	$t_{(54)}^{(54)}=5.98$ $t_{(54)}=4.86$ $t_{(54)}=4.23$	p<0.000 p<0.000
	basal vs. 140 min	mixed linear models	$\substack{t_{(54)}=5.2\\t_{(54)}=5.9\\t_{(54)}=5.98\\t_{(54)}=4.86\\t_{(54)}=4.23}$	p<0.000 p<0.000
: DA levels in the PFC with coca	basal vs. 140 min	mixed linear models mixed linear models	t _{se} =1.06	p<0.000 p<0.000 p<0.000
DA levels in the PFC with coca	basal vs. 140 min ine infusion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models mixed linear models mixed linear models	t _{se} =1.06	p<0.000 p<0.000 p<0.000 p<0.000
DA levels in the PFC with coca	basaivs. 140 min aine infusion into the PFC (p11 KO mice) basaivs. 20 min basaivs. 40 min basaivs. 60 min	mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models	t _{se} =1.06	p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000
: DA levels in the PFC with coca	basal vs. 140 min ine infusion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 40 min basal vs. 60 min basal vs. 80 min	mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models	$t_{(54)}=1.06$ $t_{(54)}=3.26$ $t_{(54)}=4.61$ $t_{55}=5.4$	p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000
DA levels in the PFC with coca	basal vs. 140 min ine infusion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 40 min basal vs. 60 min basal vs. 80 min	mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models	$t_{(54)}=1.06$ $t_{(54)}=3.26$ $t_{(54)}=4.61$ $t_{55}=5.4$	p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000
DA levels in the PFC with coca	basaivs. 140 min aine infusion into the PFC (p11 KO mice) basaivs. 20 min basaivs. 40 min basaivs. 60 min	mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models	t _{se} =1.06	p<0.000 p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p<0.000
	basal vs. 140 min sine infusion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 40 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 120 min basal vs. 140 min	mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models	$\begin{array}{c} t_{(54)} \!=\! 1.06 \\ t_{(54)} \!=\! 3.26 \\ t_{(54)} \!=\! 4.61 \\ t_{(54)} \!=\! 5.4 \\ t_{(54)} \!=\! 5.4 \\ t_{(54)} \!=\! 4.94 \\ t_{(54)} \!=\! 5.18 \end{array}$	p<0.000 p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p<0.000
	basal vs. 140 min ine infution into BPC (p11 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 60 min basal vs. 500 min basal vs. 100 min basal vs. 120 min basal vs. 120 min basal vs. 140 min basal vs. 140 min	mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models	$\begin{array}{l}t_{(54)}\!=\!1.06\\t_{(54)}\!=\!3.26\\t_{(54)}\!=\!4.61\\t_{(54)}\!=\!5.4\\t_{(54)}\!=\!5.18\\t_{(54)}\!=\!5.18\\t_{(54)}\!=\!5.09\end{array}$	p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p<0.000
	basal vs. 140 min inte induction tito be PC (p11 KO mice) basal vs. 20 min FC (p11 KO mice) basal vs. 20 min basal vs. 60 min basal vs. 700 min basal vs. 120 min basal vs. 120 min basal vs. 120 min basal vs. 140 m	mixed linear models mixed linear models mixed linear models mixed inear models mixed linear models mixed linear models mixed linear models mixed linear models	$\begin{array}{l}t_{(54)}\!=\!1.06\\t_{(54)}\!=\!3.26\\t_{(54)}\!=\!4.61\\t_{(54)}\!=\!5.4\\t_{(54)}\!=\!5.18\\t_{(54)}\!=\!5.18\\t_{(54)}\!=\!5.09\end{array}$	p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p<0.000
	basal vs. 140 min is intusion in two BPGC (111 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 60 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 140 min osure to palatable food Two-way ANQVA for WT and p11 KO mice prime effect	mixed linear models mixed linear models	$\begin{array}{l}t_{(54)}\!=\!1.06\\t_{(54)}\!=\!3.26\\t_{(54)}\!=\!4.61\\t_{(54)}\!=\!5.4\\t_{(54)}\!=\!5.18\\t_{(54)}\!=\!5.18\\t_{(54)}\!=\!5.09\end{array}$	p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p<0.000
	basal vs. 140 min inte induction tito be PC (p11 KO mice) basal vs. 20 min FC (p11 KO mice) basal vs. 20 min basal vs. 60 min basal vs. 700 min basal vs. 120 min basal vs. 120 min basal vs. 120 min basal vs. 140 m	mixed linear models mixed linear models mixed linear models mixed inear models mixed linear models mixed linear models mixed linear models mixed linear models	$\begin{array}{c} t_{(54)} \!=\! 1.06 \\ t_{(54)} \!=\! 3.26 \\ t_{(54)} \!=\! 4.61 \\ t_{(54)} \!=\! 5.4 \\ t_{(54)} \!=\! 5.4 \\ t_{(54)} \!=\! 4.94 \\ t_{(54)} \!=\! 5.18 \end{array}$	p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p<0.000
g: DA levels in the PFC with expo	basal vs. 140 min ine infusion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 120 min basal vs. 140 min osure to palatable food Two-way ANOVA for WT and p11 KO mice group effect time effect group-time interaction osure to balatable food (WT mice)	mixed linear models mixed linear models mixed linear models mixed inear models mixed mixed inear models mixed inear models mixe	$\begin{array}{l} t_{54 }=1.06\\ t_{54 }=3.26\\ t_{54 }=3.26\\ t_{54 }=5.4\\ t_{54 }=5.4\\ t_{54 }=5.9\\ t_{54 }=5.09\\ \end{array}$ Fr. $_{120 }=0.0733$ F $_{[0,\ 120]}=0.1733$ F $_{[0,\ 120]}=0.1100$	p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000
g: DA levels in the PFC with expo	basal vs. 140 min ine instal vs. 240 min basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 120 min basal vs. 120 min basal vs. 120 min basal vs. 140 min basal vs. 140 min basal vs. 140 min basal vs. 200 min the effect imme effect imme infect imme infect imme altable food (VT mice) basal vs. 20 min	mixed linear models mixed linear models mixed linear models mixed inear models mixed linear models mixed linear models mixed linear models mixed linear models Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models	$\begin{array}{l} t_{541}=1.06\\ t_{541}=3.26\\ t_{541}=4.21\\ t_{541}=5.4\\ t_{541}=5.4\\ t_{541}=5.4\\ t_{541}=5.18\\ t_{541}=5.09\\ \end{array}$	p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000
g: DA levels in the PFC with expo	basal vs. 140 min ine instusion into the PFC (111 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 60 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 140 min osure to palatable food Two-way ANQVA for WT and p11 KO mice group-lime interaction osure to palatable food (WT mice) basal vs. 20 min basal vs. 20 min basal vs. 20 min	mixed linear models mixed linear models Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models	$\begin{array}{l} t_{541}=1.06\\ t_{541}=3.26\\ t_{541}=4.21\\ t_{541}=5.4\\ t_{541}=5.4\\ t_{541}=5.4\\ t_{541}=5.18\\ t_{541}=5.09\\ \end{array}$	p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000
g: DA levels in the PFC with expo	basal vs. 140 min ine instalion into the PFC (p11 K0 mice) basal vs. 20 min basal vs. 20 min basal vs. 60 min basal vs. 80 min basal vs. 100 min basal vs. 200 min group affect is me affect is me affect basal vs. 20 min basal vs. 40 min basal vs. 40 min basal vs. 40 min basal vs. 40 min	mixed linear models mixed linear models Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models mixed linear models	$\begin{split} & t_{dag} = 1.06 \\ & t_{dag} = 0.26 \\ & t_{dag} = 0.26 \\ & t_{dag} = 0.61 \\ & t_{dag} = 0.61 \\ & t_{dag} = 0.41 \\ & t_{dag} = 0.0733 \\ & r_{a}, t_{agg} = 0.0733 \\ & r_{a}, t_{a}, t$	p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000
g: DA levels in the PFC with expo	basal vs. 140 min ine instalion into the PFC (p11 K0 mice) basal vs. 20 min basal vs. 20 min basal vs. 60 min basal vs. 80 min basal vs. 100 min basal vs. 200 min group affect is me affect is me affect basal vs. 20 min basal vs. 40 min basal vs. 40 min basal vs. 40 min basal vs. 40 min	mixed linear models mixed linear models	$\begin{split} & t_{dag} = 1.06 \\ & t_{dag} = 0.26 \\ & t_{dag} = 0.26 \\ & t_{dag} = 0.61 \\ & t_{dag} = 0.61 \\ & t_{dag} = 0.41 \\ & t_{dag} = 0.0733 \\ & r_{a}, t_{agg} = 0.0733 \\ & r_{a}, t_{a}, t$	p=0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p=0.000 p=0.999 p<0.000 p<0.000 p=0.000 p<0.000 p<0.000 p<0.000
g: DA levels in the PFC with expo	basal vs. 140 min ine instalor, into the PFC (p11 KC mice) basal vs. 20 min basal vs. 20 min basal vs. 60 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 110 min basal vs. 100 min basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 80 mi	mixed linear models mixed linear models mixed inear models	$\begin{array}{c} t_{esc}\!=\!1.06\\ t_{esc}\!=\!2.26\\ t_{esc}\!=\!4.61\\ t_{esc}\!=\!6.4\\ t_{esc}\!=\!5.18\\ t_{esc}\!=\!5.18\\ t_{esc}\!=\!5.09\\ t_{esc}\!=\!5.09\\ t_{esc}\!=\!2.000\\ t_{esc}\!=\!2.2\\ t_{esc}\!=\!6.22\\ t_{esc}\!$	p=0.000 p=0.000 p=0.000 p=0.001 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000
g: DA levels in the PFC with expo	basal vs. 140 min ine instalion into the PFC (p11 K0 mice) basal vs. 20 min basal vs. 20 min basal vs. 60 min basal vs. 80 min basal vs. 100 min basal vs. 200 min group affect is me affect is me affect basal vs. 20 min basal vs. 40 min basal vs. 40 min basal vs. 40 min basal vs. 40 min	mixed linear models mixed linear models	$\begin{split} & t_{dag} = 1.06 \\ & t_{dag} = 0.26 \\ & t_{dag} = 0.26 \\ & t_{dag} = 0.61 \\ & t_{dag} = 0.61 \\ & t_{dag} = 0.41 \\ & t_{dag} = 0.0733 \\ & r_{a}, t_{agg} = 0.0733 \\ & r_{a}, t_{a}, t$	p=0.000 p=0.000 p=0.000 p=0.001 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000
g: DA levels in the PFC with exp g: DA levels in the PFC with exp	basal vs. 140 min ine instalion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 80 min basal vs. 80 min basal vs. 100 min basal vs. 20 min basal vs. 20 min basal vs. 40 min basal vs. 40 min basal vs. 100 min	mixed linear models mixed linear models mixed inear models	$\begin{array}{c} t_{esc}\!=\!1.06\\ t_{esc}\!=\!2.26\\ t_{esc}\!=\!4.61\\ t_{esc}\!=\!6.4\\ t_{esc}\!=\!5.18\\ t_{esc}\!=\!5.18\\ t_{esc}\!=\!5.09\\ t_{esc}\!=\!5.09\\ t_{esc}\!=\!2.000\\ t_{esc}\!=\!2.2\\ t_{esc}\!=\!6.22\\ t_{esc}\!$	p=0.000 p=0.000 p=0.000 p=0.010 p=0.011 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000
g: DA levels in the PFC with exp g: DA levels in the PFC with exp	basal vs. 140 min ine instalion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 80 min basal vs. 80 min basal vs. 100 min basal vs. 20 min basal vs. 20 min basal vs. 40 min basal vs. 40 min basal vs. 100 min	mixed linear models mixed linear models mixed linear models mixed inear models mixed inear models mixed inear models mixed linear models	$\begin{array}{c} t_{eq} = 1.06\\ t_{eq} = 2.6\\ t_{eq} = 5.4\\ t_{eq} = 5.16\\ t_{eq} = 5.09\\ F_{e}, t_{eq} = 5.09\\ F_{e}, t_{eq} = 0.0733\\ F_{e}, t_{eq} = 0.0733\\ t_{eq} = 2.2\\ t_{eq} = 2.5\\ t_{eq} = 2.5\\ t_{eq} = 2.5\\ t_{eq} = 1.9\\ t_{eq} = 4.55\\ \end{array}$	p=0.000 p=0.000 p=0.000 p=0.001 p=0.001 p=0.000 p=0.000 p=0.000 p=0.999 p=0.999 p=0.000 p=0.000 p=0.000 p=0.000 p=0.003 p=0.003
); DA levels in the PFC with expo); DA levels in the PFC with expo	basal vs. 140 min ine infusion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 40 min basal vs. 80 min basal vs. 100 min basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 100 min basal vs. 20 min basal vs.	mixed linear models mixed linear models mixed linear models mixed inear models mixed inear models mixed linear models	$\begin{array}{c} t_{corr} = 1.06\\ t_{corr} = 2.26\\ t_{corr} = 4.81\\ t_{corr} = 2.48\\ t_{corr} = 5.48\\ t_{corr} = 5.09\\ F_{corr} = 1.18\\ t_{corr} = 5.09\\ F_{corr} = 1.18\\ t_{corr} = 5.09\\ F_{corr} = 1.18\\ t_{corr} = 5.2\\ t_{corr} = 4.23\\ t_{corr} = 5.2\\ t_{corr} = 4.67\\ t_{corr} = 4.23\\ t$	p=0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p=0.013 p=0.063 p<0.000
); DA levels in the PFC with expo); DA levels in the PFC with expo	basal vs. 140 min ine infusion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 40 min basal vs. 80 min basal vs. 100 min basal vs. 20 min	mixed linear models mixed linear models	$\begin{array}{c} t_{corr} = 1.06\\ t_{corr} = 2.26\\ t_{corr} = 4.81\\ t_{corr} = 2.48\\ t_{corr} = 5.48\\ t_{corr} = 5.09\\ F_{corr} = 1.18\\ t_{corr} = 5.09\\ F_{corr} = 1.18\\ t_{corr} = 5.09\\ F_{corr} = 1.18\\ t_{corr} = 5.2\\ t_{corr} = 4.23\\ t_{corr} = 5.2\\ t_{corr} = 4.67\\ t_{corr} = 4.23\\ t$	p=0.000 p=0.000 p=0.000 p=0.001 p=0.001 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.000 p=0.003 p=0.003 p=0.003
); DA levels in the PFC with expo); DA levels in the PFC with expo	basal vs. 140 min ine instal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 120 min basal vs. 20 min basal vs. 40 min basal vs. 100 min basal vs. 40 min basal vs. 100 min basal vs. 40 min basal vs. 20 min basal vs. 20 min basal vs. 40 min basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models mixed inear models mixed inear models mixed inear models mixed inear models mixed linear models mixed linear models mixed linear models mixed linear models mixed inear models mixed inear models mixed inear models mixed inear models mixed inear models mixed linear models mixed linear models mixed inear models	$\begin{split} t_{ca} &= 1.06\\ t_{ca} &= 3.26\\ t_{ca} &= 4.61\\ t_{ca} &= 5.4\\ t_{ca} &= 5.4\\ t_{ca} &= 5.18\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 4.23\\ t_{ca} &= 5.02\\ t_{ca} &= 4.23\\ t_{ca} &= 5.92\\ t_{ca} &= 4.67\\ t_{ca} &= 4.23\\ t_{ca} &= 5.92\\ t_{ca} &= 4.67\\ t_{ca} &= 4.22\\ t_{ca} &= 5.92\\ t_{ca} &= 4.55\\ t_{ca} &= 5.86\\ t_{ca} &= 4.49 \end{split}$	p<0.000 p<0.000 p<0.000 p=0.293 p=0.001 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000
); DA levels in the PFC with expo); DA levels in the PFC with expo	basal vs. 140 min ine instal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 120 min basal vs. 20 min basal vs. 40 min basal vs. 100 min basal vs. 40 min basal vs. 100 min basal vs. 40 min basal vs. 20 min basal vs. 20 min basal vs. 40 min basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models mixed linear models mixed inear models mixed inear models mixed inear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed inear models	$\begin{split} t_{ca} &= 1.06\\ t_{ca} &= 3.26\\ t_{ca} &= 4.61\\ t_{ca} &= 5.4\\ t_{ca} &= 5.4\\ t_{ca} &= 5.18\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 4.23\\ t_{ca} &= 5.02\\ t_{ca} &= 4.23\\ t_{ca} &= 5.92\\ t_{ca} &= 4.67\\ t_{ca} &= 4.23\\ t_{ca} &= 5.92\\ t_{ca} &= 4.67\\ t_{ca} &= 4.22\\ t_{ca} &= 5.92\\ t_{ca} &= 4.55\\ t_{ca} &= 5.86\\ t_{ca} &= 4.49 \end{split}$	p=0.000 p=0.000 p=0.001 p=0.001 p=0.001 p=0.001 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.00000 p=0.00000 p=0.00000 p=0.00000 p=0.0000000000
g: DA levels in the PFC with exp g: DA levels in the PFC with exp	basal vs. 140 min ine infusion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 40 min basal vs. 80 min basal vs. 100 min basal vs. 20 min	mixed linear models mixed linear models	$\begin{array}{c} t_{corr} = 1.06\\ t_{corr} = 2.26\\ t_{corr} = 4.81\\ t_{corr} = 2.48\\ t_{corr} = 5.48\\ t_{corr} = 5.09\\ F_{corr} = 1.18\\ t_{corr} = 5.09\\ F_{corr} = 1.18\\ t_{corr} = 5.09\\ F_{corr} = 1.18\\ t_{corr} = 5.2\\ t_{corr} = 4.23\\ t_{corr} = 5.2\\ t_{corr} = 4.67\\ t_{corr} = 4.23\\ t$	p<0.000 p<0.000 p<0.000 p=0.2933 p=0.0019 p<0.000 p<0.000 p<0.000 p<0.000
: DA levels in the PFC with expr ; DA levels in the PFC with expr ; DA levels in the PFC with expr	basal vs. 140 min ine infusion into the PFC (11 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 60 min basal vs. 100 min basal vs. 20 min	mixed linear models mixed linear models mixed linear models mixed inear models mixed inear models mixed inear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed inear models	$\begin{split} t_{ca} &= 1.06\\ t_{ca} &= 3.26\\ t_{ca} &= 4.61\\ t_{ca} &= 5.4\\ t_{ca} &= 5.4\\ t_{ca} &= 5.18\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 4.23\\ t_{ca} &= 5.02\\ t_{ca} &= 4.23\\ t_{ca} &= 5.92\\ t_{ca} &= 4.67\\ t_{ca} &= 4.23\\ t_{ca} &= 5.92\\ t_{ca} &= 4.67\\ t_{ca} &= 4.22\\ t_{ca} &= 5.92\\ t_{ca} &= 4.55\\ t_{ca} &= 5.86\\ t_{ca} &= 4.49 \end{split}$	p=0.000 p=0.000 p=0.001 p=0.001 p=0.001 p=0.001 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.0000 p=0.00000 p=0.00000 p=0.00000 p=0.00000 p=0.0000000000
: DA levels in the PFC with expr ; DA levels in the PFC with expr ; DA levels in the PFC with expr	basal vs. 140 min sine sinusion into the PFC (p11 KO mice) basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 80 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 140 min cours to palatable food Two-way ANOVA for WT and p11 KO mice group-time interaction cours to palatable food (VT mice) basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 100 min basal vs. 20 min basal vs. 100 min basal vs.	mixed linear models mixed linear models	$\begin{array}{c} t_{eq}=1.06\\ t_{eq}=4.06\\ t_{eq}=4.61\\ t_{eq}=4.61\\ t_{eq}=4.94\\ t_{eq}=2.94\\ t_{eq}=2.94\\ t_{eq}=2.0733\\ t_{eq}=5.09\\ t_{eq}=4.23\\ t_{eq}=4.23\\ t_{eq}=4.23\\ t_{eq}=4.22\\ t_{eq}=4.$	p<0.000 p<0.000 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.0
g: DA levels in the PFC with exp g: DA levels in the PFC with exp g: DA levels in the PFC with exp	basal vs. 140 min ine instal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 20 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 120 min basal vs. 20 min basal vs. 40 min basal vs. 100 min basal vs. 40 min basal vs. 100 min basal vs. 40 min basal vs. 20 min basal vs. 20 min basal vs. 40 min basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models mixed linear models mixed inear models mixed inear models mixed inear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed inear models	$\begin{split} t_{ca} &= 1.06\\ t_{ca} &= 3.26\\ t_{ca} &= 4.61\\ t_{ca} &= 5.4\\ t_{ca} &= 5.4\\ t_{ca} &= 5.18\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 5.09\\ t_{ca} &= 4.23\\ t_{ca} &= 5.02\\ t_{ca} &= 4.23\\ t_{ca} &= 5.92\\ t_{ca} &= 4.67\\ t_{ca} &= 4.23\\ t_{ca} &= 5.92\\ t_{ca} &= 4.67\\ t_{ca} &= 4.22\\ t_{ca} &= 5.92\\ t_{ca} &= 5.$	p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.000 p<0.0

	group-time interaction	Two-way ANOVA	F _(7,80) =0.7459	p=0.633
h DA lavala is the DEC with surger	<u></u>	Two-way ANOVA	1 (7, 80)-0.7455	p=0.000
h: DA levels in the PFC with expos	basal vs. 20 min	mixed linear models	t ₍₃₅₎ =5.76	p<0.000
	basal vs. 40 min basal vs. 60 min	mixed linear models mixed linear models	t ₍₃₅₎ =7.14 t ₍₃₅₎ =3.72	p<0.000 p=0.000
	basal vs. 80 min	mixed linear models	t ₍₃₅₎ =1.28	p=0.209
	basal vs. 100 min	mixed linear models	t ₍₃₅₎ =-0.05	p=0.961
DA levels in the PFC with expos	ure to female mice (p11 KO mice) basal vs. 20 min	mixed linear models	t ₍₃₅₎ =3.34	p=0.002
	basal vs. 40 min	mixed linear models	t ₍₃₅₎ =6.59	p<0.000
	basal vs. 60 min basal vs. 80 min	mixed linear models mixed linear models	t ₍₃₅₎ =3.54 t ₍₃₅₎ =1.89	p=0.001 p=0.067
	basal vs. so min basal vs. 100 min	mixed linear models	t ₍₃₅₎ =2.16	p=0.087 p=0.037
jure 2				
: DA levels in the NAc with cocain	e and/or nicotine infusion in p11 KO mice Two-way ANOVA for cocaine and cocaine + nicotine infusion			
	group effect time effect	Two-way ANOVA Two-way ANOVA	F _(1, 120) =45.9468 F _(9, 120) =9.0389	p<0.000 p<0.000
	group-time interaction	Two-way ANOVA	F _(9, 120) =3.0465	p<0.000 p=0.002
	Two-way ANOVA for nicotine and cocaine + nicotine infusion			
	group effect	Two-way ANOVA	F(1, 110)=83.0855	p<0.000
	time effect group-time interaction	Two-way ANOVA Two-way ANOVA	F _(9, 110) =4.9164 F _(9, 110) =5.2703	p<0.000 p<0.000
DA levels in the NAc with cocain	e and nicotine infusion in p11 KO mice			
	basal vs. 20 min	mixed linear models	t(54)=1.32	p=0.193
	basal vs. 40 min basal vs. 60 min	mixed linear models mixed linear models	t ₍₅₄₎ =4.37 t ₍₅₄₎ =6.19	p<0.000 p<0.000
	basal vs. 80 min	mixed linear models	t ₍₅₄₎ =6.05	p<0.00
	basal vs. 100 min basal vs. 120 min	mixed linear models mixed linear models	t ₍₅₄₎ =5.03 t ₍₅₄₎ =5.53	p<0.00 p<0.00
	basal vs. 140 min	mixed linear models	t ₍₅₄₎ =5.46	p<0.00
DA levels in the NAc with nicotin	e infusion in p11 KO mice			
	basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models	t ₍₄₅₎ =-0.46 t ₍₄₅₎ =0.09	p=0.65 p=0.92
	basal vs. 60 min	mixed linear models	t ₍₄₅₎ =0.21	p=0.83
	basal vs. 80 min basal vs. 100 min	mixed linear models mixed linear models	t ₍₄₅₎ =-0.03 t ₍₄₅₎ =-0.07	p=0.98 p=0.94
	basal vs. 120 min	mixed linear models	turo=0.08	p=0.93
	basal vs. 140 min	mixed linear models	t ₍₄₅₎ =-1.49	p=0.14
DA levels in the NAc with cocain	e and/or oxotremorine infusion in p11 KO mice Two-way ANOVA for cocaine and cocaine + oxotremorine infusion			
	group effect	Two-way ANOVA	F(1. 120)=89.7480	p<0.00
	time effect group-time interaction	Two-way ANOVA Two-way ANOVA	F _(9, 120) =03.7400 F _(9, 120) =13.8003 F _(9, 120) =5.6135	p<0.00 p<0.00
		The hay recent	(9, 120)	p -0.00
	Two-way ANOVA for oxotremorine and cocaine + oxotremorine infusion group effect	Two-way ANOVA	F(1. 110)=72.5608	p<0.00
	time effect	Two-way ANOVA Two-way ANOVA	F _(9, 110) =8.88318 F _(9, 110) =5.3849	p<0.00
	group-time interaction	Two-way ANOVA	F(9, 110)=0.3849	p<0.00
DA levels in the NAc with cocain	e and oxotremorine infusion in p11 KO mice basal vs. 20 min	mixed linear models	t ₍₅₄₎ =1.72	p=0.09
	basal vs. 40 min	mixed linear models	tev=6.21	p<0.00
	basal vs. 60 min basal vs. 80 min	mixed linear models mixed linear models	t ₍₅₄₎ =7.6 t ₍₅₄₎ =8.13	p<0.00 p<0.00
	basal vs. 100 min basal vs. 120 min	mixed linear models	t ₍₅₄₎ =9.28	p<0.00
	basal vs. 120 min basal vs. 140 min	mixed linear models mixed linear models	t ₍₅₄₎ =7.82 t ₍₅₄₎ =7.47	p<0.000
DA levels in the NAc with oxotre	morine infusion in p11 KO mice			
	basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models	t ₍₄₅₎ =1.25	p=0.21 p=0.16
	basal vs. 60 min	mixed linear models	t ₍₄₅₎ =1.42 t ₍₄₅₎ =2.26	p=0.02
	basal vs. 80 min	mixed linear models	t ₍₄₅₎ =1.37 t ₍₄₅₎ =0.75	p=0.17
	basal vs. 100 min basal vs. 120 min	mixed linear models mixed linear models	t ₍₄₅₎ =0.75 t ₍₄₅₎ =1.88	p=0.45 p=0.06
	basal vs. 140 min	mixed linear models	t ₍₄₅₎ =0.66	p=0.51
ure 3 : DA levels in the NAc with cocain	- infuning			
. DA levels in the NAC with cocain	Two-way ANOVA for WT and ChAT-p11 cKO mice			
	group effect time effect	Two-way ANOVA Two-way ANOVA	F _(1, 140) =108.3406 F _(9, 140) =21.5972	5 p<0.00 n<0.00
	group-time interaction	Two-way ANOVA	F _(9, 140) =6.8674	p<0.00
DA levels in the NAc with cocain	e infusion into the NAc (WT mice)			
	basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models	t ₍₆₃₎ =2.24 t ₍₆₃₎ =6.09	p=0.02 p<0.00
	basal vs. 60 min	mixed linear models		p<0.00
	basal vs. 80 min basal vs. 100 min	mixed linear models mixed linear models	t ₍₆₃₎ =9.09 t ₍₆₃₎ =9	p<0.00 p<0.00
	basal vs. 120 min	mixed linear models		p<0.00
	basal vs. 140 min	mixed linear models	t ₍₆₃₎ =9.71	p<0.00
DA levels in the NAc with cocain	e infusion into the NAc (ChAT-p11 cKO mice) basal vs. 20 min	mixed linear models	t ₍₆₃₎ =0.28	p=0.77
	basal vs. 40 min	mixed linear models	ten=4.04	p=0.00
	basal vs. 60 min basal vs. 80 min	mixed linear models mixed linear models	$t_{(63)}^{(03)}=4.2$ $t_{(63)}^{(03)}=4.44$	p<0.00 p<0.00
	basal vs. 100 min	mixed linear models		n<0.00
	basal vs. 120 min basal vs. 140 min	mixed linear models mixed linear models	t ₍₆₃₎ =4.84 t ₍₆₃₎ =5.38	p<0.00 p<0.00
DA levels in the NAc with expose	ure to palatable feed			
DA levels in the NAC with exposi-	Two-way ANOVA for WT and ChAT-p11 cKO mice			
	group effect time effect	Two-way ANOVA Two-way ANOVA	F _(1.140) =29.2503 F _(0.140) =2.5700	p<0.00 p=0.00
	group-time interaction	Two-way ANOVA	F _(9, 140) =3.0056	p=0.00
DA levels in the NAc with exposi				
	basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models	t ₍₆₃₎ =5.14 t ₁₀₀ =6.24	p<0.00
	basal vs. 60 min	mixed linear models	t ₍₆₃₎ =6.24 t ₍₆₃₎ =2.91	p=0.00
	basal vs. 80 min	mixed linear models mixed linear models	t ₍₆₃₎ =1.95 t ₍₆₃₎ =1.96	p=0.05
	basal vs. 100 min basal vs. 120 min	mixed linear models	t ₍₆₃₎ =1.08	p=0.28
	basal vs. 140 min	mixed linear models	t ₍₆₃₎ =1.77	p=0.08
	ure to palatable food (ChAT-p11 cKO mice)			
DA levels in the NAc with expose			1 - 0.42	p=0.66
DA levels in the NAc with exposition	basal vs. 40 min	mixed linear models mixed linear models	t ₍₆₃₎ =-0.43 t _{en1} =-0.31	p=0.75
: DA levels in the NAc with exposi	basal vs. 40 min basal vs. 40 min basal vs. 60 min	mixed linear models mixed linear models	t ₍₆₃₎ =-0.31 t ₍₆₃₎ =-0.45	p=0.75 p=0.65
: DA levels in the NAc with expose	basal vs. 20 min basal vs. 40 min basal vs. 80 min basal vs. 80 min	mixed linear models mixed linear models mixed linear models	t ₍₆₃₎ =-0.31 t ₍₆₃₎ =-0.45 t ₍₆₃₎ =-0.72	p=0.750 p=0.657 p=0.473
DA levels in the NAc with exposi- tion of the	basal vs. 40 min basal vs. 40 min basal vs. 60 min	mixed linear models mixed linear models	t ₍₆₃₎ =-0.31 t ₍₆₃₎ =-0.45	p=0.750 p=0.657 p=0.473 p=0.900 p=0.838 p=0.757

c: DA levels in the NAc with exposure to female mice Two-way ANOVA for WT and ChAT-p11 cKO mice group effect time effect group-time interaction Two-way ANOVA Two-way ANOVA Two-way ANOVA F_(1, 112)=31.1748 F_(7, 112)=6.5263 F_(7, 112)=4.9259 c: DA levels in the NAc with exposure to famale mice (WT mice) basal vs. 20 min basal vs. 40 min basal vs. 40 min basal vs. 60 min basal vs. 80 min basal vs. 100 min mixed linear models mixed linear models mixed linear models $t_{(49)}=5$ $t_{(49)}=6.39$ $t_{(49)}=3.29$ $t_{(49)}=1.8$ $t_{(49)}=1.79$ nixed linear models ure to female mice (ChAT-p11 cKO mice) basal vs. 20 min basal vs. 40 min basal vs. 60 min basal vs. 80 min basal vs. 100 min c: DA levels in the NAc with expos $\begin{array}{l}t_{(49)}{=}0.37\\t_{(49)}{=}1.12\\t_{(49)}{=}2.51\\t_{(49)}{=}1.24\\t_{(49)}{=}0.02\end{array}$ xed linear mod mixed linear models mixed linear models mixed linear models mixed linear models Figure 4 c: DA levels in the NAc with cocaine infusion in ChAT-p11 cKO mice injected with AAV.p11 or AAV.YPP Two-way ANOVA for AAV.p11 and AAV.YPP groupe filter time effect group-filter inferaction Two-way ANOVA Two-way ANOVA Two-way ANOVA F_(1, 140)=39.4565 F_(9, 140)=8.6938 F_(9, 140)=2.6737 c: DA levels in the NAc with cocaine influion into the NAc (p11 cKO + AAV-YFP) basal vs. 20 min basal vs. 20 min basal vs. 60 min basal vs. 100 min basal vs. 100 min basal vs. 120 min basal vs. 120 min mixed linear models $\begin{array}{c}t_{(63)}{=}0.17\\t_{(63)}{=}4.83\\t_{(63)}{=}5.37\\t_{(63)}{=}5.71\\t_{(63)}{=}6.91\\t_{(63)}{=}5.5\\t_{(63)}{=}4.29\end{array}$ nixed linear model c: DA levels in the NAc with cocaine influsion into the NAc (p11 cKO + AAV-p11) basal vs. 20 min basal vs. 60 min basal vs. 60 min basal vs. 80 min basal vs. 100 min basal vs. 120 min basal vs. 140 min $\begin{array}{c}t_{(63)}{=}0.91\\t_{(63)}{=}4.15\\t_{(63)}{=}5.59\\t_{(63)}{=}6.41\\t_{(63)}{=}6.22\\t_{(63)}{=}5.92\\t_{(63)}{=}4.92\end{array}$ xed linear models mixed linear models d: DA levels in the NAc with exposure to palatable food in ChAT-p11 dKO mice injected with AAV-p11 or AAV-YFP Two-way ANOVA for AAV-p11 and AAV-YFP group effect time effect group-time interaction Two-way ANOVA Two-way ANOVA Two-way ANOVA F_(1. 140)=57.9163 F_(9, 140)=3.8107 F_(9, 140)=3.4534 d: DA levels in the NAc with exposure to palatable food (p11 cKO + AAV-YFP) baaal vs. 20 min baaal vs. 20 min baaal vs. 80 min baaal vs. 80 min baaal vs. 100 min baaal vs. 100 min baaal vs. 100 min mixed linear models $\begin{array}{c}t_{(63)} = -0.54\\t_{(63)} = 0.75\\t_{(63)} = -2.08\\t_{(63)} = -2.62\\t_{(63)} = -2.21\\t_{(63)} = -1.85\\t_{(63)} = -3.65\end{array}$ d: DA levels in the NAc with exposure to palatable food (p11 dK0 + AAV-p11) basal vs. 20 min basal vs. 40 min basal vs. 60 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 140 min mixed linear models $\begin{array}{c}t_{(63)}{=}4.45\\t_{(63)}{=}6.65\\t_{(63)}{=}3.76\\t_{(63)}{=}3.66\\t_{(63)}{=}2.07\\t_{(63)}{=}2.2\\t_{(63)}{=}0.98\end{array}$ vels in the NAc with exposure to female mice in ChAT-p11 cKO mice injected with AAV-p11 or AAV-YFP Two-way ANOVA for AAV-p11 and AAV-YFP group effect time effect group-time interaction F_(1, 112)=25.2729 F_(7, 112)=5.4068 F_(7, 112)=2.5674 Two-way ANOVA Two-way ANOVA Two-way ANOVA e: DA levels in the NAc with exposure to female mice (p11 cKO + AAV-YFP) basis vs. 20 min basis vs. 20 min basis vs. 80 min basis vs. 80 min basis vs. 100 min mixed linear models $t_{(49)}=0.62$ $t_{(49)}=1.92$ $t_{(49)}=0.25$ $t_{(49)}=-1.14$ $t_{(49)}=-0.64$ e: DA levels in the NAc with exposure to female mice (p11 cKO + AAV-p11) basal vz. 20 min basal vz. 60 min basal vz. 60 min basal vz. 60 min $t_{(49)} = 5.9$ $t_{(49)} = 5.69$ $t_{(49)} = 3.21$ $t_{(49)} = 2.05$ $t_{(49)} = 2.38$ mixed linear models Figure 5 a: ACh levels in the NAc with cocaine infusion Two-way ANOVA for WT and ChAT-p11 cKO mice group effect time effect group-time interaction Two-way ANOVA Two-way ANOVA Two-way ANOVA F_(1,324)=35.3923 F_(17,324)=0.9289 F_(17,324)=1.7341 group-lime interaction a: ACh levels in the NAc with cocaine intuision ind the NAc (WT mice) basal vs. 10 min basal vs. 20 min basal vs. 30 min basal vs. 40 min basal vs. 50 min basal vs. 50 min basal vs. 70 min basal vs. 70 min basal vs. 100 min basal vs. 100 min basal vs. 120 min $\begin{array}{c} t_{(187)}{=}{-}0.14\\ t_{(187)}{=}{-}4.07\\ t_{(187)}{=}{2.86}\\ t_{(187)}{=}{2.65}\\ t_{(187)}{=}{3.73}\\ t_{(187)}{=}{3.55}\\ t_{(187)}{=}{4.11}\\ t_{(187)}{=}{3.23}\\ t_{(187)}{=}{2.53}\\ t_{(187)}{=}{2.53}\\ t_{(187)}{=}{2.76}\\ t_{(187)}{=}{3.29} \end{array}$ ed linear model mixed linear models a: ACh levels in the NAc with cocaine infusion into the NAc (ChAT-p11 cKO mice) $\begin{array}{c} t_{(119)}{=}{-}0.55\\ t_{(119)}{=}{-}1.2\\ t_{(119)}{=}{-}1.2\\ t_{(119)}{=}{-}0.46\\ t_{(119)}{=}{-}0.46\\ t_{(119)}{=}{-}0.44\\ t_{(119)}{=}{-}1.03\\ t_{(119)}{=}{-}1.36 \end{array}$ mixed linear models he infusion into the basal vs. 10 min basal vs. 20 min basal vs. 30 min basal vs. 40 min basal vs. 50 min basal vs. 60 min basal vs. 70 min basal vs. 80 min basal vs. 90 min xed linear models

p<0.0001 p<0.0001 p<0.0001

p<0.0001 p<0.0001 p=0.0018 p=0.0785 p=0.0802

p=0.7103 p=0.2681 p=0.0153 p=0.2202 p=0.9862

p<0.0001 p<0.0001 p<0.0001

=0.8632 p=0.8632 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001

p=0.3647 p=0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001

p<0.0001 p=0.0003 p=0.0007

p=0.5909 p=0.4536 p=0.0412 p=0.0111 p=0.0308 p=0.0695 p=0.0005

p<0.0001 p<0.0001 p=0.0004 p=0.0005 p=0.0424 p=0.0315 p=0.3308

p<0.0001 p<0.0001 p=0.0172

p=0.5353 p=0.0608 p=0.8038 p=0.2615 p=0.5276

p<0.0001 p<0.0001 p=0.0023 p=0.0458 p=0.0212

n<0.0001 p=0.5400 p=0.0358

=0.8895

 $\begin{array}{l} p=0.8895\\ p<0.0001\\ p=0.0047\\ p=0.0087\\ p=0.0003\\ p=0.0005\\ p<0.0005\\ p<0.0015\\ p=0.0123\\ p=0.0012\\ p=0.0039\\ p=0.0063\\ p=0.0012 \end{array}$

p=0.5808 p=0.2334 p=0.0502 p=0.0191 p=0.6487 p=0.835 p=0.6587 p=0.3053 p=0.1767

	basal vs. 100 min	mixed linear models	t ₍₁₁₉₎ =-0.44 t ₍₁₁₉₎ =0.07	p=0.6627
	basal vs. 110 min basal vs. 120 min	mixed linear models mixed linear models	t ₍₁₁₉₎ =0.07 t ₍₁₁₉₎ =0.39	p=0.9468 p=0.6987
Figure 6				
	infusion in ChAT-p11 cKO mice injected with AAV-rM3D or AAV-mCherry	One-way ANOVA	F _(3, 20) =7.643	p=0.0014
	AAV-mCherry/CNO 10 μM vs AAV-rM3D/CNO 10 μM AAV-rM3D/CNO 3 μM vs AAV-rM3D/CNO 10 μM	Newman-Keuls pos hoc te Newman-Keuls pos hoc te	st	p<0.01 p<0.01
			Ĩ	p-0.01
c: DA levels in the NAC with cocal	ne or CNO + cocaine infusion in ChAT-p11 cKO mice injected with AAV-rM3D or AAV- Two-way ANOVA for AAV-rM3D/CNO + cocaine or AAV-mCherry/CNO + cocaine group effect			
	group effect time effect	Two-way ANOVA Two-way ANOVA	F _(1, 100) =94.7020 F _(9, 100) =23.4516	p<0.0001 p<0.0001
	group-time interaction	Two-way ANOVA	F _(9, 100) =5.7876	p<0.0001
	Two-way ANOVA for AAV-rM3D/CNO + cocaine or AAV-rM3D/cocaine			
	group effect time effect	Two-way ANOVA	F(1, 100)=106.4829	p<0.0001
	group-time interaction	Two-way ANOVA Two-way ANOVA	F _(1, 100) =106.4829 F _(9, 100) =15.2109 F _(9, 100) =6.4710	p<0.0001 p<0.0001
c: DA levels in the NAc with CNO	+ cocaine infusion in ChAT-p11 cKO mice injected with AAV-rM3D			
	basal vs. 20 min basal vs. 40 min	mixed linear models	t(45)=2.53	p=0.015
	basal vs. 60 min	mixed linear models mixed linear models	t ₍₄₅₎ =7.21 t ₍₄₅₎ =6.78	p<0.0001 p<0.0001 p<0.0001
	basal vs. 80 min basal vs. 100 min	mixed linear models mixed linear models	t ₍₄₅₎ =7.95 t ₍₄₅₎ =8.68	p<0.0001 p<0.0001
	basal vs. 120 min basal vs. 120 min	mixed linear models	t ₍₄₅₎ =0.00 t ₍₄₅₎ =7.87 t ₍₄₅₎ =10.11	p<0.0001 p<0.0001 p<0.0001
		mixed linear models	t ₍₄₅₎ =10.11	p<0.0001
c: DA levels in the NAc with CNO	+ cocaine infusion in ChAT-p11 cKO mice injected with AAV-mCherry	mixed linear models		p=0.5243
	basal vs. 20 min basal vs. 40 min	mixed linear models	$t_{(45)}=0.64$ $t_{(45)}=3.98$ $t_{(45)}=6.48$	p=0.0002
	basal vs. 60 min basal vs. 80 min	mixed linear models mixed linear models	t ₍₄₅₎ =6.48 t ₍₄₅₎ =5.56	p<0.0001 p<0.0001
	basal vs. 100 min	mixed linear models	t ₍₄₅₎ =6.59 t ₍₄₅₎ =6.36	p<0.0001
	basal vs. 120 min basal vs. 140 min	mixed linear models mixed linear models	t ₍₄₅₎ =6.36 t ₍₄₅₎ =6.33	p<0.0001 p<0.0001
c: DA lovels in the NA - with	ne infusion in ChAT-p11 cKO mice injected with AAV-rM3D			
DA IEVEIS III INE NAC WITH COCE	basal vs. 20 min	mixed linear models	t ₍₄₅₎ =-0.45	p=0.6554
	basal vs. 40 min	mixed linear models mixed linear models		p=0.0192 p=0.0049
	basal vs. 80 min	mixed linear models	t ₍₄₅₎ =2.96 t ₍₄₅₎ =1.85	p=0.0709
	basal vs. 100 min basal vs. 120 min	mixed linear models mixed linear models	t ₍₄₅₎ =1.59 t ₍₄₅₎ =2.56	p=0.1184 p=0.014
	basal vs. 140 min	mixed linear models	t ₍₄₅₎ =2.99	p=0.0045
c: DA levels in the NAc with cocai	ne infusion in ChAT-p11 cKO mice injected with AAV-mCherry			
	basal vs. 20 min basal vs. 40 min	mixed linear models mixed linear models	t ₍₄₅₎ =0.81	p=0.4199 p=00002
	basal vs. 60 min	mixed linear models	t ₍₄₅₎ =0.81 t ₍₄₅₎ =0.81	p<0.0001
	basal vs. 80 min basal vs. 100 min	mixed linear models mixed linear models	$t_{(45)}^{(45)}=0.81$ $t_{(45)}^{(45)}=0.81$ $t_{(45)}^{(45)}=0.81$	p<0.0001 p<0.0001
	basal vs. 120 min basal vs. 140 min	mixed linear models mixed linear models	t ₍₄₅₎ =0.81 t ₍₄₅₎ =0.81	p<0.0001 p<0.0001
	Dasarvs. 140 mm	mixed inear models	L(45)=0.01	p<0.0001
Figure 7 a: DA levels in the NAc with coca	ne or CNO + cocaine infusion in ChAT-p11 cKO mice injected with AAV-hM4D or AAV-	mCherry		
	Two-way ANOVA for AAV-hM4D/CNO + cocaine or AAV-mCherry/CNO + cocaine group effect			p=0.0006
	time effect	Two-way ANOVA Two-way ANOVA	F _(1,150) =12.3097 F _(9,150) =17.6639	p<0.0001
	group effect time effect group-time interaction	Two-way ANOVA Two-way ANOVA Two-way ANOVA	F _(1,150) =12.3097 F _(9,150) =17.6639 F _(9,150) =1.2133	p=0.0006 p<0.0001 p=0.2908
	time effect group-time interaction Two-way ANOVA for AAV-hM4D/CNO + cocaine or AAV-hM4D/cocaine	Two-way ANOVA Two-way ANOVA	F _(9,150) =17.6639 F _(9,150) =1.2133	p<0.0001 p=0.2908
	time effect group-time interaction Two-way ANOVA for AAV-hM4D/CNO + cocaine or AAV-hM4D/cocaine	Two-way ANOVA Two-way ANOVA	F _(9,150) =17.6639 F _(9,150) =1.2133	p<0.0001 p=0.2908
	time effect group-time interaction	Two-way ANOVA Two-way ANOVA	$\begin{array}{c} F_{(1,150)}{=}12.3097\\ F_{(9,150)}{=}17.6639\\ F_{(9,150)}{=}1.2133\\ \end{array}$ $\begin{array}{c} F_{(1,220)}{=}32.4559\\ F_{(9,220)}{=}14.3297\\ F_{(9,220)}{=}1.7342 \end{array}$	p<0.0001 p=0.2908
c: DA levels in the NAc with CNO	time effect group-time interaction Two-way ANOVA for AAV-hMMD/CNO + cocaine or AAV-hMMD/cocaine group effect time effect group-time interaction + cocaine interaction + cocaine interaction	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA	$\begin{array}{l} F_{(9,150)}{=}17.6639\\ F_{(9,150)}{=}1.2133\\ \\ F_{(1,220)}{=}32.4559\\ F_{(9,220)}{=}14.3297\\ \\ F_{(9,220)}{=}1.7342 \end{array}$	p<0.0001 p=0.2908 p<0.0001 p<0.0001 p=0.0826
c: DA levels in the NAc with CNO	time effect group-lime interaction Two-way ANOVA for AAV-MMD/CNO + cocaine or AAV-MMD/cocaine group effect group-lime interaction • cocaine infusion in ChAT-p11 cKO mice injected with AAV-MMD basal vs. 20 mice	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models	$F_{(0,150)}=17.6639$ $F_{(0,150)}=1.2133$ $F_{(1,220)}=32.45599$ $F_{(0,220)}=14.3297$ $F_{(0,220)}=1.7342$ $t_{(90)}=2.68$	p<0.0001 p=0.2908 p<0.0001 p<0.0001 p=0.0826 p=0.0087
c: DA levels in the NAc with CNO	time effect group-time interaction group start interaction group effect group-time interaction + cocaine infusion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 20 min search vs. 60 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\begin{array}{c} F_{(0,150)}=17.6639\\ F_{(0,150)}=1.2133\\ \\ F_{(1,220)}=32.4559\\ F_{(0,220)}=14.3297\\ \\ F_{(0,220)}=1.7342\\ \\ t_{(00)}=2.68\\ t_{(00)}=4.63\\ t_{(00)}=4.63\\ t_{(00)}=4.63\\ t_{(00)}=4.01\\ \end{array}$	p<0.0001 p=0.2908 p<0.0001 p=0.0826 p=0.0887 p<0.0001 p<0.0001
c: DA levels in the NAc with CNO	time effect group-time interaction Two-way ANDVA for AAV-MMD/CNO + cocaine or AAV-MMD/cocaine group effect group-time interaction • cocaine infusion in ChAT-p11 cKO mice injected with AAV-MMD basal vs. 40 min basal vs. 40 min basal vs. 80 min basal vs. 80 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\begin{array}{c} F_{(0,150)}=17.6639\\ F_{(0,150)}=1.2133\\ F_{(1,220)}=32.4559\\ F_{(0,220)}=14.3297\\ F_{(0,220)}=1.7342\\ t_{(90)}=2.68\\ t_{(90)}=4.63\\ t_{(90)}=7.40\\ t_{(90)}=7.40\\ t_{(90)}=7.740\\ t_{(90)}=7.40\\ $	p<0.0001 p=0.2908 p<0.0001 p=0.0826 p=0.0826 p=0.0087 p<0.0001 p<0.0001 p<0.0001
c: DA levels in the NAc with CNO	time effect group-lime interaction Two-way ANOVA for AAV-MMD/CNO + cocaine or AAV-MMD/cocaine group effect group-lime interaction • cocaine infusion in ChAT-p11 cKO mice injected with AAV-MMD basal vs. 300 min basal vs. 40 min basal vs. 500 min basal vs. 500 min basal vs. 500 min	Two-way ANOVA Two-way ANOVA	$\begin{array}{l} F_{(0)}(50)=77.6639\\ F_{(0)}(50)=1.2133\\ F_{(1,20)}=32.4559\\ F_{(0,220)}=14.3297\\ F_{(0,220)}=1.7342\\ t_{(00)}=2.68\\ t_{(00)}=4.63\\ t_{(00)}=7.40\\ t_{(00)}=7.40\\ t_{(00)}=7.17\\ t_{(00)}=6.77\\ t_{(00)}=6.77\\ t_{(00)}=6.71\\ t_{(00)}=6.72\\ t_$	p<0.0001 p=0.2908 p<0.0001 p=0.0826 p=0.0087 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
	time effect group-time interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-time interaction • cocaine infusion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 20 min basal vs. 40 min basal vs. 80 min basal vs. 80 min basal vs. 100 min basal vs. 100 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models mixed linear models mixed linear models	$\begin{array}{c} F_{(0,150)}=17.6639\\ F_{(0,150)}=1.2133\\ F_{(1,220)}=32.4559\\ F_{(0,220)}=14.3297\\ F_{(0,220)}=1.7342\\ t_{(90)}=2.68\\ t_{(90)}=4.63\\ t_{(90)}=7.40\\ t_{(90)}=7.40\\ t_{(90)}=7.740\\ t_{(90)}=7.40\\ $	p<0.0001 p=0.2908 p<0.0001 p=0.0826 p=0.0826 p=0.0087 p<0.0001 p<0.0001 p<0.0001
	time effect group-time interaction Two-way ANOVA for AAV-hMMD/CNO + cocaine or AAV-hMMD/cocaine group-time interaction group-time interaction + cocaine intuision in ChAT-p11 cKO mice injected with AAV-hM4D basal vs. 20 min basal vs. 20 min basal vs. 40 min basal vs. 100 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed inear models mixed linear models mixed linear models mixed linear models	$\begin{split} F_{0,100} = & 7.6639 \\ F_{0,100} = & 1.2133 \\ F_{1220} = & 32.4559 \\ F_{0,220} = & 14.3297 \\ F_{0,220} = & 14.3297 \\ F_{0,220} = & 1.7342 \\ F_{0,220} = & 1.$	p<0.0001 p=0.2908 p<0.0001 p=0.0826 p=0.0826 p=0.0087 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-lime interaction • cocaine infusion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 40 min basal vs. 60 min basal vs. 60 min basal vs. 60 min basal vs. 100 min basal vs. 140 min + cocasil vs. 20 min basal vs. 20 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models	$\begin{split} F_{0,100} = & 1.2639 \\ F_{0,100} = & 1.2133 \\ F_{1,220} = & 32.4569 \\ F_{0,220} = & 14.3297 \\ F_{0,220} = & 1.342 \\ F_{0,220} = & 1.342 \\ F_{0,0} = & 4.63 \\ F_{0,0} = & 4.63 \\ F_{0,0} = & 7.40 \\ F_{0,0} = & 7.40 \\ F_{0,0} = & 7.71 \\ F_{0,0} = & 6.77 \\ F_{0,0} = & 6.99 \\ F_{0,0} = & 7.9 \\ F_{0,0} = & -0.11 \\ F_{0,0} = & -$	p=0.0001 p=0.2908 p<0.0001 p=0.0001 p=0.00826 p=0.0087 p=0.0001 p=0.0001 p=0.0001 p=0.0001 p=0.0001 p=0.0001 p=0.0001
	time effect group-time interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-time interaction • cocaine influence interaction basal vs. 20 min basal vs. 40 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 140 min • cocaine influence interaction in ChAT-p11 cKO mice injected with AAV-mCherry basal vs. 40 min basal vs. 40 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models	$\begin{split} F_{0,100} = & 1.76639 \\ F_{0,100} = & 1.2133 \\ F_{1,220} = & 32.4559 \\ F_{0,220} = & 1.4.3297 \\ F_{0,220} = & 1.7342 \\ t_{200} = & 2.68 \\ t_{2$	p<0.0001 p=0.2908 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
	time effect group-time interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-time interaction • cocaine influence interaction basal vs. 20 min basal vs. 40 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 140 min • cocaine influence interaction in ChAT-p11 cKO mice injected with AAV-mCherry basal vs. 40 min basal vs. 40 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\begin{split} F_{0,100} = & 1.2133 \\ F_{(1,200)} = & 32.4559 \\ F_{0,2200} = & 1.2134 \\ F_{0,2200} = & 1.2432 \\ F_{0,2200} = & 1.7342 \\ F$	p<0.0001 p=0.2908 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
	time effect group-time interaction Two-way ANDVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-time interaction • cocaine infusion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 20 min basal vs. 80 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 40 min basal vs. 40 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models mixed linear models	$\begin{split} F_{0,100} = & 1.2133 \\ F_{(1,200)} = & 32.4559 \\ F_{0,2200} = & 1.2134 \\ F_{0,2200} = & 1.2432 \\ F_{0,2200} = & 1.7342 \\ F$	p<0.0001 p=0.2908 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
c: DA levels in the NAc with CNO	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-lime interaction • cocaine infusion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 20 min basal vs. 20 min basal vs. 80 min basal vs. 80 min basal vs. 100 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\begin{split} F_{0,100} = & 1.76639 \\ F_{0,100} = & 1.2133 \\ F_{1,220} = & 32.4559 \\ F_{0,220} = & 1.4.3297 \\ F_{0,220} = & 1.7342 \\ t_{200} = & 2.68 \\ t_{2$	p<0.0001
c: DA levels in the NAc with CNO	time effect group-time interaction Two-way ANDVA for AAV-MAMD/CNO + cossine or AAV-MAMD (accaine group effect group-time interaction • cocaine infusion in ChAT-p11 cKO mice injected with AAV-MAMD basal vs. 20 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 140 min basal vs. 140 min basal vs. 140 min basal vs. 40 min basal vs. 80 min basal vs. 81 min basal vs. 120 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed inear models mixed linear models	$\begin{split} F_{01,100} &= 17.6639 \\ F_{01,100} &= 12.133 \\ F_{12,00} &= 32.4559 \\ F_{02,00} &= 14.3297 \\ F_{02,00} &= 14.3$	p<0.0001 p=0.2908 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0
c: DA levels in the NAc with CNO	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-lime interaction + cocaine influence interaction basal vs. 300 min basal vs. 400 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\begin{split} F_{01,100} &= 17.6639 \\ F_{01,100} &= 12.133 \\ F_{12,00} &= 32.4559 \\ F_{02,00} &= 14.3297 \\ F_{02,00} &= 14.3$	p<0.0001 p=0.2908 p<0.0001 p<0.0001 p<0.0001 p<0.0021 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
c: DA levels in the NAc with CNO	time effect group-time interaction Two-way ANDVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-time interaction + cocaine influetion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 40 min basal vs. 40 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 40 min = cocaine influetion in ChAT-p11 cKO mice injected with AAV-mCherry basal vs. 40 min basal vs. 40 min	Two-way ANOVA Two-way ANOVA Tw	$\begin{split} F_{0,100} &= 17.0639 \\ F_{0,200} &= 17.0633 \\ F_{1,2200} &= 22.4559 \\ F_{2,220} &= 17.242 \\ F_{2,220} &= 17.342 \\ F_{0,00} &= 2.46 \\ F_{0,00} &= 7.40 \\ F_{0,00} &= 7.20 \\ F_{0,00} $	p<0.0001 p=0.2908 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<
c: DA levels in the NAc with CNO	time effect group-time interaction Two-way ANDVA for AAV-MAMD/CNO + cocaine or AAV-MAMD (cocaine group effect ime effect group-time interaction + cocaine infusion in ChAT-p11 cKO mice injected with AAV-MAMD basal vs. 20 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 40 min basal vs. 80 min basal vs. 40 min basal vs. 40 min basal vs. 40 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed inear models mixed inear models	$\begin{array}{c} F_{0,10} = 17.0639\\ F_{0,10} = 12.138\\ F_{1,10} = 12.138\\ F_{1,10} = 12.138\\ F_{1,10} = 12.138\\ F_{1,10} = 14.2327\\ F_{2,10} = 14.2327\\ F_{2,0} = 14.2327\\ F_{2,0} = 14.2327\\ F_{0,0} = 7.43\\ F_{0,0} = 7.43\\ F_{0,0} = 7.2\\ F_{0,0} = 7.7\\ F_{0,0} = 7.5\\ F_{0,0} = 7.7\\ F_{$	p<0.0001 p=0.2908 p<0.0001 p=0.0026 p=0.0027 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<
c: DA levels in the NAc with CNO	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-lime interaction • cocaine infusion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 40 min basal vs. 40 min basal vs. 40 min basal vs. 40 min basal vs. 100 min basal vs. 40 min basal vs. 20 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\begin{split} & F_{0,00} = 17.0639 \\ & F_{0,00} = 17.0839 \\ & F_{1,00} = 12.133 \\ & F_{1,00} = 22.138 \\ & F_{2,00} = 14.3297 \\ & F_{2,00} = 14.3297 \\ & F_{0,00} = 7.084 \\ & F_{0,00} = 7.0$	p<0.0001 p=0.2908 p<0.0001 p=0.0256 p=0.0067 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<
 c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal 	time effect group-time interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-time interaction • cocaine influeton in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 40 min basal vs. 40 min basal vs. 40 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 40 min basal vs. 100 min basal vs. 20 min basal vs. 100 min	Two-way ANOVA Two-way ANOVA Tw	$\begin{array}{c} F_{0,10} = 17.0639 \\ F_{0,10} = 12.133 \\ F_{1,20} = 32.46599 \\ F_{2,22} = 14.3297 \\ F_{2,22} = 17.342 \\ F_{0,22} = 14.3297 \\ F_{0,22} = 14.3297 \\ F_{0,22} = 14.3297 \\ F_{0,22} = 14.3297 \\ F_{0,23} = 15.529 \\ F_{0,23} = $	$\begin{array}{l} p{<}0.0001\\ p{=}0.2908\\ p{<}0.0001\\ p{<}0.0001\\ p{<}0.0001\\ p{<}0.0026\\ p{<}0.0001\\ p{<}0.0001\\$
 c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal 	time effect group-time interaction Two-way ANDVA for AAV-MA4D/CNO + cocaine or AAV-MA4D/cocaine group effect group-time interaction + cocaine inflution in ChAT-p11 cKO mice injected with AAV-MA4D basal vs. 40 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 140 min + cocaine inflution in ChAT-p11 cKO mice injected with AAV-mCherry basal vs. 40 min basal vs. 80 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\begin{split} & F_{0,00} = 17.0639 \\ & F_{0,00} = 17.0839 \\ & F_{1,220} = 32.4559 \\ & F_{2,220} = 14.2327 \\ & F_{2,220} = 14.2327 \\ & F_{2,220} = 14.2327 \\ & F_{0,220} = 14.2327 \\ & F_{0,220} = 14.2327 \\ & F_{0,00} = 7.22 \\ & F_{0,00} = 7.42 \\ & F_{0,00} =$	p=0.0001 p=0.2908 p=0.2908 p=0.0001 p=0.0826 p=0.0087 p=0.0087 p=0.0001 p=0.00001 p=0.0001 p=
 c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal 	time effect group-lime interaction Two-way ANOVA for AAV-MAD/CNO + cocaine or AAV-MAD/cocaine group effect inne effect group-lime interaction + cocaine infusion in ChAT-p11 cKO mice injected with AAV-MAAD basal vs. 60 min basal vs. 60 min basal vs. 60 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 20 min basal vs. 60 min basal vs. 100 min basal vs. 40 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\label{eq:response} \begin{split} & F_{0,0,0} = 17.0639 \\ & F_{0,0,0} = 12.133 \\ & F_{1,2,2,0} = 32.4559 \\ & F_{2,2,2,0} = 1.4.2397 \\ & F_{2,2,2,0} = 1.4.2397 \\ & F_{2,2,2,0} = 1.4.2397 \\ & F_{2,2,2,0} = 1.7.442 \\ & F_{0,0} = 2.68 \\ & F_{0,0} = 7.27 \\$	p=0.0001 p=0.2908 p=0.2908 p=0.0001 p=0.0087 p=0.0087 p=0.0001
 c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal 	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-lime interaction + cocaine influetion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 40 min basal vs. 40 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 81 do min + cocaine influetion in ChAT-p11 cKO mice injected with AAV-mCherry basal vs. 40 min basal vs. 50 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\label{eq:response} \begin{split} & F_{0100} = 17.0639 \\ & F_{0100} = 12.133 \\ & F_{11200} = 32.46599 \\ & F_{2220} = 1.7342 \\ & F_{0100} = 2.68 \\ & F_{0220} = 1.7342 \\ & F_{0100} = 2.68 \\ & F_{0220} = 1.7342 \\ & F_{0100} = 2.68 \\ & F_{0$	$\begin{array}{c} p<0.0001\\ p=0.2908\\ p<0.0001\\ p<0.0001\\ p=0.0826\\ p=0.0826\\ p=0.0826\\ p=0.0826\\ p=0.0001\\ p<0.0001\\ p<0.0001$
 c: DA levels in the NAc with CNO c: DA levels in the NAc with cocal 	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-lime interaction + cocaine influetion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 40 min basal vs. 40 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 81 do min + cocaine influetion in ChAT-p11 cKO mice injected with AAV-mCherry basal vs. 40 min basal vs. 50 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed inear models mixed linear models	$\begin{split} F_{0,100} &= 17.0639 \\ F_{0,100} &= 17.0633 \\ F_{1,100} &= 27.33 \\ F_{1,100} &= 27.34 \\ F_{1,100} &= 27.34 \\ F_{1,100} &= 27.34 \\ F_{1,100} &= 2.68 \\ F_{1,100} &= 7.43 \\ F_{1,100} &=$	p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<
 c: DA levels in the NAc with CNO c: DA levels in the NAc with cocal c: DA levels in the NAc with cocal 	time effect group-lime interaction Two-way ANOVA for AAV-MAD/CNO + cocaine or AAV-MAD/cocaine group effect inne effect group-lime interaction + cocaine infusion in ChAT-p11 cKO mice injected with AAV-MAAD basal vs. 60 min basal vs. 60 min basal vs. 60 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 100 min basal vs. 20 min basal vs. 60 min basal vs. 100 min basal vs. 40 min	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\label{eq:response} \begin{split} & F_{0100} = 17.0639 \\ & F_{0100} = 12.133 \\ & F_{11200} = 32.46599 \\ & F_{2220} = 1.7342 \\ & F_{0100} = 2.68 \\ & F_{0220} = 1.7342 \\ & F_{0100} = 2.68 \\ & F_{0220} = 1.7342 \\ & F_{0100} = 2.68 \\ & F_{0$	$\begin{array}{c} p<0.0001\\ p=0.2908\\ p<0.0001\\ p<0.0001\\ p=0.0826\\ p=0.0826\\ p=0.0826\\ p=0.0826\\ p=0.0001\\ p<0.0001\\ p<0.0001$
 c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal 	time effect group-time interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group effect group-time interaction + cocaine influetion in ChAT-p11 cKO mice injected with AAV-MM4D basal vs. 40 min basal vs. 40 min basal vs. 80 min basal vs. 80 min basal vs. 80 min basal vs. 81 do min + cocaine influetion in ChAT-p11 cKO mice injected with AAV-mCherry basal vs. 40 min basal vs. 100 min basal vs. 20 min basal vs. 100 min b	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\begin{split} F_{0,10} &= 17.0639 \\ F_{0,10} &= 17.0839 \\ F_{0,10} &= 12.133 \\ F_{1,20} &= 32.4559 \\ F_{2,22} &= 17.4227 \\ F_{0,22} &= 17.4227 \\ F_{0,23} &= 17.427 \\ F_{0,23} &= $	$\begin{array}{l} p<0.0001\\ p=0.2908\\ p<0.0001\\ p<0.0001\\ p=0.0826\\ p=0.0826\\ p=0.0826\\ p=0.0826\\ p=0.0001\\ p<0.0001\\ p<0.0001$
c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal c. DA levels in the NAc with cocal fable 1	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group-lime interaction + cocaine influence influence injected with AAV-MM4D basal vs. 30 min basal vs. 40 min basal vs. 100 min basal	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\label{eq:response} \begin{split} & F_{0.00} = 17.0639 \\ & F_{0.00} = 12.133 \\ & F_{1.200} = 32.46599 \\ & F_{0.200} = 17.042 \\ & F_{0.200} = 17.042 \\ & F_{0.200} = 17.042 \\ & F_{0.00} = 7.04 \\ & F$	p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<
c: DA levels in the NAc with CNO c: DA levels in the NAc with cocal c: DA levels in the NAc with cocal fable 1	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group-lime interaction + cocaine influence influence injected with AAV-MM4D basal vs. 30 min basal vs. 40 min basal vs. 100 min basal	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\label{eq:response} \begin{split} & F_{0.00} = 17.0639 \\ & F_{0.00} = 12.133 \\ & F_{1.200} = 32.46599 \\ & F_{0.200} = 17.042 \\ & F_{0.200} = 17.042 \\ & F_{0.200} = 17.042 \\ & F_{0.00} = 7.04 \\ & F$	$\begin{array}{c} p < 0.0001 \\ p < $
c: DA levels in the NAc with CNO c: DA levels in the NAc with cocal c: DA levels in the NAc with cocal fable 1	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group-lime interaction + cocaine influence influence injected with AAV-MM4D basal vs. 30 min basal vs. 40 min basal vs. 100 min basal	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\label{eq:response} \begin{array}{c} F_{0,100} = 177.0639\\ F_{0,100} = 12133\\ F_{1,100} = 12133\\ F_{1,100} = 12234.6509\\ F_{20,20} = 11.42327\\ F_{20,20} = 11.4237\\ F_{20,20} = 11.427\\ F_{20,20} = 11.4237\\ F_{20,$	p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0
c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal c. DA levels in the NAc with cocal Table 1	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group-lime interaction + cocaine influence influence injected with AAV-MM4D basal vs. 30 min basal vs. 40 min basal vs. 100 min basal	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\label{eq:response} \begin{split} & F_{0100} = 17.0639 \\ & F_{0100} = 12.133 \\ & F_{1100} = 22.134 \\ & F_{1100} = 22.134 \\ & F_{1100} = 22.4559 \\ & F_{2100} = 14.2327 \\ & F_{2100} = 14.2327 \\ & F_{2100} = 14.2327 \\ & F_{2100} = 7.22 \\ &$	p<0.0001
c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal c. DA levels in the NAc with cocal Table 1	time effect group-lime interaction Two-way ANOVA for AAV-MA4D/CNO + cocaine or AAV-MA4D/cocaine group-effect time effect group-lime interaction + cocaine influsion in ChAT-p11 cKO mice injected with AAV-MA4D basal vs. 30 min basal vs. 40 min basal vs. 80 min basal vs. 80 min basal vs. 100 min basal vs. 1	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\label{eq:response} \begin{split} & F_{0:00} = 17.0639 \\ & F_{0:00} = 12.133 \\ & F_{1:200} = 32.4559 \\ & F_{2:200} = 14.2327 \\ & F_{2:200} = 14.2327 \\ & F_{2:200} = 14.2327 \\ & F_{0:00} = 2.68 \\ &$	p<0.0001
c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal c. DA levels in the NAc with cocal Table 1	time effect group-lime interaction Two-way ANOVA for AAV-MA4D/CNO + cocaine or AAV-MA4D/cocaine group-lime interaction + cocaine influsion in ChAT-p11 cKO mice injected with AAV-MA4D basal vs. 30 min basal vs. 40 min basal vs. 80 min basa	Two-way ANOVA Two-way ANOVA Tw	$\label{eq:response} \begin{split} & F_{0:00} = 17.0639 \\ & F_{0:00} = 12.133 \\ & F_{1:200} = 32.4559 \\ & F_{2:200} = 14.2327 \\ & F_{2:200} = 14.2327 \\ & F_{2:200} = 14.2327 \\ & F_{0:00} = 2.68 \\ &$	p<0.0001
c. DA levels in the NAc with CNO c. DA levels in the NAc with cocal c. DA levels in the NAc with cocal Table 1	time effect group-lime interaction Two-way ANOVA for AAV-MM4D/CNO + cocaine or AAV-MM4D/cocaine group-lime interaction + cocaine influence influence injected with AAV-MM4D basal vs. 30 min basal vs. 40 mi	Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA Two-way ANOVA mixed linear models mixed linear models	$\label{eq:response} \begin{split} & F_{0100} = 17.0639 \\ & F_{0100} = 12.133 \\ & F_{1100} = 22.134 \\ & F_{1100} = 22.134 \\ & F_{1100} = 22.4559 \\ & F_{2100} = 14.2327 \\ & F_{2100} = 14.2327 \\ & F_{2100} = 14.2327 \\ & F_{2100} = 7.22 \\ &$	$\begin{array}{c} p < 0.0001 \\ p = 0.2908 \\ p < 0.0001 $