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Abstract 47 

Addiction is characterized by a profound intersubject (phenotypic) variability in the expression 48 

of addictive symptomatology and propensity to relapse following treatment. However, laboratory 49 

investigations have primarily focused on common neural substrates in addiction and have not yet 50 

been able to identify mechanisms that can account for the multifaceted phenotypic behaviors 51 

reported in the literature. To fill this knowledge gap theoretically, here we simulated phenotypic 52 

variations in addiction symptomology and responses to putative treatments, using both a neural 53 

model, based on cortico-striatal circuit dynamics, and an algorithmic model of reinforcement 54 

learning. These simulations rely on the widely accepted assumption that both the ventral, model-55 

based, goal-directed system and the dorsal, model-free, habitual system are vulnerable to extra-56 

physiologic dopamine reinforcements triggered by addictive rewards. We found that 57 

endophenotypic differences in the balance between the two circuit or control systems resulted in 58 

an inverted U-shape in optimal choice behavior. Specifically, greater unbalance led to a higher 59 

likelihood of developing addiction and more severe drug-taking behaviors. Furthermore, 60 

endophenotypes with opposite asymmetrical biases among cortico-striatal circuits expressed 61 

similar addiction behaviors, but responded differently to simulated treatments, suggesting 62 

personalized treatment development could rely on endophenotypic rather than phenotypic 63 

differentiations. We propose our simulated results, confirmed across neural and algorithmic 64 

levels of analysis, inform on a fundamental and, to date, neglected quantitative method to 65 

characterize clinical heterogeneity in addiction. 66 

 67 

 68 

 69 
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Significance statement 70 

Addiction is known to encompass heterogeneity in its development, maintenance, and treatment 71 

response. While previous work has mostly focused on the common mechanisms underlying 72 

vulnerabilities in addiction at a group level, the neurocomputational causes for such intersubject 73 

variability in addition are not well-understood. To fill this knowledge gap, we combine a neural 74 

and a reinforcement learning model to reveal that the balance between neural circuits or 75 

computational control modalities characterizes the presence of behavioral phenotypes in 76 

addiction. The presence of converging effects, validated across neural and algorithmic levels of 77 

analysis, informs on a quantitative method to characterize clinical heterogeneity, and potentially 78 

helps future development of precision treatments.  79 
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Introduction. 80 

Addiction is known to encompass a wide range of individual behavioral differences (i.e. 81 

phenotypes) in development, maintenance and severity of symptoms, and treatment response 82 

(Everitt and Robbins, 2016). Previous investigations into the mechanisms underlying this 83 

heterogeneity of behaviors have identified two fundamental neurocomputational alterations 84 

correlated with vulnerability in the development and severity of addictive behaviors (Garrison 85 

and Potenza, 2014; Jupp and Dalley, 2014; Belin et al., 2016). These neural and computational 86 

intersubject differentiations (i.e. endophenotypes) include 1) a dysregulation of D2 receptors in 87 

the striatum (Morgan et al., 2002; Nader and Czoty, 2005; Dalley et al., 2007; Flagel et al., 2014) 88 

and 2) an alteration of learning rates within a reinforcement-learning framework (Gutkin et al., 89 

2006; Piray et al., 2010). However, these endophenotypic differences are found across a wide 90 

spectrum of dissociable phenotypes, so that the same neural or computational mechanism is used 91 

to account for separable behavioral traits. For instance, different forms of striatal D2 92 

dysregulation are found in individuals differing in terms of their impulsivity (Dalley et al., 2007; 93 

Volkow et al., 2007), social dominance (Morgan et al., 2002; Gould et al., 2014), motor 94 

reactivity or preference for novelty (Flagel et al., 2010; Flagel et al., 2014), or sensitivity to 95 

rewards (Belcher et al., 2014). Each of these behavioral traits is separately correlated with 96 

development of addiction, but they do not necessarily coexist in the same individuals (cf. novelty 97 

seeking and impulsivity: Ersche et al., 2010; Molander et al., 2011; Belin and Deroche-Gamonet, 98 

2012). This mismatch between few known endophenotypic differences and a wide variety of 99 

multifaceted, dissociable, behavioral phenotypes suggests there are yet unknown neural and 100 

computational mechanisms that are responsible, alone or in interaction, for the reported 101 

behavioral differentiations. Finally, investigations into intersubject variability often emphasize 102 
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the initial stage of addiction development (but see e.g.: Belin et al., 2008; Economidou et al., 103 

2009; Pelloux et al., 2015). Yet, individual differences also exist in treatment response, resulting 104 

in diverse relapse patterns among individuals showing similar severity of symptoms. These 105 

differences have not been so far addressed in previous neural or computational models. 106 

 107 

Here we propose a theoretical investigation into the interaction between ventral and dorsal 108 

cortico-striatal circuits and the associated behavioral control modalities. Several studies have 109 

emphasized that addiction is associated with alterations of ventral and dorsal cortico-striatal 110 

circuits, and of motivations and habits (Volkow and Morales, 2015; Everitt and Robbins, 2016; 111 

Koob and Volkow, 2016). However, the role played by the interaction between the two neural 112 

circuits or between the two behavioral control modalities in generating intersubject variability in 113 

addiction, has been so far neglected. To investigate this interaction, we use two models to 114 

simulate neural dynamics and algorithmic (or normative) choice selections in a multiple-choice 115 

task involving drug and non-drug rewards. Then we test these models under different conditions 116 

of circuit or control modality dominance (i.e. simulated endophenotypes). Consistently with 117 

previous models, we assume addictive substances hijack the healthy reward prediction error 118 

signal (Schultz et al., 1997) by triggering extra-physiologic dopamine bursts (Nestler and 119 

Aghajanian, 1997; Koob and Volkow, 2016). These dopamine activities signal the presence of an 120 

aberrant unexpected reward, leading to the repetition of drug-related actions and escalation of 121 

consumption (Redish et al., 2008; Dayan, 2009). In our neural model, this process of 122 

reinforcement learning (RL, Sutton and Barto, 1998) is mediated by extra-physiologic changes in 123 

cortico-striatal connectivity weights (Hyman et al., 2006; Haber, 2008; Koob and Volkow, 124 

2016). These changes in turn aberrantly affect circuit gain and the stability of both ventral and 125 
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dorsal cortico-striatal circuits, disrupting their respective roles in encoding and selecting goal-126 

directed behaviors (Balleine, 2005; Balleine and O'Doherty, 2010; Gruber and McDonald, 2012) 127 

and habitual responses (Yin et al., 2004; Balleine and O'Doherty, 2010). A similar effect is 128 

assumed for our algorithmic model, where over-evaluation of drugs and related RL affect the 129 

two control modalities, termed model-based and model-free, that approximate ventral/goal-130 

oriented and dorsal/habitual implementations (Dolan and Dayan, 2013; Voon et al., 2017). As a 131 

result, and consistently with previous formulations of RL models of addiction (Redish et al., 132 

2008; Piray et al., 2010; Gillan et al., 2016), both the planned evaluation of known action-133 

outcome contingencies, represented in an internal model of the world, and the reactive 134 

immediate motor responses are biased towards drug-related selections. 135 

 136 

Based on these assumptions, our models show that phenotypic differentiation in addiction 137 

development and treatment response can emerge as a function of the interaction between ventral 138 

and dorsal circuits or model-based and model-free control modalities. Our simulated results offer 139 

a proof-of-concept that this interaction is a candidate independent neural and computational 140 

mechanism underlying addiction vulnerability, putatively characterizing three different 141 

endophenotypes differing in the likelihood to develop addiction, severity of symptoms and 142 

treatment response. We suggest this neurocomputational mechanism could interact with both 143 

previously described D2 receptors dysregulation in the striatum (Dalley et al., 2007; Flagel et al., 144 

2014) and altered learning rates (Gutkin et al., 2006; Piray et al., 2010) to generate the variety of 145 

dissociable behavioral traits reported in literature as associated with addiction vulnerabilities. 146 

 147 

Materials and Methods. 148 
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In brief, we present two complementary models simulating endophenotypic differences and their 149 

effects on addiction development and treatment response. In the models, intersubject differences 150 

are expressed in terms of either neural circuit dominance (i.e. ventral or dorsal circuit) or control 151 

modality dominance (i.e. model-based or model-free) in determining behavioral selections. The 152 

resulting phenotypes are tested in environments granting free access to a simulated substance of 153 

addiction, as usually implemented in laboratory studies. In particular, we compare our simulated 154 

phenotypic variability with the results described in a recent study investigating individual 155 

differences in rats self-administrating the stimulants cocaine or a designer drug, a dopamine- and 156 

mixed dopamine-norepinephrine reuptake inhibitor, respectively (Gannon et al., 2017). We 157 

selected this study because it highlights how different drugs, dosages, and tasks result in different 158 

ranges of phenotypic differentiation. For instance, an initial acquisition phase, over a 10-day 159 

period, shows compulsive behavior developed in up to 75% rats self-administering cocaine and 160 

87.5% of those exposed to the designer drug. Furthermore, under a condition of fixed ratio (=5) 161 

schedule, the study shows self-administration varied significantly among subjects. A subset of rat 162 

population, termed high responders, self-administered cocaine up to 60% more times in 163 

comparison with a different subset, termed low responders, depending on dosage (cf. figure 3 in: 164 

Gannon et al., 2017). Importantly, the task setup chosen for both of our proposed models 165 

involves the selection of a drug reward over explicit non-drug related alternatives; in contrast, 166 

the chosen empirical study utilizes a time-out responding paradigm, where the only explicit non-167 

drug related behavior (a lever-press) is not rewarded. As for most studies simulating addiction 168 

(e.g. see: Redish, 2004), we believe the choice to present our simulated agents with a richer set 169 

of options (i.e. more than one) does not invalidate a parallel between simulated and real data. We 170 

consider the simulated competing options as a proxy for the many conflicting stimuli and 171 
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associated behaviors that animals have access to, even in the limited environment of a standard 172 

operant conditioning chamber. Thus, our focus is on perturbing the balance between the 173 

dorsal/model-free and the ventral/model-based systems, to compare our simulated behavioral 174 

differentiations in the escalation and compulsive selection of drug-related actions with the data 175 

reported in the chosen laboratory study.  176 

 177 

The two models comprise a neural mass model that has been validated and described in the 178 

context of choice behavior and dopaminergic modulation (Fiore et al., 2016; Hauser et al., 2016; 179 

Fiore et al., 2018) and a normative or algorithmic model based upon standard RL schemes 180 

(Sutton and Barto, 1998). In the neural model, addiction and treatment response are modeled 181 

through DA-dependent associative plasticity in both ventral and dorsal circuits. In the RL model, 182 

aberrant learning is modeled using a duplex of model-based and model-free schemes that 183 

competed for control over action selection. The model-based scheme entails learning a model of 184 

the environment (in the form of probability transition matrices among states) that is used to 185 

compute value functions under the Bellman optimality principle (Bellman, 1966). The equivalent 186 

model-free scheme uses prediction error-based learning to directly acquire the value of state 187 

action pairs. Both neural and RL models are tested under four successive stages or phases; 1) 188 

before exposure to the simulated drug (termed pre-drug); 2) learning of addictive behavior 189 

(termed addiction); 3) simulated ideal therapeutic interventions (termed treatment) that partially 190 

revert the learning of the previous phase. Finally, 4) reinstated access to the simulated drug 191 

following each treatment (termed relapse). The simulated treatments are conceived to emphasize 192 

endophenotypic response and relapse differentiation and therefore they predominantly affect 193 

only one control system, targeting either the goal-oriented/model-based or the habitual/model-194 
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free. The former treatment is assumed to modify only the internal model of the environment and 195 

related selection of action-outcome contingencies performed in the ventral circuit. The latter 196 

treatment represents a condition in which the model of the world of the agent remains mainly 197 

unaltered, but the acquired drug-related stimulus-response associations are disrupted, thus 198 

preventing the agent from exhibiting habitual responses (cf. Doll et al., 2009).  199 

 200 

The unique aspect of this complementary modeling approach is that converging results from 201 

neural and algorithmic models can validate each other, as process and implementation theories 202 

(i.e., synaptic and dynamical mechanisms) complement the normative principles formalized in 203 

the RL model. 204 

 205 

Neural field model.  206 

Basic model architecture and parameterization: In cortico-striatal circuits, the signal processed 207 

in the cortex is conveyed towards its respective area of the striatum, processed in basal ganglia 208 

and finally relayed to the same cortical area where it originated, via thalamus (Haber, 2003; 209 

Draganski et al., 2008; Jahanshahi et al., 2015). Thus, despite diverging in terms of the 210 

information processed –e.g. sensorimotor or rewards and outcomes– these circuits are 211 

characterized by similar computational dynamics (Obeso et al., 2014). Temporal responses in 212 

recurrent neural networks co-occur with state transitions or input transformations that are often 213 

described in terms of energy landscapes (Figure 1A-C). If multiple inputs or initial states 214 

generate transitions towards the same final state, this is termed attractor state (Amit, 1989). In 215 

recurrent networks such as cortico-striatal circuits, learning processes modulate the circuit gain, 216 
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thereby affecting the strength of the attractor states and the overall stability of the system (Fiore 217 

et al., 2015; Fiore et al., 2016; Hauser et al., 2016). 218 

 219 

We simulate the temporal responses in cortico-striatal circuits in a neural model (illustrative 220 

representation of the neural architecture is represented in Figure 1D). This neural model 221 

simulates mean-field activity (Deco et al., 2008) within multiple channels of both dorsal and 222 

ventral cortico-striatal loops. A continuous-time differential equation simulates changes over 223 

time  of the average action potential  of a pool of neurons (equation 1), and a positive 224 

transfer function (equation 2) converts this action potential in the final activation of the pool ( ). 225 

Finally, the plasticity of the connections ( ) between cortex and striatum is characterized by 226 

DA-dependent Hebbian learning, corrected with a constant threshold (th) as defined in equation 227 

3. The resulting rule strengthens the connections among all active nodes in the cortex and those 228 

active in the striatum, and weakens the connections among nodes showing opposite activation 229 

status. 230 

 231 

        (1) 232 

          (2) 233 

 (3) 234 

 235 

The input ( ), reaching each node in the neural network is modulated by two coefficients  236 

and . These regulate the ratio between the signal affected by the presence of dopamine release  237 

and the amount of signal that is computed independent of dopamine release. For most units, the 238 

values of the two coefficients are set to  and , with the exception of the simulated 239 
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striatal units, where these parameters are set to  and , to 240 

simulate the differential effect dopamine has, depending on the most prevalent receptor type 241 

(λ>1 and λ<0 for D1 and D2 receptors, respectively). Due to the different effects the dopamine 242 

receptors have on the activity of the simulated neurons, the drug-induced dopamine-dependent 243 

Hebbian learning significantly affects D1-enriched units in the striatum, whilst having negligible 244 

effects on D2-enriched units (Gerfen and Surmeier, 2011; Volkow and Morales, 2015). 245 

 246 

Simulating different addiction phenotypes and treatment effects: Agents controlled by the neural 247 

model are immersed in a simplified environment and can select among three arbitrary actions or 248 

inactivity (cf. non-stationary three armed bandit environment). The selection of the actions is 249 

carried out in the circuit simulating the dorsal cortico-striatal activity and it is considered 250 

completed if the neural activity of any of the units in the external layer of the simulated cortex 251 

(cf. Figure 1D) is maintained for at least 2 seconds. Ventral and dorsal circuits interact, both 252 

ways, via cortico-cortical connectivity. Therefore, the activity in the simulated ventral circuit 253 

biases action selection in the dorsal circuit and the selection of actions in the dorsal circuit biases 254 

the activity in the ventral circuit. To test our hypothesis about the effect these reciprocal biases 255 

have on choice behavior, we assumed cortico-cortical weights do not vary over time and we 256 

tested eleven combinations for the parameters determining their weights, as =[0.02-0.2], 257 

[0.03-0.17], [0.03-0.15], [0.05-0.15], [0.07-0.13], or [0.1-0.1] (and symmetrical). This spectrum 258 

of weights describes the strength of the biases between the two major circuits, thereby 259 

characterizing either a balanced condition or a dominance of one of the two circuits. We report 260 

the effects in terms of behavioral responses for these putative endophenotypes and test each of 261 

these with thirty noise seeds, random inputs and under four stages, to allow within phenotype 262 
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comparisons. The first stage, “pre-drug”, represents an assessment of behavior before any drug 263 

or reward is introduced, as the three available inputs randomly change their value to determine a 264 

non-stationary order of preferences. Under the second stage, termed “addiction”, one action is 265 

associated with the administration of a simulated addictive substance, triggering DA phasic 266 

responses and associated Hebbian learning in cortico-striatal connections of both ventral and 267 

dorsal circuits. For the third stage, termed “treatment”, we simulate the effects of deprivation 268 

coupled with one of two hypothetical treatments targeting either the dorsal or the ventral cortico-269 

striatal circuits. The treatments are simulated by reverting the learning process in either the 270 

dorsal or the ventral cortico-striatal circuit, respectively representing an intervention that would 271 

block or extinguish either the habitual drug-related response (an ideal behavioral treatment) or 272 

the drug-related emotional and value association (an ideal cognitive treatment). The dorsal 273 

treatment brings back the pre-drug configuration in the dorsal circuit and keeps the configuration 274 

reached under the addiction stage for the ventral circuit. The ventral treatment is achieved with 275 

the opposite intervention. Finally, during the fourth stage, termed “relapse”, we reintroduce 276 

access to the simulated addictive substance, inducing relapse. For this stage, relapse time is 277 

defined as the time required to reinstate the configuration of cortico-striatal weights found at the 278 

end of the addiction stage.  279 

 280 

RL model.  281 

Basic model architecture and parameterization: In this model, we assume that the behavior of 282 

the agent relies on a hybrid model (Daw et al., 2011) that learns and computes the value of 283 

choices (actions, ) under each condition (state, st). Value is defined as a quantity that combines 284 
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short and long term expected rewards and negative outcomes when a specific strategy of action 285 

is followed (policy, π). It is formally defined as: 286 

 287 

       (4) 288 

 289 

In equation (4),  denotes the instantaneous reward received when action a is performed in 290 

state s. γ is a discount factor, comprised between 0 and 1, which defines the trade-off between 291 

immediate and long term rewards. The value of a state given the policy is defined as 292 

. For each environment there is an optimal policy , which maximizes the 293 

value  for every state (Sutton and Barto, 1998). 294 

 295 

The environment can be completely characterized through the state transitions distributions 296 

, and the expected rewards . These two functions together 297 

represent a model of the environment. Model-based behaviors compute  and the policy 298 

relying on such functions, at each state, following the Bellman equation (Daw and Dayan, 2014): 299 

 300 

Qπ*
st, at =R st, at +γ p st+1=s|st, at Qπ*

s,as     (5) 301 

 302 

The model-based component learns the transition distributions and the expected rewards during 303 

the interaction with the environment. Thus, differently from other hybrid models (Daw et al., 304 

2005; Keramati et al., 2011; Pezzulo et al., 2013), the quality of Q value estimation at any given 305 

moment depends on the experience the agent acquired up to that point in time. To compute value 306 

estimation ( ), this bounded (Gershman et al., 2015) component applies at each step the 307 
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Bellman equation (5) a limited number of times  to states sampled stochastically 308 

following a heuristic for efficient state update selection. The algorithm is an early-interrupted 309 

variation of the Prioritized Sweeping algorithm (Moore and Atkeson, 1993) with stochastic state 310 

update selection. Crucially, our model-based component does not accumulate the variations of Q 311 

values over time, and restarts the computation after each step (desJardins et al., 1999). This 312 

choice is meant to instate a plausible bounded rationality for our model which can account for 313 

the cognitive costs and ensuing limits of integrating old and new information about the 314 

environment, whilst updating and extending a complex plan to navigate it. This implementation 315 

is suitable for a bounded rational model-based component that shows controlled stochasticity of 316 

deliberation performances in non-trivial environments. This choice allows to test the effects of 317 

the hypothesized endophenotypic differentiation in an environment characterized by higher 318 

degree of complexity in comparison with both the one chosen for the neural model and those 319 

described in the literature of RL models of addiction. In particular, we consider drug 320 

consumption to be associated with complex after-effects that make it difficult to predict the 321 

overall result of pursuing the related action course. 322 

 323 

In comparison with other hybrid models such as Dyna and Dyna2 (Sutton, 1990; Silver et al., 324 

2016), the proposed architecture does not share Q values between model-based and model-free 325 

components, nor it requires that the two processes share the same state representations. The two 326 

components separately represent their Q values and integrate them in a later phase. This 327 

decoupling is assumed to result in a more biologically plausible agent (Daw & Dayan 2014), and 328 

it is essential for the simulations of two separate treatments, essential requirement to establish a 329 

comparison with the behavior simulated with the neural model. In contrast with previous work 330 
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using a hybrid Dyna-like architecture and Prioritized Sweeping algorithm, where the sharing of 331 

the Q-values explained the appearance of model based drug oriented behavior (Simon and Daw, 332 

2012), in our simulations this model based addiction emerges in independent model-free and 333 

model based components. Thus, addiction behavior results from the joint effect of high reward 334 

(i.e. the drug), a limited number of stochastically selected policy updates and limited knowledge 335 

of the environment.   336 

 337 

The model-free component has been implemented using the Q-Learning algorithm in tabular 338 

form (Watkins and Dayan, 1992). Q-learning updates initial state value estimations as follows: 339 

 340 

       (6) 341 

     (7) 342 

 343 

where α is a learning factor comprised between 0 and 1. Our hybrid model computes choice 344 

values in a fashion that balances model-free (MF in the equations) and model-based (MB in the 345 

equations) components depending on a parameter . Six values (1, 0.8, 0.6, 0.4, 0.2, 0) are used 346 

for this parameter to simulate different endophenotypes, on a spectrum between purely model-347 

based ( =1) and purely model-free ( =0) RL.  348 

 349 

To allow exploration, the action to execute is selected randomly 10% of the times. This 350 

exploration factor is kept constant to support adaptation to a changing environment (Singh et al., 351 

2000) and to simulate the continuous update of knowledge necessary to cope with ecological 352 

environments. The remaining 90% of the times, actions are determined by maximizing QMX(s,a) 353 
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in a strategy defined as ε-greedy (ε=.1). These values are produced by combining the values 354 

computed by the model-based and model-free components: 355 

 356 

               (8) 357 

 358 

The choice for a fixed balance between model-based and model-free requires minimal 359 

assumptions on their interaction and has been used in recent reinforcement learning architectures 360 

(Silver et al., 2016). 361 

 362 

Simulating different addiction phenotypes and treatment effects: In comparison with the 363 

simulations characterizing the neural model, a more complex environment is in use for the RL 364 

model to highlight how our endophenotypic differentiations can also affect the likelihood to 365 

develop addiction. This environment is characterized by a total of 20 states divided into four 366 

different types (Figure 2): (i) healthy rewards (i.e. normal rewards that are not directly 367 

associated with drugs); (ii) neutral states (no reward or negative outcome); (iii) drug-related 368 

states, which give a high reward but are followed by multiple (iv) drug aftereffects, characterized 369 

by small negative outcomes. Similar to the neural model investigations, the agent deals with 370 

environment variations meant to simulate four phases of addiction: initial pre-drug phase (f1); 371 

addiction (i.e. the drug becomes accessible for the first time, f2); treatment (f3); relapse (i.e. 372 

second drug exposures, f4). Under the initial pre-drug phase (dinit=50 steps), the agent does not 373 

receive any reward or negative outcome by entering the drug-related and aftereffects area, but a 374 

moderate reward is assigned (Rg=1) by accessing the healthy reward state. Under the phases of 375 

addiction and post-treatment addiction (dtpy=1000 steps), the agent can also receive a high 376 
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reward, after accessing a drug-related state (Rd=10). The drug state always leads to a series of 377 

randomized state transitions among the aftereffects states (Ra=-1.2) and simulates generic 378 

negative consequences associated with addiction. The agent can occasionally leave this 379 

aftereffect area of the environment (Figure 2) to reach a neutral state, at the price of a further 380 

negative outcome (Ra=-4). Under the treatment phase (dtpy=1000 steps), the drug-related state 381 

results in a negative outcome (Rdt=-1, see Tables 1 and 2, column f3), thus increasing the 382 

chances the agent stops pursuing this state. To allow for a comparison with the results in the 383 

neural model, we simulate a model-based and model-free treatment by manipulating the learning 384 

factor of the non-treated control modality, decreasing it: αCtpy=0.01 * α. Under the relapse phase, 385 

we measure the simulated time required by the agents to reach at least 95% of drug-related action 386 

preference as recorded under the addiction phase, after the drug is introduced again in the 387 

environment. This threshold is used to measure the percentage of agents relapsing, as well as the 388 

time required to complete the relapse, per endophenotype. 389 

 390 

Code Accessibility 391 

All models rely on custom code developed in Matlab (optimized for R2014b) that has been run 392 

successfully on multiple OS (iOS, Linux and Windows) on different computers and local servers.  393 

The code can be accessed at any time from the repository ModelDB (accession number: 239540; 394 

https://senselab.med.yale.edu/modeldb/enterCode.cshtml?model=239540; title: ‘Computational 395 

Endophenotypes In Addiction: Source Code’). The downloadable archive file consists of two 396 

folders (respectively for the neural model and the RL model), which include the entire source 397 

code required to replicate the data reported in our Results section. Code available as Extended 398 

Data 1. 399 



 

 19 

 400 

Results. 401 

Simulations from the neural field model.  402 

During all stages, the three stimuli randomly change every few seconds, putatively representing a 403 

dynamic fluctuation of values associated with perceived cues in a non-stationary environment. 404 

This setup requires the agents to rapidly adapt to these changes, transiently triggering the motor 405 

response associated with the most valuable cue, in order to achieve optimal behavior. During the 406 

pre-drug stage, dorsal and ventral circuits perform unbiased selections, collaborating in the 407 

generation of a near-optimal sequence of motor selections. All eleven endophenotypes show 408 

uniform distributions of action selections, complying with the random distribution of the inputs 409 

configurations (Figure 3A). This control stage allows the simulated network to generate 410 

transient temporal responses that couple multiple initial states with multiple stable states, in a 411 

transient winner-take-all or winner-less competition (Rabinovich et al., 2006; Afraimovich et al., 412 

2008). 413 

 414 

During the simulated addiction stage, one of the actions is associated with drug administration 415 

(Figure 3B, values represented in blue). Substance use triggers phasic dopamine bursts, leading 416 

to Hebbian learning in cortico-striatal connections of both dorsal and ventral circuits (equation 417 

3). In recurrent networks, circuit gain increases as a direct function of the weights of reentrant 418 

synapses (Amit, 1989). A dopamine response triggered by healthy unexpected rewards would 419 

create a bias towards the selection of the reinforced motor response to a perceived cue (Cohen 420 

and Frank, 2009; Grahn et al., 2009; Baldassarre et al., 2013). However, drug consumption 421 

triggers extra-physiologic dopamine-dependent learning, which in our model results in aberrantly 422 
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high circuit gain, compromising the ability of all affected circuits to discriminate among different 423 

inputs and produce temporal transitions towards multiple stable states (cf. Fiore et al., 2014). The 424 

cortico-striatal circuits become over-stable and resistant to perturbation caused by a change of 425 

input or by noise as they are dominated by parasitic attractors (Hoffman and McGlashan, 2001) 426 

(Fig 1C). In the ventral cortico-striatal circuit, a parasitic attractor sets and maintains the 427 

selection of drug-related goals or outcomes, biasing the action-outcome assessments required for 428 

planning. In the dorsal circuit, the same process determines over-stable selections of the 429 

reinforced motor behavior, generating reactive responses and habits. Importantly, the learning 430 

process simulated in our neural model leads to the generation of parasitic attractors in both 431 

circuits across all endophenotypes, as all agents eventually reach a fixed threshold in cortico-432 

striatal neural plasticity. Despite the generation of a form of compulsive drug seeking behavior 433 

across all endophenotypes, we observe significant differences in motor response patterns as a 434 

function of the balance between ventral and dorsal circuits. Specifically, the endophenotypes 435 

characterized by unbalanced dorsal or ventral control (i.e. Figure 3B, endophenotypes 1-3 and 9-436 

11) express distributions of motor selections that are significantly more compromised by drug-437 

related aberrant rewards, in comparison with balanced endophenotypes (i.e. Figure 3B, 438 

endophenotypes 5-7). The presence of identical learning processes, and the associated attractor 439 

formation in both ventral and dorsal circuits, ascribes all phenotypic differences univocally to the 440 

only remaining independent variable, which controls cortico-cortical connectivity and therefore 441 

the strength of the biases between circuits. Unbalanced agents are characterized by more frequent 442 

drug-related selections as actions leading to drug consumption are selected more frequently than 443 

in balanced endophenotypes, in a range between +3% and +45%. This result identifies all 444 
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phenotypes within the limits of individual differentiation described in the study chosen for 445 

behavioral comparison (Gannon et al., 2017).  446 

 447 

Next, we investigate how the simulated endophenotypes behave during the stages of treatment 448 

and relapse. First, we measure the frequency of drug-related action selections during the stages 449 

of addiction and treatment (Figure 4A-B). Both ventral (goal-oriented) and dorsal (habitual) 450 

treatments effectively reduce the number of actions associated with drug consumption, in 451 

comparison with baseline addiction. However, the dorsal treatment is more effective for dorsal-452 

dominated endophenotypes and the ventral treatment is more effective for ventral-dominated 453 

endophenotypes. These endophenotype-specific treatment effects are further confirmed by our 454 

analysis of individual differences under the relapse stage (Figure 4C-D): dorsal treatments are 455 

more effective in elongating time to relapse for dorsal-dominated endophenotypes, whereas 456 

ventral treatments are more successful in delaying relapse for ventral-dominated 457 

endophenotypes. This analysis shows that simulated treatments focusing either on the dorsal 458 

circuit (and therefore habitual responses) or the ventral circuit (and therefore motivational 459 

responses) can have substantially different effects, depending on the balance between dorsal and 460 

ventral circuits. Importantly, these differences emerge only after the treatment is applied, where a 461 

pre-treatment comparison between compulsive behaviors expressed by the opposite unbalanced 462 

endophenotypes (i.e. ventral-dominant or dorsal-dominant) does not show any significant 463 

difference in choice selections (cf. Figure 3B, endophenotypes 1-3 and 9-11).  464 

 465 

Simulations from the RL model.  466 



 

 22 

By simulating explicit negative outcomes associated with drug consumption, the RL model 467 

allows to measure the likelihood each agent has to develop addiction, as a function of its 468 

endophenotype. In our analysis, addiction is defined as a behavior leading to drug selections 469 

more frequently than the healthy alternative reward, under the addiction phase. The mean 470 

percentage of these addicted agents (over 300 runs) was 43.05%, across endophenotypes, which 471 

is consistent with the percentage of rats developing compulsive self-administration of cocaine, as 472 

reported in the reference study (~40% over a period of 5 days, cf. Gannon et al., 2017). 473 

Importantly, when considering endophenotype differentiation, the percentage varies 474 

significantly: 60.3% for  =0, 40.3% for  =0.2, 30.1% for  =0.4, 36.7% for  =0.6, 39.3% for 475 

 =0.8, and 51.6% for β=1 (Figure 5A-B). This phenotypic differentiation is consistent with 476 

well-established data from animal models. For instance, rat strains selectively bred for either 477 

high or low voluntary running differ in the likelihood to develop addiction when given free 478 

access to cocaine (respectively ~35% and ~60% of each strain develop addiction over a period of 479 

5 days, cf. Smethells et al., 2016). Free access to substances of abuse does not necessarily lead to 480 

compulsive behaviors (Piazza et al., 1989; Belin et al., 2011), as addiction varies as a function of 481 

factors such as exposure extent, amount of drug delivered, and associated negative effects 482 

(Pelloux et al., 2007; Jonkman et al., 2012). Our simulations suggest that endophenotypes with 483 

lower chances of addiction are characterized by balanced control modalities. Note that an 484 

optimal agent, knowing the environment structure and being able to compute the long-term 485 

effects of drug, will never select drug-states (Table 3). 486 

 487 

Finally, the simulations suggest that the hypothetical treatment targeting model-free control is 488 

the most effective, reducing the likelihood to pursue drug-related behaviors for all 489 
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endophenotypes (Figure 5A). In contrast, the model-based treatment appears to be less effective 490 

for all endophenotypes, with the exception of the purely model-based one ( =1) (Figure 5B). 491 

Under the relapse phase, our data confirm that the simulated treatments significantly differ in 492 

their effectiveness across the proposed endophenotypes, also suggesting the treatment targeting 493 

model-free control is the most successful in prolonging relapse time (Figure 5C-D). Relapse 494 

time after model-free treatment is mostly similar to the time required to develop addiction 495 

behavior before any treatment (Figure 5C). At the opposite side of the control spectrum, the 496 

model-based treatment shows a positive effect only for the purely model-based endophenotype. 497 

All remaining endophenotypes show relapse times significantly shorter than those recorded for 498 

the first development of addiction ( =1; Figure 5D).  499 

 500 

Discussion 501 

Individual differences in stress and anxiety responses (Dilleen et al., 2012; Jimenez and Grant, 502 

2017), social dominance (Morgan et al., 2002; Covington and Miczek, 2005), aggressive 503 

temperament (McClintick and Grant, 2016), preference for saccharine (Carroll et al., 2002), 504 

sensation or novelty seeking (Suto et al., 2001; Nadal et al., 2002; Belin et al., 2011; Flagel et al., 505 

2014), impulsivity (Perry and Carroll, 2008; Verdejo-Garcia et al., 2008; Dalley et al., 2011), 506 

and sensitivity to rewards (Belcher et al., 2014) have all been found in both animal models and 507 

clinical studies in humans to be associated with addiction vulnerabilities, and in particular with 508 

the likelihood to develop and maintain addiction, or to resist to treatment (Piazza et al., 1989; 509 

Belin et al., 2016; Everitt and Robbins, 2016). However, investigations into the mechanisms 510 

underlying this phenotypic differentiation in addiction has so far revealed few neural or 511 

computational candidates, which are found to be associated with diverse and dissociable 512 
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behavioral traits. An important example is represented by the endophenotypic differentiation 513 

reported in the expression and reactivity of striatal D2 dopaminergic receptors, which is found  to 514 

be negatively correlated with the traits of impulsivity (Dalley et al., 2007), social dominance 515 

(Morgan et al., 2002), and sensitivity to rewards (Belcher et al., 2014) and non-linearly 516 

correlated with novelty preference (Flagel et al., 2014). The overlap of this endophenotypic trait 517 

across multiple, non-coexisting, phenotypes associated with addiction vulnerabilities suggests 518 

other neural or computational mechanisms have yet to be identified to allow accounting for the 519 

reported variety in behavioural traits. 520 

  521 

Here we have presented a neural field model, augmented by an RL model, to expand on existing 522 

neuropsychological and computational accounts of addiction. Our models propose a theoretical 523 

investigation into the interaction among cortico-striatal circuits or behavioral control modalities, 524 

and the effects this interaction has on addiction development and treatment response. As 525 

described in classic models (Redish, 2004; Redish et al., 2008; Dayan, 2009), we have assumed 526 

that over-evaluation of a drug leads to aberrant dopamine release and associated over-learning in 527 

multiple DA targets (Volkow and Morales, 2015; Koob and Volkow, 2016). In the neural field 528 

model, this mechanism results in the dysregulation of the circuit gain and associated dynamics of 529 

both ventral and dorsal cortico-striatal circuits (Fiore et al., 2014; Hauser et al., 2016). In the 530 

integrated model-based and model-free RL model, sequential choice behavior is confounded by 531 

the presence of a high immediate reward (drug state). This leads to misrepresent the negative 532 

outcomes following drug consumption, if their distribution across states and time is sufficiently 533 

complex to escape the capabilities of the agent to correctly represent the environment (Doll and 534 

Daw, 2016; Sadacca et al., 2016). We found that both models jointly indicate that the balance 535 
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between neural circuits or behavioral control modalities is a candidate neurocomputational 536 

mechanism characterizing endophenotypes in addiction. The neural and RL models converge in 537 

suggesting that individuals characterized by balanced behavioral control between reward-seeking 538 

or planning (ventral circuit/model-based) and reactive or habitual responses (dorsal 539 

circuit/model-free) would have a reduced chance to develop addiction and decreased severity of 540 

symptoms if developing addiction. We propose that this neurocomputational mechanism may be 541 

interacting with other known endophenotypic differentiations, such as alterations of D2 receptors 542 

in the striatum (Morgan et al., 2002; Nader and Czoty, 2005; Dalley et al., 2007; Volkow et al., 543 

2007; Belcher et al., 2014; Flagel et al., 2014) or differences in learning rates (Gutkin et al., 544 

2006; Piray et al., 2010), to generate the multifaceted behavioral traits that have been reported in 545 

literature to be associated with addiction vulnerabilities. 546 

 547 

In our neural model, ventral and dorsal circuits are mostly in phase in their selections under the 548 

pre-drug stage, exhibiting synchronous transient stability of neural activity and enhancing the 549 

overall ability of the system to adapt to changing stimuli (i.e. the two circuits adapt to the input 550 

changes with a similar pace and synchronize in their selection). Under the addiction stage, the 551 

two circuits are mostly pulled towards the parasitic attractor state associated with drug 552 

consumption, and they occasionally select the competing non-drug stimuli. If only one of the two 553 

systems performs a selection outside of the attractor, the difference in selection generates a 554 

dissonance or interference. In neural endophenotypes characterized by unbalanced control, this 555 

dissonance is solved by one circuit taking the lead, so that both systems eventually converge on 556 

the selection of the dominant circuit. These dynamics result in limited opportunities to generate 557 

non-drug related responses to the external stimuli, as they can only be generated by the dominant 558 
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circuit. Conversely, in balanced control endophenotypes, if any of the two circuits ignores the 559 

drug-stimulus and selects a competing option, the resulting dissonance can trigger a state 560 

transition pulling out the parasitic attractor states associated with substance use. The 561 

endophenotypes in our simulations vary only in the parameters regulating the balance between 562 

circuits, as dopamine-driven learning processes established between cortex and striatum 563 

(equation 3) do not vary across endophenotypes, resulting in identical habit formation and drug-564 

related biases in the outcome representations. Thus, our proposed phenotypic differentiation does 565 

not interfere with the usual role ascribed to the ventral and dorsal circuits as respectively 566 

implicated in the initial reward-seeking phase in addiction (Belin and Everitt, 2008; Willuhn et 567 

al., 2012) and the subsequent consolidation of stimulus-response, habitual, association (Everitt 568 

and Robbins, 2013, 2016). However, our simulated dynamics show that, after addiction is 569 

developed, systemic over-stability can be reduced or further enhanced, depending on the cortico-570 

cortical biases between cortico-striatal circuits. In turn, this modulation of system stability can 571 

foster or further impair input discrimination and motor response versatility, affecting addiction 572 

symptomatology. As a result, our neural model shows phenotypic variability emerging after the 573 

presentation of the reward simulating the drug and addiction is developed, in a gradient of over-574 

selection of drug-related actions. 575 

 576 

With the RL model, we investigate whether the balance between model-based and model-free 577 

modalities would also increase the robustness of the system against the selection of drug-states in 578 

a more complex environment and in presence of explicit negative outcomes. Similar to the neural 579 

model, a system with balanced control modalities introduces more diversity in action selection 580 

during exploration, reducing (yet not cancelling) the chances of developing maladaptive reactive 581 
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responses. This increased diversity and overall reliability are likely to be induced by a higher 582 

redundancy and diversification of the system. While both components may fail, the causes of 583 

failures are not necessarily correlated. The model-based system can fail due to its sensitivity to 584 

cognitive resources but it is more efficient in encoding previous experience of the agent. On the 585 

other hand, the model-free component is affected by limited exploration but it is reliable in its 586 

selections, which are not affected by the availability of cognitive resources. Consistent with the 587 

neural model, differentiations in behaviors among endophenotypes emerge in an inverted-U 588 

shape, where unbalanced control system are the most vulnerable to developing addiction. 589 

 590 

The phenomenon of relapse is more elusive and the two models do not fully converge on this 591 

aspect. To investigate this phenomenon, we have adapted the complexity of real world 592 

treatments to the capabilities of our simulated agents and environments, where we can easily 593 

manipulate or extinguish consolidated memory, but we cannot engage all other aspects 594 

commonly involved in addiction treatment, such as cognitive or emotional functions or 595 

developing new behavioral strategies to compete with drug-related habits. Therefore, we 596 

implemented two compartmentalized treatments that we consider as ideal reference models that 597 

target only a single decision system or circuit. These putatively represent treatments capable of 598 

affecting only drug-related emotional/value or habitual/motor associations. In the neural model, 599 

balanced dorsal and ventral endophenotypes respond well to both types of simulated treatments. 600 

For the unbalanced endophenotypes, however, only the appropriate treatment, targeting the 601 

dominant neural circuit, is effective. The simulations in the RL model do not show the same 602 

symmetric effects for the two treatments: the model-free treatment is effective for most 603 

endophenotypes, whereas the model-based treatment is mostly unsuccessful, with short relapse 604 
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times across all endophenotypes, but the purely model-based one. The latter result is possibly 605 

due to the learning process characterizing the model-based component, which is affected by 606 

conflicting information as drug use is associated with both positive and negative outcomes, 607 

experienced by the agent when entering the drug state under different phases.  608 

 609 

It is worth noting that habitual and goal-oriented behaviors have neural representations in the 610 

dorsal and ventral cortico-striatal circuits respectively, but they do not fully overlap with model-611 

based and model-free control modalities in RL (Dolan and Dayan, 2013). Nonetheless, the neural 612 

and RL models independently simulate choices among competing options in addiction.  Thus, we 613 

have been able to test our hypothesis of endophenotypic differentiation under two 614 

complementary levels in Marr’s tri-level of analysis: the neural implementation and the 615 

algorithmic level (Marr and Poggio, 1976). This multilevel modeling approach has been often 616 

used in computational psychiatry (Maia and Frank, 2011; Montague et al., 2012; Adams et al., 617 

2016; Hauser et al., 2016; Huys et al., 2016) to highlight model convergence and associate 618 

specific neural structure and dynamics with mathematical formalizations of optimal and 619 

suboptimal behavior in RL. The convergence of neural and RL models on important predictions 620 

also provides more confidence in the reliability of the identified computational mechanisms 621 

underlying addiction and the associated characterization of endophenotypes. Specifically, both 622 

models indicate individuals with unbalanced cortico-striatal activity or control modality are at 623 

higher risk of developing addiction and relapse after any treatment. Thus, independent of 624 

phenotypic-specific treatments, our results suggest that individuals with these traits would 625 

require a prolonged or more intense treatment, in comparison with balanced endophenotypes. 626 

Finally, when considering phenomena that are divergent across both models (e.g. response 627 
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across endophenotypes to our simulated treatments), our findings still demonstrate that important 628 

endophenotypic features might remain undetected in terms of pre-treatment observable behavior. 629 

The models showed that opposite unbalanced agents resulted in similar addictive behaviors and 630 

vulnerabilities, but diverged in treatment response, potentially informing the development of 631 

precision interventions. Further studies will be required to provide empirical validation of our 632 

models. For example, computational analysis of fMRI data can be used to test effective 633 

connectivity among cortico-striatal circuits (e.g. Friston et al., 2003), in conjunction with 634 

cognitive tasks targeting the model-based and model-free control systems.  635 
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Extended Data Code File 1. To access the source code of both models, visit the ModelDB 876 

website (https://senselab.med.yale.edu/modeldb/enterCode.cshtml?model=239540), and 877 

download the archive. The source code shows its structure in the commented main files 878 

“separate_test.m” and “RunExperimentLearning96.m”, respectively in the folder “neural_model” 879 

and “RL_model”. 880 

 881 

 882 

Figure 1. Illustrative representation of energy landscapes and neural architecture of the 883 

model. A-C. These representations of energy landscapes are meant to illustrate differences in the 884 

temporal responses provided by neural systems. Depending on the energy landscape, three 885 

arbitrary inputs (magenta dots) are transformed into different stable states (grey dots). Learning 886 

processes increase or decrease the strength of the connections among nodes in a network, thereby 887 

altering its energy landscape and reshaping temporal responses towards existing attractors. 888 

Attractors are defined as low energy states (bottom of the basins) at the end point of the temporal 889 

responses to multiple starting inputs. (A) The landscape is characterized by multiple shallow 890 

attractors: these allow slow temporal responses, transforming multiple inputs into multiple 891 

weakly stable states. Noise and changes in the incoming input easily determine new responses 892 

towards different attractors. (B) In this second illustrative configuration, steep and vast attractors 893 

characterize the energy landscape, allowing quick state transitions towards two equilibrium 894 

points. This new configuration is able to resist noise and minor changes in the incoming input, 895 

and, at the same time, allows a differentiation of inputs in two broad categories. (C) Finally, the 896 

third energy landscape illustrates the presence of a parasitic attractor, exemplifying the condition 897 

of addiction: all inputs fall now at the bottom of a single steep basin. Under this condition, noise 898 
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and changes in the incoming input determine temporal responses that keep falling in the same 899 

attractor, therefore preventing the system from executing different behaviors. (D) Neural 900 

architecture used to simulate neural dynamics and behavior for the mean field neural model. The 901 

activity in the dorsal cortico-striatal circuit is responsible for the motor output of the system (left 902 

circuit), whilst activity in the ventral cortico-striatal circuit is responsible for goal selections 903 

(right circuit). The two systems bias each other via cortico-cortical connectivity and learning 904 

processes affect the weights of the connections between the two cortical outputs and the striatum 905 

in their corresponding circuits. The components in the architecture are labeled as follows: cortex 906 

(Cx), thalamus (Th), globus pallidus pars externa and interna (GPe and GPi), substantia nigra 907 

pars reticulata (SNr), sub-thalamic nucleus (STN) and striatum (Str), divided into two areas 908 

enriched by either D1 or D2 receptors. 909 

 910 

Figure 2. Illustrative representation of the environment used for the RL model of 911 

addiction. The states are disposed in a linear arrangement: on one extreme is a healthy reward 912 

state (1), on the opposite side a drug state (8) followed by twelve aftereffects states (9-22). 913 

Healthy reward and drug states are separated by 6 neutral states (2-7). The agent can traverse 914 

between nearby neutral states. From the two borders of the central segment of neutral states, an 915 

agent can enter the healthy reward state (from state 2), securing a moderate reward (Rg=1), or 916 

the drug state (from state 7), receiving an initial high reward (Rd=10, during the phase of 917 

addiction) and a series of sparse but temporally extended negative outcomes, characterizing the 918 

aftereffects states. The presence of negative outcomes makes entering the drug and aftereffects 919 

area suboptimal during all experimental phases (see optimal policy in table 3). From both the 920 

goal state and the drug/aftereffects segment the agent is then returned to the middle of the neutral 921 
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segment. In this representation, we explicitly portray the transitions related to states 1 (healthy 922 

reward), 4 (neutral), and 15 and 20 (drug aftereffects) for illustrative purposes. Line width 923 

represents related transition probability value. Line and text color represent the action class (as, 924 

ag, aw, ad). Neutral states are navigable with actions as2-7 which are deterministic for adjacent 925 

state while have high chance of failing for distant states. From the neutral states the agent can 926 

reach: (i) the healthy reward, if executing action ag when in state 2; and (ii) the drug state (8) and 927 

aftereffects area (state 9 to 22), if executing action ad, when in state 7. From the healthy reward 928 

area the agent can issue again ag, receiving a reward of 1 and going back to the center of the 929 

neutral area, state 4. By entering the drug area, the agent receives a reward of 10. Action results 930 

in the drug/aftereffect area are probabilistic: the agent can reach a nearby state in the area or 931 

leave the area and reach the center of the neutral state. Leaving the drug/aftereffects area has a 932 

cost of -4, whereas every other transition inside the area costs -1.2. For a full description of 933 

transitions and their probability distribution in the environment (see Tables 1-2,4-5). 934 

 935 

Figure 3. Distribution of action selections across endophenotypes controlled by the neural 936 

model. Histograms show how the distribution of simulated action selections changes depending 937 

on the endophenotype (11 variations in cortico-cortical connectivity weights). 30 random 938 

seeds/inputs are used per endophenotype, tested under two stages: pre-drug (A) and addiction 939 

(B). The three colors represent the occurrence of selections of three arbitrary actions. Under the 940 

pre-drug stage, no reward is provided and action selections are triggered by random fluctuation 941 

in values of competing sensory inputs. The simulations show the agents adapt to the changes in 942 

sensory stimuli and therefore exhibit a near-uniform distribution of action selections. 943 

Conversely, under the addiction stage, the action represented in blue is associated with 944 
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administration of the simulated drug, triggering DA-dependent Hebbian learning in cortico-945 

striatal connectivity, and consequently over-selection. Under addiction, the differences among 946 

endophenotypes clearly emerge in the selection frequency of the action leading to drug 947 

consumption. Asymmetric control (endophenotypes 1-3 and 9-11) leads to a stronger over-948 

selection in comparison with balanced control (endophenotypes 4-7), despite identical learning 949 

processes and reward encoding. 950 

 951 

Figure 4. Severity of addiction and relapse time across endophenotypes controlled by the 952 

neural model. Shaded error bars report mean and standard error for 30 simulated agents across 953 

endophenotypes (11 variations in cortico-cortical connectivity weights). Panels A and B show 954 

the selections of actions leading to substance consumption, as a percentage of the overall number 955 

of action selections. In the first case (A) we compare the values recorded during the addiction 956 

stage with those recorded during the stage of dorsal treatment jointly with abstinence (i.e. drug-957 

related actions do not trigger self-administration of a drug and the treatment targets the dorsal 958 

circuit). In the second case (B) the comparison involves addiction and ventral treatment 959 

(treatment targeting the ventral circuit, during abstinence). Panels C and D compare the 960 

simulated time required by the 11 endophenotypes to reach an arbitrary threshold of cortico-961 

striatal connectivity during the stage of addiction and during the stage of relapse after either 962 

dorsal (C) or ventral (D) treatment. Within the time of a simulation run, all simulated agents 963 

reached the addiction threshold. The two treatments are simulated by restoring either the 964 

dorsal/motor (A-C) or the ventral/outcome circuit (B-D) to the configuration characterizing the 965 

pre-drug stage. The percentage of the action selections shows the dorsal treatment is more 966 

effective in endophenotypes characterized by high dorsal dominance (A), whereas the ventral 967 
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treatment only has an effect in endophenotypes characterized by high ventral dominance (B). 968 

Similarly, dorsal and ventral treatments result in long relapse times in endophenotypes 969 

characterized by high dorsal and high ventral dominance, respectively. (*) indicates significant 970 

difference: p<0.05. 971 

 972 

Figure 5. Likelihood to develop addiction and relapse time across endophenotypes 973 

controlled by the RL model. Shaded error bars report mean and standard error for  ̴100 974 

simulated agents across 6 endophenotypes (differential balance between model-based and model-975 

free control modalities, β=[0, 0.2, 0.4, 0.6, 0.8, 1]). Panels A and B show the percentage of 976 

agents developing addiction (i.e. drug-related choices are more frequent than healthy reward-977 

related choices), per endophenotype, under the addiction and treatment phases. In the first case 978 

(A) the comparison involves data recorded during the phase of addiction and those recorded 979 

during the phase of model-free treatment. In the second case (B) the comparison involves the 980 

phases of addiction and model-based treatment. Panels C and D illustrate the simulated time 981 

required by the 6 endophenotypes to reach 95% of action preference towards the drug state, in 982 

comparison with action preference recorded during the phase of addiction (f2). In the first case 983 

(C) the comparison involves the phases of addiction and relapse after model-free treatment, 984 

whereas in the second case (D) the comparison involves the phases of addiction and relapse after 985 

model-based treatment. In terms of action selection ratio, the simulated results show both 986 

treatments have a significant effect only on those phenotypes characterized by strong unbalance 987 

of control (A-B). In terms of relapse, the results show the model-free treatment is on average 988 

more successful than the model-based one, as 5 endophenotypes show no significant difference 989 

between the phases of addiction and post-treatment addiction (i.e. the time required to relapse is 990 
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not significantly different than the time required to develop addiction the first time). Each 991 

endophenotype, or parameter selection, was simulated 100 times across the four phases (3050 992 

steps per simulation). Results depend on the statics of the environment, but over similar 993 

environments the results were qualitatively similar. (*) indicates significant difference: p<0.05. 994 

 995 

 996 

Table 1 Environment transition probabilities across endophenotypes controlled by the RL model. 997 

Changes during phases in italic. 998 

Transition Description Probability for each phase  

 P (f1) P (f2) P (f3) P (f4)  

P(s=i|s=i,a=as=i), i neutral state 1 1 1 1 

From
 N

eutral States 

P(s=i+j|s=i,a=as=i+j),j=+1/-1, i neutral 

state, i+j neutral state 
0.99 0.99 0.99 0.99 

P(s=i|s=i,a=as=i+j) ,j=+1/-1, i neutral state, 

i+j neutral state 
0.01 0.01 0.01 0.01 

P(s=i+k|s=i,a=as=i+k),k!=+1/-1, i neutral 

state, i+k neutral state 
0.0001 0.0001 0.0001 0.0001 

P(s=i|s=i,a=as=i+k),k!=+1/-1, i neutral 

state, i+k neutral state 
0.9999 0.9999 0.9999 0.9999 

P(s=i|s=i,a=aw), i neutral state 1 1 1 1 

P(s=1|s=2,a=ag) 1 1 1 1 

P(s=i|s=i,a=ag), i!=2 neutral state 1 1 1 1 

P(s=8|s=7,a=ad) 1 1 1 1 
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P(s=i|s=i,a=ad), i!=7 neutral state 1 1 1 1 

P(s=i|s=i,a=ag), i drug/aft state 0.999 0.999 0.8 0.999 

From
 D

rug/aft States 

P(s=4|s=i,a=ag), i drug/aft state 0.001 0.001 0.2 0.001 

P(s=i|s=i,a=as=*), i drug/aft state 0.999 0.999 0.8 0.999 

P(s=4|s=i,a=as=*), i drug/aft state 0.001 0.001 0.2 0.001 

P(s=j|s=i,a=aw), i!=15 drug/aft state, j 

next or previous drug/aft state 
0.4995 0.4995 0.4 4.995 

P(s=4|s=i,a=aw), i!=15 drug/aft state 0.001 0.001 0.2 0.001 

P(s=14/16|s=15,a=aw) 0.2 0.2 0.15 0.2 

P(s=4|s=15,a=aw) 0.6 0.6 0.7 0.6 

P(s=j|s=i,a=ad), i drug/aft state, j next 

drug/aft state 
0.745 0.745 0.6 0.745 

P(s=j|s=i,a=ad), i drug/aft state, j previous 

drug/aft state 
0.245 0.245 0.2 0.245 

P(s=4|s=i,a=ad), i drug/aft state 0.01 0.01 0.2 0.01 

P(s=4|s=1,a=ag) 1 1 1 1 

G
oal 

P(s=1|s=1,a=as=*) 1 1 1 1 

P(s=1|s=1,a=aw) 1 1 1 1 

P(s=1|s=1,a=ad) 1 1 1 1 

 999 

Table 2 Environment rewards across endophenotypes controlled by the RL model. Changes 1000 

during phases in italic. 1001 

Transition Description Probability for each phase  
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 P (f1) P (f2) P (f3) P (f4)  

T(s=i|s=i,a=as=i), i neutral state 0 0 0 0 

From
 States 

T(s=i+j|s=i,a=as=i+j), j=+1/-1, i neutral 

state, i+j neutral state 
0 0 0 0 

T(s=i|s=i,a=as=i+j), j=+1/-1, i neutral state, 

i+j neutral state 
0 0 0 0 

T(s=i+k|s=i,a=as=i+k),k!=+1/-1, i neutral 

state, i+k neutral state 
-0.3 -0.3 -0.3 -0.3 

T(s=i|s=i,a=as=i+k),k!=+1/-1, i neutral 

state, i+k neutral state 
0 0 0 0 

T(s=i|s=i,a=aw), i neutral state 0 0 0 0 

T(s=1|s=2,a=ag) 0 0 0 0 

T(s=i|s=i,a=ag), i!=2 neutral state 0 0 0 0 

T(s=8|s=7,a=ad) 0 10 -1 10 

T(s=i|s=i,a=ad), i!=7 neutral state 0 0 0 0 

T(s=i|s=i,a=ag), i drug/aft state -0.3 -1.2 -1.2 -1.2 

From
 D

rug/aft States 

T(s=4|s=i,a=ag), i drug/aft state -4 -4 -4 -4 

T(s=i|s=i,a=as=*), i drug/aft state -0.3 -1.2 -1.2 -1.2 

T(s=4|s=i,a=as=*), i drug/aft state -4 -4 -4 -4 

T(s=j|s=i,a=aw), i!=15 drug/aft state, j 

next or previous drug/aft state 
-0.3 -1.2 -1.2 -1.2 

T(s=4|s=i,a=aw), i!=15 drug/aft state -4 -4 -4 -4 

T(s=14/16|s=15,a=aw) -0.3 -1.2 -1.2 -1.2 
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T(s=4|s=15,a=aw) -4 -4 -4 -4 

T(s=j|s=i,a=ad), i drug/aft state, j next 

drug/aft state 
-0.3 -1.2 -1.2 -1.2 

T(s=j|s=i,a=ad), i drug/aft state, j previous 

drug/aft state 
-0.3 -1.2 -1.2 -1.2 

T(s=4|s=i,a=ad), i drug/aft state -4 -4 -4 -4 

T(s=4|s=1,a=ag) 1 1 1 1 

G
oal 

T(s=1|s=1,a=as=*) 0 0 0 0 

T(s=1|s=1,a=aw) 0 0 0 0 

T(s=1|s=1,a=ad) 0 0 0 0 

 1002 

Table 3 Optimal policy across endophenotypes controlled by the RL model (2nd Drug phase) 1003 

State Id State Type Action Q value 

1 goal ag 2.8967 

2 neutral ag 2.607 

3 neutral as=2 2.3439 

4 neutral as=3 2.1074 

5 neutral as=4 1.8948 

6 neutral as=5 1.7036 

7 neutral as=6 1.5317 

8 drug ad -10.1134 

9 drug-aft ad -10.3781 

10 drug-aft aw -10.4882 
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11 drug-aft aw -10.2809 

12 drug-aft aw -9.7099 

13 drug-aft aw -8.6469 

14 drug-aft aw -6.8532 

15 drug-aft aw -3.9265 

16 drug-aft ad -5.2928 

17 drug-aft ad -6.4251 

18 drug-aft ad -7.3633 

19 drug-aft ad -8.1408 

20 drug-aft ad -8.7849 

21 drug-aft ad -9.318 

22 drug-aft ad -9.7575 

 1004 

Table 4 Agent model parameters across endophenotypes controlled by the RL model 1005 

Name  Description  Value 

α  MF learning factor 0.05 

γ  Discount factor 0.9 

dMB MB decay factor 0.01 

NPS MB number of updates 50 

TMB Temperature for stochastic state update selection 1 

ε  Exploration factor 0.1 

αCtpy  Cognitive therapy MF learning factor  0.0001, 0.0005, 0.001 

 1006 
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Table 5 Environment parameters across endophenotypes controlled by the RL model. 1007 

Name  Description  Value 

NT  Number of states 22 

NG  Number Goal States 1 

ND  Number Drug/aft States 15 

Nn  Number Neutral States 6 

Na Number of actions 9 

S0  Starting state 4 

Rp  Punishment end of drug/aft consumption -4 

Rc  Punishment in drug/aft area -1.2 

Rdd  Reward at init drug consumption (f2,f4) 10 

Rdt Reward at init drug consumption in therapy -1 

Rg Reward when entering goal state 1 

dinit  Duration initial (no drug) phase 50 

ddrug1 Duration first drug phase 1000 

dtpy Duration therapy phase 1000 

ddrug2 Duration second drug phase 600 

 1008 












