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ABLE: an Activity-Based Level Set Segmentation Algorithm for
Two-Photon Calcium Imaging Data

Abstract

We present an algorithm for detecting the location of cells from two-photon calcium imaging data. In our1

framework, multiple coupled active contours evolve, guided by a model-based cost function, to identify cell2

boundaries. An active contour seeks to partition a local region into two subregions, a cell interior and ex-3

terior, in which all pixels have maximally ‘similar’ time courses. This simple, local model allows contours to4

be evolved predominantly independently. When contours are sufficiently close, their evolution is coupled,5

in a manner that permits overlap. We illustrate the ability of the proposed method to demix overlapping6

cells on real data. The proposed framework is flexible, incorporating no prior information regarding a cell’s7

morphology or stereotypical temporal activity, which enables the detection of cells with diverse properties.8

We demonstrate algorithm performance on a challenging mouse in vitro dataset, containing synchronously9

spiking cells, and a manually labelled mouse in vivo dataset, on which ABLE achieves a 67.5% success10

rate.11

12

Significance statement13

Two-photon calcium imaging enables the study of brain activity during learning and behaviour at single-14

cell resolution. To decode neuronal spiking activity from the data, algorithms are first required to detect15

the location of cells in the video. It is still common for scientists to perform this task manually, as the16

heterogeneity in cell shape and frequency of cellular overlap impede automatic segmentation algorithms.17

We developed a versatile algorithm based on a popular image segmentation approach (the Level Set18

Method) and demonstrated its capability to overcome these challenges. We include no assumptions on19

cell shape or stereotypical temporal activity. This lends our framework the flexibility to be applied to new20

datasets with minimal adjustment.21

1. Introduction22

Two-photon calcium imaging has enabled the long-term study of neuronal population activity during23

learning and behaviour (Peron et al., 2015b). State of the art genetically encoded calcium indicators have24
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sufficient signal-to-noise ratio (SNR) to resolve single action potentials (Chen et al., 2013). Furthermore,1

recent developments in microscope design have extended the possible field-of-view in which individual neu-2

rons can be resolved to 9.5mm2 (Stirman et al., 2016), and enabled the simultaneous imaging of separate3

brain areas (Lecoq et al., 2014). However, a comprehensive study of activity in even one brain area can4

produce terabytes of imaging data (Peron et al., 2015a), which presents a considerable signal processing5

problem.6

To decode spiking activity from imaging data, one must first be able to accurately detect regions of7

interest (ROIs), which may be cell bodies, neurites or combinations of the two. Heterogeneity in the ap-8

pearance of ROIs in imaging datasets complicates the detection problem. The calcium indicator used to9

generate the imaging video affects both a cell’s resting fluorescence and its apparent shape. For exam-10

ple, some genetically encoded indicators are excluded from the nucleus and therefore produce fluorescent11

‘donuts’. Moreover, imaging data is frequently contaminated with measurement noise and movement arte-12

facts. These challenges necessitate flexible, robust detection algorithms with minimal assumptions on the13

properties of ROIs.14

Manual segmentation of calcium imaging datasets is still commonplace. While this allows the use15

of complex selection criteria, it is neither reproducible nor scalable. To incorporate implicitly a human’s16

selection criteria, which can be hard to define mathematically, supervised learning from extensive human-17

annotated data has been implemented (Valmianski et al., 2010; Apthorpe et al., 2016). Other approaches18

rely on more general cellular properties, such as their expected size and shape (Ohki et al., 2005) and that19

they represent regions of peak local correlation (Smith and Häusser, 2010; Kaifosh et al., 2014). The latter20

approaches use lower-dimensional summary statistics of the data, which reduces computational complexity21

but does not typically allow detection of overlapping regions.22

To better discriminate between neighbouring cells, some methods make use of the temporal activity23

profile of imaging data. The (2+1)-D imaging video, which consists of two spatial dimensions and one24

temporal dimension, is often prohibitively large to work on directly. One family of approaches therefore25

reshapes the (2+1)-D imaging video into a 2-D matrix. The resulting matrix admits a decomposition —26

derived from a generative model of the imaging video — into two matrices, each encoding spatial and27

temporal information. The spatial and temporal components are estimated using a variety of methods,28

such as independent component analysis (Schultz et al., 2009; Mukamel et al., 2009) or non-negative29

matrix factorization (Maruyama et al., 2014). Recent variants extend the video model to incorporate detail30

on the structure of neuronal intracellular calcium dynamics (Pnevmatikakis et al., 2016) or the neuropil31
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contamination (Pachitariu et al., 2016). By expressing the (2+1)-D imaging video as a 2-D matrix, this1

type of approach can achieve high processing speeds. This does, however, come at the cost of discarded2

spatial information, which can necessitate post-processing with morphological filters (Pnevmatikakis et al.,3

2016; Pachitariu et al., 2016).4

In this paper, we propose a method in which cell boundaries are detected by multiple coupled active5

contours. To evolve an active contour we use the level set method, which is a popular tool in bioimaging6

due to its topological flexibility (Delgado-Gonzalo et al., 2015). To each active contour, we associate a7

higher-dimensional function, referred to as the level set function, whose zero level set encodes the contour8

location. We implicitly evolve an active contour via the level set function. The evolution of the level set9

function is driven by a local model of the imaging data temporal activity. The data model includes no10

assumptions on a cell’s morphology or stereotypical temporal activity. Our algorithm is therefore versatile, it11

can be applied to a variety of data types with minimal adjustment. For convenience, we refer to our method12

as ABLE (an Activity-Based LEvel set method). In the following, we describe the method and demonstrate13

its versatility and robustness on a range of in vitro and in vivo datasets.14

2. Materials & Methods15

2.1. Estimating the boundary of an isolated cell16

Consider a small region of a video containing one cell (e.g. inside the dashed box, Fig. 1A). This region17

is composed of two subregions: the cell and the background. We want to partition the region into Ωin and18

Ωout, where Ωin corresponds to the cell and Ωout the background. We compute a feature of the respective19

subregions, f in and fout, with which to classify pixels into the cell interior or background. In particular, we20

define f in ∈ R
T and fout ∈ R

T as the average subregion time courses, where T is the number of frames in21

the video. We estimate the optimal partition as the one that minimizes discrepancies between a pixel’s time22

course and the average time course of the subregion to which it belongs. To calculate this discrepancy, we23

employ a dissimilarity metric, D (see below), which is identically zero when the time courses are perfectly24

matched and positive otherwise. As such, we minimize the following cost function, which we refer to as the25

external energy,26

Eext(Ω
in,Ωout) =

∫
Ωin

D
(
I(x), f in

)
dx+

∫
Ωout

D
(
I(x), fout

)
dx, (1)

where I(x) ∈ R
T is the time course of pixel x.27
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The cell location estimate is iteratively updated by the algorithm. At each iteration, the cell exterior is1

defined as the set of pixels within a fixed distance of the current estimate of the cell interior, see Fig. 1B. The2

default distance is taken to be two times the expected radius of a cell. We refer to this exterior region as the3

narrowband to emphasise its proximity to the contour of interest. The boundary between the interior and4

the narrowband is the active contour. As an active contour is updated, so is the corresponding narrowband5

(Fig. 1F). The region of the video for which the optimal partition is sought is therefore not static; rather, it6

evolves as an active contour evolves.7

2.2. Computing the dissimilarity metric8

Due to the heterogeneity of calcium imaging data, we do not use a universal dissimilarity metric. When9

both the pattern and magnitude of a pixel’s temporal activity are informative, as is typically the case for10

synthetic dyes, we use a measure based on the Euclidean distance, where11

DE
(
I(x), f

)
= ‖I(x)− f‖2, (2)

for f ∈ R
T . When we have an image not a video (i.e. I(x) and f are one-dimensional) this dissimilarity met-12

ric reduces to the fitting term introduced by Chan and Vese (2001). For datasets in which the fluorescence13

expression level varies significantly throughout cells and, as a consequence, pixels in the same cell exhibit14

the same pattern of activity at different magnitudes, we use a measure based on the correlation, such that15

DC
(
I(x), f

)
= 1− corr(I(x), f), (3)

where corr represents the Pearson correlation coefficient. In this paper, as default, we use the Euclidean16

dissimilarity metric. Additionally, we present two notable examples in which the correlation-based metric is17

preferable.18

2.3. External energy for neighbouring cells19

We now extend the cost function presented in Eq. (1) to one suitable for partitioning a region into multiple20

cell interiors, {Ωin,1,Ωin,2, ...,Ωin,M}, and a global exterior, Ωout, which encompasses the narrowbands of all21

the cells. We denote with f in,i the average time course of pixels exclusively in Ωin,i. Due to the relatively low22

axial resolution of a two-photon microscope, fluorescence intensity at one pixel can originate from multiple23

cells in neighbouring z-planes. Accordingly, we allow cell interiors to overlap when this best fits the data.24

In particular, we assume that a pixel in multiple cells would have a time course well fit by the sum of the25
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interior time courses for each cell. The external energy in the case of multiple cells is thus1

Eext(Ω
in,1, ...,Ωin,M ,Ωout) =

∫
Ωout

D
(
I(x), fout

)
dx+

∫
inside

D
(
I(x),

∑
i∈C(x)

f in,i
)
dx, (4)

where the area termed ‘inside’ denotes the union of all cell interiors and the function C(x) identifies all2

cells whose interior contains pixel x. When the region to be partitioned contains only one cell, the external3

energy in Eq. (4) reduces to that in Eq. (1).4

2.4. Level Set Method5

It is not possible to find an optimal cell boundary by minimizing the external energy directly (Chan and6

Vese, 2001). An alternative solution is to start from an initial estimate, see below, and evolve this estimate in7

terms of an evolution parameter τ . In this approach, the boundary is called an active contour. To update the8

active contour we use the Level Set Method of Osher and Sethian (1988). This method was first introduced9

to image processing by Caselles et al. (1993) and Malladi et al. (1995); it has since found widespread use10

in the field. We implicitly represent the evolving boundary estimate of the ith cell — the ith active contour —11

by a function φi, where φi is positive for all pixels in the cell interior, negative for those in the narrowband12

and zero for all pixels on the boundary (see Fig. 1C). We refer to φi as a level set function, as its zero13

level set identifies the contour of interest. We note that since the contour evolves with τ , φi itself depends14

upon τ . In the following, we present a set of M partial differential equations (PDEs) — one for each active15

contour — derived in part from Eq. (4), which dictate the evolution of the level set functions. The solution16

to the set of PDEs yields (as the zero level sets) the cell boundaries which minimize the external energy in17

Eq. (4).18

From the external energy and a regularization term (Li et al., 2010), we define a new cost function19

E(φ1, ..., φM ) = λEext(φ1, ..., φM ) + μR(φ1, ..., φM ), (5)

where the arguments to the external energy in Eq. (4) are replaced by the corresponding level set functions.20

The parameters λ and μ are real-valued scalars, which define the relative weight of the external energy21

and the regularizer. The regularizer is designed to ensure that a level set function varies smoothly in the22

vicinity of its active contour. The corresponding regularization energy is minimised when φi has gradient23

of magnitude one near the active contour and magnitude zero far from the contour. An example of such a24

function, a signed distance function (which is the shape of all level set functions upon initialization), can be25

seen in Fig. 1C.26
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A standard way to obtain the level set function that minimizes the cost function is to find the steady-state1

solution to the gradient flow equation (Aubert and Kornprobst, 2006), we do this for each φi:2

∂φi

∂τ
= − ∂E

∂φi
, (6)

for i ∈ {1, 2, ...,M}. From Eq. (5) we obtain3

∂φi

∂τ
= −

(
λ
∂Eext

∂φi
+ μ

∂R
∂φi

)
. (7)

We solve this PDE numerically, by discretizing the evolution parameter τ , such that4

φi(τ + 1) = φi(τ)−Δτ

(
λ
∂Eext

∂φi
+ μ

∂R
∂φi

)
. (8)

The regularization term, which encourages φi to vary smoothly in the image plane, helps to ensure the5

accurate computation of the numerical solution.6

At every timestep τ , each level set function is consecutively updated until convergence. We must retain7

μΔτ < 0.25 in order to satisfy the Courant-Friedrichs-Lewy condition (Li et al., 2010) — a necessary8

condition for the convergence of a numerically-solved PDE. This condition requires that the numerical9

waves propagate at least as fast as the physical waves (Osher and Fedkiw, 2003). We therefore set10

Δτ = 10 and μ = 0.2/Δτ . For each dataset, we tune the value of λ based on the algorithm performance11

on a small section of the video. To attain segmentation results on the real datasets presented in this paper,12

we use λ = 150 (Section 3.1), λ = 50 (Section 3.3), λ = 25 (Section 3.4) and λ = 10 (Section 3.5).13

2.5. External velocity14

The movement of a level set function, φi, is driven by the derivatives in Eq. (8)— ∂Eext/∂φi provides the15

impetus from the video data and ∂R/∂φi the impetus from the regulariser. In the following, we outline the16

calculation and interpretation of ∂Eext/∂φi; the regulariser is standard and its derivative is detailed in Li et17

al. (2010). As is typical in the level set literature (Zhao et al., 1996; Li et al., 2010), using an approximation18

of the Dirac delta function δε, we obtain an approximation of the derivative: ∂Eext/∂φi(x) = δε (φi(x))Vi(x),19

where20

Vi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D
(
I(x), f in,i

)
−D

(
I(x), fout

)
if x is not in a neighbouring cell,

D
(
I(x), f in,i +

∑
j∈C(x)

f in,j
)
−D

(
I(x),

∑
j∈C(x)

f in,j
)

otherwise.
(9)

We refer to Vi(x) as the external velocity as it encapsulates the impetus to movement derived from the21

external energy in Eq. (4), see Fig. 1E for an illustrative example.22
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The term δε, which is only non-zero at pixels on or near the cell boundary, acts as a localization operator,1

ensuring that the velocity only impacts φi at pixels in the vicinity of the active contour. The parameter ε2

defines the approximate radius, in pixels, of the non-zero band — here, we take ε = 2. The product with3

the localization operator means that, in practise, the external velocity must only be evaluated at pixels on4

or near the cell boundary. As a consequence, although the external velocity contains contributions from all5

cells in the video, the problem remains local — only neighbouring cells directly affect a cell’s evolution.6

Although Ωout represents a global exterior, in practise, we calculate the corresponding time course in7

Eq. (9), fout, locally. To evaluate the external velocity of an active contour, we calculate fout as the average8

time course from pixels in the corresponding narrowband. This allows us to neglect components such as9

intensity inhomogeneity and neuropil contamination, see Fig. 2, which we assume vary on a scale larger10

than that of the narrowband.11

The external velocity of a single active contour, Eq. (9), can be interpreted as follows: if a pixel, not12

in another cell, has time course more similar to that of the contour interior than the narrowband, then the13

contour moves to incorporate that pixel. If a pixel in another cell has time course better matched by the14

sum of the interior time courses of cells containing that pixel plus the interior time course of the evolving15

active contour, then the contour moves to incorporate it. Otherwise, the contour is repelled from that pixel.16

2.6. Initialization17

We devised an automatic initialization algorithm which selects connected areas of either peak local18

correlation or peak mean intensity as initial ROI estimates. Initializing areas of peak mean intensity, which19

may correspond to artefacts rather than active cells (see e.g. the electrode in Fig. 1A), is essential so that20

these regions do not distort the narrowband signal of another ROI. We first compute the correlation image21

of the video. For each pixel, this is the average correlation between that pixel’s time course and those22

of the pixels in its 8-connected neighbourhood. Local peaks in this image and the mean intensity image23

are identified (by a built-in MATLAB function, ‘imextendedmax’) as candidate ROIs. The selectivity of the24

initialization is set by a tuning parameter α, which defines the relative height with respect to neighbouring25

pixels (in units of standard deviation of the input image) of the peaks that are suppressed. The higher the26

value of α, the more conservative the initialization. We have found it best to use a low value for α (in the27

range 0.2 - 0.8) so as to overestimate the number of ROIs; redundant estimates are automatically pruned28

during the update phase of the algorithm. Moreover, smaller values of α produce smaller initializations,29

which reduce errors due to initializations composed of multiple cells.30

7



2.7. Convergence1

We stop updating a contour estimate if a maximum number of iterations Nmax has been reached or the2

active contour has converged — using one or both of these conditions is common in the active contour3

literature, see, for example, Delgado-Gonzalo and Unser (2013); Li et al. (2010). A contour is deemed to4

have converged if, in Ncon consecutive iterations, the number of pixels that are added to or removed from5

the interior is less than ρ. As default, we take Nmax = 100, Ncon = 40 and ρ = 2.6

The complexity of the level set method is intrinsically related to the dimensionality of the active contour;7

the number of frames of the video is only relevant to the evaluation of the external velocity, Eq. (9), which8

accounts for a small fraction of the computational cost. In Table 1, we demonstrate that increasing video9

length by a factor of 10 has only a minor impact on processing time. As the framework includes no as-10

sumptions on an ROI’s stereotypical temporal activity, prior to segmentation a video can be downsampled11

by averaging consecutive samples, thereby simultaneously enabling the processing of longer videos and12

increasing signal-to-noise ratio.13

Increasing cell density principally impacts the calculation of the external velocity and does, therefore,14

not alter the computational complexity of the algorithm. On synthetic data, we observe that increasing cell15

density only marginally affects the convergence rate, see Table 2. As emphasised in Section 2.5, updating16

an active contour is a local problem — consequently, we observe that algorithm runtime increases linearly17

with the total number of cells, see Table 1. Due to the independence of spatially separate ROIs in our18

framework, further performance speed-ups are achievable by parallelizing the computation.19

2.8. Merging and pruning ROIs20

ABLE automatically merges two cells if they are sufficiently close and their interiors sufficiently corre-21

lated — a strategy previously employed in the constrained matrix factorization algorithm of Pnevmatikakis22

et al. (2016). When two contours are merged, their respective level set functions are replaced with a single23

level set function, initialized as a signed distance function (Fig. 1C), with a zero level set that represents24

the union of the contour interiors.25

The required proximity for two cells to be merged is one cell radius (the expected cell radius is one of two26

required user input parameters). To determine the correlation threshold we consider the correlation of two27

noisy time courses corresponding to the average signals from two distinct sets of pixels belonging to the28

same cell. We assume the underlying signal components — which correspond to the cellular signal plus29

background contributions — have maximal correlation but that the additive noise reduces the correlation of30
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the noisy time courses. Assuming the noise processes are independent from the underlying cellular signal1

and each other, the correlation coefficient of the noisy time courses is2

1

1 + 10−SNRdB/10
, (10)

where SNRdB is the signal-to-noise-ratio (dB) of the noisy time courses. We thus merge components with3

correlation above this threshold. We select a default correlation threshold of 0.8, derived from a default4

expected SNR of 5 (dB). The user has the option to input an empirically measured SNR, which updates the5

correlation threshold using the formula in Eq. (10).6

A contour is automatically removed (‘pruned’) during the update phase if its area is smaller or greater7

than adjustable minimum or maximum size thresholds, which, as default, are set at 3 and 3πr2 pixels,8

respectively, where r is the expected radius of a cell.9

2.9. Metric definitions10

The signal-to-noise ratio (SNR) is defined as the ratio of the power of a signal σ2
x and the power of the11

noise σ2
ε , such that SNRpow = σ2

x/σ
2
ε . We write the SNR in decibels (dB) as SNRdB = 10 log10 (SNRpow).12

Given two sets of objects, a ground truth set and a set of estimates, the precision is the percentage of13

estimates that are also in the ground truth set and the recall is the percentage of ground truth objects that14

are found in the set of estimates. As a complement of the precision we use the fall-out rate, the percentage15

of estimates not found in the ground truth set. The success rate (%) is16

2
precision ∗ recall
precision + recall

. (11)

When the objects are cells, an estimate is deemed to match a ground truth cell if their centres are within17

5 pixels of one another. When the objects are spikes, the required distance is 0.22s (3 sample widths).18

To quantify spike detection performance we also use the Root-Mean-Square-Error (RMSE), which is the19

square root of the average squared error between an estimated spike time (t̂k ∈ R) and the ground truth20

spike time (tk ∈ R).21

2.10. Simulations22

To quantify segmentation performance, we simulated calcium imaging videos. In the following, we detail23

the method used to generate the videos. Cellular spike trains are generated from mutually independent24

Poisson processes. A cell’s temporal activity is the sum of a stationary baseline component, the value25

of which is selected from a uniform distribution, and a spike train convolved with a stereotypical calcium26

9



transient pulse shape. Cells are ‘donut’ (annulus) shaped to mimic videos generated by genetically encoded1

calcium indicators, which are excluded from the nucleus. To achieve this, the temporal activity of a pixel in2

a cell is generated by multiplying the cellular temporal activity vector by a factor in [0, 1] that decreases as3

pixels are further from the cell boundary. When two cells overlap in one pixel, we sum the contributions of4

both cells at that pixel. Spatially and temporally varying background activity, generated independently from5

the cellular spiking activity, is present in pixels that do not belong to a cell.6

2.11. Software accessibility7

The software described in the paper is freely available online at [redacted for double-blind review].8

2.12. Two-photon calcium imaging of quadruple whole-cell recordings9

All animal procedures were performed in accordance with the [Author University] animal care commit-10

tee’s regulations. P11-P15 mice of either sex were anaesthetised with isoflurane, decapitated, and the11

brain was rapidly dissected in 4◦C external solution consisting of 125 mM NaCl, 2.5 mM KCl, 1 mM MgCl2,12

1.25 mM NaH2PO4, 2 mM CaCl2, 26 mM NaHCO3, and 25 mM dextrose, bubbled with 95% O2/5% CO213

for oxygenation and pH. Quadruple whole-cell recordings in acute visual cortex slices were carried out at14

32◦C-34◦C with internal solution consisting of 5 mM KCl, 115 mM K-gluconate, 10 mM K-HEPES, 4 mM15

MgATP, 0.3 mM NaGTP, 10 mM Na-phosphocreatine, and 0.1% w/v biocytin, adjusted with KOH to pH16

7.2-7.4. On the day of the experiment, 20 μM Alexa Fluor 594 and 180 μM Fluo-5F pentapotassium salt17

(Life Technologies) were added to the internal solution. Electrophysiology amplifier (Dagan Corporation18

BVC-700A) signals were recorded with a National Instruments PCI-6229 board, using in-house software19

running in Igor Pro 6 (WaveMetrics). Two-photon excitation was achieved by raster-scanning a Spectra-20

physics MaiTai BB Ti:Sa laser tuned to 820 nm across the sample using an Olympus 40x objective and21

galvanometric mirrors (Cambridge Technologies 6215H, 3 mm, 1 ms/line, 256 lines). Substage photomul-22

tiplier tube signals (R3896, Hamatsu) were acquired with a National Instruments PCI-6110 board using23

ScanImage 3.7 running in MATLAB (MathWorks). Layer-5 pyramidal cells were identified by their promi-24

nent apical dendrites using infrared video Dodt contrast. Unless otherwise stated, all drugs were obtained25

from Sigma-Aldrich.26

2.13. Two-photon calcium imaging of bulk loaded hippocampal slices27

All animal procedures were performed in accordance with the [Author University] animal care com-28

mittee’s regulations. Juvenile wild-type mice of either sex (C57Bl6, P13-P21) were anaesthetised using29
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isoflurane prior to decapitation procedure. Brain slices (400 μm thick) were horizontally cut in 1-4◦C venti-1

lated (95% O2, 5% CO2) slicing Artificial Cerebro-Spinal Fluid (sACSF: 0.5 mM CaCl2, 3.0 mM KCl, 26 mM2

NaHCO3, 1 mM NaH2PO4, 3.5 mM MgSO4, 123 mM Sucrose, 10 mM D-Glucose). Hippocampal slices3

containing Dentate Gyrus, CA3 and CA1 were taken and resting in ventilated recovery ACSF (rACSF: 24

mM CaCl2, 123 mM NaCl, 3.0 mM KCl, 26 mM NaHCO3, 1mM NaH2PO4, 2mM MgSO4, 10mM D-Glucose)5

for 30min at 37◦C. After this the slices were placed in an incubation chamber containing 2.5 mL of venti-6

lated rACSF and ‘painted’ with 10 μL of the following solution: 50 μg of Cal-520 AM (AAT Bioquest), 2 μL7

of Pluronic-F127 20% in DMSO (Life Technologies) and 48 μL of DMSO (Sigma Aldrich) where they were8

left for 30 min at 37◦C in the dark. Slices were then washed in rACSF at room temperature for 30 min9

before imaging. Dentate Gyrus granular cells were identified using oblique illumination prior to being im-10

aged using a standard commercial galvanometric scanner based two-photon microscope (Scientifica Ltd)11

coupled to a mode-locked Mai Tai HP Ti Sapphire (Spectra-Physics) laser system operating at 810 nm.12

Functional calcium images of granular cells were acquired with a 40X objective (Olympus) by raster scan-13

ning a 180×180μm2 square Field of View at 10 Hz. Electrical stimulation was accomplished with a tungsten14

bipolar concentric microelectrode (WPI) where the tip of the electrode was placed into the molecular layer15

of the Dentate Gyrus (20 pulses with a pulse-width of 400 μs and a 60 μA amplitude were delivered into16

the tissue with a pulse repetition rate of 10 Hz, repeated every 40 sec). Unless otherwise stated, all drugs17

were obtained from Sigma-Aldrich.18

3. Results19

3.1. ABLE is robust to heterogeneity in cell shape and baseline intensity20

ABLE detected 236 ROIs with diverse properties from the publicly available mouse in vivo imaging21

dataset of Peron et al. (2015c), see Fig. 2. Automatic initialization on this dataset produced 253 ROIs with22

17 automatically removed during the update phase of the algorithm after merging with another region.23

To maintain a versatile framework we included no priors on cellular morphology in the cost function24

that drives the evolution of an active contour. This allowed ABLE to detect ROIs with varied shapes (Fig.25

2A) and sizes (Fig. 2D). The smaller detected ROIs correspond to cross-sections of dendrites (Fig. 2E),26

whereas the majority correspond to cell bodies. The topological flexibility of the level set method allows27

cell bodies and neurites to be segmented as separate (Fig. 2G) or connected (Fig. 2A) objects, depending28

on the correlation between their time courses. ABLE automatically merges neighbouring regions that are29

sufficiently correlated (Fig. 2F). Cell bodies and dendrites that are initialised separately and exhibit distinct30
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temporal activity, however, are not merged. For example, the cell body and neurite in Fig. 2G were not1

merged as the cell body’s saturating fluorescence time course was not sufficiently highly correlated with2

that of the neurite.3

Evaluating the external velocity, which drives an active contour’s evolution, requires only data from4

pixels in close proximity to the contour (see Section 2.5). This region has radius of the same order as5

that of a cell body. Background intensity inhomogeneity, caused by uneven loading of synthetic dyes or6

uneven expression of virally inserted genetically encoded indicators, tend to occur on a scale larger than7

this. On this dataset we show that, as a result of this local approach, ABLE is robust to background intensity8

inhomogeneity. This is illustrated by the wide range of baseline intensities of the detected ROIs (Fig. 2C),9

some of which are even lower than the video median.10

No prior information on stereotypical neuronal temporal activity is included in our framework. Cells11

detected by ABLE exhibit both stereotypical calcium transient activity (Fig. 2B:1-9) and non-stereotypical12

activity (Fig. 2B:10-12), perhaps corresponding to saturating fluorescence, higher firing cell types such as13

interneurons, or non-neuronal cells.14

The scattering of photons when imaging at depth can result in leakage of neuropil signal into cellular15

signal. To obtain decontaminated cellular time courses it is thus important to perform neuropil correction in a16

subsequent stage, once cells have been located. This involves computation of the decontaminated cellular17

signal by subtracting the weighted local neuropil signal from the raw cellular signal. As illustrated in Fig. 2H,18

the proposed method naturally facilitates neuropil correction, as it computes the required components as a19

by-product of the segmentation process (see Section 2.5). The appropriate value of the weight parameter20

varies depending on the imaging set-up (Peron et al. 2015a; Chen et al. 2013; Kerlin et al. 2010). We21

therefore do not include neuropil-correction as a stage of the algorithm, preferring instead to allow users22

the flexibility to choose the appropriate parameter in post-processing.23

3.2. ABLE demixes overlapping cells24

When imaging through scattering tissue, a two-photon microscope can have relatively low axial resolu-25

tion (on the order of ten microns) in comparison to its excellent lateral resolution. As a consequence, the26

photons collected at one pixel can in some cases originate from multiple cells in a range of z-planes. For27

this reason, cells can appear to overlap in an imaging video (for an example, see Fig. 3E). It is crucial28

that segmentation algorithms can delineate the true boundary of ‘overlapping’ cells, which we refer to as29

‘demixing’, so that the functional activity of each cell can be correctly extracted and analysed. In a set of30

experiments on real and simulated data, we demonstrated that ABLE can demix overlapping cells.31
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On synthetic data containing 25 cells, 17 of which had some overlap with another cell, we measured1

the success rate of ABLE’s segmentation compared to the ground truth cell locations (Fig. 3A-C), when the2

algorithm was initialised on a fixed grid (Fig. 3D). For full description of the performance metric used, see3

Section 2.9. Performance was measured over 10 realizations of noise at each noise level. On average, over4

all cells and noise realizations, ABLE achieved success rate greater than 99% when the noise standard5

deviation was less than 90 (Fig. 3B). Cells were simulated with uneven brightness to mimic the ‘donut’ cells6

generated by some genetically encoded indicators that are excluded from the nucleus. Consequently, the7

correlation-based dissimilarity metric was used on this data. As a result, pixels with significantly different8

resting fluorescence, but identical temporal activity pattern, were segmented in the same cell (Fig. 3A).9

On the publicly available mouse in vivo imaging dataset of Peron et al. (2015c), ABLE demixed over-10

lapping cells (Fig. 3E-F). In this dataset, the vibrissal cortex was imaged at various depths, from layer 1 to11

deep layer 3, whilst the mouse performed a pole localization task (Peron et al., 2015a; Guo et al., 2014).12

Some cells appear to overlap, due to the relatively low axial resolution when imaging at depth through13

tissue. When an ROI was initialised in each separate neuron, ABLE accurately detected the overlapping14

cell boundaries using the Euclidean distance dissimilarity metric, Eq. (2). On the Neurofinder Challenge15

dataset presented in Section 3.4, ABLE demixed overlapping cells when performing segmentation with the16

correlation-based dissimilarity metric, Eq. (3), see Fig. 3G.17

3.3. ABLE detects synchronously spiking, densely packed cells18

ABLE detected 207 ROIs from mouse in vitro imaging data (Fig. 4). Cells in this dataset exhibit activity19

that is highly correlated with other cells and the background as the brain slice was electrically stimulated20

(at rate 10Hz for 2s every 40s) during imaging. When the cell interior and narrowband time courses are21

highly correlated, the external velocity of the active contour, Eq. (9), derived from the Euclidean distance22

dissimilarity metric, Eq. (2), is driven by the discrepancy between the baseline intensities of the subregions.23

This is evident when we consider the average time course of the cell interior (f in) and exterior (fout) as a24

sum of a stationary baseline component — the resting fluorescence — and an activity component that is25

zero when a neuron is inactive, such that f in = bin + ain and fout = bout + aout. The time course of a pixel26

x is I(x) = bx + ax. Substituting these expressions into Eq. (9), for pixels not in another cell, we obtain27

the external velocity V (x) = ‖bx − bin‖2 − ‖bx − bout‖2 + R, where the residual, R, encompasses all terms28

with contributions from the activity components. When the cell and the background are highly correlated29

— meaning that the discrepancy between activity components is low and, consequently, the contribution30

from R is comparatively small — the external velocity will drive the contour to include pixels with baselines31
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more similar to the interior than the background. As a result of this, ABLE detected ROIs despite their high1

correlation with the background (Fig. 4C). Furthermore, inactive ROIs were detected (Fig. 4 H-J), when2

their baseline fluorescence allowed them to be identified from the background (Fig. 4I).3

The algorithm was automatically initialised on this dataset with 250 ROIs, initializations in the bar (an4

artefact that can be seen in the top right of Fig. 4A) were prohibited. Of the initialised ROIs, 19 were pruned5

automatically during the update phase of the algorithm as (i) their interior time course was not sufficiently6

different from that of the narrowband (3 ROIs), (ii) they merged with another region (2 ROIs) or (iii) they7

crossed the minimum and maximum size thresholds (14 ROIs).8

3.4. Algorithm comparison on manually labelled dataset9

We compared the performance of ABLE with two state of the art calcium imaging segmentation al-10

gorithms — CNMF (Pnevmatikakis et al., 2016) and Suite2p (Pachitariu et al., 2016) — on a manually11

labelled dataset from the Neurofinder Challenge, see Fig. 5. The dataset, which can be accessed at the12

Neurofinder Challenge website (see references), was recorded at 8Hz and generated using the genetically13

encoded calcium indicator GCaMP6s. Consequently, we apply ABLE with the correlation-based dissimilar-14

ity metric, Eq. (3), which is well suited to neurons with low baseline fluorescence and uneven brightness.15

As the dataset is large enough (512x512x8000 pixels) to present memory issues on a standard laptop,16

we run the patch-based implementation of CNMF, which processes spatially-overlapping patches of the17

dataset in parallel. We optimise the performance of each algorithm by selecting a range of values for each18

of a set of tuning parameters and generating segmentation results for all combinations of the parameter19

set. The results are visualised on the correlation image and the parameter set that presents the best match20

to the correlation image is selected. This process is representative of what a user may do in practise when21

applying an algorithm to a new dataset.22

ABLE achieved the highest success rate (67.5%) when compared to the manual labels, see Table 3.23

For a definition of the success rate and other performance metrics used, see Section 2.9. ABLE achieved24

a lower fall-out rate than Suite2p and CNMF (Fig. 5C) — 67.5% of the ROIs it detected matched with25

the manually labelled cells. Some of the ‘false positives’ were consistent among algorithms (Fig. 5C) and26

corresponded to local peaks in the correlation image (Fig. 5D), whose extracted time courses displayed27

stereotypical calcium transient activity (Fig. 5E). A subset of these ROIs may thus correspond to cells28

omitted by the manual operator. The highest proportion of the manually labelled cells were detected by29

Suite2p, which detected the greatest number of cells not detected by any other algorithm (Fig. 5B). A small30

proportion (13.2%) of cells were detected by none of the algorithms. As can be seen from Fig. 5A, these31

14



do not correspond to peaks in the correlation image, and may reflect inactive cells detected by the manual1

operator.2

3.5. Spikes are detected from ABLE-extracted time courses with high temporal precision3

Typically, after cells have been identified in calcium imaging data, spiking activity is detected from the4

extracted cellular time courses and the relationship between cellular activity (and, if measured, external5

stimuli) is analysed. On a mouse in vitro dataset (21 videos, each 30s long), we demonstrated that time6

courses from cells automatically segmented by ABLE allow spikes to be detected accurately and with high7

temporal precision (Fig. 6). The dataset has simultaneous electrophysiological recordings from four cells8

(the electrodes can be seen in the mean image Fig. 6A), which enabled us to compare inferred spike times9

from the imaging data with the ground truth. We performed spike detection automatically with an existing10

algorithm (Anonymous, —). On average, over all cells and recordings, 78% of ground truth spikes are11

detected with a precision of 88% (Fig. 6D). The error in the location of detected spikes is less than one12

sample width — the average absolute error was 0.053 (s).13

4. Discussion14

In this paper, we present a novel approach to the problem of detecting cells from calcium imaging data.15

Our approach uses multiple coupled active contours to identify cell boundaries. The core assumption is16

that the local region around a single cell (e.g. inside the dashed box Fig. 1A) can be well-approximated by17

two subregions, the cell interior and exterior. The average time course of the respective subregions is used18

as a feature with which to classify pixels into either subregion. We assume that pixels in which multiple cells19

overlap have time courses that are well-approximated by the sum of each cell’s time course. We form a cost20

function based on these assumptions that is minimised when the active contours are located at the true cell21

boundaries. Our results on real and simulated data indicate that this is a versatile and robust framework for22

segmenting calcium imaging data.23

The cost function in our framework (Eq. 4) penalises discrepancies between the time course of a pixel24

and the average time course of the subregion to which it belongs. To calculate this discrepancy we use25

one of two dissimilarity metrics: one based on the correlation, which compares only patterns of temporal26

activity, the other based on the Euclidean distance, which implicitly takes into account both pattern and27

magnitude of temporal activity. When the latter metric is used, our cost function is closely related to that28

of Chan and Vese (2001). If we were to take as an input one frame of a video (or a 2D summary statistic29
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such as the mean image), the external energy in our cost function for an isolated cell would be identical to1

the fitting term of Chan and Vese (2001). The lower-dimensional approach is, however, not sufficient for2

segmenting cells with neighbours that have similar baseline intensities. By incorporating temporal activity3

we can accurately delineate the boundaries of neighbouring cells (Fig. 3A).4

We evolve one active contour for each cell identified in the initialization. Contours are evolved predomi-5

nantly independently, with the exception of those within a few pixels of another active contour (see Section6

2.5). In contrast to previous approaches to coupling active contours (Zimmer and Olivo-Marin, 2005; Dufour7

et al., 2005), we do not penalise overlap of contour interiors. This is because low axial resolution when8

imaging through scattering tissue can result in the signals of multiple cells being expressed in one pixel. We9

therefore permit interiors to overlap when the data is best fit by the sum of average interior time courses.10

Using this method we can accurately demix the contribution of multiple cells from single pixels in real and11

simulated data (Fig. 3).12

ABLE is a flexible method: we include no priors on a region’s morphology or stereotypical temporal13

activity. Due to this versatility, ABLE segmented cells with varying size, shape, baseline intensity and cell14

type from a mouse in vivo dataset (Fig. 2). Moreover, only 2 parameters need to be set by a user for a15

new dataset. These are the expected radius of a cell and λ, the relative strength of the external velocity16

compared to the regulariser, see Eq. (5). In order to permit ABLE to segment irregular shapes such as cell17

bodies attached to dendritic branches (Fig. 2A), the weighting parameter, λ, must be set sufficiently high18

to counter the regulariser’s implicit bias towards smooth contours.19

Unlike matrix factorization (Maruyama et al., 2014; Pnevmatikakis et al., 2016) and dictionary learning20

(Diego Andilla and Hamprecht, 2014), which fit a global model to an imaging video, our approach requires21

only local information to evolve a contour. To evolve an active contour, ABLE uses temporal activity from22

an area around that contour with size on the order of the radius of a cell. This allows us to omit from our23

model the spatial variation of the neuropil signal and baseline intensity inhomogeneities, which we assume24

to be constant on our scale. Our local approach means that the algorithm is readily parallelizable and, in25

the current implementation, runtime is virtually unaffected by video length (Table 1) and increases linearly26

with the number of cells.27

Like any level set method, the performance of ABLE is bounded by the quality of the initialization —28

if no seed is placed in a neuron it will not be detected, if a seed is spread across multiple neurons they29

may be jointly segmented. In this work, we developed an automatic initialization algorithm that selects local30

peaks in the correlation and mean images as candidate ROIs. This approach, however, can lead to false31
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negatives in dense clusters of cells in which the correlation image can appear smooth. In future work, an1

initialization based on temporal activity, rather than a 2D summary statistic, could overcome this issue. Our2

algorithm included minimal assumptions about the objects to be detected. To tailor ABLE to a specific data3

type (e.g. somas versus neurites), it is possible to incorporate terms relating to a region’s morphology or4

stereotypical temporal activity into the cost function. Furthermore, the level set method is straightforward to5

extend to higher dimensions (Dufour et al., 2005), which means our framework could be adapted to detect6

cells in light-sheet imaging data (Ahrens et al., 2013).7

Here we have presented a framework in which multiple coupled active contours detect the boundaries8

of cells from calcium imaging data. We have demonstrated the versatility of our framework, which includes9

no priors on a cell’s morphology or stereotypical temporal activity, on real in vivo imaging data. In this data,10

we are able to detect cells of various shapes, sizes, and types. We couple the active contours in a way that11

permits overlap when this best fits the data. This allows us to demix overlapping cells on real and simulated12

data, even in high noise scenarios. Our results on a diverse array of real datasets indicate that ours is a13

flexible and robust framework for segmenting calcium imaging data.14
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Legends7

Table 1: On synthetic data with dimensions 512×512×T , the runtime of ABLE (minutes) increases linearly8

with the number of cells and is not significantly affected by increasing number of frames, T . Runtime was9

measured on a PC with 3.4GHz Intel Core i7 CPU.10

11

Table 2: On synthetic data the average number of iterations to convergence, over 100 realizations of noisy12

data, marginally increases as the number of cells in a given cell’s narrowband (‘neighbouring cells’) in-13

creases.14

15

Table 3: On a manually labelled dataset from the Neurofinder Challenge, we compare the performance of16

three segmentation algorithms: ABLE, CNMF (Pnevmatikakis et al., 2016) and Suite2p (Pachitariu et al.,17

2016), using the manual labels as ground truth.18

19

Figure 1: A flow diagram of the main steps of the proposed segmentation algorithm: initialization (A-C),20

iterative updates of the estimate (D-G) and convergence (H-J). When cells are sufficiently far apart we can21

segment them independently — in this example we focus on the isolated cell in the dashed box on the22

maximum intensity image in A. We make an initial estimate of the cell interior, from which we form the23

corresponding narrowband (B) and level set function φ (C). Based on the discrepancy between a pixel’s24

time course and the time courses of the interior and narrowband regions (D), we calculate the velocity of25

φ at each pixel (E). φ evolves according to this velocity (G), which updates the location of the interior and26

narrowband (F). Final results for: one cell (H), the average signals from the corresponding interior and27

narrowband (I) and segmentation of all four cells (J).28

29

Figure 2: ABLE detects cells with varying size, shape and baseline intensity from mouse in vivo imaging30

data. The 236 detected ROIs are superimposed on the mean image of the imaging video (A). Extracted31

19



neuropil-corrected time series and corresponding ROIs are displayed for a subset of the detected regions1

(B). Cells with both stereotypical calcium transient activity (B, 1-9) and saturating fluorescence (B, 10-12)2

are detected. The performance of ABLE does not deteriorate due to intensity inhomogeneity: ROIs with3

baseline fluorescence from beneath the video median to just below saturation are detected (C). The area of4

detected regions varies (D) with the smallest ROIs corresponding to cross-sections of dendrites (E). Neigh-5

bouring regions with sufficiently high correlation are merged (F), those with lower correlation are not merged6

(G). In F we plot the ROIs prior to and after merging along with the corresponding neuropil-corrected time7

courses. In G we plot the separate ROIs and the neuropil-corrected time courses. The proposed method8

naturally facilitates neuropil-correction — the removal of the weighted, local neuropil time course from the9

raw cellular time course (H).10

11

Figure 3: ABLE demixes overlapping cells in real and simulated data. With high accuracy, we detect the12

true boundaries of overlapping cells from noisy simulated data, the detected contours for one realization13

of noise with standard deviation (σ) 60 are plotted on the correlation image in A. Given an initialisation on14

a fixed grid, displayed on the mean image in D, we detect the true cell boundaries with success rate of at15

least 99% for σ < 90 (B). The central marker and box edges in B indicate the median and the 25th and16

75th percentiles, respectively. For noise level reference, we plot the average time course from inside the17

green contour in A at various levels (C). ABLE demixes overlapping cells in real GCaMP6s mouse in vivo18

data — detected boundaries are superimposed on the mean image (E and F) and correlation image (G),19

respectively.20

21

Figure 4: ABLE detects synchronously spiking, densely packed cells from mouse in vitro imaging data.22

The boundaries of the 207 detected ROIs are superimposed on the thresholded maximum intensity image23

(A) and the correlation image (D). For all correlation data we use Pearson’s correlation coefficient. ABLE24

detects ROIs that exhibit high correlation with the background C and neighbouring synchronously spiking25

ROIs (B). Panel B displays the neuropil-corrected extracted time courses of the 207 ROIs (each plotted as26

a row of the matrix) along with the video mean raw activity and the time points of the electrical stimulations.27

Panel C displays the histogram of the correlation coefficient between the mean raw activity of the video and28

the extracted time series of each ROI. ABLE detected both active (E-G) and inactive ROIs (H-I). We display29

the contours of the two detected ROIs on the correlation image (E and H), the mean image (F and I) and30

the corresponding extracted time courses (G and J).31

20



1

Figure 5: We compare the segmentation results of ABLE, CNMF (Pnevmatikakis et al., 2016) and Suite2p2

(Pachitariu et al., 2016) on a manually labelled dataset from the Neurofinder Challenge. On the correlation3

image we plot the boundaries of the manually labelled cells colour-coded by the combination of algorithms4

that detected them (A), undetected cells are indicated by a white contour. Suite2p detected the highest5

proportion of manually labelled cells (B), whereas ABLE had the lowest fall-out rate (C), which is the per-6

centage of detected regions not present in the manual labels. Some algorithm-detected ROIs that were not7

present in the manual labels are detected by multiple algorithms (D) and have time courses which exhibit8

stereotypical calcium transient activity (E). The correlation image in D is thresholded to enhance visibility9

of local peaks in correlation. In E, we plot the extracted time courses of the ROIs in D.10

11

Figure 6: Spikes are detected from ABLE-extracted time courses with high accuracy. On an in vitro dataset12

(21 imaging videos, each 30s long) we demonstrate spike detection performance compared to electrophys-13

iological ground truth on time courses extracted from cells segmented by ABLE. We plot the labelled cells14

(A) and corresponding boundaries detected by ABLE (B) on the mean image of one imaging video. The15

extracted cellular time courses and detected spikes are plotted in C. Spike detection was performed with16

an existing algorithm (Anonymous, — ). On average over all videos, 78% of spikes are detected with a17

precision of 88% D.18

Tables, Figures and Multimedia19

Table 1: Runtime (minutes) on synthetic data of size 512× 512× T .

Num. cells

25 125 225

Num. frames (T )
100 1.1 6.5 11.2

1000 1.3 6.5 12.7

Table 2: Number of iterations to convergence as cell density increases.

Num. neighbours 0 1 2 3 4

Num. iterations 33 33 35 35 36

21



Table 3: Algorithm success rate (1dp) on manually labelled dataset.

Success rate (%) Precision (%) Recall (%)

ABLE 67.5 67.5 67.5

CNMF 63.4 60.7 66.5

Suite2p 63.7 56.5 73.1
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