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Abstract: One view of working memory posits that maintaining a series of events 26 

requires their sequential and equal mnemonic replay. Another view is that the content of 27 

working memory maintenance is prioritized by attention. We decoded the dynamics for 28 

retaining a sequence of items using magnetoencephalography (MEG), wherein 29 

participants encoded sequences of three stimuli depicting a face, a manufactured 30 

object, or a natural item and maintained them in working memory for 5 seconds. 31 

Memory for sequence position and stimulus details were probed at the end of the 32 

maintenance period. Decoding of brain activity revealed that one of the three stimuli 33 

dominated maintenance independent of its sequence position or category; and memory 34 

was enhanced for the selectively replayed stimulus. Analysis of event-related responses 35 

during the encoding of the sequence showed that the selectively replayed stimuli were 36 

determined by the degree of attention at encoding. The selectively replayed stimuli had 37 

the weakest initial encoding indexed by weaker visual attention signals at encoding. 38 

These findings do not rule out sequential mnemonic replay, but reveal that attention 39 

influences the content of working memory maintenance by prioritizing replay of weakly 40 

encoded events. We propose that the prioritization of weakly encoded stimuli protects 41 

them from interference during the maintenance period whereas the more strongly 42 

encoded stimuli can be retrieved from long-term memory at the end of the delay period. 43 

 44 

Significance Statement: Here we show how information of a sequence of events is 45 

prioritized in the working-memory maintenance buffer in humans. Participants retained 46 

three consecutive visual stimuli and we decoded the content of working-memory 47 

maintenance using multivariate-pattern-classification and magnetoencephalography 48 
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(MEG). We observed that the least attended events during encoding dominated the 49 

content of working-memory during the immediately following offline retention. In 50 

essence, the brain selectively and intelligently amplifies the least encoded memory item 51 

to maximize recall fidelity, instead of equally rehearsing the whole sequence. Our 52 

findings shift the functional role of working-memory from a faculty that “works with 53 

memory” to one that “works for memory” by actively selecting which encoded items 54 

need to be enhanced in order to be remembered. 55 

Introduction 56 

Working-memory is conceptualized as a mechanism to actively maintain and 57 

manipulate information (Baddeley, 1992). It is considered to consist of multiple layers, 58 

including long-term memory and a maintenance buffer - also known as the focus of 59 

attention during maintenance (Oberauer, 2002; Baddeley, 2010) that interacts with long-60 

term memory. Working-memory maintenance is associated with a reactivation of 61 

information in non-human primates (Woloszyn and Sheinberg, 2009; Lee et al., 2005; 62 

Miller et al., 1993) and in humans (Lepsien and Nobre, 2007; Harrison and Tong, 2009; 63 

Fuentemilla et al., 2010). Here we investigated the representational content of 64 

maintaining a sequence of multiple stimuli in working memory. To decode 65 

representational content we employed multivariate pattern analysis (MVPA) of 66 

magnetoencephalography (MEG) recordings (Jafarpour et al., 2013; Cichy et al., 2014).  67 

We addressed two hypotheses. The first hypothesis was that stimuli are maintained in a 68 

circular and repetitive structure. This hypothesis was motivated by the temporal coding 69 

model of working-memory maintenance which proposes that the replay mechanism 70 

conserves the temporal order in which stimuli were encountered (Lisman, 2010; Jensen 71 
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et al., 2014). Thus, the sequence of 1-2-3 circularly rehearses as 1-2-3-1-2-3-1-2-3-etc. 72 

Such a dynamic has been reported in the medial temporal lobe of rodents (Jensen and 73 

Lisman, 1996), and the non-human primate prefrontal cortex (Siegel et al., 2009). 74 

Support for the temporal coding model also comes from a recent human MEG study 75 

(Heusser et al., 2016). It that study, fitting the temporal coding model to whole brain 76 

MEG data source localized evidence for the model in the human hippocampus (Heusser 77 

et al., 2016). However, the trial-by-trial activity of non-human primate’s prefrontal cortex 78 

supports a dynamic coding model of working memory, rather than the temporal coding 79 

model (Lundqvist et al., 2016). The dynamic coding model suggests that items are 80 

maintained in an “activity silent state” and replay is guided by attention (Stokes, 2015; 81 

Myers et al., 2017). Attention at encoding could thus prioritize the content of working 82 

memory such that working memory maintenance is dominated by a selected stimulus 83 

rather than the full to-be-memorized sequence.  For instance, it would be more 84 

resource-effective to prioritize the less privileged stimuli at encoding to be replayed in 85 

working-memory (Zokaei et al., 2014; Stokes, 2015; Rose et al., 2016).  86 

Here we used the whole brain MEG data to decode the content of working-memory. Our 87 

experiment was a modified version of the Sternberg task, where a sequence of three 88 

visual stimuli had to be retained. Objects from three distinct visual categories (Faces, 89 

manufactured objects, and natural items) were presented successively (the stimulus-set 90 

contained samples of the same items from different perspectives; Fig. 1B) followed by a 91 

five-second delay period. After the delay a probe queried stimulus identity (detail test) 92 

and a second probe queried the sequence of the three items (first, second, or third – 93 

order test; Fig. 1).  94 
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Pattern classifiers were trained on categorical representations of visual stimuli in brief 95 

time-bins (20 milliseconds; ms) during encoding (Carlson et al., 2013; Jafarpour et al., 96 

2014). The classifiers labelled the on-going signal during retention (R) and inter-trial-97 

interval (ITI) periods for control. According to the output of the classifiers (face, banana, 98 

chair, or ‘none’ for no replay), a Markov chain matrix of transitions between replayed 99 

stimuli or ‘none’ was constructed (Fig. 2). With three stimuli, we could test for the 100 

direction of replay (i.e. 1-2-3 versus 3-2-1). A Markov chain matrix of transitions 101 

quantified the directional replay of sequences. The probability of transition from state 1 102 

to 2, 2 to 3, and 3 to 1 would be higher than the probability of transition from state 1 to 103 

3, 3 to 2, and 2 to 1, if there is a forward replay and the reverse pattern would be 104 

observed for backward replay.  105 

A support vector machine algorithm was used for decoding the (pairwise) categorical 106 

information at -20 to 500 ms from onset of the visual stimuli during encoding. Note that 107 

the categorical representation and item-specific representation overlaps in our case, 108 

because we only used one sample from a category in this study (Fig. 1B). We trained 109 

the classifiers on the amplitude of the broadband event-related single-trial MEG signals 110 

and tested using a cross-validation method during encoding. We applied the classifiers 111 

with best performances to decoding during the maintenance interval. To determine the 112 

degree of attention during encoding, we analyzed early event-related fields (ERFs) to 113 

each stimulus. 114 

The sequential mnemonic replay hypothesis would predict decoding sequence 115 

information or at least an equal probability of decoding all three encoded stimuli during 116 

maintenance. In contrast, an attentional prioritization account would predict that the 117 
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degree of stimulus replay during the maintenance period would be dependent on the 118 

size of early ERFs at encoding. 119 

Materials and Methods 120 

Participants 121 

16 right-handed healthy adults with normal or corrected vision participated in this 122 

experiment (8 female; on average 24 years old (SD=2)). The MEG data of two 123 

participants were not included in the analysis, as their MEG signal was too noisy and 124 

rejected as artefacts (for details see below). All participants gave written informed 125 

consent and were compensated them financially for their participation. The University of 126 

London Research Ethics Committee for human-based research approved the study. 127 

Experimental design 128 

We used a combination of a delay-match-to-sample and Sternberg tasks. The 129 

experiment consisted of six runs, and each run consisted of 27 trials. Participants had 130 

an optional five-minutes-break between runs. Each trial contained a sequential 131 

presentation of three stimuli, a retention period, and two probe tests. A trial started with 132 

a fixation (inter-trials interval) period for 4 seconds. Then a random sequence of three 133 

stimuli appeared sequentially for 0.5 seconds, with a 0.5 second gap between stimuli. A 134 

5 second retention period followed the presentation of the third item. Finally, a probe 135 

stimulus was presented to test for item memory (delay-match-to-sample), where 136 

subjects were required to select `same' if the exact stimulus (category and perspective) 137 

was shown in the sequence and `different' otherwise (the perspective was different). 138 

Randomly, in half of the trials, the correct answer was `same'. For the following 139 
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question, subjects were required to answer “1, 2 or 3” according to the position of the 140 

probe in the sequence (Fig. 1A).  141 

The stimuli were images from three visual categories for which previous multivariate 142 

decoding research indicated distinct spatial cortical representations (Kriegeskorte et al., 143 

2008): a face, a fruit, and a manufactured object (Fig. 1B). Images were from three 144 

different perspectives – front-on, 60 degrees to the left, and 60 degrees to the right - 145 

shown upright on a white background, extending approximately 6 degrees of a 146 

horizontal and vertical visual angle. (face images were downloaded from Faces stimulus 147 

images Tarrlab, Centre for the Neural Basis of Cognition and Department of 148 

Psychology, Carnegie Mellon University, http://www.tarrlab.org/). Subjects were 149 

familiarized with the stimuli outside the MEG scanner and they also performed the 150 

experiment with feedback outside the scanner to ensure that they understood the 151 

experiment properly. There was no feedback given during the experiment inside the 152 

MEG scanner. In 6 runs each with 27 trials (all together, there were 162 trials), we 153 

tested all possible sequential combinations of three stimuli.  All the possible 154 

combinations of three stimuli are 162 sequences: 6 combinations of sequences of three 155 

categorical stimuli, and 3 perspectives of each stimulus category (= 6 x 3 x 3 x 3). We 156 

presented the trials randomly and each trial was seen once. 157 

MEG recordings and data pre-processing 158 

MEG data were recorded with a 274 channel CTF Omega whole-head gradiometer 159 

system (VSM MedTech, Coquitlam, BC, Canada) with a 600Hz sampling rate with an 160 

online bandpass filter from 0.1 to 200 Hz. Head position inside the system was tracked 161 

via head localizer coils attached to the nasion and 1cm anterior to the left and right pre-162 
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auricular points. Participants sat upright and the stimuli were back-projected onto a 163 

screen 1m in front of them.   164 

MEG data were pre-processed using SPM12b (Wellcome Trust Centre for 165 

Neuroimaging, London, www.fil.ion.ucl.ac.uk/spm) package and analyzed using Matlab 166 

R2009b software. We filtered out the mains noise (50 Hz) from continuous signal using 167 

a fifth-order Butterworth filter. We cropped the MEG data during encoding to epochs 168 

from -100 to 500 ms from the stimuli onset. We discarded any epoch with field 169 

magnitudes greater than 1.5e-11 tesla in any channel, because it contained artefacts. 170 

Two subjects had too many trials with such artefacts and were removed from further 171 

analysis. 172 

Decoding the category of visual stimuli during encoding 173 

A Support Vector Machine (SVM) with a linear Kernel (Vapnik, 2000)– implemented in 174 

statistics Matlab - was used to classify the signal elicited by the onset of the visual 175 

stimuli. 26 classifiers were adopted at -20 to 500 ms from stimulus-onset during 176 

encoding. The signal’s sampling rate was 600 Hz. The signal was windowed in time-177 

bins of 20 ms (13 time points in each time-bin), centered at -10, 10, 30, 50, 70, 90, 110, 178 

130, 150, 170, 190, 210, 230, 250, 270, 290, 310, 330, 350, 370, 390, 410, 430, 450, 179 

470, and 490 ms. The single-trial input to the SVM classifiers was the broad-band 180 

amplitude at each time point and each channel (13 x 274 = 3562 features) for every 181 

stimulus. The features were normalized before training, and the scale was used to 182 

normalize features in testing data. We used a two-tailed t-test with a threshold of 0.05 183 

for the feature reduction. 184 
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We trained three pairwise classifiers to decode the stimulus-category at each time-bin 185 

during encoding, irrespective of presentation order or perspective: face versus banana 186 

(FvsB), face versus chair (FvsC), and banana versus chair (BvsC). We identified the 187 

time-bins with reliable category stimulus classification and trained the classifiers on 90% 188 

of randomly selected samples from each category and tested them on 10% left-out 189 

samples from each category (i.e. 10-folds cross-validation). We selected an equal 190 

number of trials from each category for training and testing. 191 

We examined the classification performance at the group level. To test the accuracy of 192 

each classifier against chance (i.e., 50%) we used a one sample t-test with a correction 193 

for multiple comparisons (family-wise error; FWE) using random field theory (RFT) 194 

implemented in SPM (Kilner et al., 2005; Litvak et al., 2011). As is standard in 195 

neuroimaging, we made inferences using a cluster-level threshold. The RFT procedure 196 

adjusts the p-value statistics that are functions of the number of time points 197 

(classification repetition). Such adjustment is similar to a Bonferroni correction. 198 

However, Bonferroni correction is suitable for data sets that are independent at each 199 

repetition (or data point). Here the data of adjacent time points is not independent and 200 

RFT is more suitable for multiple comparison correction (Kilner et al., 2005; Jafarpour et 201 

al., 2014).  202 

Decoding the category of visual stimuli during delay periods 203 

The most accurate classifiers from encoding were used to decode the replay during 204 

maintenance (the delay period between encoding and testing) and during the inter-trial 205 

intervals (ITIs; Fig. 2). For the delay period, we restricted analysis to the 1000 – 4000 206 

ms after the offset of the last stimulus in the sequence (150 time-bins were tested) in 207 
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order to exclude the event related activity elicited by offset of the last stimulus. We 208 

selected the 3000 ms before onset of the first stimulus in the sequence (again including 209 

150 time-bins) for testing the ITIs.  210 

The outputs of the three pairwise-classifiers were class labels (F, B, or C) and distance 211 

between unknown activity and classification decision boundaries. We determined the 212 

decoded labels according to these outputs in two steps. First, we selected the class 213 

label (between three classifier outputs) which had the largest distance to decision 214 

boundaries. Second, we used a threshold to identify unknown activities that were too 215 

close to the classification boundaries. We rejected these decoded classes and labelled 216 

them as none (N).  217 

A threshold was used to reject a percentage of classification outputs during retention 218 

period. For example, if the classifier performance was reliable in 80% of times, we 219 

rejected 20% labels of the decoded time-bins during retention. We applied the same 220 

conservative threshold on decoded output during ITI. Following those steps, four 221 

possible labels resulted from the classifiers: F, B, C, or N (for none – rejected 222 

classifications; Fig. 2).  223 

Two parameters were studied to quantify the differences in the decoding during the 224 

retention period and the ITI in a trial by trial level. The first parameter was the number of 225 

consecutive time bins decoded as the same item (i.e. a decoding epoch). We compared 226 

the length of decoded epoch between the retention and ITI. We trusted that the 227 

decoded items were replayed only when the memory benefited from the decoding (see 228 

the analysis on the effect of active maintenance on behavioral responses).  229 
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The second parameter was the dynamics of replay extracted by the Markov chain. We 230 

treated the classifiers outcomes as a state and counted the number of visits to the 231 

states and transitions among them during retention and the ITI. We then extracted the 232 

probabilities of transitions for each subject and compared between retention and inter-233 

trial intervals at the group-level using two-sided Wilcoxon rank sum test.  234 

The directionality of replay was tested using two-sided Wilcoxon rank sum test. We 235 

performed the following comparisons: 236 

1. Probability of forward replay with the probability of backward replay- 237 

Assuming an independent probability of replay of each stimulus, the forward 238 

replay was the multiple of probability of transitions from the first stimulus to 239 

the second stimulus, from the second stimulus to the third stimulus, and from 240 

the third stimulus to the first stimulus. Backward replay was the multiple of 241 

probability of transitions from the third stimulus to the second stimulus, from 242 

the second stimulus to the first stimulus and from the first stimulus to the third 243 

stimuli. 244 

2. Probability of transitions from the first stimulus to the second stimulus with 245 

probability of transitions from the first stimulus to the third stimulus. 246 

3. Probability of transitions from the second stimulus to the first stimulus with 247 

probability of transitions from the second stimulus to the third stimulus. 248 

4. Probability of transitions from the third stimulus to the first stimulus with 249 

probability of transitions from the third stimulus to the second stimulus. 250 
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Effect of active maintenance on behavioral responses 251 

We applied a linear mixed-effects model to evaluate the effect of length of 252 

predominantly replayed epoch on the behavioral performance and response time across 253 

subjects. In each trial and for each probe (in both detail and order tests), we took the 254 

number of consecutive time-bins that the probe was replayed as a fixed variable and the 255 

subject number as a random variable. The effect of replay on behavior was visualized 256 

by grouping the probes according to whether or not they replayed during retention 257 

period and if replayed, whether the replay epoch was long (>1100 ms, based on Fig. 4) 258 

or short. We grouped the hit rate and response time accordingly. We studied the 259 

normalized behavioral performances and effect of active maintenance on behavior in 260 

the group-level using ANOVA and paired samples t-test for post-hoc tests - 261 

implemented in IBM SPSS Statistics v23. 262 

Event-related field (ERF) predicting predominant replay 263 

We investigated whether ERFs during stimulus presentation predicted maintenance. 264 

During maintenance one stimulus was predominantly replayed.  We grouped event-265 

related responses according to its replay during retention period: if the stimulus was 266 

predominantly maintained during retention interval (PM) or not (non-PM). We studied 267 

the event related field using SPM12b and ERF signals were baseline corrected based 268 

on the averaged amplitude in the whole epoch, and low-pass filtered at 20 Hz. 269 

The significant effects were then source localized separately (an early effect peaked at 270 

125ms and a later effect peaked at 278 ms). We cropped the signal to 50 to 200 ms 271 

epoch to localize the first effect (115 to 135 ms), and cropped the signal to 200 to 350 272 

ms epoch to localize the later effect (270 to 300 ms). ERFs were source localized using 273 
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8192 vertices over the cortical surface in MNI space, a Single Shell as a forward model, 274 

and multivariate sparse priors (MSP) (Friston et al., 2008). The individuals source 275 

localized activity was then examined in a group level statistical analysis (Henson et al., 276 

2007). 277 

Results 278 

Pattern classifiers performance  279 

We calculated the accuracies of three pairwise classifiers by averaging the classification 280 

accuracies over validation-folds and paired categories. The results indicated that all 281 

classifiers performed better than chance level (50%) from about 100 ms to 500 ms after 282 

onset of the stimuli (out of -10 ms to 490 ms tested time-bins).  F vs C classification 283 

performance was above chance from 90 ms post stimulus onset with the highest 284 

performance of 80% at 170 ms (t(13) = 14.76, FWE-corrected P < 0.001). The 285 

performance for the B vs C classifier was also significant from 90 ms, with the best 286 

performance of 75% at 190 ms (t(13) = 14.61, FWE-corrected P < 0.001). F vs B 287 

classification was significant from 110 ms, with 80% performance 170 ms (t(13) = 12.35, 288 

FWE-corrected P < 0.001; Fig. 3).  289 

Replay of one stimulus category dominates during retention 290 

The 170 ms classifiers had the highest performance during encoding (the averaged 291 

cross-validated accuracy, over all three pairwise classifiers, was 78%). Thus, we 292 

selected the 170 ms classifiers for decoding within two time windows where 293 

maintenance may occur: Retention (R) interval itself and Inter-trial-intervals for control 294 

(ITI). Each period contained 151 time-bins. Overall, we decoded overall about 330,000 295 

time-bins.  296 
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The distributions of assigned category labels to each time-bin were different during R 297 

and ITI (Fig. 4). During R, the decoded adjacent time-bins were most frequently from 298 

the same category (see Fig. 4A as an example from a representative subject). We refer 299 

to these adjacent time-bins with the same decoded categories a replay ‘epoch’ – it 300 

quantifies the length of time stating in the same state. The lengths of all epochs 301 

(multiple per a delay period) were then calculated and the histogram of epoch lengths 302 

during R and ITI were compared in the four length-bins: 20 to 140 ms, 160 to 400 ms, 303 

420 to 1100 ms, and 1200 to 3000ms (note that a unit time-bin was 20 ms). We 304 

observed shorter replay epochs during ITI than R (20-140ms: P < 0.001), and longer 305 

replay epochs during R than ITI (420-1100 ms: P = 0.007; 1200-3000ms: P < 0.001; 306 

Fig. 4B).  307 

The analysis was repeated after introducing the null category (‘N’) for no replays. We 308 

introduced a threshold for rejecting the classifier outputs that were close to classification 309 

decision boundaries. We labelled those rejected classifier outputs as null. For 310 

measuring the threshold, we first extracted the probability distribution of the distance to 311 

the classification boundaries (d) obtained from the R and the ITI periods (Fig. 4C). The 312 

applied classifier was accurate 78% of the time. We then selected a conservative 313 

threshold (d* = 2.49) to reject 22% of outputs of the classifiers decoding the patterns 314 

during the retention period that were closest to the classification boundaries (they were 315 

the 22% top most ambiguous). The same threshold rejected 94% of the decoded 316 

patterns during ITI period. We labelled these rejected time-bins as ‘N’ for null. 317 

After applying the threshold, the overall number of replays of 170 ms representations (F, 318 

B, and C) was higher during R (5422, SD = 1061) than ITI (92, SD = 149, P < 0.001) – 319 
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and the number of Ns (rejected bins) was higher during ITI (12657, SD = 2961) than R 320 

(3058, SD = 1669, P < 0.001). Furthermore, the decoded epochs were longer during R 321 

than ITI (in all four length-bins: P < 0.001; Fig. 4D), meaning that the replayed stimuli 322 

persisted over a longer period during R. These results indicated that during the retention 323 

period one stimulus was predominantly maintained (PM). There was no significant 324 

interaction between stimulus category and order and the predominant stimuli (F(4,52) = 325 

0.603, P = 0.662); and no main effects of order (F(2,26) = 0.747, P = 0.484) or stimulus 326 

category (F(2,26) = 0.701, P = 0.505; Fig. 4E). At a group-level, the length of replay 327 

epochs for the predominantly maintained category was shorter than 160 ms in 25% (SD 328 

= 11.2) of trials, between 160 to 400 ms in 18.7% (SD = 4.5) of trials, between 420 to 329 

1100 ms in 15.1% (SD = 3.8) of trials, and larger than 1100 ms in 41.3% (SD = 14) of 330 

trials.  331 

No evidence for replay in sequential order 332 

The difference between the pattern of replay during R and ITI was also detectable from 333 

the probability of replay of each stimulus at time-bin t+1 given replay of a stimulus at 334 

time-bin t – i.e. 1-step discrete-time Markov chain transition matrix between replayed 335 

states. If at time t a stimulus replays, most probably at time t+1 the same stimulus will 336 

replay (averaged probability of transition was %56.32). Probabilities of transitions to the 337 

same state and from N to each of the stimuli states were higher during R than ITI, and 338 

the probabilities of transitions from any state to N were lower during R than ITI. There 339 

was no difference between forward and backward transitions (Fig. 5). 340 



 

16 
 

Enhanced memory recall for the dominantly replayed stimuli  341 

We then examined the behavioral performance for replayed stimuli by fitting a linear 342 

mixed-effects model: length of (longest) consecutive replay of the probes in each trial as 343 

a fixed variable and the subject identity as a random variable. The results showed 344 

significant effects of length of replay on the performance for detail test (parameter 345 

estimate: 0.0001; t(2232) =  2.578, P = 0.01) and on response time for the detail test 346 

(parameter estimate: -0.63175; t(2232) =  -2.115, P = 0.0345). The result was not 347 

significant for the performance of order test (parameter estimate: < 0.0001; t(2232) =  348 

0.47757, P =  0.633) or the response time of the order test (parameter estimate: 349 

0.39498; t(2232) = 1.1955, P = 0.232). 350 

We considered how long the probe’s longest replay epoch was during the preceding 351 

retention interval. We grouped the probes into three: those with no replay (detail test: 352 

72.1 probes (SD = 9.9), order test: 73.6 probes (SD = 12.4)), short replay epoch (less 353 

than 1100 ms (first three bars in Fig. 4); detail test: 64.1 probes (SD = 16.8), order test: 354 

64.4 probes (SD = 16.1)), and long replay epoch (more than 1100 ms (last bar in Fig. 4); 355 

detail test: 23.8 probes (SD = 9.7), order test: 21.9 probes (SD = 8.9)). We also tested 356 

the behavioral responses accordingly to how long the probe replayed during retention. 357 

The effect of length of replay epoch predicted accuracy in the detail test (the first test 358 

the subjects performed after the retention period; F(2,26) = 4.98, P = 0.015). The post-359 

hoc test showed that the hit rate was higher for the probes with long replay epochs than 360 

those with short replay epochs (t(13) = 2.78, P = 0.016) or those not replayed (t(13) = 361 

2.85, P = 0.014; Fig. 6). We did not find any effect of replay on detail test response time 362 
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(F(2,26) = 1.89, P = 0.17), order test response time (F(2,26) = 0.20, P = 0.82), or order 363 

test accuracy (F(2,26) = 0.12, P = 0.89). 364 

Event-related activity during encoding predicts Item replay 365 

Event related magnetic fields (ERFs) during encoding were examined as a function of 366 

which item was predominantly maintained (PM) during the retention period. The ERFs 367 

were pre-processed exactly the same way as the signal for pattern classification 368 

analysis and low-pass filtered at 20 Hz. The results revealed that PM and non-PM 369 

stimuli during encoding evoked significantly different ERFs at right temporal channels 370 

(peaked at 125 ms, F(2,26) = 44.14, FWE-corrected P <0.001) and left temporal 371 

channels (peaked at 115 ms, F(2,26) = 39.25, FWE-corrected P < 0.001; and later 372 

peaks at 453 ms, F(2,26) = 23.06, P = 0.008; Fig. 7A and 7B), as well as at middle 373 

frontal channels (peaked at 287 ms, F(2,26) = 32.49, FWE-corrected P = 0.002, Fig 7C 374 

and 7D). The early ERF component (peaking at 125 ms) was source localized to the 375 

occipital temporal and the medial temporal cortices in both left and right hemispheres 376 

(Fig. 7E). The difference was significant in left occipital (F(1,13) = 36.51, FWE-corrected 377 

P = 0.027; Fig. 7E). The later ERF component, which peaked at 287 ms, was source 378 

localized to three brain regions, one on the left inferior temporal cortex (F(1,13) = 21.85, 379 

FWE-corrected P = 0.033, Fig. 7F) and two on the right inferior temporal cortex (F(1,13) 380 

= 20.44, FWE-corrected P = 0.036; and F(1,13) = 19.03, FWE-corrected P = 0.42; Fig. 381 

7F). 382 

Discussion 383 

Using MEG, we decoded the content working-memory while individuals maintained the 384 

sequence and the visual details of three distinct stimuli. Our results revealed that one of 385 
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the three stimuli dominated the content of working-memory. The predominantly 386 

maintained item benefited memory performance, akin to the behavioral effect of 387 

retaining an item on the focus of attention (Lepsien and Nobre, 2007; Lepsien et al., 388 

2011; Gazzaley and Nobre, 2012; Tan et al., 2014). The item selected for preferential 389 

replay was not predicted by the identity or the sequence position (Fig. 4E). Instead, the 390 

predominantly maintained stimulus was selected based on the lowest amount attention 391 

related event-related field (ERF) amplitude during encoding (Fig. 7). 392 

Our strict criterion for the existence of a sequential replay was the probability of 393 

sequential transitions in a discrete-time (1 step) Markov chain transition matrix (Fig. 5). 394 

Accordingly, we did not find directional replay, namely any differences between the 395 

forward replay (1, 2, and then 3) or backward replay (3, 2, and then 1) (Fig. 5). In 396 

addition to this strict criterion, we tested a direct prediction of the temporal coding 397 

model. The temporal coding model predicts that all three memoranda would be decoded 398 

with equal probability during maintenance. This criterion was also not fulfilled (Fig. 6). 399 

These null findings have to be interpreted with caution because the spatiotemporal 400 

resolution of our methodology may not be sensitive to sequential replay and direct 401 

intracranial recording may be required to provide further evidence for or against these 402 

models. Furthermore, sequential replay may be recruited with higher working memory 403 

load than what was used in the current study (Heusser et al., 2016). 404 

We observed that one stimulus dominated during the retention (Fig. 4). The identity of 405 

this stimulus varied from trial to trial. As noted, the category or the order of sequence 406 

did not determine what stimulus would replay (Fig. 4E). Instead, it was the amplitude of 407 

the ERFs at 125 ms from stimuli onset during encoding that predicted what stimulus 408 
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would replay (Fig. 7). The early effect was source localized to left extrastriate cortex 409 

(Fig. 7), and this spatio-temporal pattern corresponds closely to the well-known effect of 410 

attention to a visual stimulus during encoding (Heinze et al., 1990; Luck et al., 1990; 411 

Okazaki et al., 2008; Rutman et al., 2009). Attention to a visual stimulus elicits an 412 

enhanced event-related component in the occipital cortices (Hopf et al., 2000). 413 

Specifically, allocating attention to visual stimuli increases the magnitude of event-414 

related EEG and MEG amplitude at around 100ms after the onset of visual stimulus 415 

relative to less attended stimuli (Hillyard and Anllo-Vento, 1998; Downing, 2000). Thus, 416 

stimuli that dominated replay during the retention interval were those that had received 417 

the least early attention allocation during encoding. This early reduced attention effect 418 

on the weakest encoded event was followed by a reduced amplitude event-related 419 

response at 287 ms that source localized to posterior inferior temporal regions.  This 420 

indicates that the diminished early visual attention was followed by weaker 421 

representations in downstream visual areas. 422 

Our findings are compatible with long-standing research on how attention can influence 423 

the content of working memory. Multiple items in working-memory are not all in the 424 

same representational state during retention due to attention allocation (Zokaei et al., 425 

2014; Myers et al., 2017). Rather, brain stimulation or experimental instructions to 426 

maintain a prompted stimulus (i.e. retro-cue procedure) manipulates the content of 427 

retention (Lewis-Peacock and Postle, 2012; Zokaei et al., 2014; Rose et al., 2016). 428 

Retro-cuing shifts the prompted stimulus into “the focus of attention”. In our experiment, 429 

we did not employ retro-cues or brain simulation; instead, all three visual items were 430 
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task-relevant. This procedure allowed us to uncover an uninstructed prioritization of 431 

working-memory content that was dependent on the degree of early attention. 432 

Our observation that one item can dominate the maintenance period is compatible with 433 

recent neurophysiological data from the prefrontal cortex (PFC) of non-human primates. 434 

These effects of replay on behavior suggest that only the item in the focus of attention is 435 

actively replayed in working memory, while the representation of other stimuli are in an 436 

“active-silent” state (Sandberg et al., 2003; Stokes, 2015). The active-silent state is 437 

proposed to be a form of synaptic level retention where single unit activity drops to 438 

baseline levels after an initial firing burst (Mongillo et al., 2008; Stokes, 2015; Lundqvist 439 

et al., 2016).  440 

An intriguing question raised by our data is how the weakly encoded stimuli are 441 

prioritized for maintenance. Since prioritization was independent of sequence position, it 442 

could have only occurred after all three stimuli were encountered. A parsimonious 443 

scenario is that maintenance prioritization occurs at the beginning of the delay period 444 

(perhaps in the PFC,(Lundqvist et al., 2016)) and involves retrieval of information. One 445 

possibility is that the prioritized stimulus required more search or retrieval effort during 446 

the delay. Such a process could have been supported by prefrontal mechanisms 447 

allowing monitoring (Barbey et al., 2013; Szczepanski and Knight, 2014) and inhibitory 448 

control (Knight et al., 1999; Barceló et al., 2000; Aron et al., 2004) reducing interference 449 

(LaRocque et al., 2014; Zokaei et al., 2014) from strongly encoded stimuli. This 450 

potential mechanism would compensate for capacity limitations of working-memory 451 

(Luck and Vogel, 1997; Awh et al., 2006; Bays and Husain, 2008; Bays et al., 2009), 452 

and would be more resource-effective by prioritizing the less privileged stimuli at 453 
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encoding in the maintenance buffer. In essence, the subjects enhanced replay of poorly 454 

attended stimuli to improve subsequent performance. Whether more strongly attended 455 

(higher amplitude early ERFs) stimuli were encoded into and retrieved from long-term 456 

memory or whether they were in an “active silent” state (Stokes, 2015; Lundqvist et al., 457 

2016) remains an open question. Another option is that items were sequentially 458 

replayed but when the signal for the weakly attended item was amplified; this masked 459 

decoding of other items. 460 

In summary, we decoded the dynamic replay of the content of visual working-memory 461 

with high temporal resolution using MEG. The results revealed that the representation of 462 

visual categorical information of the least attended stimuli during encoding was 463 

preferentially replayed during retention. These findings reveal that working-memory 464 

maintenance intelligently prioritizes the weakest attended and encoded task-relevant 465 

stimuli enhancing the fidelity of memory recall. 466 

  467 
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Figure Legends 609 

Figure 1. Working-memory experimental paradigm (A) three stimuli were presented 610 

sequentially, each for 0.5 second and with 0.5 second gap between them. There was a 611 

5 second retention period after the presentation of the third stimulus and memory probe 612 

tests. The memory probe tests entailed a “same” or “different” judgment and a temporal 613 

order decision. A four second inter-trial interval preceded the next trial. The labels R (in 614 

blue) and ITI (in red) show the retention and inter-trial interval periods. (B) The stimuli 615 

used in this experiment: a banana (B), a face (F) and a chair (C) from three points of 616 

view, 60 degrees to the left, front on, 60 degrees to the right. 617 

Figure 2. Schema of the multivariate pattern analysis using SVM (A) The state of 618 

neural activity during delay (retention or ITI) periods was decoded at each time-bin, 619 

using three pair-wise classifiers. A conservative threshold of d* (depicted in red) was 620 

used to reject representations which were close to the boundary and categorize them as 621 

‘N’ (the shaded area). (B) is a schematic example of decoded states during a delay 622 

period. And (C) is the discrete-time Markov chain model of state transition extracted 623 

from the schematic sequence in (B). 624 

Figure 3. Multivariate classification of stimulus-categories: Cross-validation 625 

performance, these plots show the mean classification performance of 3 pairwise 626 

classifiers across the group – left: F vs B, middle: F vs C, and right: B vs C. X-axis is the 627 

time from stimulus (0 ms) and the Y-axis is the classification performance in %. The 628 

error-bars show SEM. The grey area indicates significant classification after correction 629 

for multiple comparisons. 630 
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Figure 4. Decoding maintained categories in the delay period, (A) a representative 631 

example (from one subject) of decoded retention (R) and inter trial interval (ITI) before 632 

thresholding. X-axis is the decoded time-bins, and Y-axis is the trial numbers. (B) the 633 

histogram of length of replay epochs during Retention (in blue) and during ITI (in red) 634 

before threshold: the x-axis shows the epoch length. The upper plot is the averaged 635 

epoch length from 20 – 3000 ms, and the bottom plot is the bar-plot for bins of epoch 636 

lengths (20-140 ms, 160-400 ms, 420-1100 ms, and 1200-3000ms). Error-bars show 637 

SEM. X-axis is length of epoch of stimuli replay. (C) The probability distribution of 638 

distance from classification boundaries during retention (blue) and ITI (red). d* shows 639 

the threshold for rejecting 22% of classification outputs during retention. This threshold 640 

rejected 94% of classification outputs during ITI. (D) The same histograms as (B) but 641 

after applying the threshold. (E) The bar plots show the percentage of trials where the 642 

stimuli from the selected category (left plot) or order in the sequence (right plot) was 643 

predominantly maintained. There was no significant effect of category or order of 644 

stimuli. 645 

Figure 5. Difference in averaged probability of state transition matrix is reflected by 646 

the thickness of the arrows. The probabilities of all transitions were different between 647 

retention (R) periods and inter trial intervals (ITI). Red arrows show the transitions when 648 

the probabilities were more during ITI than R and blue arrows show the other way 649 

around. There was no difference between probabilities of forward (1-2-3) and backward 650 

(3-2-1) transitions. 651 

Figure 6. Effect of replay of 170 ms representation on WM performance (A) for the 652 

detail test and (B) for the order test show the hit rate (%) with respect to whether the 653 
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stimuli were not replayed (none), replayed for a short duration (shorter than 1100 ms) or 654 

replayed for a long duration (longer than 1100 ms). Error-bars shows SEM. * P < 0.05. 655 

Figure 7. ERFs during encoding differentiate between stimuli predominantly 656 

maintained (PM) in working memory and the non-PM stimuli. (A) The plots graph 657 

the F-statistics in channel by time topography. It focuses on the significant clusters at 658 

0.125 s from the stimuli onset. The bottom plot shows channel by channel topography of 659 

the effect (x-axis is from left to right, and y-axis is from posterior to anterior). The upper 660 

plots are channel by time. The x-axis on the left plot shows channels from left to right 661 

and the x-axis on the right plot shows the channels from anterior to posterior. The peaks 662 

are highlighted with shapes in (A to D). (B) The top plot is for the effect peaked at 0.125 663 

s (P <0.001) in a left lateral channel, and the bottom plot is for the ERF effect at 0.453 s 664 

(P = 0.008) in a right lateral channel. The plots show the ERF effects in the peak of 665 

significant clusters, which are highlighted by shapes (A and B). The dash-lines show the 666 

timing of the effects. (C) The plots graph the F-statistics in channel by time (the same as 667 

A) focusing on the significant effect peaked at 0.287 s (P = 0.002). The effect is 668 

highlighted by a diamond shape in (C and D). (D) The plot shows the ERF effect at 669 

0.287 s from the stimuli onset in a middle frontal channels. (E) The ERF effect at 0.125 670 

s (A and B) was source localized in the bilateral occipital cortex. (F) The ERF effect at 671 

0.287 s (C and D) was source localized in the posterior inferior temporal areas. (A to D) 672 

dotted line shows the onset of the stimuli at encoding. 673 
















