This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version.

Research Article: New Research / Cognition and Behavior

Working-Memory Replay Prioritizes Weakly Attended Events
 WM replay prioritizes weakly attended events

Anna Jafarpour ${ }^{1,2}$, Will Penny ${ }^{3}$, Gareth Barnes ${ }^{3}$, Robert T. Knight ${ }^{1,2}$ and Emrah Duzel ${ }^{4,5,6}$
${ }^{1}$ Department of Psychology, University of California, Tolman Hall \#1650, Berkeley, California 94720, USA
${ }^{2}$ Helen Wills Neuroscience Institute, University of California, 175 Li Ka Shing Center, Berkeley, California 94720, USA
${ }^{3}$ Wellcome Trust Centre for Neuroimaging at University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom
${ }^{4}$ Institute of Cognitive Neuroscience, Alexandra House, 17-19 Queen Square, London, WC1N 3AR, United Kingdom
${ }^{5}$ German Centre for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Haus 64, Magdeburg, 39120, Germany
${ }^{6}$ Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke, University of Magdeburg, Leipziger Straße 44, Haus 64, Magdeburg, 39120, Germany

DOI: 10.1523/ENEURO.0171-17.2017
Received: 17 May 2017
Revised: 27 June 2017
Accepted: 1 July 2017
Published: 14 August 2017

[^0][^1]Title: Working-memory replay prioritizes weakly attended events
Abbreviated title: WM replay prioritizes weakly attended events
Author Affiliation: Anna Jafarpour ${ }^{1,2^{*}}$, Will Penny ${ }^{3}$, Gareth Barnes ${ }^{3}$, Robert T.
Knight ${ }^{1,2}$, Emrah Duzel ${ }^{4,5,6}$
1 Tolman Hall \#1650, Department of Psychology, University of California, Berkeley, California 94720, United States of America.
2 Helen Wills Neuroscience Institute, 175 Li Ka Shing Center, University of California, Berkeley, California 94720, United States of America.
3 Wellcome Trust Centre for Neuroimaging at University College London, 12 Queen Square, London, WC1N 3BG, United Kingdom.
4 Institute of Cognitive Neuroscience, Alexandra House, 17-19 Queen Square, London WC1N 3AR, United Kingdom.
5 German Centre for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, Haus 64, 39120 Magdeburg, Germany.
6 Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke, University, Magdeburg, Leipziger Straße 44, Haus 64, 39120 Magdeburg, Germany.

* Correspondence to: 132 Barker Hall, Knightlab, UC Berkeley, CA 94720.
a.jafarpour@berkeley.edu

Conflict of Interest: Authors declare no conflict of interest.
Acknowledgments: We would like to thank Dr. Aidan Horner for constructive discussions. This project was supported by the Welcome Trust, NINDS Grant R3721135, the Nielsen Corporation and the McDonnell Foundation.

Abstract

One view of working memory posits that maintaining a series of events requires their sequential and equal mnemonic replay. Another view is that the content of working memory maintenance is prioritized by attention. We decoded the dynamics for retaining a sequence of items using magnetoencephalography (MEG), wherein participants encoded sequences of three stimuli depicting a face, a manufactured object, or a natural item and maintained them in working memory for 5 seconds. Memory for sequence position and stimulus details were probed at the end of the maintenance period. Decoding of brain activity revealed that one of the three stimuli dominated maintenance independent of its sequence position or category; and memory was enhanced for the selectively replayed stimulus. Analysis of event-related responses during the encoding of the sequence showed that the selectively replayed stimuli were determined by the degree of attention at encoding. The selectively replayed stimuli had the weakest initial encoding indexed by weaker visual attention signals at encoding. These findings do not rule out sequential mnemonic replay, but reveal that attention influences the content of working memory maintenance by prioritizing replay of weakly encoded events. We propose that the prioritization of weakly encoded stimuli protects them from interference during the maintenance period whereas the more strongly encoded stimuli can be retrieved from long-term memory at the end of the delay period.

Significance Statement: Here we show how information of a sequence of events is prioritized in the working-memory maintenance buffer in humans. Participants retained three consecutive visual stimuli and we decoded the content of working-memory maintenance using multivariate-pattern-classification and magnetoencephalography
(MEG). We observed that the least attended events during encoding dominated the content of working-memory during the immediately following offline retention. In essence, the brain selectively and intelligently amplifies the least encoded memory item to maximize recall fidelity, instead of equally rehearsing the whole sequence. Our findings shift the functional role of working-memory from a faculty that "works with memory" to one that "works for memory" by actively selecting which encoded items need to be enhanced in order to be remembered.

Introduction

Working-memory is conceptualized as a mechanism to actively maintain and manipulate information (Baddeley, 1992). It is considered to consist of multiple layers, including long-term memory and a maintenance buffer - also known as the focus of attention during maintenance (Oberauer, 2002; Baddeley, 2010) that interacts with longterm memory. Working-memory maintenance is associated with a reactivation of information in non-human primates (Woloszyn and Sheinberg, 2009; Lee et al., 2005; Miller et al., 1993) and in humans (Lepsien and Nobre, 2007; Harrison and Tong, 2009; Fuentemilla et al., 2010). Here we investigated the representational content of maintaining a sequence of multiple stimuli in working memory. To decode representational content we employed multivariate pattern analysis (MVPA) of magnetoencephalography (MEG) recordings (Jafarpour et al., 2013; Cichy et al., 2014). We addressed two hypotheses. The first hypothesis was that stimuli are maintained in a circular and repetitive structure. This hypothesis was motivated by the temporal coding model of working-memory maintenance which proposes that the replay mechanism conserves the temporal order in which stimuli were encountered (Lisman, 2010; Jensen
et al., 2014). Thus, the sequence of 1-2-3 circularly rehearses as 1-2-3-1-2-3-1-2-3-etc. Such a dynamic has been reported in the medial temporal lobe of rodents (Jensen and Lisman, 1996), and the non-human primate prefrontal cortex (Siegel et al., 2009). Support for the temporal coding model also comes from a recent human MEG study (Heusser et al., 2016). It that study, fitting the temporal coding model to whole brain MEG data source localized evidence for the model in the human hippocampus (Heusser et al., 2016). However, the trial-by-trial activity of non-human primate's prefrontal cortex supports a dynamic coding model of working memory, rather than the temporal coding model (Lundqvist et al., 2016). The dynamic coding model suggests that items are maintained in an "activity silent state" and replay is guided by attention (Stokes, 2015; Myers et al., 2017). Attention at encoding could thus prioritize the content of working memory such that working memory maintenance is dominated by a selected stimulus rather than the full to-be-memorized sequence. For instance, it would be more resource-effective to prioritize the less privileged stimuli at encoding to be replayed in working-memory (Zokaei et al., 2014; Stokes, 2015; Rose et al., 2016).

Here we used the whole brain MEG data to decode the content of working-memory. Our experiment was a modified version of the Sternberg task, where a sequence of three visual stimuli had to be retained. Objects from three distinct visual categories (Faces, manufactured objects, and natural items) were presented successively (the stimulus-set contained samples of the same items from different perspectives; Fig. 1B) followed by a five-second delay period. After the delay a probe queried stimulus identity (detail test) and a second probe queried the sequence of the three items (first, second, or third order test; Fig. 1).

Pattern classifiers were trained on categorical representations of visual stimuli in brief time-bins (20 milliseconds; ms) during encoding (Carlson et al., 2013; Jafarpour et al., 2014). The classifiers labelled the on-going signal during retention (R) and inter-trialinterval (ITI) periods for control. According to the output of the classifiers (face, banana, chair, or 'none' for no replay), a Markov chain matrix of transitions between replayed stimuli or 'none' was constructed (Fig. 2). With three stimuli, we could test for the direction of replay (i.e. 1-2-3 versus 3-2-1). A Markov chain matrix of transitions quantified the directional replay of sequences. The probability of transition from state 1 to 2,2 to 3 , and 3 to 1 would be higher than the probability of transition from state 1 to 3,3 to 2 , and 2 to 1 , if there is a forward replay and the reverse pattern would be observed for backward replay.

A support vector machine algorithm was used for decoding the (pairwise) categorical information at -20 to 500 ms from onset of the visual stimuli during encoding. Note that the categorical representation and item-specific representation overlaps in our case, because we only used one sample from a category in this study (Fig. 1B). We trained the classifiers on the amplitude of the broadband event-related single-trial MEG signals and tested using a cross-validation method during encoding. We applied the classifiers with best performances to decoding during the maintenance interval. To determine the degree of attention during encoding, we analyzed early event-related fields (ERFs) to each stimulus.

The sequential mnemonic replay hypothesis would predict decoding sequence information or at least an equal probability of decoding all three encoded stimuli during maintenance. In contrast, an attentional prioritization account would predict that the
degree of stimulus replay during the maintenance period would be dependent on the size of early ERFs at encoding.

Materials and Methods

Participants

16 right-handed healthy adults with normal or corrected vision participated in this experiment (8 female; on average 24 years old ($S D=2$)). The MEG data of two participants were not included in the analysis, as their MEG signal was too noisy and rejected as artefacts (for details see below). All participants gave written informed consent and were compensated them financially for their participation. The University of London Research Ethics Committee for human-based research approved the study.

Experimental design

We used a combination of a delay-match-to-sample and Sternberg tasks. The experiment consisted of six runs, and each run consisted of 27 trials. Participants had an optional five-minutes-break between runs. Each trial contained a sequential presentation of three stimuli, a retention period, and two probe tests. A trial started with a fixation (inter-trials interval) period for 4 seconds. Then a random sequence of three stimuli appeared sequentially for 0.5 seconds, with a 0.5 second gap between stimuli. A 5 second retention period followed the presentation of the third item. Finally, a probe stimulus was presented to test for item memory (delay-match-to-sample), where subjects were required to select `same' if the exact stimulus (category and perspective) was shown in the sequence and 'different' otherwise (the perspective was different). Randomly, in half of the trials, the correct answer was `same'. For the following
question, subjects were required to answer " 1,2 or 3 " according to the position of the probe in the sequence (Fig. 1A).

The stimuli were images from three visual categories for which previous multivariate decoding research indicated distinct spatial cortical representations (Kriegeskorte et al., 2008): a face, a fruit, and a manufactured object (Fig. 1B). Images were from three different perspectives - front-on, 60 degrees to the left, and 60 degrees to the right shown upright on a white background, extending approximately 6 degrees of a horizontal and vertical visual angle. (face images were downloaded from Faces stimulus images Tarrlab, Centre for the Neural Basis of Cognition and Department of Psychology, Carnegie Mellon University, http://www.tarrlab.org/). Subjects were familiarized with the stimuli outside the MEG scanner and they also performed the experiment with feedback outside the scanner to ensure that they understood the experiment properly. There was no feedback given during the experiment inside the MEG scanner. In 6 runs each with 27 trials (all together, there were 162 trials), we tested all possible sequential combinations of three stimuli. All the possible combinations of three stimuli are 162 sequences: 6 combinations of sequences of three categorical stimuli, and 3 perspectives of each stimulus category ($=6 \times 3 \times 3 \times 3$). We presented the trials randomly and each trial was seen once.

MEG recordings and data pre-processing

MEG data were recorded with a 274 channel CTF Omega whole-head gradiometer system (VSM MedTech, Coquitlam, BC, Canada) with a 600 Hz sampling rate with an online bandpass filter from 0.1 to 200 Hz . Head position inside the system was tracked via head localizer coils attached to the nasion and 1 cm anterior to the left and right pre-
auricular points. Participants sat upright and the stimuli were back-projected onto a screen 1 m in front of them.

MEG data were pre-processed using SPM12b (Wellcome Trust Centre for Neuroimaging, London, www.fil.ion.ucl.ac.uk/spm) package and analyzed using Matlab R2009b software. We filtered out the mains noise (50 Hz) from continuous signal using a fifth-order Butterworth filter. We cropped the MEG data during encoding to epochs from -100 to 500 ms from the stimuli onset. We discarded any epoch with field magnitudes greater than $1.5 \mathrm{e}-11$ tesla in any channel, because it contained artefacts. Two subjects had too many trials with such artefacts and were removed from further analysis.

Decoding the category of visual stimuli during encoding

A Support Vector Machine (SVM) with a linear Kernel (Vapnik, 2000)- implemented in statistics Matlab - was used to classify the signal elicited by the onset of the visual stimuli. 26 classifiers were adopted at -20 to 500 ms from stimulus-onset during encoding. The signal's sampling rate was 600 Hz . The signal was windowed in timebins of 20 ms (13 time points in each time-bin), centered at -10, 10, 30, 50, 70, 90, 110, $130,150,170,190,210,230,250,270,290,310,330,350,370,390,410,430,450$, 470, and 490 ms . The single-trial input to the SVM classifiers was the broad-band amplitude at each time point and each channel ($13 \times 274=3562$ features) for every stimulus. The features were normalized before training, and the scale was used to normalize features in testing data. We used a two-tailed t-test with a threshold of 0.05 for the feature reduction.

We trained three pairwise classifiers to decode the stimulus-category at each time-bin during encoding, irrespective of presentation order or perspective: face versus banana (FvsB), face versus chair (FvsC), and banana versus chair (BvsC). We identified the time-bins with reliable category stimulus classification and trained the classifiers on 90% of randomly selected samples from each category and tested them on 10% left-out samples from each category (i.e. 10 -folds cross-validation). We selected an equal number of trials from each category for training and testing.

We examined the classification performance at the group level. To test the accuracy of each classifier against chance (i.e., 50%) we used a one sample t-test with a correction for multiple comparisons (family-wise error; FWE) using random field theory (RFT) implemented in SPM (Kilner et al., 2005; Litvak et al., 2011). As is standard in neuroimaging, we made inferences using a cluster-level threshold. The RFT procedure adjusts the p -value statistics that are functions of the number of time points (classification repetition). Such adjustment is similar to a Bonferroni correction. However, Bonferroni correction is suitable for data sets that are independent at each repetition (or data point). Here the data of adjacent time points is not independent and RFT is more suitable for multiple comparison correction (Kilner et al., 2005; Jafarpour et al., 2014).

Decoding the category of visual stimuli during delay periods

The most accurate classifiers from encoding were used to decode the replay during maintenance (the delay period between encoding and testing) and during the inter-trial intervals (ITIs; Fig. 2). For the delay period, we restricted analysis to the 1000 - 4000 ms after the offset of the last stimulus in the sequence (150 time-bins were tested) in
order to exclude the event related activity elicited by offset of the last stimulus. We selected the 3000 ms before onset of the first stimulus in the sequence (again including 150 time-bins) for testing the ITIs.

The outputs of the three pairwise-classifiers were class labels (F, B, or C) and distance between unknown activity and classification decision boundaries. We determined the decoded labels according to these outputs in two steps. First, we selected the class label (between three classifier outputs) which had the largest distance to decision boundaries. Second, we used a threshold to identify unknown activities that were too close to the classification boundaries. We rejected these decoded classes and labelled them as none (N).

A threshold was used to reject a percentage of classification outputs during retention period. For example, if the classifier performance was reliable in 80% of times, we rejected 20% labels of the decoded time-bins during retention. We applied the same conservative threshold on decoded output during ITI. Following those steps, four possible labels resulted from the classifiers: $\mathrm{F}, \mathrm{B}, \mathrm{C}$, or N (for none - rejected classifications; Fig. 2).

Two parameters were studied to quantify the differences in the decoding during the retention period and the ITI in a trial by trial level. The first parameter was the number of consecutive time bins decoded as the same item (i.e. a decoding epoch). We compared the length of decoded epoch between the retention and ITI. We trusted that the decoded items were replayed only when the memory benefited from the decoding (see the analysis on the effect of active maintenance on behavioral responses).

The second parameter was the dynamics of replay extracted by the Markov chain. We treated the classifiers outcomes as a state and counted the number of visits to the states and transitions among them during retention and the ITI. We then extracted the probabilities of transitions for each subject and compared between retention and intertrial intervals at the group-level using two-sided Wilcoxon rank sum test.

The directionality of replay was tested using two-sided Wilcoxon rank sum test. We performed the following comparisons:

1. Probability of forward replay with the probability of backward replayAssuming an independent probability of replay of each stimulus, the forward replay was the multiple of probability of transitions from the first stimulus to the second stimulus, from the second stimulus to the third stimulus, and from the third stimulus to the first stimulus. Backward replay was the multiple of probability of transitions from the third stimulus to the second stimulus, from the second stimulus to the first stimulus and from the first stimulus to the third stimuli.
2. Probability of transitions from the first stimulus to the second stimulus with probability of transitions from the first stimulus to the third stimulus.
3. Probability of transitions from the second stimulus to the first stimulus with probability of transitions from the second stimulus to the third stimulus.
4. Probability of transitions from the third stimulus to the first stimulus with probability of transitions from the third stimulus to the second stimulus.

Effect of active maintenance on behavioral responses

We applied a linear mixed-effects model to evaluate the effect of length of predominantly replayed epoch on the behavioral performance and response time across subjects. In each trial and for each probe (in both detail and order tests), we took the number of consecutive time-bins that the probe was replayed as a fixed variable and the subject number as a random variable. The effect of replay on behavior was visualized by grouping the probes according to whether or not they replayed during retention period and if replayed, whether the replay epoch was long (>1100 ms, based on Fig. 4) or short. We grouped the hit rate and response time accordingly. We studied the normalized behavioral performances and effect of active maintenance on behavior in the group-level using ANOVA and paired samples t-test for post-hoc tests implemented in IBM SPSS Statistics v23.

Event-related field (ERF) predicting predominant replay

We investigated whether ERFs during stimulus presentation predicted maintenance. During maintenance one stimulus was predominantly replayed. We grouped eventrelated responses according to its replay during retention period: if the stimulus was predominantly maintained during retention interval (PM) or not (non-PM). We studied the event related field using SPM12b and ERF signals were baseline corrected based on the averaged amplitude in the whole epoch, and low-pass filtered at 20 Hz .

The significant effects were then source localized separately (an early effect peaked at 125 ms and a later effect peaked at 278 ms). We cropped the signal to 50 to 200 ms epoch to localize the first effect (115 to 135 ms), and cropped the signal to 200 to 350 ms epoch to localize the later effect (270 to 300 ms). ERFs were source localized using

8192 vertices over the cortical surface in MNI space, a Single Shell as a forward model, and multivariate sparse priors (MSP) (Friston et al., 2008). The individuals source localized activity was then examined in a group level statistical analysis (Henson et al., 2007).

Results

Pattern classifiers performance

We calculated the accuracies of three pairwise classifiers by averaging the classification accuracies over validation-folds and paired categories. The results indicated that all classifiers performed better than chance level (50\%) from about 100 ms to 500 ms after onset of the stimuli (out of -10 ms to 490 ms tested time-bins). F vs C classification performance was above chance from 90 ms post stimulus onset with the highest performance of 80% at $170 \mathrm{~ms}(\mathrm{t}(13)=14.76$, FWE-corrected $P<0.001)$. The performance for the B vs C classifier was also significant from 90 ms , with the best performance of 75% at $190 \mathrm{~ms}(\mathrm{t}(13)=14.61$, FWE-corrected $P<0.001)$. F vs B classification was significant from 110 ms , with 80% performance $170 \mathrm{~ms}(\mathrm{t}(13)=12.35$, FWE-corrected $P<0.001$; Fig. 3).

Replay of one stimulus category dominates during retention

The 170 ms classifiers had the highest performance during encoding (the averaged cross-validated accuracy, over all three pairwise classifiers, was 78\%). Thus, we selected the 170 ms classifiers for decoding within two time windows where maintenance may occur: Retention (R) interval itself and Inter-trial-intervals for control (ITI). Each period contained 151 time-bins. Overall, we decoded overall about 330,000 time-bins.

The distributions of assigned category labels to each time-bin were different during R and ITI (Fig. 4). During R, the decoded adjacent time-bins were most frequently from the same category (see Fig. 4A as an example from a representative subject). We refer to these adjacent time-bins with the same decoded categories a replay 'epoch' - it quantifies the length of time stating in the same state. The lengths of all epochs (multiple per a delay period) were then calculated and the histogram of epoch lengths during R and ITI were compared in the four length-bins: 20 to $140 \mathrm{~ms}, 160$ to 400 ms , 420 to 1100 ms , and 1200 to 3000 ms (note that a unit time-bin was 20 ms). We observed shorter replay epochs during ITI than $R(20-140 \mathrm{~ms}$: $P<0.001)$, and longer replay epochs during R than ITI (420-1100 ms: $P=0.007$; 1200-3000ms: $P<0.001$; Fig. 4B).

The analysis was repeated after introducing the null category (' N ') for no replays. We introduced a threshold for rejecting the classifier outputs that were close to classification decision boundaries. We labelled those rejected classifier outputs as null. For measuring the threshold, we first extracted the probability distribution of the distance to the classification boundaries (d) obtained from the R and the ITI periods (Fig. 4C). The applied classifier was accurate 78% of the time. We then selected a conservative threshold ($d^{*}=2.49$) to reject 22% of outputs of the classifiers decoding the patterns during the retention period that were closest to the classification boundaries (they were the 22% top most ambiguous). The same threshold rejected 94% of the decoded patterns during ITI period. We labelled these rejected time-bins as ' N ' for null.

After applying the threshold, the overall number of replays of 170 ms representations (F , B, and C) was higher during $R(5422, S D=1061)$ than $I T I(92, S D=149, P<0.001)-$
and the number of Ns (rejected bins) was higher during ITI (12657, SD $=2961$) than R (3058, SD = 1669, $P<0.001$). Furthermore, the decoded epochs were longer during R than ITI (in all four length-bins: $P<0.001$; Fig. 4D), meaning that the replayed stimuli persisted over a longer period during R. These results indicated that during the retention period one stimulus was predominantly maintained (PM). There was no significant interaction between stimulus category and order and the predominant stimuli $(\mathrm{F}(4,52)=$ $0.603, P=0.662)$; and no main effects of order $(F(2,26)=0.747, P=0.484)$ or stimulus category $(F(2,26)=0.701, P=0.505$; Fig. 4E). At a group-level, the length of replay epochs for the predominantly maintained category was shorter than 160 ms in 25% (SD $=11.2)$ of trials, between 160 to 400 ms in $18.7 \%(S D=4.5)$ of trials, between 420 to 1100 ms in $15.1 \%(S D=3.8)$ of trials, and larger than 1100 ms in $41.3 \%(S D=14)$ of trials.

No evidence for replay in sequential order

The difference between the pattern of replay during R and ITI was also detectable from the probability of replay of each stimulus at time-bin $t+1$ given replay of a stimulus at time-bin t-i.e. 1-step discrete-time Markov chain transition matrix between replayed states. If at time t a stimulus replays, most probably at time $t+1$ the same stimulus will replay (averaged probability of transition was \%56.32). Probabilities of transitions to the same state and from N to each of the stimuli states were higher during R than ITI, and the probabilities of transitions from any state to N were lower during R than ITI. There was no difference between forward and backward transitions (Fig. 5).

Enhanced memory recall for the dominantly replayed stimuli

We then examined the behavioral performance for replayed stimuli by fitting a linear mixed-effects model: length of (longest) consecutive replay of the probes in each trial as a fixed variable and the subject identity as a random variable. The results showed significant effects of length of replay on the performance for detail test (parameter estimate: $0.0001 ; \mathrm{t}(2232)=2.578, P=0.01)$ and on response time for the detail test (parameter estimate: $-0.63175 ; \mathrm{t}(2232)=-2.115, P=0.0345)$. The result was not significant for the performance of order test (parameter estimate: < 0.0001; $\mathrm{t}(2232)=$ $0.47757, P=0.633$) or the response time of the order test (parameter estimate:
$0.39498 ; \mathrm{t}(2232)=1.1955, P=0.232)$

We considered how long the probe's longest replay epoch was during the preceding retention interval. We grouped the probes into three: those with no replay (detail test: 72.1 probes ($\mathrm{SD}=9.9$), order test: 73.6 probes $(S D=12.4)$), short replay epoch (less than 1100 ms (first three bars in Fig. 4); detail test: 64.1 probes (SD = 16.8), order test: 64.4 probes ($\mathrm{SD}=16.1$)), and long replay epoch (more than 1100 ms (last bar in Fig. 4); detail test: 23.8 probes ($S D=9.7$), order test: 21.9 probes ($S D=8.9$). We also tested the behavioral responses accordingly to how long the probe replayed during retention. The effect of length of replay epoch predicted accuracy in the detail test (the first test the subjects performed after the retention period; $\mathrm{F}(2,26)=4.98, P=0.015)$. The posthoc test showed that the hit rate was higher for the probes with long replay epochs than those with short replay epochs $(\mathrm{t}(13)=2.78, P=0.016)$ or those not replayed $(\mathrm{t}(13)=$ $2.85, P=0.014$; Fig. 6). We did not find any effect of replay on detail test response time
$(F(2,26)=1.89, P=0.17)$, order test response time $(F(2,26)=0.20, P=0.82)$, or order test accuracy $(F(2,26)=0.12, P=0.89)$.

Event-related activity during encoding predicts Item replay

Event related magnetic fields (ERFs) during encoding were examined as a function of which item was predominantly maintained (PM) during the retention period. The ERFs were pre-processed exactly the same way as the signal for pattern classification analysis and low-pass filtered at 20 Hz . The results revealed that PM and non-PM stimuli during encoding evoked significantly different ERFs at right temporal channels (peaked at $125 \mathrm{~ms}, \mathrm{~F}(2,26)=44.14$, FWE-corrected $P<0.001$) and left temporal channels (peaked at $115 \mathrm{~ms}, \mathrm{~F}(2,26)=39.25$, FWE-corrected $P<0.001$; and later peaks at $453 \mathrm{~ms}, \mathrm{~F}(2,26)=23.06, P=0.008$; Fig. 7A and 7 B$)$, as well as at middle frontal channels (peaked at $287 \mathrm{~ms}, \mathrm{~F}(2,26)=32.49$, FWE-corrected $P=0.002$, Fig 7C and 7D). The early ERF component (peaking at 125 ms) was source localized to the occipital temporal and the medial temporal cortices in both left and right hemispheres (Fig. 7E). The difference was significant in left occipital $(F(1,13)=36.51$, FWE-corrected $P=0.027$; Fig. 7E). The later ERF component, which peaked at 287 ms , was source localized to three brain regions, one on the left inferior temporal cortex $(\mathrm{F}(1,13)=21.85$, FWE-corrected $P=0.033$, Fig. 7F) and two on the right inferior temporal cortex $(\mathrm{F}(1,13)$ $=$ 20.44, FWE-corrected $P=0.036$; and $\mathrm{F}(1,13)=19.03$, FWE-corrected $P=0.42$; Fig. 7F).

Discussion

Using MEG, we decoded the content working-memory while individuals maintained the sequence and the visual details of three distinct stimuli. Our results revealed that one of
the three stimuli dominated the content of working-memory. The predominantly maintained item benefited memory performance, akin to the behavioral effect of retaining an item on the focus of attention (Lepsien and Nobre, 2007; Lepsien et al., 2011; Gazzaley and Nobre, 2012; Tan et al., 2014). The item selected for preferential replay was not predicted by the identity or the sequence position (Fig. 4E). Instead, the predominantly maintained stimulus was selected based on the lowest amount attention related event-related field (ERF) amplitude during encoding (Fig. 7).

Our strict criterion for the existence of a sequential replay was the probability of sequential transitions in a discrete-time (1 step) Markov chain transition matrix (Fig. 5). Accordingly, we did not find directional replay, namely any differences between the forward replay (1, 2, and then 3) or backward replay (3, 2, and then 1) (Fig. 5). In addition to this strict criterion, we tested a direct prediction of the temporal coding model. The temporal coding model predicts that all three memoranda would be decoded with equal probability during maintenance. This criterion was also not fulfilled (Fig. 6). These null findings have to be interpreted with caution because the spatiotemporal resolution of our methodology may not be sensitive to sequential replay and direct intracranial recording may be required to provide further evidence for or against these models. Furthermore, sequential replay may be recruited with higher working memory load than what was used in the current study (Heusser et al., 2016).

We observed that one stimulus dominated during the retention (Fig. 4). The identity of this stimulus varied from trial to trial. As noted, the category or the order of sequence did not determine what stimulus would replay (Fig. 4E). Instead, it was the amplitude of the ERFs at 125 ms from stimuli onset during encoding that predicted what stimulus
would replay (Fig. 7). The early effect was source localized to left extrastriate cortex (Fig. 7), and this spatio-temporal pattern corresponds closely to the well-known effect of attention to a visual stimulus during encoding (Heinze et al., 1990; Luck et al., 1990; Okazaki et al., 2008; Rutman et al., 2009). Attention to a visual stimulus elicits an enhanced event-related component in the occipital cortices (Hopf et al., 2000). Specifically, allocating attention to visual stimuli increases the magnitude of eventrelated EEG and MEG amplitude at around 100 ms after the onset of visual stimulus relative to less attended stimuli (Hillyard and Anllo-Vento, 1998; Downing, 2000). Thus, stimuli that dominated replay during the retention interval were those that had received the least early attention allocation during encoding. This early reduced attention effect on the weakest encoded event was followed by a reduced amplitude event-related response at 287 ms that source localized to posterior inferior temporal regions. This indicates that the diminished early visual attention was followed by weaker representations in downstream visual areas.

Our findings are compatible with long-standing research on how attention can influence the content of working memory. Multiple items in working-memory are not all in the same representational state during retention due to attention allocation (Zokaei et al., 2014; Myers et al., 2017). Rather, brain stimulation or experimental instructions to maintain a prompted stimulus (i.e. retro-cue procedure) manipulates the content of retention (Lewis-Peacock and Postle, 2012; Zokaei et al., 2014; Rose et al., 2016). Retro-cuing shifts the prompted stimulus into "the focus of attention". In our experiment, we did not employ retro-cues or brain simulation; instead, all three visual items were
task-relevant. This procedure allowed us to uncover an uninstructed prioritization of working-memory content that was dependent on the degree of early attention.

Our observation that one item can dominate the maintenance period is compatible with recent neurophysiological data from the prefrontal cortex (PFC) of non-human primates. These effects of replay on behavior suggest that only the item in the focus of attention is actively replayed in working memory, while the representation of other stimuli are in an "active-silent" state (Sandberg et al., 2003; Stokes, 2015). The active-silent state is proposed to be a form of synaptic level retention where single unit activity drops to baseline levels after an initial firing burst (Mongillo et al., 2008; Stokes, 2015; Lundqvist et al., 2016).

An intriguing question raised by our data is how the weakly encoded stimuli are prioritized for maintenance. Since prioritization was independent of sequence position, it could have only occurred after all three stimuli were encountered. A parsimonious scenario is that maintenance prioritization occurs at the beginning of the delay period (perhaps in the PFC,(Lundqvist et al., 2016)) and involves retrieval of information. One possibility is that the prioritized stimulus required more search or retrieval effort during the delay. Such a process could have been supported by prefrontal mechanisms allowing monitoring (Barbey et al., 2013; Szczepanski and Knight, 2014) and inhibitory control (Knight et al., 1999; Barceló et al., 2000; Aron et al., 2004) reducing interference (LaRocque et al., 2014; Zokaei et al., 2014) from strongly encoded stimuli. This potential mechanism would compensate for capacity limitations of working-memory (Luck and Vogel, 1997; Awh et al., 2006; Bays and Husain, 2008; Bays et al., 2009), and would be more resource-effective by prioritizing the less privileged stimuli at
encoding in the maintenance buffer. In essence, the subjects enhanced replay of poorly attended stimuli to improve subsequent performance. Whether more strongly attended (higher amplitude early ERFs) stimuli were encoded into and retrieved from long-term memory or whether they were in an "active silent" state (Stokes, 2015; Lundqvist et al., 2016) remains an open question. Another option is that items were sequentially replayed but when the signal for the weakly attended item was amplified; this masked decoding of other items.

In summary, we decoded the dynamic replay of the content of visual working-memory with high temporal resolution using MEG. The results revealed that the representation of visual categorical information of the least attended stimuli during encoding was preferentially replayed during retention. These findings reveal that working-memory maintenance intelligently prioritizes the weakest attended and encoded task-relevant stimuli enhancing the fidelity of memory recall.

References

Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences 8:170-177.

Awh E, Vogel EK, Oh S-H (2006) Interactions between attention and working memory. Neuroscience 139:201-208.

Baddeley A (1992) Working memory. Science 255:556-559.
Baddeley A (2010) Working memory. Curr Biol 20:R136-R140.
Barbey AK, Koenigs M, Grafman J (2013) Dorsolateral prefrontal contributions to human working memory. Cortex 49:1195-1205.

Barceló F, Suwazono S, Knight RT (2000) Prefrontal modulation of visual processing in humans. Nat Neurosci 3:399-403.

Bays PM, Catalao RFG, Husain M (2009) The precision of visual working memory is set by allocation of a shared resource. J Vis 9 Available at: http://www.journalofvision.org/content/9/10/7 [Accessed September 22, 2013].

Bays PM, Husain M (2008) Dynamic shifts of limited working memory resources in human vision. Science 321:851-854.

Carlson T, Tovar DA, Alink A, Kriegeskorte N (2013) Representational dynamics of object vision: The first 1000 ms. J Vis 13:1.

Cichy RM, Pantazis D, Oliva A (2014) Resolving human object recognition in space and time. Nat Neurosci 17:455-462.

Downing PE (2000) Interactions Between Visual Working Memory and Selective Attention. Psychological Science 11:467-473.

Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N, Henson R, Flandin G, Mattout J (2008) Multiple sparse priors for the M/EEG inverse problem. Neuroimage 39:1104-1120.

Fuentemilla L, Penny WD, Cashdollar N, Bunzeck N, Düzel E (2010) Theta-coupled periodic replay in working memory. Curr Biol 20:606-612.

Gazzaley A, Nobre AC (2012) Top-down modulation: bridging selective attention and working memory. Trends in Cognitive Sciences 16:129-135.

Harrison SA, Tong F (2009) Decoding reveals the contents of visual working memory in early visual areas. Nature 458:632-635.

Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalography and Clinical Neurophysiology 75:511-527.

Henson RN, Mattout J, Singh KD, Barnes GR, Hillebrand A, Friston K (2007) Population-level inferences for distributed MEG source localization under multiple constraints: application to face-evoked fields. Neuroimage 38:422-438.

Heusser AC, Poeppel D, Ezzyat Y, Davachi L (2016) Episodic sequence memory is supported by a thetagamma phase code. Nat Neurosci 19:1374-1380.

Hillyard SA, Anllo-Vento L(1998) Event-related brain potentials in the study of visual selective attention. PNAS 95:781-787.

Hopf J-M, Luck SJ, Girelli M, Hagner T, Mangun GR, Scheich H, Heinze H-J (2000) Neural Sources of Focused Attention in Visual Search. Cereb Cortex 10:1233-1241.

Jafarpour A, Barnes G, Fuentemilla L, Duzel E, Penny WD (2013) Population Level Inference for Multivariate MEG Analysis. PLoS ONE 8:e71305.

Jafarpour A, Fuentemilla L, Horner AJ, Penny W, Duzel E (2014) Replay of Very Early Encoding Representations during Recollection. J Neurosci 34:242-248.

Jensen O, Gips B, Bergmann TO, Bonnefond M (2014) Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci.

Jensen O, Lisman J (1996) Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning and Memory 3:279-287.

Kilner JM, Kiebel SJ, Friston KJ (2005) Applications of random field theory to electrophysiology. Neurosci Lett 374:174-178.

Knight RT, Richard Staines W, Swick D, Chao LL (1999) Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychologica 101:159-178.

Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA (2008) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:1126-1141.

LaRocque JJ, Lewis-Peacock JA, Postle BR (2014) Multiple neural states of representation in short-term memory? It's a matter of attention. Front Hum Neurosci 8 Available at: http://www.ncbi.nIm.nih.gov/pmc/articles/PMC3899521/ [Accessed October 1, 2014].

Lee H, Simpson GV, Logothetis NK, Rainer G (2005) Phase Locking of Single Neuron Activity to Theta Oscillations during Working Memory in Monkey Extrastriate Visual Cortex. Neuron 45:147-156.

Lepsien J, Nobre AC (2007) Attentional Modulation of Object Representations in Working Memory. Cereb Cortex 17:2072-2083.

Lepsien J, Thornton I, Nobre AC (2011) Modulation of working-memory maintenance by directed attention. Neuropsychologia 49:1569-1577.

Lewis-Peacock JA, Postle BR (2012) Decoding the internal focus of attention. Neuropsychologia 50:470478.

Lisman J (2010) Working memory: the importance of theta and gamma oscillations. Curr Biol 20:R490R492.

Litvak V, Mattout J, Kiebel S, Phillips C, Henson R, Kilner J, Barnes G, Oostenveld R, Daunizeau J, Flandin G, Penny W, Friston K (2011) EEG and MEG data analysis in SPM8. Comput Intell Neurosci 2011:852961.

Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalography and Clinical Neurophysiology 75:528-542.

Luck SJ, Vogel EK (1997) The capacity of visual working memory for features and conjunctions. Nature 390:279-281.

Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK (2016) Gamma and Beta Bursts Underlie Working Memory. Neuron 90:152-164.

Miller EK, Li L, Desimone R (1993) Activity of neurons in anterior inferior temporal cortex during a shortterm memory task. J Neurosci 13:1460-1478.

Mongillo G, Barak O, Tsodyks M (2008) Synaptic Theory of Working Memory. Science 319:1543-1546.
Myers NE, Stokes MG, Nobre AC (2017) Prioritizing Information during Working Memory: Beyond Sustained Internal Attention. Trends in Cognitive Sciences Available at: http://www.sciencedirect.com/science/article/pii/S1364661317300530 [Accessed May 12, 2017].

Oberauer K (2002) Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition 28:411-421.

Okazaki Y, Abrahamyan A, Stevens CJ, Ioannides AA (2008) The timing of face selectivity and attentional modulation in visual processing. Neuroscience 152:1130-1144.

Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ, Meyering EE, Postle BR (2016) Reactivation of latent working memories with transcranial magnetic stimulation. Science 354:1136-1139.

Rutman AM, Clapp WC, Chadick JZ, Gazzaley A (2009) Early Top-Down Control of Visual Processing Predicts Working Memory Performance. Journal of Cognitive Neuroscience 22:1224-1234.

Sandberg A, Tegnér J, Lansner A (2003) A working memory model based on fast Hebbian learning. Network: Computation in Neural Systems 14:789-802.

Siegel M, Warden MR, Miller EK (2009) Phase-dependent neuronal coding of objects in short-term memory. PNAS 106:21341-21346.

Stokes MG (2015) "Activity-silent" working memory in prefrontal cortex: a dynamic coding framework. Trends in Cognitive Sciences 19:394-405.

Szczepanski SM, Knight RT (2014) Insights into Human Behavior from Lesions to the Prefrontal Cortex. Neuron 83:1002-1018.

Tan J, Zhao Y, Wu S, Wang L, Hitchman G, Tian X, Li M, Hu L, Chen A (2014) The temporal dynamics of visual working memory guidance of selective attention. Front Behav Neurosci 8 Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176477/ [Accessed December 17, 2014].

Vapnik V (2000) The Nature of Statistical Learning Theory. Springer.
Woloszyn L, Sheinberg DL (2009) Neural Dynamics in Inferior Temporal Cortex during a Visual Working Memory Task. J Neurosci 29:5494-5507.

Zokaei N, Manohar S, Husain M, Feredoes E (2014) Causal Evidence for a Privileged Working Memory State in Early Visual Cortex. J Neurosci 34:158-162.

Figure Legends

Figure 1. Working-memory experimental paradigm (A) three stimuli were presented sequentially, each for 0.5 second and with 0.5 second gap between them. There was a 5 second retention period after the presentation of the third stimulus and memory probe tests. The memory probe tests entailed a "same" or "different" judgment and a temporal order decision. A four second inter-trial interval preceded the next trial. The labels R (in blue) and ITI (in red) show the retention and inter-trial interval periods. (B) The stimuli used in this experiment: a banana (B), a face (F) and a chair (C) from three points of view, 60 degrees to the left, front on, 60 degrees to the right.

Figure 2. Schema of the multivariate pattern analysis using SVM (A) The state of neural activity during delay (retention or ITI) periods was decoded at each time-bin, using three pair-wise classifiers. A conservative threshold of d^{*} (depicted in red) was used to reject representations which were close to the boundary and categorize them as ' N ' (the shaded area). (B) is a schematic example of decoded states during a delay period. And (C) is the discrete-time Markov chain model of state transition extracted from the schematic sequence in (B).

Figure 3. Multivariate classification of stimulus-categories: Cross-validation performance, these plots show the mean classification performance of 3 pairwise classifiers across the group - left: F vs B, middle: F vs C, and right: B vs C. X-axis is the time from stimulus (0 ms) and the Y -axis is the classification performance in \%. The error-bars show SEM. The grey area indicates significant classification after correction for multiple comparisons.

Figure 4. Decoding maintained categories in the delay period, (A) a representative example (from one subject) of decoded retention (R) and inter trial interval (ITI) before thresholding. X -axis is the decoded time-bins, and Y -axis is the trial numbers. (B) the histogram of length of replay epochs during Retention (in blue) and during ITI (in red) before threshold: the x-axis shows the epoch length. The upper plot is the averaged epoch length from $20-3000 \mathrm{~ms}$, and the bottom plot is the bar-plot for bins of epoch lengths ($20-140 \mathrm{~ms}, 160-400 \mathrm{~ms}, 420-1100 \mathrm{~ms}$, and $1200-3000 \mathrm{~ms}$). Error-bars show SEM. X-axis is length of epoch of stimuli replay. (C) The probability distribution of distance from classification boundaries during retention (blue) and ITI (red). d* shows the threshold for rejecting 22% of classification outputs during retention. This threshold rejected 94% of classification outputs during ITI. (D) The same histograms as (B) but after applying the threshold. (E) The bar plots show the percentage of trials where the stimuli from the selected category (left plot) or order in the sequence (right plot) was predominantly maintained. There was no significant effect of category or order of stimuli.

Figure 5. Difference in averaged probability of state transition matrix is reflected by the thickness of the arrows. The probabilities of all transitions were different between retention (R) periods and inter trial intervals (ITI). Red arrows show the transitions when the probabilities were more during ITI than R and blue arrows show the other way around. There was no difference between probabilities of forward (1-2-3) and backward (3-2-1) transitions.

Figure 6. Effect of replay of 170 ms representation on WM performance (A) for the detail test and (B) for the order test show the hit rate (\%) with respect to whether the
stimuli were not replayed (none), replayed for a short duration (shorter than 1100 ms) or replayed for a long duration (longer than 1100 ms). Error-bars shows SEM. * $P<0.05$.

Figure 7. ERFs during encoding differentiate between stimuli predominantly maintained (PM) in working memory and the non-PM stimuli. (A) The plots graph the F-statistics in channel by time topography. It focuses on the significant clusters at 0.125 s from the stimuli onset. The bottom plot shows channel by channel topography of the effect (x -axis is from left to right, and y -axis is from posterior to anterior). The upper plots are channel by time. The x-axis on the left plot shows channels from left to right and the x -axis on the right plot shows the channels from anterior to posterior. The peaks are highlighted with shapes in (A to D). (B) The top plot is for the effect peaked at 0.125 $s(P<0.001)$ in a left lateral channel, and the bottom plot is for the ERF effect at 0.453 s ($P=0.008$) in a right lateral channel. The plots show the ERF effects in the peak of significant clusters, which are highlighted by shapes (A and B). The dash-lines show the timing of the effects. (C) The plots graph the F-statistics in channel by time (the same as A) focusing on the significant effect peaked at $0.287 \mathrm{~s}(\mathrm{P}=0.002)$. The effect is highlighted by a diamond shape in (C and D). (D) The plot shows the ERF effect at 0.287 s from the stimuli onset in a middle frontal channels. (E) The ERF effect at 0.125 s (A and B) was source localized in the bilateral occipital cortex. (F) The ERF effect at 0.287 s (C and D) was source localized in the posterior inferior temporal areas. (A to D) dotted line shows the onset of the stimuli at encoding.

detail test

B

[^0]: Author contributions: A.J. and E.D. designed research; A.J. performed research; A.J., W.P., and G.B. contributed unpublished reagents/analytic tools; A.J. and W.P. analyzed data; A.J., R.K., and E.D. wrote the paper.

 Funding: Wellcome Trust
 Funding: McDonnell Foundartion
 Funding: HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
 100000065
 R3721135
 Conflict of Interest: Authors declare no conflict of interest.
 Wellcome Trust; McDonnell Foundartion; HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS) [R3721135].

 Correspondence should be addressed to Anna Jafarpour, 132 Barker Hall, Knightlab, UC Berkeley, CA
 94720. E-mail: a.jafarpour@berkeley.edu

 Cite as: eNeuro 2017; 10.1523/ENEURO.0171-17.2017

 Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

[^1]: Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

