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32 

Abstract  33 

 Structural learning is a phenomenon characterized by faster learning in a new 34 

situation that shares features of previously experienced situations.  35 

One prominent example within the sensorimotor domain is that human participants are 36 

faster to counter a novel rotation following experience with a set of variable visuomotor 37 

rotations. This form of learning is thought to occur implicitly through the updating of an 38 

internal forward model, which predicts the sensory consequences of motor commands. 39 

However, recent work has shown that much of rotation learning occurs through an 40 

explicitly accessible process, such as movement re-aiming. We sought to determine if 41 

structural learning in a visuomotor rotation task is purely implicit (e.g., driven by an 42 

internal model) or explicitly accessible (i.e., re-aiming). We found that participants 43 

exhibited structural learning: following training with a variable set of rotations, they more 44 

quickly learned a novel rotation. This benefit was entirely conferred by the explicit re-45 

aiming of movements. Implicit learning offered little to no contribution. Next, we 46 

investigated the specificity of this learning benefit by exposing participants to a novel 47 

perturbation drawn from a statistical structure either congruent or incongruent with their 48 

prior experience. We found that participants who experienced congruent training and 49 

test phase structure (i.e., rotations to rotation) learned more quickly than participants 50 

exposed to incongruent training and test phase structure (i.e., gains to rotation) and a 51 

control group. These results suggest that structural learning in a visuomotor rotation 52 

task is specific to previously experienced statistical structure and expressed via explicit 53 

re-aiming of movements. 54 

 55 
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Significance Statement 56 

Structural learning is a meta-learning phenomenon evidenced by an accelerated 57 

learning rate for novel tasks sharing the same statistics as the training task. Previous 58 

investigations suggest that this effect is driven by the implicit extraction of invariant task 59 

features. However, this interpretation contrasts with recent research showing that an 60 

explicitly accessible process, such as movement re-aiming, accounts for most of 61 

rotation learning. We investigated (1) whether structural learning in a visuomotor 62 

rotation task was explicitly accessible and (2) whether structural learning was specific to 63 

the trained perturbation structure or expressed via a general aiming heuristic. Our 64 

results suggest that structural learning in a visuomotor rotation task is specific to 65 

previously experienced statistical structure and expressed via movement re-aiming.  66 

 67 

 68 

 69 

  70 
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Introduction 71 

 Ebbinghaus coined the term “savings” to characterize the phenomenon of faster 72 

relearning of material despite its apparent forgetting (1885). Structure learning is a 73 

related but distinct phenomenon; whereas savings operates over time (Ebbinghaus, 74 

1885) and within the same input-output mapping (Harlow, 1949; Ashby, 1960), 75 

structural learning operates over parameter space and within a class of mappings 76 

(Braun et al., 2010). Instead of increasing learning rate through consolidation, structural 77 

learning abstracts relationships through experience within the parameter space of a 78 

task, which reduces the dimensionality of the hypothesis space. 79 

 Imagine a novice archer attempting to hit a bullseye on a windy day. Initially, she 80 

may not know which set of actions to take to counter the crosswind — whether she 81 

should aim side-to-side or up-and-down (Fig. 1A) — but with practice she will learn to 82 

aim in the opposite direction and with sufficient magnitude to counter the wind (Fig. 1B). 83 

From this experience, she can also extract a general principle: she should always aim in 84 

the direction opposite to the wind. Her learning rate on future windy days will be 85 

dramatically faster because she no longer must search the entire space of potential 86 

actions.   87 

 This example reflects a form of structural learning in action: the ability to speed 88 

learning for novel, yet isostructural tasks by abstracting covariances from sensory inputs 89 

to constrain the space of potential solutions (Braun et al., 2010). Indeed, structural 90 

learning has been shown to afford faster learning in a visuomotor adaptation task 91 

(Braun et al., 2009), which induces an angular mismatch between hand and cursor 92 

movements (Krakauer, 2009). To probe structural learning, Braun and colleagues 93 



 

 5 

trained participants to overcome rotations that changed in direction and magnitude 94 

(2009). Critically, they changed the rotation every eight trials and drew each rotation 95 

from a zero-mean distribution to prevent learning accumulation. Following this training 96 

phase, participants were exposed to a novel, consistent rotation. These participants 97 

were faster to counter this rotation relative to a control group that never experienced a 98 

perturbation and a “random” group exposed to a set of combined perturbations. 99 

 From a computational perspective, this benefit may arise from the identification of 100 

the covariance structure of task parameters, which constrains the dimensionality of the 101 

hypothesis space and consequently speeds the search for a solution. Consider the 102 

transformation matrix in Equation 1, which relates cursor movements to hand 103 

movements. The goal of learning is to fully parameterize the matrix (a, b, c, d), but the 104 

structural learning perturbation schedule prevents this because the rotation direction 105 

and magnitude change throughout training, overwriting the matrix parameters. Instead, 106 

structural learning exploits the relationship between the off-diagonal terms of the 107 

rotation transformation matrix (Eqn. 2). The abstraction of this relationship (Eqn. 3) 108 

collapses the dimensionality of the search space, speeding the acquisition of the 109 

parametric relationship between hand and cursor movements within the trained class, 110 

which affords faster learning (Fig. 1C).   111 

 (1) [  
𝑥𝑐𝑢𝑟𝑠𝑜𝑟

𝑦𝑐𝑢𝑟𝑠𝑜𝑟
  ] = [  

𝑎 𝑏
𝑐 𝑑

  ] [  
𝑥ℎ𝑎𝑛𝑑

𝑦ℎ𝑎𝑛𝑑
  ] 112 

(2) [  
𝑥𝑐𝑢𝑟𝑠𝑜𝑟

𝑦𝑐𝑢𝑟𝑠𝑜𝑟
  ] = [  

   cos( 𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛) sin( 𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

− sin( 𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛) cos( 𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛)
  ] [  

𝑥ℎ𝑎𝑛𝑑

𝑦ℎ𝑎𝑛𝑑
  ] 113 

(3) [  
𝑥𝑐𝑢𝑟𝑠𝑜𝑟

𝑦𝑐𝑢𝑟𝑠𝑜𝑟
  ] = [  

  𝑎 𝑏
−𝑏 𝑎

  ] [  
𝑥ℎ𝑎𝑛𝑑

𝑦ℎ𝑎𝑛𝑑
  ] 114 

This abstraction is presumed to be implicit (Genewein et al., 2015) and has been 115 



 

 6 

represented within an optimal feedback control framework as the result of an adaptive 116 

internal model (Braun et al., 2010). However, this interpretation stands in contrast to a 117 

recent series of findings demonstrating that explicitly accessible re-aiming processes 118 

constitute the majority of learning (Heuer and Hegele, 2008; Hegele and Heuer, 2010; 119 

Taylor et al., 2014; Bond and Taylor, 2015; McDougle et al., 2015; Brudner et al., 2016; 120 

Day et al., 2016; Poh et al., 2016). We previously found that explicit re-aiming 121 

composed the flexible component of performance across a range of rotation magnitudes 122 

while implicit recalibration exhibited a stereotyped response (Bond and Taylor, 2015). 123 

Furthermore, Morehead and colleagues showed that savings, a related phenomenon, 124 

was entirely the result of explicit re-aiming (2015). Altogether, there is ample motivation 125 

to further investigate whether structural learning can be expressed at an explicit level. 126 

 In Experiment 1, we tested whether explicit re-aiming could contribute to the 127 

phenomenon of structural learning by combining a recently developed technique to 128 

measure re-aiming behavior with the structural learning perturbation schedule from 129 

Braun and colleagues (Fig. 2). We found that a variable rotation schedule drastically 130 

improved the learning rate for a novel rotation and that explicit re-aiming was entirely 131 

responsible for this effect. In Experiment 2, we investigated whether re-aiming during 132 

the test phase was sensitive to the trained perturbation structure or more consistent with 133 

a generalized heuristic. We discovered that participants only showed learning rate 134 

benefits when training and test phase perturbations were drawn from the same 135 

structure, suggesting that rotation structure learning is accomplished via structure 136 

specific re-aiming.  137 

 138 
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Materials & Methods 139 

Participants 140 

 Eighty-two participants (18.1-22.8 years, 39 female) were recruited from the 141 

research subject pool maintained by the Psychology Department at Princeton University 142 

or from the local community. One participant was excluded for failure to follow task 143 

instructions. Each participant received either course credit or $12 for participation. All 144 

participants were right-handed, verified using the Edinburgh Handedness Inventory 145 

(Oldfield, 1971), and reported normal or corrected-to-normal vision. Our research 146 

protocol was approved by the Princeton University Institutional Review Board and each 147 

participant gave informed consent prior to participation. 148 

 149 

Experiment 1 Procedures 150 

 Prior to beginning each trial, the participant was required to position their hand at 151 

the center of a digitizing tablet while holding a digitizing pen (Intuos 3, Wacom, 152 

Vancouver, WA). The tablet sampled movement trajectories at 100 Hz. Participants 153 

were capable of moving anywhere within the tablet active space (measuring 32.5 x 20.3 154 

cm). Visual feedback was presented by a 43.18 cm, 1024x768 pixel, 60 Hz LCD monitor 155 

(Dell, Dallas, TX) that was horizontally mounted 24 cm above the tablet, occluding 156 

vision of the limb. To aid participants in finding the center of the tablet quickly, a circle 157 

either expanded or contracted with the radial distance of the participant’s hand position 158 

from the center of the tablet. Once the participant’s hand was within 6 mm from the 159 

center of the start position (diameter, ⌀=5mm), a white circular cursor (⌀=4mm) 160 

appeared. After maintaining the start position for 1 s, a green circular target appeared 161 
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(⌀=7mm) at one of four target locations (cardinal axes: 0:90:270°) along a virtual ring 162 

with a radius of 9 cm. Each target location was pseudorandomly selected such that no 163 

target location repeated within an epoch of four trials and each participant received a 164 

different sequence of targets.  165 

 Participants were instructed to make a fast “shooting” movement toward the 166 

target location. Cursor feedback was provided throughout the reach and once the 167 

participant’s hand position exceeded 9 cm from the start point, the cursor turned red 168 

and its position was frozen, remaining on-screen for 1.5 s. If the movement duration 169 

exceeded 0.4 s, participants received an auditory warning (“too slow”) to encourage 170 

ballistic reaching movements. If the cursor position overlapped the target position, a 171 

pleasant chime sounded and the participant was awarded one point; otherwise, a harsh 172 

buzz played and zero points were awarded. Participants received a 5 s reminder of their 173 

absolute score and the proportion of points awarded after each 40 trial interval. The 174 

experiment was controlled by custom software written in Python (http://python.org) 175 

running on a laptop computer (Macbook Pro, Apple, CA). 176 

 For certain phases of the experiment (see below), the visual workspace also 177 

included a virtual ring of numbers ranging from 1 to 31 and -1 to -31, with each number 178 

spaced 5.625° apart (Fig. 2A). These numbered landmarks rotated with the target 179 

position such that if a target were presented at a 90° angle (straight ahead), the number 180 

1 would be presented at 95.625° and the number -1 would be presented at 84.375° 181 

(relative to the positive horizontal axis). Directly prior to the beginning of the aiming 182 

section of the baseline phase (see below), participants were instructed: 183 

 “You may have noticed that there were little numbers flanking the target. I would  184 
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 like you to tell me, before moving, the number that you think you should aim  185 

 toward in order to get the cursor on the target. So if you think that you should aim 186 

 directly at the target, then please say ‘green.’ But if you think that you should aim  187 

 somewhere else in order to get the cursor on the target, please tell me what that  188 

 number is.”  189 

If a participant failed to report their aim, the experimenter reminded the participant to 190 

please continue to report the number to which they were aiming before moving. The 191 

experimenter coded the missed report for such trials as not-a-number (NaN), which 192 

accounted for 0.23% of trials. 193 

 Experiment 1 conformed to the following block format. First, participants made  194 

direct reaching movements to the targets with online cursor feedback to become 195 

familiarized with the basic task (first half of baseline phase: 8 trials). Then, consistent 196 

with our factorial design (see below), half of the participants were trained to verbally 197 

report their aiming location using the numbered landmarks on the screen (Fig. 2A) 198 

before moving on each trial (second half of baseline phase: 8 trials). Next, also 199 

according to our factorial design, half of the participants were exposed to a 200 

pseudorandom perturbation schedule which consisted of rotations that varied in 201 

direction and magnitude (exposure phase: 304 trials). Each participant received a 202 

unique perturbation schedule.  203 

Following the procedure used by Braun and colleagues (2009), a particular 204 

rotation was experienced for eight trials before changing to a new, pseudorandomly 205 

selected rotation. The rotations were drawn from a uniform distribution ranging from -90 206 

to 90°, excluding 0°, and were chosen to have a zero mean across the exposure phase 207 
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to prevent the accumulation of learning (Davidson and Wolpert, 2003). We also 208 

excluded rotation sizes within 10° of the test phase rotation (60°) and its inverse (-60°). 209 

We excluded these rotation values to isolate our measure of structural learning from 210 

visuomotor savings. Figure 2B illustrates an example perturbation schedule during the 211 

exposure phase. To washout the potential effect of any learned bias during the 212 

exposure phase, veridical feedback was restored (feedback-washout phase: 40 trials). 213 

Following this phase, participants experienced a counterclockwise 60° rotation (test 214 

phase: 80 trials). Finally, to measure aftereffects, all cursor feedback was removed and 215 

participants were instructed to reach directly to the target (washout phase: 16 trials). If 216 

participants were asked to report their aiming, the virtual ring of numbers was also 217 

erased during the washout phase. 218 

 Forty participants were divided equally into four groups according to a 2x2 219 

factorial design with rotation structure exposure (Structure) and verbal reporting 220 

(Report) as factors. We included Report as a factor to determine if the reporting 221 

procedure biased structural learning. The Structure-Report group experienced 222 

pseudorandom rotations during the exposure phase and reported their aiming location 223 

throughout the baseline (second half), exposure, feedback-washout, and test phases. 224 

Participants in the NoStructure-Report group did not experience perturbations during 225 

the exposure phase, but they were instructed to report their aiming locations. The 226 

Structure-NoReport group experienced rotational structure during the exposure phase, 227 

but never reported their aiming locations and the virtual ring of numbers was absent 228 

from the workspace. Finally, the NoStructure-NoReport group did not experience 229 

structure or report their aiming location at any point during the experiment. 230 
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 231 

Experiment 1 Analyses  232 

 Statistical analysis and data visualization were conducted using custom scripts 233 

written in R (R Foundation for Statistical Computing, RRID:SCR_001905) and MATLAB 234 

(MathWorks, RRID:SCR_001622). Kinematic data and aiming data were transformed 235 

from Cartesian to polar coordinates and rotated to a common axis such that the target 236 

was positioned at 0° (directly to the right). We operationalized kinematic performance 237 

using endpoint hand angle, which measures the angle between the target and the 238 

endpoint of the reach trajectory. Positive angles indicate a counterclockwise deviation 239 

from the target and negative angles indicate a clockwise deviation from the target. We 240 

quantified explicit learning by multiplying the verbally reported landmark by the spacing 241 

of the numbered landmarks (5.625°) for each trial. Implicit learning was computed by 242 

subtracting aiming position from the endpoint hand angle for each trial. 243 

 To test for the presence of baseline differences in kinematic performance across 244 

groups, we submitted the average endpoint hand angles over the last eight trials 245 

(epoch) of the baseline phase to a two-way analysis of variance (ANOVA) with factors 246 

of Structure and Report. To examine how responsive participants were to the variable 247 

perturbation schedule, we cross-correlated endpoint hand angles with the exposure 248 

phase solution for each participant to find the lag between time series that maximized 249 

their correlation. All correlation coefficients are calculated using the optimal lag for a 250 

given participant. We used a maximum lag of eight trials to reflect the length of each 251 

perturbation epoch during the exposure phase. We report the median and interquartile 252 

range (IQR) of the optimal lag for each group and compare correlations between groups 253 
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exposed to structure using a two-sample t-test. For the group that reported their aim 254 

during structure training (the Structure-Report group), we also report the median lag and 255 

mean correlation for explicit re-aiming and implicit learning.  256 

 To quantify how accurately participants opposed the perturbation series, we 257 

regressed the endpoint hand angle on the solution, using the slope of the linear fit as a 258 

proxy for reach accuracy in the exposure phase. For the Structure-Report group, we 259 

also regressed explicit re-aiming and implicit learning on the solution. We assumed that 260 

the closer the slope coefficient was to a value of 1, the better the participant tracked the 261 

exposure phase solution. To determine whether the slopes for a particular group were 262 

significantly different from zero, we conducted one-sample t-tests. We conducted a two-263 

sample t-test to assess whether there were significant differences between endpoint-264 

hand-angle-solution slopes for each group that experienced structural training 265 

(Structure-Report and Structure-NoReport). 266 

 To ensure that the feedback-washout phase removed any bias that could have 267 

been induced by the exposure phase, we submitted the endpoint hand angles in the last 268 

epoch of the feedback-washout phase to a two-way ANOVA with factors of Structure 269 

and Report. Likewise, for the reporting groups, we tested whether any aiming bias 270 

induced by the exposure phase was removed by conducting a two-sample t-test on 271 

aiming angles associated with the last epoch of the feedback-washout phase. 272 

 Our key dependent measure was learning rate in the test phase. To determine 273 

whether the reporting procedure affected structural learning, we submitted the average 274 

endpoint hand angles over the first eight trials, our proxy for learning rate, to a two-way 275 

ANOVA with factors of structure exposure and reporting. Next, we sought to determine 276 
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whether changes in endpoint hand angle were attributable to changes in explicit re-277 

aiming processes or implicit learning. Because explicit and implicit learning values are 278 

correlated, we chose to conduct a multivariate analysis of variance (MANOVA) with a 279 

single factor of structure exposure, using explicit learning and implicit learning values 280 

during the first epoch of the test phase as our dependent variables.  281 

 Finally, to quantify aftereffects, we first subtracted average endpoint hand angles 282 

during the last epoch of the baseline phase from the average endpoint hand angles over 283 

the first eight trials of the no-feedback-washout phase for each participant. This pre-284 

processing step allowed us to remove the influence of kinematic bias from our 285 

assessment of aftereffects. We then submitted these baseline-subtracted endpoint hand 286 

angles to a two-way ANOVA with factors of reporting and structure exposure. Because 287 

forward model adaptation quickly deteriorates when feedback is absent (Kitago et al., 288 

2013), we only used data collected during the first epoch of this phase. 289 

 Note that we chose to quantify learning and aftereffects as performance 290 

averaged over eight trials instead of fitting an exponential function because we know 291 

that explicit re-aiming is highly non-monotonic (Taylor et al., 2014; Bond and Taylor 292 

2015) and because we know that exponential functions may not be representative of 293 

individual learning curves (Gallistel, 2004). This approach is consistent with previous 294 

studies using a similar reporting technique (Taylor et al., 2014; Bond and Taylor, 2015; 295 

Anglin et al., 2017).  296 

 Except where noted, we describe data using the mean and standard deviation. 297 

We consider comparisons yielding p-values less than 0.05 to be statistically significant 298 

and comparisons yielding p-values less than 0.10 to be marginally significant. 299 
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Superscript letters associated with analyses correspond to the statistical tests shown in 300 

Table 3. 301 

 302 

Experiment 2  Procedures 303 

 Similar to Experiment 1, participants performed center-out reaching movements 304 

by sliding a digitizing pen across a digitizing tablet. The distance to the target was 305 

decreased to 7 cm to accommodate gain perturbations (see below). The visual display 306 

was presented by a 1024x768 pixel, 60 Hz, touchscreen-compatible monitor (Acer, 307 

Taiwan) mounted 23.5 cm above the tablet. At the start of a trial, participants used 308 

radial feedback to bring their hand to the starting location (⌀=6mm). After keeping their 309 

hand at the start position for 0.5 s, a gray target (⌀=8mm) was displayed 7 cm from the 310 

start position. The targets could appear in one of eight locations (0:45:315°) and were 311 

pseudorandomized such that no target location was repeated until all targets were 312 

visited.  313 

 To assess adaptation to gain perturbations, participants in Experiment 2 were 314 

required to solve the radial and angular component of the task to terminate the cursor 315 

within the target region (i.e., “point-to-point” movements). This meant that if the cursor 316 

was unperturbed, then participants would need to reach to the target distance and the 317 

target angle for a successful trial. If the cursor was perturbed by a gain, then 318 

participants would need to oppose the radial component of the perturbation but also 319 

match the target angle to terminate the cursor within the target region. For a successful 320 

rotation trial, participants would need to oppose the angular component of the 321 

perturbation but also match the target distance. Note that because 322 
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it was necessary to have participants perform point-to-point movements to 323 

accommodate gain perturbations (see below), these movement requirements are 324 

different from the shooting movements used in Experiment 1. Cursor feedback (⌀=5mm) 325 

was removed at the start of the movement, which was defined as beginning once the 326 

hand was 9 mm from the start position. Feedback, in the form of cursor position, was 327 

restored at the end of the reach, which was defined as when the reach speed fell below 328 

7 cm/s, and displayed for 1 s. If the cursor position overlapped the target position, the 329 

participant heard a pleasant chime and the target turned from gray to green. An 330 

unsuccessful trial was met with a buzz and the gray target turned blue. Then, the screen 331 

was erased and participants were required to find the start point using radial feedback in 332 

order to begin the next trial, as described above. 333 

  Another difference between Experiments 1 and 2 concerned how participants 334 

reported their explicit aiming location. In Experiment 2, participants were asked to 335 

indicate where they planned to move to terminate their cursor within the target by 336 

tapping an intended reach endpoint on a touchscreen monitor using their left hand 337 

(Figure 2C). Importantly, because reporting in this experiment was unconstrained, this 338 

measurement of explicit aiming yielded higher resolution data than the verbal reporting 339 

method in Experiment 1. Additionally, the absence of numbers to demarcate potential 340 

reporting locations allowed for a less cued assessment of aiming behavior. After the 341 

participant tapped the screen, a red crosshair marked the tapped location and remained 342 

on-screen for 1 s. Participants then rested their left hand on the table, away from the 343 

visual workspace. Additionally, while Experiment 2 followed the same blocked schedule 344 

as in Experiment 1, Experiment 2 deviated from the trial sequence in Experiment 1 in 345 
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two ways. First, because touchscreen reporting takes more practice, the number of 346 

trials in the baseline phase was increased from 16 to 32. Second, because touchscreen 347 

reporting increases inter-trial time, the length of the exposure phase was decreased 348 

from 304 to 240 trials.  349 

 Immediately prior to the onset of the first aiming trial, the experimenter gave the 350 

following instructions:  351 

“So far, the cursor has followed your hand position. At some point in the 352 

experiment, we may manipulate the relationship between your movement and 353 

the cursor. Therefore, a direct aim to the target may not be effective. You may 354 

need to aim to another location to get the cursor on the target. So, I’d like you to 355 

tap the screen wherever you think that you should move your hand to get the 356 

cursor on the target. For example, if you think that you should move your hand 357 

directly underneath the target to get your cursor to hit the target, then touch the 358 

target. If you think that you should move your hand anywhere else to get the 359 

cursor on the target, then touch that spot.” 360 

Additionally, participants were encouraged to ask questions if they found the 361 

instructions to be unclear. 362 

 Forty-two participants were equally divided into three groups to examine how 363 

exposure to different perturbation structures affected acquisition of a new perturbation 364 

from the same or different structure. We exposed participants to either rotation or gain 365 

perturbations (Figure 2D) or, in the control group, veridical feedback during the 366 

exposure phase before they experienced a rotation perturbation in the test phase. As in 367 

Experiment 1, each participant received a unique perturbation schedule.  368 
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 The Rotation group experienced rotational perturbations during the exposure 369 

phase before being exposed to a 60° rotation in the test phase (congruent schedule). 370 

These rotational perturbations were drawn from a uniform distribution of integers 371 

ranging from -90 to 90°, excluding 0° and values ±10° of the rotation value in the test 372 

phase (60°) and its inverse, -60°. The mean value of selected exposure phase rotation 373 

perturbations for any given subject was 0° (μ exposure phase maximum rotation across 374 

subjects: 86.64°, σ: 3.48°; μ exposure phase minimum rotation across subjects: -87.29°, 375 

σ: 2.7°).  376 

 The Gain group experienced a sequence of radial perturbations during the 377 

exposure phase before a 60° rotation in the test phase (incongruent schedule). Gain 378 

perturbations were drawn from a uniform distribution with a lower bound of 0.66 and an 379 

upper bound of 2.30, excluding 1. These parameters were chosen so that participants 380 

could successfully reach all target locations (the tablet size precluded using negative 381 

gains less than 0.66 because the reach solution would exceed the boundaries of the 382 

active tablet space). Because the size of the active tablet space did not allow for as 383 

broad a range of negative gains as positive gains and because of our constraint that 384 

each perturbation within a given participant’s exposure phase be unique, the mean 385 

value of selected exposure phase gain perturbations for each participant was not 386 

exactly 1 but biased toward a positive gain, with a modest tolerance for mean exposure 387 

phase values ranging from .90 to 1.10 (μ of exposure phase gain sequences across 388 

subjects: 1.04, σ: 0.05; μ exposure phase maximum gain across subjects: 1.98, σ: 0.17; 389 

μ exposure phase minimum gain across subjects: 0.66, σ: 0.01).  390 

 Finally, the Control group did not experience any perturbation during the 391 
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exposure phase, but experienced a 60° rotation in the test phase. 392 

 393 

Experiment 2 Analyses  394 

 Reach trajectories were transformed into polar coordinates as in Experiment 1. 395 

We quantified explicit learning as the x-y coordinates of the tapped aiming location, 396 

which were transformed into polar coordinates and rotated to a common axis. Our 397 

analyses for each phase of interest were similar to Experiment 1, except that we 398 

performed one-way ANOVAs with a single factor of group (Rotation, Gain, Control) in 399 

place of two-way ANOVAs. We did not seek to compare implicit learning between 400 

groups during the exposure phase as the perturbations were fundamentally different 401 

(rotations vs. gains). However, we did analyze implicit learning during the first epoch of 402 

the test phase using a one-way ANOVA with a single factor of group. Additionally, to 403 

test whether the Gain group showed persistent radial differences from the Rotation and 404 

Control groups during early test phase learning, we conducted two one-way ANOVAs 405 

on the first epoch of test phase reaching and aiming radii with a single factor of group. 406 

To test for dependence between explicit re-aiming and overall reaching in the early test 407 

phase, we conduct paired t-tests between aiming and reaching values during the first 408 

epoch of the test phase for each group and correlate the explicit re-aiming and reaching 409 

distributions within a group. We follow the same conventions for statistical significance 410 

as in Experiment 1. Superscript letters associated with analyses correspond to the 411 

statistical tests shown in Table 3. 412 

 413 

Power analysis  414 
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Because estimates of mean and variance were not available from Braun and colleagues 415 

(Braun et al., 2009), we based our sample size (N=10/group) on a prior sensorimotor 416 

adaptation task measuring aiming and using multiple rotation sizes. For Experiment 2, 417 

however, we computed the sample size required to achieve similar effect sizes using 418 

learning rates (first 8-trial epoch in test phase) from the Structure-Report and 419 

NoStructure-Report groups from Experiment 1. We focused on learning rate since our 420 

primary interest was in how structure in the exposure phase affected learning rate in the 421 

test phase. For the learning rate differences between Structure-Report and NoStructure-422 

Report, the effect size as measured by Cohen’s f is 1.03 (Structure-Report: μ=-51.54°, 423 

σ=21.33°; NoStructure-Report: μ=7.63°, σ=10.97°). Using a conservative alpha value of 424 

0.01, we estimated that a sample size of 14 participants per group provided ample 425 

power. 426 

 427 

Results 428 

Experiment 1: Does structural learning arise from explicit re-aiming or implicit 429 

learning? 430 

In Experiment 1, we tested whether structural learning was expressed through explicit 431 

re-aiming or an implicit recalibration process. 432 

Baseline Phase 433 

 All participants practiced reaching to the target with veridical feedback to become 434 

familiarized with the task. In the second half of the baseline phase, participants 435 

practiced reaching to the target with veridical feedback while verbally reporting their 436 

intended aiming location using the virtual ring of numbers on-screen. To assess whether 437 
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there were any baseline differences between groups that could affect exposure phase 438 

learning, we compared reaching performance (endpoint hand angles) across groups. 439 

Endpoint hand angles during the last epoch of the baseline phase were submitted to a 440 

two-way ANOVA with factors of Structure and Report (Table 1), which revealed no 441 

effect of Structure (F(1,36) = 0.60, p = 0.4441), a marginal effect of Report (F(1,36) = 442 

4.12, p = 0.0498), and no interaction (F(1,36) = 0.20, p = 0.6579)a. Because none of the 443 

participants had yet experienced a perturbation, we did not expect structure to modulate 444 

performance or interact with reporting. The marginal effect of reporting decreased 445 

baseline reach accuracy (Table 1, baseline section), but the magnitude of the maximum 446 

difference between reporting and non-reporting group averages was small, on the order 447 

of 3° (Table 1).  448 

 449 

Exposure Phase 450 

 To expose participants to rotational structure, Structure-Report and Structure-451 

NoReport groups experienced a series of rotations pseudorandomly drawn from a zero-452 

mean, uniform distribution. Note that our analyses of the exposure phase only focus on 453 

the groups that experienced structure. The groups that did not experience structure 454 

either continued to have similar or improved performance compared to the baseline 455 

phase (NoStructure-NoReport: t(9) = -0.77, p = 0.4593; NoStructure-Report: t(9) = 2.75, 456 

p = 0.0225; Table 1)b.  457 

 To examine how well participants in the structure groups tracked the variable 458 

perturbation schedule, we cross-correlated and regressed the endpoint hand angles 459 

with the exposure phase solution for each participant. We found that participants 460 
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exposed to rotation structure quickly updated their movement vector during the 461 

exposure phase. The correlation coefficient between the hand angle and rotation 462 

solution was 0.83±0.16 and 0.58±0.21 for the Structure-Report and Structure-NoReport 463 

groups, respectively. The median of the optimal cross-correlation lag was 1 for the 464 

Structure-Report (IQR: 0) and Structure-NoReport groups (IQR: 1). Correlation 465 

coefficients between groups were significantly different (t(18)=2.94, p = 0.0088)c, 466 

indicating that reporting may have helped participants respond to the rotation sequence. 467 

 Likewise, the average slopes for the Structure-Report and Structure-NoReport 468 

groups were 0.72±0.15 and 0.52±0.22, respectively. The distribution of slopes within 469 

each group was significantly different from zero (Structure-Report: t(9) = 14.90, p = 470 

1.1967e-07; Structure-NoReport: t(9) = 7.40, p = 4.0938e-05)d and there was a 471 

significant difference between groups (t(18) = 2.45, p = 0.0249)e. Taken together, these 472 

analyses suggest that both groups learned to counter the pseudorandom visuomotor 473 

rotations during the exposure phase, but the act of reporting may have augmented 474 

performance. Note that because the sequence of rotations was different for each 475 

participant, we cannot plot a subject-averaged time series of exposure phase 476 

performance. Instead, Figure 3 shows performance from a range of participants in the 477 

Structure-Report and Structure-NoReport groups. 478 

 For the Structure-Report group, we also cross-correlated aiming angles and our 479 

estimate of implicit learning with the exposure phase solution. As shown in the sample 480 

time courses (Figure 3), explicit learning is highly responsive to the perturbation series. 481 

Indeed, we found that reported aiming and movement vectors were updated 482 

simultaneously, with a correlation coefficient of 0.84±0.17 and a median optimal lag of 1 483 



 

 22 

(IQR: 0) — strikingly, these aiming lag values were exactly those calculated for hand 484 

angles, further reinforcing their synchronous relationship. The average explicit learning 485 

slope was 0.73±0.17 (t(9) = 13.31, p = 3.1703e-07)f, suggesting that explicit re-aiming 486 

accounted for the majority of learning during the exposure phase. In contrast, when we 487 

performed the same analyses on the implicit component of learning, we found that the 488 

correlation coefficient was only 0.13±0.05 and with a median lag of 4 and high variability 489 

among subjects (IQR: 7). The average implicit learning slope was shallow (0.00±0.06) 490 

and the distribution of implicit learning slopes was not significantly different from zero 491 

(t(9) = -0.12, p = 0.9106)g. These results are not entirely unexpected because recent 492 

research has shown that re-aiming underlies quick performance improvement and 493 

because the exposure phase perturbation schedule was designed to minimize the 494 

contribution of implicit learning.  495 

  496 

Feedback-washout Phase 497 

 Directly after the exposure phase, all participants were exposed to veridical 498 

feedback to ensure that any bias induced by the exposure phase was removed prior to 499 

the test phase. To confirm that movements were unbiased by the perturbation series 500 

during the last epoch of the feedback-washout phase, we conducted a two-way ANOVA 501 

with factors of Structure and Report. There was a marginal effect of reporting (F(1,36) = 502 

4.17, p = 0.0484), an effect of structure (F(1,36) = 5.31, p = 0.0271), and an interaction 503 

between reporting and structure (F(1,36) = 6.54, p = 0.0149)h, indicating that reporting 504 

modulated the influence of structure on hand angles. Post-hoc, Bonferroni-corrected t-505 

tests between groups indicated that there was a difference between the Structure-506 
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Report group and the Structure-NoReport group (p = 0.015) but no difference between 507 

the Structure-Report group and the NoStructure-Report and NoStructure-NoReport 508 

groups (p = 0.99 for both comparisons). The Structure-NoReport group was different 509 

from the NoStructure-Report group (p = 0.024) and the NoStructure-NoReport group (p 510 

= 0.009). There was no difference between the NoStructure-Report group and the 511 

NoStructure-NoReport group (p = 0.99). Overall, the effect of reporting and structure 512 

exposure on endpoint hand angles was inconsistent, and when present, affected 513 

reaching to a minor degree. The magnitude of the maximum difference between group 514 

averages was small, approximately 2° (see Table 1). 515 

 There was no difference between aiming angles during the last epoch of the 516 

feedback-washout phase for the Structure-Report and NoStructure-Report groups (t(18) 517 

= -1.41, p = 0.1769)i. These results indicate that the aiming behavior induced by the 518 

exposure phase was washed out prior to the test phase, and while there were 519 

differences between group endpoint hand angles, these differences were minor.  520 

 521 

Test Phase 522 

 In the test phase, all participants were exposed to a 60° counterclockwise 523 

rotation. Because a change in learning rate is the signature of structural learning, 524 

learning rate was our primary dependent measure in the test phase. Based on prior 525 

work, we predicted that the groups exposed to rotation structure would have a greater 526 

learning rate compared to groups that were not exposed to structure. Two open 527 

questions remain: does the reporting procedure affect structural learning and does the 528 

increased learning rate arise from explicit re-aiming or implicit learning?  529 



 

 24 

 To address the first question, we submitted the average endpoint hand angles 530 

over the first eight trials, our proxy for learning rate, to a two-way ANOVA with factors of 531 

structure exposure and reporting. We found a main effect of structure (F(1,36) = 36.28, 532 

p = 6.48e-07), no effect of reporting (F(1,36) =  0.21, p = 0.648), and no interaction 533 

(F(1,36) = 2.38, p = 0.132)j, indicating that the increase in learning rate is a 534 

consequence of rotation structure exposure rather than being cued to report an explicit 535 

re-aiming strategy and that reporting did not modulate the effect of structural exposure 536 

on learning rates (Fig. 4A; Table 1). Note that this does not provide evidence to suggest 537 

that explicit re-aiming processes do not express structural learning, but that probing this 538 

component of learning does not significantly affect learning rate.  539 

 We wanted to determine whether the increase in learning rate evident in endpoint 540 

hand angle was attributable to changes in explicit re-aiming processes or implicit 541 

learning. Because explicit re-aiming and our estimate of implicit learning are correlated, 542 

we submitted explicit learning and implicit learning values during the first epoch of the 543 

test phase to a MANOVA with a single factor of structure exposure. There was a main 544 

effect of structure exposure on performance (F(1,18) = 24.60, p = 9.582e-06, Pillai’s 545 

trace = 0.74)k. Explicit re-aiming differed with structure exposure (F(1,18) = 47.54, p = 546 

1.901e-06) while implicit learning did not (F(1,18) = 0.18, p = 0.6803; see Table 1 for 547 

average explicit learning and implicit learning values). Altogether, these results indicate 548 

that differences in learning rate for a novel rotation were attributable to changes in 549 

explicit re-aiming, not implicit learning (Fig. 4B & 4C).     550 

 551 

Aftereffects 552 
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 During the no-feedback-washout phase, the aiming landmarks were removed 553 

and participants were instructed to reach directly to the target in order to measure the 554 

implicit aftereffects of learning in the test phase. The averaged, baseline-subtracted 555 

endpoint hand angles in the first epoch of the no-feedback-washout phase were 556 

submitted to a two-way ANOVA with factors of Report and Structure. We found no effect 557 

of reporting on aftereffect size (F(1,36) = 0.57, p = 0.4541)l. However, there was an 558 

unexpected, albeit marginal, effect of structure exposure (F(1,36) = 3.55, p = 0.0677) l, 559 

suggesting that exposure to pseudorandomly varying rotations suppresses the 560 

measured aftereffect size for a novel rotation (Table 1). There was no interaction 561 

between reporting and structure exposure (F(1,36) = 0.55, p = 0.4620) l, indicating that 562 

reporting did not modulate the effect of structural learning on aftereffects.    563 

 564 

Experiment 2: Is structural learning specific to the trained perturbation structure or 565 

expressed via a general aiming heuristic? 566 

In Experiment 2, we tested the specificity of the training needed to increase the learning 567 

rate for a novel rotation. In contrast to Experiment 1, we exposed participants to either 568 

rotation perturbations or gain perturbations, such that the training structure was either 569 

consistent or inconsistent with the rotation structure in the test phase. 570 

Baseline Phase 571 

 All participants practiced reaching to the target with veridical endpoint feedback 572 

to become familiarized with the task. In the second half of the baseline phase, 573 

participants practiced reaching to the target while tapping a touchscreen to report their 574 

intended reach endpoint (Fig. 2C). To assess whether there were any baseline 575 
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differences between groups that could affect exposure phase learning, we compared 576 

reaching performance. There were no differences across groups in the angular 577 

component of reaching (F(2,39) = 0.76, p = 0.4764)m during the last epoch of the 578 

baseline phase. There was, however, a significant difference between groups for 579 

baseline reach distances (F(2,39) = 4.44, p = 0.0182)n. Post-hoc, Bonferroni-corrected 580 

pairwise comparisons revealed a significant difference between the Rotation and Gain 581 

group reach distances (p = 0.0278), a marginally significant difference between Gain 582 

and Control group reach distances (p = 0.0651), and no significant difference between 583 

Rotation and Control group reach distances (p = 0.99). The magnitude of the difference 584 

between group means was minor, measuring 6.55 mm at maximum (see Table 2). 585 

  586 

Exposure Phase 587 

 To determine if structural learning was specific to the form of the trained 588 

perturbation structure, we exposed the Gain group to gain perturbations (Fig. 2D) and 589 

the Rotation group to rotation perturbations during the exposure phase. To prevent 590 

participants from transferring an average representation of the perturbation series, we 591 

ensured that the perturbations were drawn from a uniform distribution such that the 592 

rotation series averaged to zero and the gain series averaged to approximately one for 593 

any given participant. The Control group continued to experience veridical feedback 594 

during this phase, which improved performance such that participants more closely 595 

approximated hitting the target (t(13) = 2.64, p = 0.0203)o. 596 

   To examine how well participants in the Rotation group opposed the variable 597 

perturbation schedule, we cross-correlated and regressed endpoint hand angles with 598 
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the exposure phase solution for each participant. We found that participants in the 599 

Rotation group quickly updated their movement vectors in response to the perturbation 600 

sequence. The median lag which maximized the correlation between reaching and 601 

solution time courses for participants in the Rotation group was 1 (IQR: 1), and the 602 

mean correlation between endpoint hand angles and the solution was 0.59±0.24. 603 

Because we perturbed the radial component of movement for the Gain group, we 604 

conducted the cross-correlation and regression analyses of performance in that group 605 

using endpoint hand radii. The median lag for the Gain group was 2 (IQR: 2) and the 606 

mean correlation between endpoint hand radii and the solution was 0.42±0.16. 607 

Correlation coefficients between groups were marginally different (t(26) = -2.10, p = 608 

0.0456)p, suggesting that participants may be more sensitive to perturbations affecting 609 

the angular component of feedback. Despite this difference in sensitivity to perturbation 610 

types, participants were capable of tracking both radial and angular perturbations (see 611 

Figure 5 for exposure phase performance in sample Gain and Rotation participants).  612 

 For the Rotation group, the average slope between the exposure phase hand 613 

angle and the rotation solution was 0.51±0.24 and the distribution of Rotation slopes 614 

was significantly different from zero (t(13) = 8.09, p = 1.9788e-06)q. The average slope 615 

for the Gain group was 0.33±0.18 and the distribution of Gain slopes was significantly 616 

different from zero (t(13) = 6.88, p = 1.1109e-05)q. Rotation slopes were significantly 617 

greater than Gain slopes (t(26) = -2.20, p = 0.0365)r, providing further support for the 618 

idea that participants more accurately track rotational perturbations than gain 619 

perturbations. 620 

 621 
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Feedback-Washout Phase  622 

 The purpose of the feedback-washout phase was to use veridical feedback to 623 

remove any influence that the exposure phase may have had on participants’ 624 

movements. To confirm that movements were unbiased by the perturbation series 625 

during the last epoch of the feedback-washout phase, we conducted four one-way 626 

ANOVAs with a single factor of group, comparing angular and radial components of 627 

aiming and reach performance in the last epoch of the feedback-washout phase. There 628 

were no differences in endpoint hand angles (F(2,39) = 1.3, p = 0.2850)s or aiming 629 

angles (F(2,39) = 0.68, p = 0.5109)t between groups. However, there was a significant 630 

difference in endpoint hand radii between groups (F(2,39) = 5.63, p = 0.0071)u, but the 631 

maximum difference between mean group radii was small, measuring approximately 632 

6.52 mm (Rotation-Gain: p = 0.0053, all other comparisons insignificant; see Table 2), 633 

which was similar to the difference observed in the baseline phase. There were no 634 

between-group differences in aiming radii (F(2,39) = 0.79, p = 0.4608)v.  635 

Test Phase 636 

 In the test phase, all participants were exposed to a 60° counterclockwise 637 

rotation. Our primary question for this experiment was: does structural exposure have a 638 

structure-specific effect on learning? We predicted that if the exposure phase simply 639 

taught participants to use a general aiming heuristic, then Gain and Rotation groups 640 

might have similar test phase performance and both groups would learn more quickly 641 

than the Control group. However, if participants learned the perturbation structure, then 642 

the Rotation group would improve performance in the test phase much more quickly 643 

than either the Gain or Control group.  644 
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 To shed light on this, we submitted endpoint hand angles averaged over the first 645 

epoch of the test phase to a one-way ANOVA with a single factor of group. We found a 646 

significant difference between groups (F(2,39) = 15.36, p = 1.2049e-05)w. A Bonferroni-647 

corrected pairwise comparison showed a significant difference between the Rotation 648 

and Gain groups (p = 2.3705e-05) and a significant difference between Rotation and 649 

Control groups (p = 2.7993e-04). There was no difference between Gain and Control 650 

groups (p = 0.99). 651 

 To test whether the Gain group showed persistent radial differences from the 652 

Rotation and Control groups during early test phase learning, we conducted two one-653 

way ANOVAs on the first epoch of test phase reaching and aiming radii with a single 654 

factor of group. We found no differences in reaching radii (F(2,39) = 0.11, p = 0.8956)x 655 

or aiming radii (F(2,39) = 0.19, p = 0.8317)y between groups, suggesting that 656 

differences in learning rate were restricted to the angular dimension (Table 2).  657 

 Based on our results from Experiment 1, we predicted that explicit re-aiming 658 

drove this structure-specific effect on reach performance instead of implicit learning. To 659 

test this idea, we performed the same analysis as above using the reported aiming 660 

angles and our estimate of implicit learning during the first epoch of the test phase. 661 

Consistent with our prediction, we found a significant difference in re-aiming between 662 

groups (F(2,39) = 10.90, p = 1.7326e-04)z but no difference in implicit learning (F(2,39) 663 

= 0.99, p = 0.3816)aa. A Bonferroni-corrected pairwise comparison of re-aiming revealed 664 

a significant difference between the Rotation and Gain groups (p = 1.5708e-04) and a 665 

significant difference between Rotation and Control groups (p = 0.0080). As above, 666 

there was no difference in re-aiming between Gain and Control groups (p = 0.5689).  667 
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 Learning rates for explicit re-aiming and reaching were indistinguishable for every 668 

group (paired t-test; Rotation: t(13) = 0.35, p = 0.7356, Gain: t(13) = -0.84, p = 0.4160, 669 

Control: t(13) = 1.27, p = 0.2253)bb and the distributions of explicit re-aiming and 670 

reaching learning rates were closely correlated for each group (Rotation: r = 0.78, Gain: 671 

r = 0.85, Control: r = 0.91)cc. The synchronicity of re-aiming and movement vector 672 

updating is also clearly shown in the time courses of explicit re-aiming and reaching 673 

(Figure 6).  674 

 Overall, these results favor the idea that exposure to perturbation structure leads 675 

to structure-specific effects on learning rate for a novel rotation. Consistent with our 676 

prediction, this increase in learning rate is mediated via explicit re-aiming. 677 

 678 

Discussion  679 

 In this study, we sought to shed light on whether explicit re-aiming could 680 

contribute to the phenomenon of structural learning. A prior study suggested that 681 

structural learning could not be attributable to an explicit, cognitive strategy because 682 

explicitly informing participants of the task solution did not improve performance 683 

(Genewein et al., 2015). However, the perturbation did not always follow the instructed 684 

strategy and, consequently, participants may not have trusted the strategy or applied it 685 

consistently. Furthermore, an instructed strategy can be worse for performance than 686 

self-discovery (Mazzoni and Krakauer, 2006; Gureckis and Markant, 2012) and in some 687 

cases may prevent the expression of learning (Reber, 1989). 688 

 To investigate whether structural learning can be expressed by an explicit  689 

process, we conducted two experiments, combining two techniques to assay explicit re-690 
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aiming behavior with the structural learning perturbation schedule from Braun and 691 

colleagues (Braun et al., 2009). We found that prior experience with a variable rotation 692 

schedule drastically improved the learning rate for a novel rotation. This effect was 693 

entirely driven by explicit re-aiming. Additionally, participants only showed learning rate 694 

benefits when exposure and test phase perturbations were drawn from the same 695 

perturbation structure, suggesting that rotation structure learning is accomplished via 696 

structure specific re-aiming instead of a simple heuristic. Because the contribution of 697 

implicit learning was negligible, we suggest that the process responsible for structural 698 

learning in a sensorimotor adaptation task may be similar to those involved in other 699 

domains such as category learning (Ashby and Maddox, 2005; Huang-Pollock et al., 700 

2011), concept-learning (Goodman et al., 2008), and decision-making (Frank et al., 701 

2009). 702 

 703 

Structural learning of rotational perturbations is explicitly accessible 704 

 Our first experiment examined whether rotation metalearning was primarily 705 

expressed via explicit or implicit learning processes. Given the abundance of recent 706 

evidence to indicate that explicit learning underlies rapid changes in performance, we 707 

predicted that explicit learning would drive the increased learning rate in the groups 708 

which were exposed to rotation structure. Indeed, we found that explicit processes 709 

conferred the entirety of the learning rate benefit characteristic of a metalearning 710 

process.  711 

 Surprisingly, for participants who received rotation structure training, implicit 712 

learning and its corresponding aftereffects were smaller. Note that this was not an effect 713 
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of reporting, as we found no difference between reporting and non-reporting groups. 714 

Indeed, test phase implicit learning in the NoStructure-Report group matched the 715 

degree of implicit learning found in a previous study (Bond and Taylor, 2015). 716 

 One possibility is that structure training indirectly affects implicit learning by 717 

changing explicit re-aiming processes. A recent study found that implicit generalization 718 

is centered about the aiming location and not the target, hand, or cursor position (Day et 719 

al., 2016). Thus, participants who aim to a greater magnitude will train implicit learning 720 

farther from the target location. If implicit learning is tied to an aiming location, then 721 

when participants are asked to stop aiming and instructed to reach directly to the target, 722 

as in the no-feedback washout phase of the current study, aftereffects will appear to be 723 

smaller. Correspondingly, if participants were instead asked to aim at their most 724 

frequent aiming location, aftereffects should be much greater (Day et al., 2016). In our 725 

study, it is likely that participants in the Structure-Report group more consistently aimed 726 

to a greater magnitude than the NoStructure-Report group. This would cause implicit 727 

learning to peak farther from the target location and become more localized. In contrast, 728 

the NoStructure-Report group may have more frequently aimed to locations between 729 

the target and the aiming solution, causing implicit learning to be tied to a wider spread 730 

of spatial positions, which could create the appearance of larger aftereffects in the 731 

NoStructure-Report group. While this simple explanation is attractive, it should be noted 732 

that implicit learning during the test phase also appeared to be different between 733 

groups, which cannot be fully accounted for by aiming-based generalization.  734 

 Regardless of the above possibilities, implicit learning does not appear to be 735 

capable of expressing structural learning. This implies that forward models, which are 736 
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thought to underlie implicit learning in visuomotor adaptation tasks (Wolpert and Miall, 737 

1996), are restricted to learning parametric, rather than structural, relationships between 738 

action and feedback. It is unlikely that the cerebellum, which has been consistently 739 

linked with performing computations akin to a forward model (Taylor et al., 2010; Izawa 740 

et al., 2012; Schlerf et al., 2012; Morehead et al., 2017), could facilitate structural 741 

learning. Instead, structural learning of rotations may rely on neural mechanisms 742 

common to explicit, rule-based systems in other domains, such as category learning 743 

(Ashby and Maddox, 2005; Huang-Pollock et al., 2011), concept-learning (Goodman et 744 

al., 2008), and decision-making (Frank et al., 2009). There is evidence to suggest that 745 

abstracting rules for action progressively activates the rostral-caudal axis (Badre et al., 746 

2010), with increased activation in the prePMd as the search for relationships between 747 

action and feedback becomes more abstract. Given that the prefrontal cortex is 748 

consistently engaged in the early stages of learning a sensorimotor task (Shadmehr and 749 

Holcomb, 1997; Floyer-Lea and Matthews, 2004; Suzuki et al., 2004; Seidler et al., 750 

2006; Anguera et al., 2007; Seidler et al., 2013) and patients with prefrontal lesions 751 

show impaired performance in these tasks (Slachevsky et al., 2001; Slachevsky et al., 752 

2003; Taylor and Ivry, 2014; Taylor et al., 2014), perturbation structure learning tasks 753 

driven by explicit learning processes may also generate the same activation patterns 754 

during abstraction. However, forming abstractions in a larger space might tax the limit of 755 

explicit learning processes, and therefore such tasks might recruit the aid of multiple 756 

learning processes, including model-based and model-free reinforcement learning 757 

(Badre et al., 2010; Collins and Frank, 2016). 758 

Alternatively, Herzfeld and colleagues suggested that the motor system changes 759 
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its sensitivity to previously experienced errors, which could lead to savings or, perhaps, 760 

structural learning (2014). While a change in error sensitivity would be assumed to rely 761 

on implicit processes, it is entirely possible that this change in sensitivity is the result of 762 

an explicitly accessible re-aiming process. Future work is needed to dissociate the 763 

source of changes in error sensitivity using a paradigm similar to that of Herzfeld and 764 

colleagues (2014). 765 

Finally, rotation magnitude may dictate whether structural learning is expressed 766 

through an explicit re-aiming or implicit learning process. Implicit learning appears to 767 

exhibit a highly stereotyped response (Bond and Taylor, 2015), and operates to a 768 

similar degree for any error between 7.5° to 90° (Morehead et al., 2017). In contrast, 769 

explicit re-aiming exhibits a dose-dependent response across a wide range of rotation 770 

magnitudes (Bond and Taylor, 2015). Even when rotations are small, explicit re-aiming 771 

reduces error during early learning while implicit learning accumulates (Bond and 772 

Taylor, 2015). However, the relative contribution of explicit and implicit processes has 773 

only been investigated for rotations greater than or equal to 15°. Thus, it may be 774 

possible that participants do not explicitly re-aim their movements for rotations smaller 775 

than 15°, and, as a consequence, structural learning may be expressed implicitly. 776 

Nevertheless, we think that this is an unlikely scenario given that implicit learning shows 777 

a highly stereotyped response (Morehead et al., 2017) and fails to exhibit savings 778 

(Morehead et al., 2015).  779 

 780 

Test phase learning rate improvements are driven by explicitly accessible structural 781 

learning, not heuristic aiming strategies 782 
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 While our first experiment clearly demonstrated that explicit processes were 783 

responsible for an increased learning rate for a novel rotation, it failed to pinpoint the 784 

source of improved test phase performance because both simple aiming heuristics and 785 

rotation structure learning could yield the same benefit. In our second experiment, we 786 

investigated whether exposure to distinct perturbation structures resulted in structure-787 

specific effects on learning a novel rotation. We predicted that if the exposure phase 788 

simply taught participants to use a general aiming heuristic, then Gain and Rotation test 789 

phase performance should be similar, with the Control group exhibiting a decreased 790 

learning rate relative to these two groups. However, if participants learn perturbation 791 

structure, then the Rotation group will learn much more quickly than either the Gain or 792 

Control group. We found that participants exposed to rotation structure during the 793 

exposure phase learned to counter a novel rotation much more quickly than participants 794 

exposed to either a veridical or gain structure. Remarkably, there was no difference in 795 

learning rate between groups exposed to either veridical or gain structure, 796 

demonstrating that the learning rate benefit exhibited in the Rotation group is a 797 

consequence of a deeper learning of rotation structure rather than the formation of an 798 

aiming heuristic which generalizes to other perturbation structures.  799 

 The finding that structural learning is highly dependent on the statistics of the 800 

environment raises the question of whether transfer between perturbation structures is 801 

possible. Previous work has shown that learning a single gain perturbation at distal 802 

targets eliminates direction-specificity in rotation generalization, leading to rotation 803 

generalization across the entire workspace (Yin et al., 2016). It is unclear if this finding 804 

is consistent with a form of structural learning or a more general change in sensitivity to 805 
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any form of visuomotor error. The source of transfer between different perturbations 806 

remains an open question. For example, it could be that a series of shear perturbations, 807 

which would require a remapping of both the extent and direction of the movement 808 

vector to restore task performance, would improve both gain and rotation learning. 809 

Furthermore, this effect could be unidirectional such that gain or rotation structure 810 

training does not improve shear learning. Alternatively, structural learning may not 811 

necessarily be confined by the mathematical similarities between perturbations. Instead, 812 

the similarity between adapted responses to given perturbation types may dictate the 813 

degree to which participants generalize between structures. For example, the adaptive 814 

responses to a shear and a rotation are much more similar than the responses to a gain 815 

and a shear — simply angling the limb to offset the perturbation would aid performance 816 

in both of the former perturbations. Further work is necessary to test the specificity of 817 

generalization between different structures. 818 

  819 

Conclusions  820 

 Overall, our results provide further support for the general consensus that explicit 821 

re-aiming is an essential component of sensorimotor learning in a visuomotor rotation 822 

task and may be responsible for a variety of motor learning behaviors thought to be 823 

largely implicit (Heuer and Hegele, 2008; Hegele and Heuer, 2010; Taylor et al., 2014; 824 

Bond and Taylor, 2015; McDougle et al., 2015; Morehead et al., 2015; Brudner et al., 825 

2016; Day et al., 2016; Poh et al., 2016). There are two primary implications of our 826 

results. First, because rotation structure learning is explicitly accessible, it may share a 827 

common learning mechanism with rule-based learning in other domains which rely on 828 
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abstraction, such as category learning and concept learning. Correspondingly, it may 829 

recruit neural systems associated with explicit rule formation in support of adaptive 830 

behavior, such as the prefrontal cortex and striatum.  831 

 832 

  833 
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Figure and Table Legends 927 

Figure 1. The concept of structure learning in action. a) Unconstrained action space. 928 

Prior to experiencing perturbations, the action space is unbiased. b) Action space 929 

constrained by archery practice. With experience, an archer will learn the general 930 

principle that she should aim in the opposite direction and with sufficient magnitude to 931 

counter an array of wind velocities. Thus, the action space should be constrained by 932 

azimuthal changes in aim. c) Action space constrained by rotations. Likewise, when 933 

participants experience rotational perturbations, they learn to exploit the off-diagonal 934 

terms of the rotation matrix. Thus, the action space should be constrained by searches 935 

along a ring. 936 

Figure 2. Reporting methods and variable perturbation schedules. a) In Experiment 1, 937 

participants reported their aim using a circular array of numbered landmarks which 938 

rotated with the target location such that the numbers 1 and -1 were adjacent to all 939 

target locations. b) Perturbation schedule. The exposure phase trained participants on 940 

the rotation structure using a zero-mean rotation sequence drawn from a uniform 941 

distribution. In the highlighted test phase, all participants experienced a novel rotation of 942 

60°. c) In Experiment 2, participants reported their intended reach endpoint by tapping a 943 

touch screen with the left hand. A red crosshair marked the tapped location and 944 

participants could tap anywhere on the screen. d) Incongruent perturbation schedule. 945 

The basic experimental design for Experiment 2 largely reflects that of Experiment 1. 946 

Participants in the Gain group experienced radial perturbations during the exposure 947 

phase, which were incongruent with the structure of the test perturbation (60° rotation). 948 

For the Gain group, all phases except the test phase show the radial perturbation 949 



 

 44 

relative to the target, such that negative values indicate a negative scaling of cursor 950 

feedback and positive values indicate a positive scaling of cursor feedback (left y-axis). 951 

Because the test phase perturbation is a rotation, the perturbation for that phase is 952 

plotted as an angle (right y-axis). 953 

Figure 3. Experiment 1. Example reach performance. Endpoint hand angle (purple), for 954 

the best (first column), median (second column), and worst (third column) participants 955 

based on the slope of a linear regression of exposure phase endpoint hand angles on 956 

the rotation solution (gray lines). Note that the solution angle is simply the opposite of 957 

the rotation angle. Top row) Explicit re-aiming (red) and implicit learning (blue) for 958 

participants in the Structure-Report group. Bottom row) Endpoint hand angle for 959 

participants in the Structure-NoReport group. 960 

Figure 4. Experiment 1. The feedback-washout phase and the time course of learning 961 

during the test phase. a) Overall learning. Overall learning is accelerated in the groups 962 

exposed to rotation structure (Structure-Report, shown in red, and Structure-NoReport, 963 

shown in purple) relative to groups without structure exposure (NoStructure-Report, 964 

shown in forest green, and NoStructure-NoReport, shown in dark blue). b) Explicit re-965 

aiming. Explicit re-aiming composes all of performance in the Structure-Report group 966 

and the majority of performance in the NoStructure-Report group. c) Implicit learning. 967 

Implicit learning in the reporting groups, Structure-Report and NoStructure-Report. Error 968 

is shown as standard error of the mean (SEM). 969 

Figure 5. Experiment 2. The best (first column), median (second column), and worst 970 

(third column) performance based on the slope of a linear regression of exposure phase 971 

reach performance on the perturbation solution (gray lines). Top row) Endpoint hand 972 
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angle for the Rotation group (red). Second row) Radial distance of reach endpoint 973 

relative to the target distance for the Gain group (purple). Negative values indicate a 974 

reach distance greater than the target distance and positive values indicate a reach 975 

distance shorter than the target distance. Bottom row) Exposure phase aiming locations 976 

in x-y space. Exposure phase aiming from sample subject from the Gain (shown in 977 

purple) and Rotation (shown in red) groups. Alpha value scales with trial number such 978 

that the last trial within an epoch is most opaque. The gray points represent the solution 979 

for a given trial. Note that a sample subject is not shown from the Control group 980 

because they simply received veridical feedback. 981 

Figure 6. Experiment 2. The feedback-washout phase and the time course of test phase 982 

learning. a) Overall learning. Overall learning is accelerated in the Rotation group  983 

(shown in red) relative to both the Gain (shown in purple) and Control (shown in blue) 984 

groups. There is no difference between Gain and Control group learning rates. b) 985 

Explicit re-aiming. Aiming patterns underlie overall performance, with the Rotation group 986 

showing an explicit re-aiming learning rate commensurate with the overall learning rate. 987 

The same is true of the Gain and Control groups. Error is shown as standard error of 988 

the mean (SEM). 989 

Table 1. Average endpoint hand angles, aiming angles, and estimates of implicit 990 

learning for each consistent experiment phase (excluding the exposure phase).  991 

Table 2. Average endpoint hand angles/radii and aiming angles/radii for each consistent 992 

experiment phase. Error is shown as standard deviation. Angles are measured in 993 

degrees and radii are measured in mm.  994 

Table 3. A summary of statistical analyses. The first column specifies the superscript 995 
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letter used to identify the statistical test within the manuscript, the second column lists 996 

the dependent variable upon which the test is conducted, the third column lists the type 997 

of test used, the fourth column shows the test statistic, and the final column provides a 998 

measure of confidence appropriate for the type of test conducted.   999 
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Table 1. Average Performance for Experiment 1 

  

 

Experiment phase 
Structure- 
Report 

Structure- 
NoReport 

NoStructure-
Report 

NoStructure-
NoReport 

Baseline 
Hand Angle 

Aim 
Implicit 

 
2.98±6.36 

0±0 
0.76±0.97 

 
0.27±1.44 

— 
— 

 
1.64±2.11 
0.14±0.44 
1.5±2.13 

 
-0.09±1.05 

— 
— 

Feedback washout      
Hand Angle 

Aim 
Implicit 

 
-0.06±1.38 
-0.42±0.95 
3.64±8.53 

 
1.74±1.73 

— 
— 

 
0.04±0.75 

0±0 
-0.12±1.35 

 
-0.16±0.82 

— 
— 

Early Test  
Hand Angle 

Aim 
Implicit 

 
-50.2±5.70 

-51.54±5.33 
1.34±4.23 

 
-38.7±21.91 

— 
— 

 
-6.75±21.07 
-6.5±19.96 

-1.49±20.94 

 
-12.97±19.06 

— 
— 

No-feedback-washout     
Hand Angle    

 
4.91±6.90 

 
-2.89±2.5 

 
-6.45±2.88 

 
-6.44±3.29 
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Table 2. Average Performance for Experiment 2 

  
 

Experiment phase Rotation Group Gain Group Control Group 

Baseline  
Hand Angle/Radius 

Aim Angle/Radius 

 
3.71±2.47/69.24±6.20 
0.77±0.51/71.60±2.42 

 
5.52±6.20/62.68±6.35 

0.42±0.0.86/71.21±1.64 

 
4.20±2.03/68.41±6.44  
1.19±1.28/70.84±2.89  

Feedback-washout 
Hand Angle/Radius 

Aim Angle/Radius 

 
4.35±4.19/67.64±4.46 
-0.48±2.20/72.45±6.19 

 
2.91±2.75/74.16±6.93 

0.18±1.20/76.19±11.91 

 
2.55±2.09/70.84±3.38  
-0.49±1.63/73.38±4.65  

Test 
Hand Angle/Radius 

Aim Angle/Radius 

 
-42.53±11.21/71.91±6.43 
-43.23±11.63/73.32±4.75 

 
-9.81±23.48/73.27±11.34 
-5.59±34.19/72.42±13.62  

 
-14.83±13.14/73.08±6.14  
-16.65±11.71/74.42±7.73  
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Table 3. Statistical Table 

Line Dependent Variable Test Statistic Confidence 

a 
average endpoint hand angles 
during last epoch of the baseline 
phase for all groups in 
Experiment 1  

two-way 
ANOVA 

structure_F(1,36) = 0.60, 
report_F(1,36) = 4.12, 

interaction_F(1,36) = 0.20 

structure_partial η²  = 0.01, p = 0.4441; 
report_partial η² = 0.1, p = 0.0498;  

interaction_partial η² = 0.01, p = 0.6579 

b 

average endpoint hand angles 
for NoStructure-NoReport and 
NoStructure-Report groups 
during last epoch of the baseline 
phase and average endpoint 
hand angles for the exposure 
phase  

paired t-
test 

NoStructure-NoReport_t(9) = -
0.77,  

NoStructure-Report_t(9) = 2.75 

NoStructure-NoReport_CI: -
0.8441/0.4141, p = 0.4593; NoStructure-

Report_CI: 0.2853/2.9324, p = 0.0225 

c 

correlation coefficients for 
exposure phase endpoint hand 
angles and rotation solutions for 
Structure-Report and Structure-
NoReport groups 

two-sample 
t-test 

t(18) = 2.94 
CI: 0.0699/ 

    0.4207, p = 0.0088 

d 
endpoint hand angle-solution 
regression slopes for Structure-
Report and Structure-NoReport 
groups 

one-
sample t-

test 

Structure-Report_t(9) = 14.90, 
Structure-NoReport_t(9) = 7.40 

Structure-Report_CI:  0.6139/0.8336, p 
= 1.1967e-07; Structure-NoReport_CI: 

0.3582/0.6735, p = 4.0938e-05 

e 
endpoint hand angle-solution 
regression slopes for Structure-
Report and Structure-NoReport 
groups 

two-sample 
t-test 

t(18) = 2.45 CI: 0.0294/0.3864, p = 0.0249 

f aiming angle-solution regression 
slope for Structure-Report group 

one-
sample t-

test 
t(9) = 13.31 CI: 0.6063/ 0.8546, p = 3.1703e-07 

g implicit angle-solution regression 
slope for Structure-Report group 

one-
sample t-

test 
t(9) = -0.12 CI:  -0.0463/0.0418, p = 0.9106 

h 
average endpoint hand angles 
for all groups in Experiment 1 
during last epoch of the 
feedback-washout phase 

two-way 
ANOVA 

structure_F(1,36) = 5.31, 
report_F(1,36) = 4.17, 

interaction_F(1,36) = 6.54 

structure_partial η²  = 0.13, p = 0.0271; 
report_partial η² = 0.10,  p = 0.0484; 

interaction_partial η² = 0.15, p = 0.0149 

i 

average aiming angles for 
Structure-Report and 
NoStructure-Report groups 
during last epoch of the 
feedback-washout phase 

two-sample 
t-test 

t(18)= -1.41 CI: -0.2087/1.0525, p = 0.1769 

j 
average endpoint hand angles 
during first epoch of the test 
phase for all groups in 
Experiment 1 

two-way 
ANOVA 

structure_F(1,36) = 36.28, 
report_F(1,36) = 0.21, 

interaction_F(1,36) = 2.38 

structure_partial η²  = 0.50, p = 6.48e-
07; report_partial η² = 0.01, p = 0.648; 

interaction_partial η² = 0.06, 
interaction_p = 0.132 

k 

average aiming angles and 
implicit angles during first epoch 
of the test phase for Structure-
Report and NoStructure-Report 
groups 

one-way 
MANOVA 

F(1,18)  = 24.60 Pillai’s trace = 0.74, p = 9.582e-06 
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l 
baseline-subtracted, average 
endpoint hand angles during first 
epoch of the no-feedback 
washout phase for all groups 

two-way 
ANOVA 

structure_F(1,36) = 3.55, 
report_F(1,36) = 0.57, 

interaction_F(1,36) = 0.55 

structure_partial η²  = 0.09, p = 0.0677; 
report_partial η² = 0.02, p = 0.4541;  

interaction_partial η² = 0.02, p = 0.4620 

m 
average endpoint hand angles in 
Experiment 2 during last epoch 
of the baseline phase for all 
groups 

one-way 
ANOVA 

F(2,39) = 0.76 partial η² = 0.04, p = 0.4764 

n 
average endpoint hand radii in 
Experiment 2 during last epoch 
of the baseline phase for all 
groups 

one-way 
ANOVA 

F(2,39) = 4.44 partial η² = 0.19, p = 0.0182 

o 
average Control group endpoint 
hand angles during last epoch of 
the baseline phase and 
exposure phase  

paired t-
test 

t(13) = 2.64 CI:  0.2869/2.8518, p = 0.0203 

p 

correlation coefficients for 
exposure phase reach 
performance and perturbation 
solutions for Gain and Rotation 
groups 

two-sample 
t-test 

t(26) = -2.10 CI: 0.0034/0.3221, p = 0.0456 

q 
exposure phase reach-solution 
regression slopes for Gain and 
Rotation groups 

one-
sample t-

test 

Gain_t(13) = 6.88,  
Rotation_t(13) = 8.09 

Gain_CI: 0.2296/0.4396, p = 1.1109e-
05;  Rotation_CI: 0.3739/0.6463, p = 

1.9788e-06 

r 
exposure phase reach-solution 
regression slopes for Gain and 
Rotation groups 

two-sample 
t-test 

t(26) = -2.20 CI: -0.3391/-0.0119, p = 0.0365 

s 
average endpoint hand angles 
for all groups in Experiment 2 
during last epoch of the 
feedback-washout phase 

one-way 
ANOVA 

F(2,39) = 1.3 partial η² = 0.06, p = 0.2850 

t 
average aiming angles for all 
groups in Experiment 2 during 
last epoch of the feedback-
washout phase 

one-way 
ANOVA 

F(2,39) = 5.63 partial η² = 0.22, p = 0.0071 

u 
average endpoint hand radii for 
all groups in Experiment 2 
during last epoch of the 
feedback-washout phase 

one-way 
ANOVA 

F(2,39) = 0.68 partial η² = 0.03, p = 0.5109 

v 
average aiming radii for all 
groups in Experiment 2 during 
last epoch of the feedback-
washout phase 

one-way 
ANOVA 

F(2,39) = 0.79 partial η² = 0.04, p = 0.4608 

w 
average endpoint hand angles 
for all groups during first epoch 
of the test phase  

one-way 
ANOVA 

F(2,39) = 15.36 partial η² = 0.44, p = 1.2049e-05 
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x 
reaching radii for all groups 
during first epoch of the test 
phase  

one-way 
ANOVA 

F(2,39) = 0.11 partial η² = 0.01, p = 0.8956 

y aiming radii for all groups during 
first epoch of the test phase  

one-way 
ANOVA 

F(2,39) = 0.19 partial η² = 0.01, p = 0.8317 

z 
average aiming angles for all 
groups during first epoch of the 
test phase  

one-way 
ANOVA 

F(2,39) = 10.90 partial η² = 0.36, p = 1.7326e-04 

aa 
average implicit angles for all 
groups during first epoch of the 
test phase  

one-way 
ANOVA 

F(2,39) = 0.99 partial η² = 0.05, p = 0.3816 

bb 
average aiming angles and 
average endpoint hand angles 
during first epoch of test phase 

paired t-
tests 

Rotation_t(13) = 0.35,  
Gain_t(13) = -0.84,  
Control_t(13) = 1.27 

Rotation_CI:-5.0710/3.6744, p = 0.7356; 
Gain_CI: -6.6180/15.0414, p = 0.4160; 

Control_CI:  -4.9148/1.2700, p = 0.2253 

cc 
average aiming angles and 
average endpoint hand angles 
during first epoch of test phase 

Pearson 
correlations 

Rotation_r = 0.78,  
Gain_r = 0.85,  

Control_r = 0.91 

Rotation_CI: 0.4269/0.9272, Rotation_p 
= 0.0010; Gain_CI: 0.5874/0.9523, p = 
0.0001; Control_CI: 0.7427/0.9726, p = 

5.0555e-06 

 


