

Review | Cognition and Behavior

Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re-) Activation

Beta oscillations in endogenous content activation

Bernhard Spitzer¹ and Saskia Haegens^{2,3}

¹Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, UK

DOI: 10.1523/ENEURO.0170-17.2017

Received: 16 May 2017 Revised: 14 July 2017 Accepted: 17 July 2017 Published: 21 July 2017

Author Contributions: BS & SH wrote the paper. **Funding:** Deutsche Forschungsgemeinschaft (DFG)

501100001659 SP 1510/2-1

Funding: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

501100003246 VENI 451-14-027

Funding: Deutsche Forschungsgemeinschaft (DFG)

501100001659 SP 1510/1-1

Conflict of Interest: Authors report no conflict of interest.

BS: DFG SP 1510/1-1, DFG SP 1510/2-1; SH: NWO Veni grant 451-14-027.

Correspondence should be addressed to either Bernhard Spitzer, Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD. E-mail: bernardodispitz@gmail.com or Saskia Haegens, Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032. E-mail: shaegens@gmail.com

Cite as: eNeuro 2017; 10.1523/ENEURO.0170-17.2017

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

Copyright © 2017 Spitzer and Haegens

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

² Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA

³Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, the Netherlands

1	Manuscript Title:
2	Beyond the status quo: a role for beta oscillations in endogenous content (re-)activation
3	
4	Abbreviated Title:
5	Beta oscillations in endogenous content activation
6	
7	Author Names and Affiliations:
8	Bernhard Spitzer ¹ and Saskia Haegens ^{2,3}
9	
10	Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
11	² Department of Neurological Surgery, Columbia University College of Physicians and
12	Surgeons, New York, NY 10032, USA
13	³ Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour
14	Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
15	
16	Author Contributions:
17	BS & SH wrote the paper
18	
19	Correspondence should be addressed to (include email address):
20	 Bernhard Spitzer (bernardodispitz@gmail.com), Department of Experimental
21	Psychology, University of Oxford, Oxford OX1 3UD
22	 Saskia Haegens (shaegens@gmail.com) Department of Neurological Surgery,
23	Columbia University College of Physicians and Surgeons, New York, NY 10032
24	
25	Acknowledgements:
26	We thank Iske Bakker for assistance, Stephanie Jones and Mark Stokes for helpful feedback
27	on the manuscript, and Nancy Kopell for insightful discussion.
28	
29	Conflict of Interest:
30	Authors report no conflict of interest.
31	
32	Funding sources:
33	BS: DFG SP 1510/1-1, DFG SP 1510/2-1
34	SH: NWO Veni grant 451-14-027
35	
36	
37	
38	

Abstract

Among the rhythms of the brain, oscillations in the beta frequency range (approx. 13–30 Hz) have been considered the most enigmatic. Traditionally associated with sensorimotor functions, beta oscillations have recently become more broadly implicated in top-down processing, long-range communication, and preservation of the current brain state. Here, we extend and refine these views based on accumulating new findings of content-specific beta synchronization during endogenous information processing in working memory and decision-making. We characterize such content-specific beta activity as short-lived, flexible network dynamics supporting the endogenous (re-)activation of cortical representations. Specifically, we suggest that beta-mediated ensemble formation within and between cortical areas may awake, rather than merely preserve, an endogenous cognitive set in the service of current task demands. This proposal accommodates key aspects of content-specific beta modulations in monkeys and humans, integrates with timely computational models, and outlines a functional role for beta that fits its transient temporal characteristics.

Significance statement

Brain oscillations at frequencies of 13–30 Hz (the "beta" rhythm) are traditionally associated with sensory and motor processing, but are increasingly implicated in various cognitive functions, such as working memory and decision-making. Here, we review new evidence that beta activity in these domains can be content-specific, that is, it can reflect the very information that is currently being processed. Going beyond previous accounts that link beta to maintenance of the current brain state, our review highlights the dynamic, often short-lived nature of beta modulations during endogenous information processing. We integrate

- 62 these findings in a dynamic network view where beta synchronization supports the internally
- driven (re-)activation of neuronal ensembles to represent currently task-relevant contents.

64

Beta-band oscillations: beyond motor control

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

65

Oscillations in the beta frequency range (approx. 13-30 Hz) have traditionally been associated with sensorimotor processing (Hari and Salmelin, 1997; Pfurtscheller and Lopes da Silva, 1999). During preparation and execution of movements, beta oscillations in sensorimotor cortex show marked power decreases (assumed to reflect local desynchronization), followed by a "rebound" of power (i.e., synchronization) after movement (Kilavik et al., 2013). A similar sequence of beta power changes is observed in somatosensation, with desynchronization in anticipation of and during stimulation, followed by (re-)synchronization after stimulus offset (e.g., Bauer et al., 2006; Spitzer et al., 2010; Van Ede et al., 2010). The dynamics of beta activity in sensorimotor cortex often resemble and/or parallel modulations of alpha band activity (approx. 8-12 Hz), in that power decreases with active engagement, for instance during spatial attention (Bauer et al., 2006; Schubert et al., 2009; Jones et al., 2010; Van Ede et al., 2011; but see Haegens et al., 2012). However, whereas alpha oscillations are widely linked to the inhibition of task-irrelevant areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010; Haegens et al., 2011a), the precise functional role of sensorimotor beta synchrony remains unclear. Initially believed to reflect cortical idling (Pfurtscheller et al., 1996; Neuper and Pfurtscheller, 2001), more recent views suggest a role in maintaining the current sensorimotor set, or "status quo" (Engel and Fries, 2010; cf. Jenkinson and Brown, 2011).

85

86

87

88

Beyond its established role as a sensorimotor rhythm, beta activity has been observed in various different cortical areas and is increasingly implicated in a wider range of cognitive functions (Engel and Fries, 2010). Modulations of beta oscillatory activity in non-

somatomotor areas (e.g., frontal, parietal, visual; Figure 1A) have been associated with visual perception (Donner et al., 2007; Piantoni et al., 2010; Kloosterman et al., 2015), language processing (for review, see Weiss and Mueller, 2012), working memory (Tallon-Baudry et al., 1998; Deiber et al., 2007; Axmacher et al., 2008; Siegel et al., 2009), long-term memory encoding and retrieval (Sederberg et al., 2006; Hanslmayr et al., 2009; Spitzer et al., 2009; for review, see Hanslmayr et al., 2016), decision-making (Pesaran et al., 2008; Wimmer et al., 2016; Wong et al., 2016), response inhibition (e.g., Jha et al., 2015), and reward processing (for review, see Marco-Pallarés et al., 2015). In some of these contexts, beta-band modulations occur in a relatively low frequency band ("lower" beta, approx. 13–20 Hz) and in tandem with alpha (e.g., Hanslmayr et al., 2009). In other cases, beta-band rhythms of varying frequencies (including "upper" beta, approx. 20–30 Hz) behave in ways more similar to gamma activity (>30 Hz) and increase, rather than decrease, with task-related engagement (e.g., Tallon-Baudry et al., 1998; Marco-Pallarés et al., 2015; Kornblith et al., 2016).

While a unifying theoretical account of cortical beta oscillations is currently lacking, some mechanistic aspects have been tentatively identified. In particular, beta oscillations are mostly associated with endogenous, top-down controlled processing (Buschman and Miller, 2007; for review, see Engel and Fries, 2010; Wang, 2010; Fries, 2015). Furthermore, in line with a "communication through coherence" view (Fries, 2005, 2015), oscillations in the beta frequency range are assumed to facilitate long-range interactions on a cortical network level (Kopell et al., 2000; Varela et al., 2001; Benchenane et al., 2011; Kilavik et al., 2013). Both these aspects have been integrated in a predictive coding framework, where gamma synchronization serves feedforward (bottom-up) communication, whereas beta

synchronization affords feedback communication of top-down predictions (Arnal and Giraud, 2012; Bastos et al., 2012; Bastos et al., 2015; Michalareas et al., 2016). One of the many persistent puzzles regarding beta, however, remains its unclear relation to neuronal activity as measured in spike firing rates and/or blood-oxygen-level dependent (BOLD) signals. Whereas oscillations in other frequency bands are known to correlate either positively (e.g., gamma) or negatively (e.g., alpha) with these activity measures, findings for beta have been mixed (e.g., Michels et al., 2010; Hanslmayr et al., 2011), with some studies showing no correlation at all (e.g., Whittingstall and Logothetis, 2009; Rule et al., 2017).

Perhaps surprisingly in light of the above, an increasing number of findings indicate that in some task contexts, beta oscillatory activity can be content-specific, that is, it can reflect the very information that is currently being processed (Figure 1B). Across human and monkey species, content-specific beta activity was found to carry information about internalized task rules (Buschman et al., 2012), stimulus categories (Antzoulatos and Miller, 2014, 2016; Stanley et al., 2016), scalar magnitudes (Spitzer et al., 2010; Spitzer and Blankenburg, 2011; Spitzer et al., 2014a) and other stimulus properties (Salazar et al., 2012; Mendoza-Halliday et al., 2014; Lewis et al., 2016; Wimmer et al., 2016), as well as subjective comparison outcomes (Haegens et al., 2011b; Herding et al., 2016). Such content-specific beta activity has in particular been observed during endogenous information processing in working memory and decision-making. Before considering these two domains in greater detail, we briefly discuss by which neurophysiological mechanisms beta oscillations might be generated.

Generation of cortical beta oscillations

Two main views exist in the literature, suggesting that (i) beta is generated in cortex (Jensen et al., 2005; Roopun et al., 2006; Kramer et al., 2008; Kopell et al., 2011; Sherman et al., 2016), or (ii) that beta is generated in the basal ganglia and propagated to cortex via the thalamus (Holgado et al., 2010; McCarthy et al., 2011). Within the view of cortically generated beta, one class of models suggests that beta is generated by local spiking interactions among cells, either consisting of pyramidal cell-interneuron loops (Jensen et al., 2005; Kramer et al., 2008; Kopell et al., 2011; Lee et al., 2013) or layer 5 pyramidal cells coupled via gap junctions (Roopun et al., 2006). A more recent proposal (Sherman et al., 2016) suggests an intermediate model, with beta being generated in cortex but depending on a (laminae-specific) exogenous drive originating from subcortical and/or cortical influences (see also Schmiedt et al., 2014, suggesting cortical beta generation driven by thalamic and/or top-down cortical inputs).

Based on local generator models, it has been suggested that beta is ideally suited for flexibly and dynamically forming cell assemblies (Roopun et al., 2008; Kopell et al., 2011), and for long-distance inter-area communication (Kopell et al., 2000). These models rely on local spiking interactions between excitatory and inhibitory neurons, and on intrinsic currents of the underlying pyramidal cells (e.g., h-currents or m-currents, determining the cell's rebound after hyperpolarization), defining the time constants for spike firing, thereby contributing to beta rhythmogenesis (Roopun et al., 2008; Kopell et al., 2011). Kopell et al. (2011) suggest that beta-synchronized cell assemblies are robust as they are self-sustaining after a long, decaying excitatory input (contrary to PING based networks which need ongoing input; PING: pyramidal-interneuron gamma, a model of local circuit gamma generation), and can

concurrently exist with other cell assemblies (again, contrary to PING assemblies which compete with one another as they rely on the same inhibitory interneurons). The sustained nature of these cell assemblies, spiking at a low beta rate (~15 Hz), would allow maintaining of neuronal activity patterns, i.e., a mechanism for working memory, and the linking of past and present inputs.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

161

162

163

164

165

More recently, Sherman et al. (2016) proposed a model building on prior work (Jones et al., 2007; Jones et al., 2009; Sacchet et al., 2015), where cortical beta is generated in the apical dendrites of large populations of spatially aligned pyramidal neurons, which span several layers. Specifically, this model produces transient beta activity (<150ms) by the integration of simultaneous (subthreshold) excitatory drives to the proximal (closer to the soma) and distal apical dendrites of pyramidal cells located in supragranular (layers 2/3) and infragranular layers (layer 5). The weaker proximal drive (of approx. 100 ms duration) arrives via granular (layer 4), the stronger distal drive (approx. 50 ms) via the supragranular layers, with both extrinsic drives arising from thalamic or potentially higher-order cortical areas. The model accurately generates beta "burst" events (<150 ms), with a nonsinusoidal waveform as observed in spontaneous human, monkey and rodent recordings (Sherman et al., 2016). Moreover, within this framework, when both drives arrive nearly synchronously at a 10-Hz rate, a sustained beta rhythm can be produced. Note that a beta-rate input is neither required nor sufficient for this model to produce realistic beta events (contrary to models that assume generators in the basal ganglia), nor do individual cells fire at a beta rate (in contrast with other local generator models). Rather, beta oscillatory activity arises from net subthreshold dendritic fluctuations, relying on integration of feedforward (to granular layer) and—critically—feedback inputs (to supragranular layers).

Beta-band oscillations in working memory

Numerous studies have reported beta power increases, concomitant with modulations in other frequency bands, during working memory (WM) maintenance of visual (Tallon-Baudry et al., 1998; Liebe et al., 2012; Lara and Wallis, 2014; Wimmer et al., 2016), verbal (Deiber et al., 2007), or temporal information (Chen and Huang, 2016). Such effects occur in frontal, parietal, and/or temporal areas, and can vary with WM load, i.e., the amount of to-be-maintained information (Deiber et al., 2007; Honkanen et al., 2015; Chen and Huang, 2016; see also Palva et al., 2011; Kornblith et al., 2016). In addition, several studies have shown that WM demands can alter the degree to which beta oscillations are phase-synchronized, both within and between cortical areas (Tallon-Baudry et al., 2001; Babiloni et al., 2004; Tallon-Baudry et al., 2004; Axmacher et al., 2008; Salazar et al., 2012; Dotson et al., 2014).

Findings of enhanced beta activity in WM tasks appear consistent with a role in actively maintaining the current cognitive set, i.e., the "status quo" (Engel and Fries, 2010). However, overall changes of oscillatory activity during WM processing can depend on various task factors and are also often found in frequency bands other than beta, especially theta (4–7 Hz), alpha, and gamma (for review, see Fell and Axmacher, 2011; Roux and Uhlhaas, 2014). While overall activity changes may reflect involvement in WM, more direct insights into the mechanisms of WM storage can be gained from delay activity that reflects the current memory content, in terms of the task-relevant stimulus information that is to-be-maintained on a given trial (Christophel et al., 2017). Such content-specific delay activity has traditionally been observed in persistent neuronal spiking (e.g., Kubota et al., 1974; Miller et al., 1996), local gamma band activity (Pesaran et al., 2002), as well as BOLD activity patterns (e.g.,

Harrison and Tong, 2009). However, a growing body of recent literature indicates that WM contents can also be reflected in oscillatory brain signals, particularly in the beta frequency range (e.g., Spitzer et al., 2010; Spitzer and Blankenburg, 2011; Salazar et al., 2012; Mendoza-Halliday et al., 2014; Antzoulatos and Miller, 2016; Rose et al., 2016; Wimmer et al., 2016).

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

209

210

211

212

213

Content-specific modulations in scalar WM

One line of evidence for content-specific delay activity in the beta band comes from studies of WM for scalar magnitudes, such as the speed, intensity, or duration of a stimulus. The neural basis of scalar information processing has been studied in great detail in a classic somatosensory task (Mountcastle et al., 1967; Romo and de Lafuente, 2013), where monkeys were trained to memorize the frequency of a brief tactile vibration (f1) for delayed comparison against a second vibration (f2; see Figure 2A, top). As a seminal finding in this task, the trial-specific f1 frequency is encoded parametrically, i.e., in a monotonically graded fashion, in neuronal firing rates throughout the cortical processing hierarchy (Romo and de Lafuente, 2013). During the WM delay after f1, such parametric coding prevails in prefrontal (PFC) and premotor cortex, with different cell populations either positively or negatively tuned to the frequency of f1 (Romo et al., 1999; Hernández et al., 2002; Barak et al., 2010). In subsequent human EEG experiments, similar effects were observed in prefrontal beta activity, with parametric modulations of oscillatory power as a function of f1 frequency (Spitzer et al., 2010; Spitzer and Blankenburg, 2011; Ludwig et al., 2016). Further studies showed that such beta power modulations are not specific to vibrotactile frequency information, but can also be observed for other analogue continua, like stimulus intensity, motion speed, or approximate number (Spitzer et al., 2014a; Spitzer et al., 2014b; Wimmer et al., 2016). A general picture emerging from this line of work is that at least some of the computations underlying scalar WM are supramodal (Spitzer and Blankenburg, 2012; Vergara et al., 2016; see also Nieder, 2012), potentially reflecting high-level abstractions of the task-relevant magnitude, rather than concrete sensory information (Spitzer et al., 2014a; Spitzer et al., 2014b; see also Christophel et al., 2017).

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

233

234

235

236

237

Content-specific (de-)synchronization within and across areas

The modulations of beta activity in scalar WM tasks were observed in power measures, which are thought to reflect the local (de-)synchronization of neuronal ensembles within a brain area (Pfurtscheller and Lopes da Silva, 1999). However, using more complex stimuli, content-specific WM activity in the beta band has also been observed on a larger-scale cortical network level. For instance, in simultaneous recordings from prefrontal and parietal cortex in behaving monkeys, information about memorized visual objects could be decoded not only from sustained spiking in either region, but also from the level of beta-band synchronization between regions (Salazar et al., 2012). Similarly, beta synchronization of prefrontal networks was found to reflect currently relevant task-rules (Buschman et al., 2012) and stimulus categories (Antzoulatos and Miller, 2014, 2016; Stanley et al., 2016). In another recent study, memory-coding neurons in monkey lateral PFC were found to be synchronized via beta oscillations to motion-sensitive area MT, in which the memorized motion information was also reflected in local field potential (LFP) power but not in spiking activity (Mendoza-Halliday et al., 2014). The latter findings were interpreted as evidence for top-down signaling from PFC to lower-level visual areas, in line with the emerging notion of beta oscillations as a communication channel for top-down and feedback information across cortex (Buschman and Miller, 2007; Bastos et al., 2015).

A role in (re-)activating WM content

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

Several lines of evidence suggest that content-specific beta oscillations do not reflect a persistent memory trace per se, but rather, a class of endogenous processes that are auxiliary to WM processing. For instance, content-dependent beta activity is typically not sustained throughout entire memory delays (of several seconds), but relatively short-lived, often lasting only several hundreds of milliseconds (e.g., Spitzer and Blankenburg, 2011; Salazar et al., 2012). Furthermore, unlike WM codes in neuronal spiking (e.g., Romo et al., 1999; Barak et al., 2010), prefrontal beta modulations are usually absent during stimulation, and seem to emerge only at particular times during WM retention (Figure 2A-D). More specifically, in standard delay tasks, beta modulations are mostly found late in the delay (e.g., Spitzer et al., 2010; Salazar et al., 2012; Spitzer and Blankenburg, 2012; Wimmer et al., 2016), when WM information might be endogenously (re-)activated or "refreshed" (Johnson, 1992) in preparation for the imminent comparison task (Spitzer et al., 2010; Myers et al., 2015; Wimmer et al., 2016). In contrast, when participants were explicitly (retro)-cued to update WM with one of two previously presented stimuli for further maintenance, prefrontal beta was modulated early after the cue, and therein selectively reflected the cued stimulus information (Spitzer and Blankenburg, 2011; Spitzer et al., 2014b). Similarly, in tasks where the scalar magnitude of a stimulus could only be assessed after integration over time (e.g., the number of pulses in a sequence), beta modulations occurred promptly after the accumulation period, as if the task-relevant scalar was "activated" in WM as soon as it was internally computed (Spitzer et al., 2014a; Spitzer et al., 2014b). Taken together, rather than a substrate of persistent memory storage per se, prefrontal beta modulations seem to reflect the momentary updating, or (re-)activation, of WM content in the service of the task at hand.

To our knowledge, content-specific beta activity in WM has thus far only been observed during single-item maintenance (e.g., Salazar et al., 2012; Dotson et al., 2014; Mendoza-Halliday et al., 2014), and several findings suggest that the capacity of beta-associated WM updating might be limited to a single piece of information in the current focus of attention (Spitzer and Blankenburg, 2011; Spitzer et al., 2014b; Antzoulatos and Miller, 2016; Wimmer et al., 2016; cf. Oberauer, 2002). However, one recent study showed that an additional, currently unattended memory item can be pushed into an active WM state by transcranial magnetic stimulation (TMS) of WM-coding areas (Rose et al., 2016). Interestingly, whereas the currently attended memory information could be decoded from various EEG frequency bands, the TMS-induced reactivation of the unattended memory item was exclusively evident in content-specific beta activity. In other words, beta activity specifically marked the transition of "latent" WM contents (see below; Mongillo et al., 2008; Stokes, 2015) into an active memory, consistent with a role of beta in updating, or reactivating, information in the current focus of WM.

Neurocomputational perspectives on beta oscillations in WM

A role of beta oscillations in WM has also been put forward in computational modeling work (e.g., Kopell et al., 2011; Lundqvist et al., 2011; Dipoppa and Gutkin, 2013). Simulations by Kopell et al. (2011), for instance, showed beta oscillations to be uniquely suited to form and coordinate cell assemblies for sustained stimulus processing in the absence of further input, eventually permitting the co-existence of past and present stimulus information in the same network. In this view, beta rhythms may scaffold functional assemblies for active WM processing. Another line of modeling studies, with a focus on multi-item WM, suggests a sequential replay of individual WM items (see also Lisman and Jensen, 2013), in terms of

alternations between "ground" and "active" states (see below), where the former is dominated by alpha/beta and the latter by gamma (Lundqvist et al., 2010; Lundqvist et al., 2011). Corroborating this idea, Lundqvist et al. (2016) reported a dissociation between beta and gamma during multi-item WM in monkey PFC, where gamma bursts were associated with stimulus encoding and decoding in spikes, whereas beta bursts prevailed during memory maintenance. However, it was not analyzed whether beta and/or gamma bursts themselves carried information about the WM contents, leaving the question of content-specific beta activity in multi-item WM to future research (but see Siegel et al., 2009, for a potential role of beta phase in multi-item WM).

Beta-band oscillations in decision-making

Given the well-documented involvement of beta-band oscillations in movement preparation (Murthy and Fetz, 1992; Sanes and Donoghue, 1993; Crone et al., 1998; Pfurtscheller and Lopes da Silva, 1999), it seems not surprising that sensorimotor beta effects are routinely observed in decision-making tasks where choices are to be communicated via a motor response (e.g., Kaiser et al., 2007; Zhang et al., 2008; Bidet-Caulet et al., 2012). During perceptual discrimination of auditory stimuli, for instance, the latency of preparatory beta power modulation was found to mimic response time differences across varying levels of task difficulty (Kaiser et al., 2007). Such effects typically manifest as sensorimotor power decreases contralateral to the to-be-moved limb, and are commonly assessed using lateralization indices (e.g., contrasting left- vs. right-hemispheric activity associated with right/left hand choices; Donner et al., 2009; Gould et al., 2012; Wyart et al., 2012). A traditional view is that beta oscillations in decision-making reflect motor preparation only,

i.e., a serial processing view where the effector-specific motor plan is the final step, after higher-order areas have reached a decision based on sensory input. However, as will be outlined below, accruing evidence points to a more direct involvement of beta oscillations in decision formation, which may or may not be linked to a specific motor plan.

Dynamic accumulative updating

Several recent studies suggest that lateralized beta activity during decision-making tasks may not only reflect terminal movement preparation, but a dynamic process of accumulatively updating a motor plan as a decision evolves (Donner et al., 2009; Gould et al., 2012; O'Connell et al., 2012; Wyart et al., 2012; Kubanek et al., 2013; Wyart et al., 2015). For instance, analyzing human MEG activity in a visual motion-detection task, Donner et al. (2009) reported a slowly evolving, gradual beta power lateralization in (pre-)motor cortex that tracked the current state of evidence accumulation, as inferred from the temporal integral of gamma activity in motion-sensitive area MT (Figure 3A). Similar observations were made in human EEG studies where participants integrated sequential samples of decision information over extended periods of time (Gould et al., 2012; Wyart et al., 2012; Kubanek et al., 2013; Wyart et al., 2015). In these studies, sensorimotor beta was found to reflect the integral of accumulated decision information in the form of a gradual response preparation signal, downstream to the encoding of sample-level decision information in parietal EEG signals (Gould et al., 2012; Wyart et al., 2012; Kubanek et al., 2013).

Together, these studies support a role for beta in dynamic updating of the decision outcome as mapped onto a motor response. However, a key point in the above studies is that they a priori operationalized beta activity as a response-related signal. More specifically, they used

a fixed mapping between decision outcomes and motor responses (usually left/right hand action), and assessed sensorimotor beta activity in terms of lateralization indices, relying on the contra-lateralized nature of sensorimotor activity. Critically, this approach disregards choice-related activity that might occur independent of the associated left/right response mapping. In fact, when the fixed link between decision outcomes and left/right effectors is removed, the effects in sensorimotor beta lateralization typically disappear (O'Connell et al., 2012; Twomey et al., 2016).

A content-specific decision signal?

Several recent studies go beyond this approach, and demonstrate a role for beta oscillations in perceptual decision tasks that appears independent of motor-response mapping (Haegens et al., 2011b; Herding et al., 2016; Stanley et al., 2016; Wimmer et al., 2016). Haegens et al. (2011b) used a variant of the somatosensory frequency discrimination task described earlier (Mountcastle et al., 1967; Romo and de Lafuente, 2013). As outlined above, during the retention period of such tasks, the first stimulus frequency (f1) is reflected parametrically in (pre-)frontal areas, both in terms of single-cell firing rates (e.g., Romo et al., 1999; Barak et al., 2010; Vergara et al., 2016) and in upper beta activity (Spitzer et al., 2010). Notably, during the ensuing decision period (i.e., after f2 is presented), Haegens et al. (2011b) found that the level of beta power in monkey sensorimotor cortex (including somatosensory, premotor and motor areas) signaled the categorical outcome of the f1-f2 comparison (i.e., "f2>f1" or "f1<f2"). This effect proved independent of the absolute frequencies of f1 and f2 (or their exact numerical difference) and reflected the monkey's categorical choices even on error trials (Figure 3B). Importantly, this choice-related beta activity was not merely related to motor planning, as all choices were reported with the left hand, and the effect

disappeared in a control condition in which the same motor response but no f1-f2 comparison was required. These findings complement previous reports on spike firing rate modulation in the same paradigm: during the comparison period, firing rates of sensorimotor and prefrontal cells gradually reflected a categorical response, corresponding to the decision outcome (Hernández et al., 2002; Romo et al., 2002; Hernández et al., 2010). Therein, similar to the "parametric" WM ensembles described earlier (Romo et al., 1999), decision-coding cells fall into two complementary classes, with one group of cells positively tuned (i.e., increasing its firing) to the "f2>f1" choice and another negatively tuned (Hernández et al., 2002).

A beta-band effect replicating and extending the monkey findings by Haegens et al. (2011b) was recently observed in human EEG recordings (Herding et al., 2016). Here too, during vibrotactile frequency discrimination, the level of non-lateralized beta power in premotor areas was modulated according to participants' decision outcomes (f2>f1 or f2<f1) in a categorical fashion (Figure 3C). Again, this effect reflected subjective choices, including errors, as inferred from Bayesian modeling of f1-f2 choice behavior. Furthermore, capitalizing on a larger subject sample, this effect was found to be invariant across motor response mappings: even when the response scheme (index or middle finger of the right hand) was flipped (across participants), the beta modulations remained unchanged (Herding et al., 2016). In a follow-up study, virtually identical beta patterns were observed when saccades rather than button-presses were used to communicate the decision. Now decision-selective beta activity was localized to more lateral premotor areas (including the frontal eye fields), suggesting a degree of effector-specificity in terms of areas involved, but with a consistent role for beta (Herding et al., 2017).

Combined, these studies suggest that in scalar comparison tasks, sensorimotor beta oscillations can reflect the categorical, potentially abstract content of a decision, even independent of a concrete motor plan. One possibility is that such non-lateralized, contentdependent beta activity relates to the endogenous activation of categorical, conceptual information prior to local translation into an effector-specific response. This interpretation is in line with a recent study recording LFPs in lateral PFC of macagues performing a visual categorization task, which reported different patterns of beta coherence for different categories of morphed stimuli (ranging for instance from cat to dog), "as if low-beta coherence was helping to form the neural ensembles that represented the categories" (Stanley et al., 2016). In further support of this view, when macaques had to judge randomdot motion stimuli, beta activity in lateral PFC signaled the categorical decision outcome (here, "same" or "different"), with beta modulation in different recording sites corresponding to the different outcomes (Wimmer et al., 2016). As for the somatosensory studies discussed above, this observation complemented findings from single unit spike recordings in the same paradigm (Hussar and Pasternak, 2012): different cells increased their firing rate either for "same" or for "different" choices. Thus, there appear to be parallels between modulations of local beta activity and single unit firing rates, in that both signal the emergence of a categorical decision outcome.

419

420

421

422

423

424

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

Decision circuits

The role of beta oscillations in decision-making might be extended to include long-range interactions, again in line with WM findings discussed earlier. The decision effects observed by Haegens et al. (2011b), for instance, included a distributed network of somatosensory and (pre)motor areas. More direct support for a role in network-level processing comes from

a reach-planning study, demonstrating higher beta-band spike-field coherence (SFC; the synchronization of spikes to oscillatory phase) between premotor cortex and the parietal reach region when monkeys were freely making choices as compared to instructed choices (Pesaran et al., 2008). The authors proposed that here, beta coherence reflected a decision circuit between frontal and parietal cortex, which was more activated under free choice conditions. Similarly, beta-band SFC in posterior parietal cortex reflected decisions in a reward-guided choice task (Hawellek et al., 2016). In this study, information about movement choice in firing rates was quantified and related to the phase of beta and gamma oscillations. While for gamma, peak firing rate and maximum information content coincided, for beta the highest spike count preceded maximum information. These differences in temporal alignment were linked to the idea that gamma reflects local, bottom-up processing, while beta links distributed ensembles for computations on a larger scale. Further evidence for beta facilitating long-range communication was obtained in a recent auditory perceptual decision-making study, in which large-scale network dynamics in the beta band predicted decision speed (Alavash et al., 2017).

To summarize, a growing body of evidence suggests that content-specific beta oscillations can signal the endogenous activation of a categorical decision outcome prior to translation into a concrete motor response. Several studies show that such content-specific decision activity in the beta band can be observed beyond sensorimotor regions, both within and between distributed cortical areas.

A role for beta oscillations in endogenous content (re-)activation

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

449

In the previous sections, we have discussed research in the domains of working memory and decision-making, showing that beta activity can be modulated in a content-specific manner. Here, we outline a framework for beta oscillations in endogenous (re-)activation of cortical content representations (illustrated in Figure 4A). We presume that active cortical representations of task-relevant information are reflected in the (spiking) activity of contentspecific neuronal ensembles (Figure 4A, first panel). We further assume that in the absence of stimulation or endogenous prioritization, representations of task-related information can persist without sustained ensemble spiking, for instance, in patterns of synaptic weights (e.g., Jonides et al., 2008). Such dormant, or "latent" memory representations (Figure 4A, second panel) may for instance be characterized by short-term synaptic facilitation (Mongillo et al., 2008; Stokes, 2015) for just presented stimuli, and/or by long-term synaptic potentiation (Hebb, 1949) for overlearned (e.g., abstract/categorical) contents. A general assumption in this framework is that latent memory information can be endogenously restored into an "active" (i.e., spiking) cortical representation (Figure 4A, last panel), for instance by top-down attentional prioritization (e.g., Warden and Miller, 2007; Jonides et al., 2008; Jacob and Nieder, 2014; Watanabe and Funahashi, 2014; Sprague et al., 2016). The mechanisms by which such endogenous (re-)activation might occur, however, have thus far remained unclear. Here, based on the accumulating evidence reviewed above, we propose that this role is filled by content-specific beta band activity. More specifically, we suggest that episodes of content-specific beta synchronization support the endogenous transition from latent to active cortical representations (Figure 4A, third panel), in the service of current task demands.

Oscillatory synchronization is associated with fluctuations in local network excitability (Bishop, 1932), and faster rhythms (>15 Hz) in particular are proposed to support flexible information routing by providing windows of efficient inter-areal communication (Fries, 2015; Palmigiano et al., 2017). Oscillations in the beta band seem particularly well suited to fill these roles during endogenously driven information processing, given (i) their association with top-down processing (Engel and Fries, 2010; Wang, 2010) and (ii) long-range communication (Kopell et al., 2000; Varela et al., 2001; Sherman et al., 2016), (iii) their burst-like temporal dynamics (Jones, 2016), (iv) their presumed role in the flexible formation and manipulation of functional cell assemblies (Roopun et al., 2008; Kopell et al., 2011), and (v) their capacity to modulate impact of neuronal firing (Buzsáki and Draguhn, 2004; Wang, 2010). While several of these characteristics may also apply to other rhythms, the combination of all these aspects appears unique to beta.

Mechanistically, the association of endogenously driven ensemble activation with beta oscillations is in line with models of beta generation that rely on integration of concurrent inputs along the proximal and distal locations of the apical dendrites of pyramidal cells (Sherman et al., 2016; Jones et al., 2009). This integration includes both feedforward (lemniscal thalamic) input via the granular layer, and, critically, feedback (higher-order cortical and/or nonlemniscal thalamic) drives to the supragranular layers (essential for beta emergence in the model), permitting top-down driven synchronization of a cell assembly, mitigated via cortico-(thalamo)cortical drives. Furthermore, based on models that rely on beta-rate spiking-interactions within local cortical circuits (Kopell et al., 2011), it has been argued that beta-synchronized ensembles are less susceptible to competition (unlike PING/gamma networks). In the present context, this property of beta might permit

endogenous content activation to operate in a "protected" oscillatory regime that is relatively robust to distractor interference, e.g., from concurrent sensory inputs.

We may further speculate that beta is an ideal "transit" band for endogenously driven (re-)activation, bridging the frequency space between alpha, which is commonly associated with top-down inhibition (Klimesch et al., 2007; Haegens et al., 2011a), and gamma, which is positively linked to population spiking (e.g., Whittingstall and Logothetis, 2009). Relatedly, previous modeling work (Lundqvist et al., 2010; Lundqvist et al., 2011) has characterized (WM-)reactivation as a transition from a low-frequency (alpha/beta) oscillatory regime (associated with a non-coding "ground"- or "default" state) to a higher frequency/gamma regime (associated with "active" stimulus coding), similar to our conceptualization of latent and (re-)activated representations (cf. Figure 4A, second and fourth panels). Superficially, the association of beta with a "default" state (Lundqvist et al., 2016; see also Engel and Fries, 2010) appears inconsistent with a role in content (re-)activation. However, the two perspectives can be reconciled when considering that content-specificity (in terms of experiment-related information; which might be dissociable from less specific, ongoing beta rhythmicity, see *Future Perspectives* below) emerges only during the critical transition between representational states (Figure 4A, third panel).

Our proposal captures various hallmarks of content-specific beta activity in the domains of WM and decision-making. First, under this framework, content-specific beta episodes are expected to be relatively short-lived (see also Jones, 2016; Sherman et al., 2016), since they would reflect neither latent nor active representations per se, but only a—presumably brief—transition period between the two (Figure 4A). Consistently, content-specific beta

modulations in WM tasks are typically observed in circumscribed time windows, in which participants should bring back past information into the focus of attention (e.g., Spitzer and Blankenburg, 2011; Spitzer et al., 2014b; Wimmer et al., 2016). Similarly, beta-oscillatory representations of task rules in monkey prefrontal cortex were short-lived (see Figure 2F) and appeared only while a stimulus was to be evaluated according to the current rule (Buschman et al., 2012). Notably, in the Buschman et al. study, rules were only switched between blocks of trials, likely leading to a (latent) memory of the current rule that persisted across trials. A representation of such memory in beta synchrony was indeed absent throughout large portions of the trial, and emerged only shortly before the to-be-evaluated stimulus, as if the current rule was endogenously (re-)activated for task-oriented processing. Before and after this brief episode, prefrontal firing rates—but not beta synchrony—encoded just-presented cues, consistent with our differentiation of purely endogenous (re-)activation processes in the beta band from "active" neuronal representations per se (Figure 4A).

In a similar vein, the proposed framework can explain findings of content-specific beta activity during categorization and decision-making, in dissociation from traditional indices of motor preparation. In categorization tasks, subjects are asked to select one of two (or more) internalized prototype concepts, which in our framework entails the endogenous activation of a stored content representation. Indeed, category-selective beta synchronization during stimulus categorization was found only after extensive category learning (Antzoulatos and Miller, 2014, 2016), corroborating the idea that beta is especially involved in *re*-activating cortical representations. Likewise, modulations of beta activity according to categorical decision outcomes, such as in the vibrotactile frequency comparison tasks described earlier,

can be understood in terms of endogenously activating an abstract concept representation, e.g., "higher" ("f2>f1") or "lower" ("f2<f1"). Indeed, on any given trial in the above tasks, the concepts or categories in question may co-exist in form of latent representations, one of which will be activated at the time of choice, as reflected in content-specific beta activity.

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

545

546

547

548

Our framework is further consistent with a non-trivial relationship between beta oscillations and spiking activity (e.g., Whittingstall and Logothetis, 2009; Rule et al., 2017). Conceiving of content-specific beta activity as a transition period (Figure 4A), temporal correlations with spike firing can be weakly negative or positive, depending on how strongly beta episodes overlap in time with (still) dormant or (already) activated representations. Furthermore, rather than in- or decreases of net firing rates in a given area, we assume a (content-specific) distribution of neuronal firing within and/or between functional ensembles. This idea is in line with the spatio-temporal coincidence of local beta modulations with a shifting of firing rates between oppositely tuned cell populations (Romo et al., 1999; Hernández et al., 2002; Barak et al., 2010; Spitzer et al., 2010; Haegens et al., 2011b; Hussar and Pasternak, 2012; Wimmer et al., 2016). In these contexts, beta activity may appear content-specific to the extent that population-level recordings (such as M/EEG or LFP) register the oscillatory signatures of individual subpopulations with different sensitivity (Figure 4B). As a corollary of this view, the sign of content-dependent beta modulations (e.g., whether local beta activity in- or decreases for a given content) might be non-informative and dependent on the particular recording setting. However, the precise relation between beta oscillations and spiking ensemble activity remains speculative and awaits further investigation.

567

Based on the available findings across primate species, endogenous content (re-)activation can include modulations of beta activity both locally and in terms of long-range synchronization between distant regions (see Figure 1B). Modulations of local beta power have mostly been observed for low-dimensional information, such as scalar stimulus attributes (e.g., Spitzer et al., 2010; Haegens et al., 2011b; Wimmer et al., 2016). Higherdimensional contents, such as object identity or task rules, have been associated with sophisticated patterns of beta synchronization between multiple recording sites, potentially reflecting the activation of more distributed cortical representations (e.g., Buschman et al., 2012; Salazar et al., 2012; Antzoulatos and Miller, 2016). In all of these cases, beta seems to provide a flexible scaffolding that sets up functional neuronal ensembles through temporary synchronization of content-coding cell populations. The demand for flexibility in ensemble formation may be particularly high in regions with "mixed selectivity" cells (Rigotti et al., 2013), such as the prefrontal and parietal cortices, where single neurons respond to a multiplicity of task variables (for review, see Fusi et al., 2016). It might be especially in communication within and with these regions that frequency-specific synchronization finesses the active representation of internally stored information alongside current input, in potentially overlapping functional networks.

585

586

587

588

589

590

591

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

Future perspectives

An open question remains whether transient content-specificity of beta emerges from a modification of ongoing beta rhythmicity (cf. Engel and Fries, 2010; Lundqvist et al., 2016), or whether the two reflect functionally dissociable phenomena in overlapping frequency ranges. It is possible that the beta band encompasses several rhythms, including a potentially "inhibitory" rhythm that is functionally more similar to alpha and which seems

especially prevalent in somatomotor context (for review, see Kilavik et al., 2013). Indeed, the possibility that beta is not a unitary phenomenon but covers several roles may help to reconcile seemingly disparate observations, such as WM-load related beta-power increases in some studies (e.g., Deiber et al., 2007; Kornblith et al., 2016), but decreases in others (cf. e.g., Siegel et al., 2009; Lundqvist et al., 2011). Relatedly, several authors divide the beta-band into a lower (<20 Hz) and a higher (>20 Hz) sub-range (Roopun et al., 2006; Kopell et al., 2011), with potentially distinct functional roles (see Introduction). In the literature reviewed here, however, we found only a weak—if any—tendency for content-specific effects (Figure 1A, right) to occur in a higher beta frequency than overall, task-related modulations (Figure 1A, left), with considerable variability across experiments, leaving the question of potentially distinct beta rhythms (and the determinants of their precise frequencies across cortical areas) to future targeted study.

A more general open question is the very nature of "latent" representations that are amenable to beta-mediated re-activation. As one possibility, content-specific beta activity might reflect a direct drive to reactivate activity-silent (e.g., synaptic) representations, as schematically illustrated in Figure 4A. In an alternative scenario, dormant memory representations are kept "silent" by actively inhibitory mechanisms, for instance, by content-matching "inhibitory engrams" (Ramaswami, 2014; Barron et al., 2017). Under this view, cortical reactivation may result from a release from inhibition, by suppression of inhibitory engrams, a scenario in which beta-mediated reactivation might indeed operate via inhibitory processes ("inhibition of inhibition"; Pfeffer et al., 2013). A related issue is the extent to which beta-mediated reactivation relies on the contents or concepts in question being familiar and consolidated in long(er)-term memory (which we assumed to be the case in

most of the above reviewed studies). It remains to be shown empirically whether contentspecific synchronization plays a role also in reactivating representations of entirely novel, just encountered information, a "silent" memory of which may persist only in transient patterns of short-term synaptic plasticity (Mongillo et al., 2008; Stokes, 2015).

Lastly, a key question for future work is how burst-like, transient beta events are temporally organized. One possibility is that temporal context is provided by other (lower) frequency rhythms that modulate beta via cross-frequency interactions. For instance, delta oscillations (1–3 Hz) are thought to tap into the temporal structure of behaviorally relevant events (reviewed in Merchant et al., 2015; cf. Lakatos et al., 2008; Schroeder and Lakatos, 2009), with faster oscillations "nested" in these slower rhythms. Such interactions might manifest in phase-amplitude coupling, where the phase of delta provides "windows-of-opportunity" for beta to burst. Indeed, there are indications that beta power can be modulated by delta oscillations in the context of WM (Siegel et al., 2009) and temporal prediction (Arnal et al., 2015; Herrmann et al., 2016). Such temporal structuring could be implemented via corticothalamocortical, and/or cortico-basal ganglia loops (cf. Merchant et al., 2015). For example, beta could be timed by bursting thalamic inputs (cf. Sherman et al., 2016), which in turn could be gated via the basal ganglia. Albeit speculative, these ideas are in line with studies showing that beta oscillations in the basal ganglia are associated with interval timing (e.g., Bartolo et al., 2014), providing promising avenues for future research.

Conclusion

To summarize, we propose that content-specific beta synchronization provides a mechanism for the formation of functional neuronal ensembles during endogenous (re-)activation of

cortical representations. This framework is in line with the emerging view that beta facilitates network-level communication (Kopell et al., 2000; Varela et al., 2001; Siegel et al., 2011) and specifically endogenous, top-down driven interactions (Engel and Fries, 2010; Wang, 2010; Arnal and Giraud, 2012; Bastos et al., 2012; Sherman et al., 2016). However, beyond a static role in maintaining the "status quo" (cf. Engel and Fries, 2010), we characterize content-specific beta synchronization as a dynamic and highly flexible mechanism, one that can "wake up" (see also Fries, 2015)—rather than merely preserve—an endogenous cognitive set. This proposal accommodates accumulating findings in animals and humans and outlines a functional role for beta that may fit its "burst-like" temporal characteristics (Jones, 2016). An intriguing question for future research is whether and how the beta-band dynamics discussed here interact with sensorimotor rhythms when (re-)activated content representations are translated into concrete action plans.

654	References
655	
656	Alavash M, Daube C, Wöstmann M, Brandmeyer A, Obleser J (2017) Large-scale network
657	dynamics of beta-band oscillations underlie auditory perceptual decision-making.
658	Network Neuroscience 1:166-191.
659	Antzoulatos EG, Miller EK (2014) Increases in functional connectivity between prefrontal
660	cortex and striatum during category learning. Neuron 83:216-225.
661	Antzoulatos EG, Miller EK (2016) Synchronous beta rhythms of frontoparietal networks
662	support only behaviorally relevant representations. eLife 5:e17822.
663	Arnal LH, Giraud A-L (2012) Cortical oscillations and sensory predictions. Trends in Cognitive
664	Sciences:1-9.
665	Arnal LH, Doelling KB, Poeppel D (2015) Delta-beta coupled oscillations underlie temporal
666	prediction accuracy. Cerebral Cortex 25:3077-3085.
667	Axmacher N, Schmitz DP, Wagner T, Elger CE, Fell J (2008) Interactions between medial
668	temporal lobe, prefrontal cortex, and inferior temporal regions during visual working
669	memory: A combined intracranial eeg and functional magnetic resonance imaging
670	study. Journal of Neuroscience 28:7304-7312.
671	Babiloni C, Babiloni F, Carducci F, Cincotti F, Vecchio F, Cola B, Rossi S, Miniussi C, Rossini PM
672	(2004) Functional frontoparietal connectivity during short-term memory as revealed
673	by high-resolution EEG coherence analysis. Behavioral Neuroscience 118:687-697.
674	Barak O, Tsodyks M, Romo R (2010) Neuronal population coding of parametric working
675	memory. Journal of Neuroscience 30:9424-9430.
676	Barron HC, Vogels TP, Behrens TE, Ramaswami M (2017) Inhibitory engrams in perception
677	and memory. Proceedings of the National Academy of Sciences.
678	Bartolo R, Prado L, Merchant H (2014) Information processing in the primate basal ganglia
679	during sensory-guided and internally driven rhythmic tapping. Journal of
680	Neuroscience 34:3910-3923.
681	Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical
682	microcircuits for predictive coding. Neuron 76:695-711.
683	Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R, Dowdall JR, De Weerd P,
684	Kennedy H, Fries P (2015) Visual areas exert feedforward and feedback influences
685	through distinct frequency channels. Neuron 85:390-401.

686	Bauer M, Oostenveld R, Peeters M, Fries P (2006) Tactile spatial attention enhances gamma-
687	band activity in somatosensory cortex and reduces low-frequency activity in parieto-
688	occipital areas. Journal of Neuroscience 26:490-501.
689	Benchenane K, Tiesinga PH, Battaglia FP (2011) Oscillations in the prefrontal cortex: a
690	gateway to memory and attention. Current Opinion in Neurobiology 21:475-485.
691	Bidet-Caulet A, Barbe P-G, Roux S, Viswanath H, Barthélémy C, Bruneau N, Knight RT,
692	Bonnet-Brilhault F (2012) Dynamics of anticipatory mechanisms during predictive
693	context processing. European Journal of Neuroscience 36:2996-3004.
694	Bishop GH (1932) Cyclic changes in excitability of the optic pathway of the rabbit. American
695	Journal of Physiology 103:213-224.
696	Buschman TJ, Miller EK (2007) Top-down versus bottom-up control of attention in the
697	prefrontal and posterior parietal cortices. Science 315:1860-1862.
698	Buschman Timothy J, Denovellis Eric L, Diogo C, Bullock D, Miller Earl K (2012) Synchronous
699	oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76:838-846.
700	Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926-
701	1929.
702	Chen Y, Huang X (2016) Modulation of alpha and beta oscillations during an n-back task with
703	varying temporal memory load. Perception Science:2031.
704	Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes J-D (2017) The distributed nature
705	of working memory. Trends in Cognitive Sciences 21:111-124.
706	Crone N, Miglioretti D, Gordon B, Sieracki J, Wilson M, Uematsu S, Lesser R (1998) Functional
707	mapping of human sensorimotor cortex with electrocorticographic spectral analysis.
708	I. Alpha and beta event-related desynchronization. Brain 121:2271-2299.
709	Deiber M-P, Missonnier P, Bertrand O, Gold G, Fazio-Costa L, Ibañez V, Giannakopoulos P
710	(2007) Distinction between perceptual and attentional processing in working
711	memory tasks: A study of phase-locked and induced oscillatory brain dynamics.
712	Journal of Cognitive Neuroscience 19:158-172.
713	Dipoppa M, Gutkin BS (2013) Flexible frequency control of cortical oscillations enables
714	computations required for working memory. Proceedings of the National Academy of
715	Sciences.
716	Donner TH, Siegel M, Fries P, Engel AK (2009) Buildup of choice-predictive activity in human
717	motor cortex during perceptual decision making. Current Biology 19:1581-1585.

718	Donner TH, Siegel M, Oostenveld R, Fries P, Bauer M, Engel AK (2007) Population activity in
719	the human dorsal pathway predicts the accuracy of visual motion detection. Journal
720	of Neurophysiology 98:345-359.
721	Dotson NM, Salazar RF, Gray CM (2014) Frontoparietal correlation dynamics reveal interplay
722	between integration and segregation during visual working memory. Journal of
723	Neuroscience 34:13600-13613.
724	Engel AK, Fries P (2010) Beta-band oscillations - signalling the status quo? Current Opinion in
725	Neurobiology 20:156-165.
726	Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nature
727	Reviews Neuroscience 12:105-118.
728	Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through
729	neuronal coherence. Trends in Cognitive Sciences 9:474-480.
730	Fries P (2015) Rhythms for cognition: Communication through coherence. Neuron 88:220-
731	235.
732	Fusi S, Miller EK, Rigotti M (2016) Why neurons mix: high dimensionality for higher cognition.
733	Current Opinion in Neurobiology 37:66-74.
734	Gould IC, Nobre AC, Wyart V, Rushworth MFS (2012) Effects of decision variables and
735	intraparietal stimulation on sensorimotor oscillatory activity in the human brain.
736	Journal of Neuroscience 32:1-14.
737	Haegens S, Luther L, Jensen O (2012) Somatosensory anticipatory alpha activity increases to
738	suppress distracting input. Journal of Cognitive Neuroscience 24:677-685.
739	Haegens S, Nácher V, Luna R, Romo R, Jensen O (2011a) $\alpha\text{-Oscillations}$ in the monkey
740	sensorimotor network influence discrimination performance by rhythmical inhibition
741	of neuronal spiking. Proceedings of the National Academy of Sciences 108:19377-
742	19382.
743	Haegens S, Nácher V, Hernández A, Luna R, Jensen O, Romo R (2011b) Beta oscillations in the
744	monkey sensorimotor network reflect somatosensory decision making. Proceedings
745	of the National Academy of Sciences 108:10708-10713.
746	Hanslmayr S, Spitzer B, Bäuml K-H (2009) Brain oscillations dissociate between semantic and
747	nonsemantic encoding of episodic memories. Cerebral Cortex 19:1631-1640.

748	Hanslmayr S, Staresina BP, Bowman H (2016) Oscillations and episodic memory: Addressing
749	the synchronization/desynchronization conundrum. Trends in Neurosciences 39:16-
750	25.
751	Hanslmayr S, Volberg G, Wimber M, Raabe M, Greenlee MW, Bäuml K-HT (2011) The
752	relationship between brain oscillations and BOLD signal during memory formation: A
753	combined EEG-fMRI study. Journal of Neuroscience 31:15674-15680.
754	Hari R, Salmelin R (1997) Human cortical oscillations: a neuromagnetic view through the
755	skull. Trends in Neurosciences 20:44-49.
756	Harrison SA, Tong F (2009) Decoding reveals the contents of visual working memory in early
757	visual areas. Nature 458:632-635.
758	Hawellek DJ, Wong YT, Pesaran B (2016) Temporal coding of reward-guided choice in the
759	posterior parietal cortex. Proceedings of the National Academy of Sciences
760	113:13492-13497.
761	Hebb DO (1949) The organization of behavior: a neuropsychological theory: Wiley.
762	Herding J, Spitzer B, Blankenburg F (2016) Upper beta band oscillations in human premotor
763	cortex encode subjective choices in a vibrotactile comparison task. Journal of
764	Cognitive Neuroscience 28:668-679.
765	Herding J, Ludwig S, Blankenburg F (2017) Response-modality-specific encoding of human
766	choices in upper beta-band oscillations during vibrotactile comparisons. Frontiers in
767	Human Neuroscience 11.
768	Hernández A, Zainos A, Romo R (2002) Temporal evolution of a decision-making process in
769	medial premotor cortex. Neuron 33:959-972.
770	Hernández A, Nácher V, Luna R, Zainos A, Lemus L, Alvarez M, Vázquez Y, Camarillo L, Romo
771	R (2010) Decoding a perceptual decision process across cortex. Neuron 66:300-314.
772	Herrmann B, Henry MJ, Haegens S, Obleser J (2016) Temporal expectations and neural
773	amplitude fluctuations in auditory cortex interactively influence perception.
774	NeuroImage 124:487-497.
775	Holgado AJN, Terry JR, Bogacz R (2010) Conditions for the generation of beta oscillations in
776	the subthalamic nucleus–globus pallidus network. Journal of Neuroscience 30:12340-
777	12352

778	Honkanen R, Rouhinen S, Wang SH, Palva JM, Palva S (2015) Gamma oscillations underlie the
779	maintenance of feature-specific information and the contents of visual working
780	memory. Cerebral Cortex 25:3788-3801.
781	Hussar CR, Pasternak T (2012) Memory-guided sensory comparisons in the prefrontal cortex:
782	Contribution of putative pyramidal cells and interneurons. Journal of Neuroscience
783	32:2747-2761.
784	Jacob SN, Nieder A (2014) Complementary roles for primate frontal and parietal cortex in
785	guarding working memory from distractor stimuli. Neuron 83:226-237.
786	Jenkinson N, Brown P (2011) New insights into the relationship between dopamine, beta
787	oscillations and motor function. Trends in Neurosciences 34:611-618.
788	Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity:
789	gating by inhibition. Frontiers in Human Neuroscience 4:186.
790	Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B (2005) On the human
791	sensorimotor-cortex beta rhythm: sources and modeling. NeuroImage 26:347-355.
792	Jha A, Nachev P, Barnes G, Husain M, Brown P, Litvak V (2015) The frontal control of
793	stopping. Cerebral Cortex 25:4392-4406.
794	Johnson MK (1992) MEM: Mechanisms of recollection. Journal of Cognitive Neuroscience
795	4:268-280.
796	Jones SR (2016) When brain rhythms aren't 'rhythmic': implication for their mechanisms and
797	meaning. Current Opinion in Neurobiology 40:72-80.
798	Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI (2007) Neural correlates of
799	tactile detection: A combined magnetoencephalography and biophysically based
800	computational modeling study. Journal of Neuroscience 27:10751-10764.
801	Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI (2009)
802	Quantitative analysis and biophysically realistic neural modeling of the MEG mu
803	rhythm: Rhythmogenesis and modulation of sensory-evoked responses. Journal of
804	Neurophysiology 102:3554-3572.
805	Jones SR, Kerr CE, Wan Q, Pritchett DL, Hämäläinen M, Moore CI (2010) Cued spatial
806	attention drives functionally relevant modulation of the mu rhythm in primary
807	somatosensory cortex. Journal of Neuroscience 30:13760-13765.
808	Jonides J, Lewis RL, Nee DE, Lustig CA, Berman MG, Moore KS (2008) The mind and brain of
809	short-term memory. Annual Review of Psychology 59:193-224.

810	Kaiser J, Lennert T, Lutzenberger W (2007) Dynamics of oscillatory activity during auditory
811	decision making. Cerebral Cortex 17:2258-2267.
812	Kilavik BE, Zaepffel M, Brovelli A, MacKay WA, Riehle A (2013) The ups and downs of beta
813	oscillations in sensorimotor cortex. Experimental Neurology 245:15-26.
814	Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: The inhibition-timing
815	hypothesis. Brain Research Reviews 53:63-88.
816	Kloosterman NA, Meindertsma T, Hillebrand A, van Dijk BW, Lamme VAF, Donner TH (2015)
817	Top-down modulation in human visual cortex predicts the stability of a perceptual
818	illusion. Journal of Neurophysiology 113:1063-1076.
819	Kopell N, Whittington MA, Kramer MA (2011) Neuronal assembly dynamics in the beta1
820	frequency range permits short-term memory. Proceedings of the National Academy
821	of Sciences 108:3779-3784.
822	Kopell N, Ermentrout GB, Whittington MA, Traub RD (2000) Gamma rhythms and beta
823	rhythms have different synchronization properties. Proceedings of the National
824	Academy of Sciences 97:1867-1872.
825	Kornblith S, Buschman TJ, Miller EK (2016) Stimulus load and oscillatory activity in higher
826	cortex. Cerebral Cortex 26:3772-3784.
827	Kramer MA, Roopun AK, Carracedo LM, Traub RD, Whittington MA, Kopell NJ (2008) Rhythm
828	generation through period concatenation in rat somatosensory cortex. PLOS
829	Computational Biology 4:e1000169.
830	Kubanek J, Snyder LH, Brunton BW, Brody CD, Schalk G (2013) A low-frequency oscillatory
831	neural signal in humans encodes a developing decision variable. NeuroImage 83:795-
832	808.
833	Kubota K, Iwamoto T, Suzuki H (1974) Visuokinetic activities of primate prefrontal neurons
834	during delayed-response performance. Journal of Neurophysiology 37:1197-1212.
835	Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal
836	oscillations as a mechanism of attentional selection. Science 320:110-113.
837	Lara AH, Wallis JD (2014) Executive control processes underlying multi-item working
838	memory. Nature Neuroscience 17:876-883.
839	Lee JH, Whittington MA, Kopell NJ (2013) Top-down beta rhythms support selective
840	attention via interlaminar interaction: a model. PLoS Computational Biology
841	9:e1003164-1003123.

842	Lewis CM, Bosman CA, Brunet NM, Lima B, Roberts MJ, Womelsdorf T, Weerd Pd,
843	Neuenschwander S, Singer W, Fries P (2016) Two frequency bands contain the most
844	stimulus-related information in visual cortex. bioRxiv:049718.
845	Liebe S, Hoerzer GM, Logothetis NK, Rainer G (2012) Theta coupling between V4 and
846	prefrontal cortex predicts visual short-term memory performance. Nature
847	Neuroscience 15:456-462.
848	Lisman JE, Jensen O (2013) The θ - γ neural code. Neuron 77:1002-1016.
849	Ludwig S, Spitzer B, Jacobs AM, Sekutowicz M, Sterzer P, Blankenburg F (2016) Spectral EEG
850	abnormalities during vibrotactile encoding and quantitative working memory
851	processing in schizophrenia. NeuroImage 11:578-587.
852	Lundqvist M, Compte A, Lansner A (2010) Bistable, irregular firing and population oscillations
853	in a modular attractor memory network. PLoS Comput Biol 6:e1000803.
854	Lundqvist M, Herman P, Lansner A (2011) Theta and gamma power increases and alpha/beta
855	power decreases with memory load in an attractor network model. Journal of
856	Cognitive Neuroscience 23:3008-3020.
857	Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK (2016) Gamma and beta
858	bursts underlie working memory. Neuron 90:152-164.
859	Marco-Pallarés J, Münte TF, Rodríguez-Fornells A (2015) The role of high-frequency
860	oscillatory activity in reward processing and learning. Neuroscience & Biobehavioral
861	Reviews 49:1-7.
862	McCarthy MM, Moore-Kochlacs C, Gu X, Boyden ES, Han X, Kopell N (2011) Striatal origin of
863	the pathologic beta oscillations in Parkinson's disease. Proceedings of the National
864	Academy of Sciences 108:11620-11625.
865	Mendoza-Halliday D, Torres S, Martinez-Trujillo JC (2014) Sharp emergence of feature-
866	selective sustained activity along the dorsal visual pathway. Nature Neuroscience
867	17:1255-1262.
868	Merchant H, Grahn J, Trainor L, Rohrmeier M, Fitch WT (2015) Finding the beat: a neural
869	perspective across humans and non-human primates. Philosophical Transactions of
870	the Royal Society B: Biological Sciences 370.
871	Michalareas G, Vezoli J, van Pelt S, Schoffelen J-M, Kennedy H, Fries P (2016) Alpha-beta and
872	gamma rhythms subserve feedback and feedforward influences among human visual
873	cortical areas. Neuron 89:384-397.

874	Michels L, Bucher K, Lüchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010)
875	Simultaneous EEG-fMRI during a working memory task: modulations in low and high
876	frequency bands. PloS One 5:e10298.
877	Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in
878	prefrontal cortex of the macaque. Journal of Neuroscience 16:5154-5167.
879	Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science
880	319:1543-1546.
881	Mountcastle VB, Talbot WH, Darian-Smith I, Kornhuber† HH (1967) Neural basis of the sense
882	of flutter-vibration. Science 155:597-600.
883	Murthy VN, Fetz EE (1992) Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of
884	awake behaving monkeys. Proceedings of the National Academy of Sciences 89:5670-
885	5674.
886	Myers NE, Rohenkohl G, Wyart V, Woolrich MW, Nobre AC, Stokes MG (2015) Testing
887	sensory evidence against mnemonic templates. eLife 4:e09000.
888	Neuper C, Pfurtscheller G (2001) Event-related dynamics of cortical rhythms: frequency-
889	specific features and functional correlates. International Journal of Psychophysiology
890	43:41-58.
891	Nieder A (2012) Supramodal numerosity selectivity of neurons in primate prefrontal and
892	posterior parietal cortices. Proceedings of the National Academy of Sciences
893	109:11860-11865.
894	O'Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-to-bound signal that
895	determines perceptual decisions in humans. Nature Neuroscience 15:1729-1735.
896	Oberauer K (2002) Access to information in working memory: Exploring the focus of
897	attention. Journal of Experimental Psychology: Learning, Memory, and Cognition
898	28:411-421.
899	Palmigiano A, Geisel T, Wolf F, Battaglia D (2017) Flexible information routing by transient
900	synchrony. Nature Neuroscience 20:1014-1022.
901	Palva S, Kulashekhar S, Hämäläinen M, Palva JM (2011) Localization of cortical phase and
902	amplitude dynamics during visual working memory encoding and retention. Journal
903	of Neuroscience 31:5013-5025.
904	Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit between
905	frontal and parietal cortex, Nature 453:406-409

906	Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in
907	neuronal activity during working memory in macaque parietal cortex. Nature
908	Neuroscience 5:805-811.
909	Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual
910	cortex: the logic of connections between molecularly distinct interneurons. Nature
911	Neuroscience 16:1068-1076.
912	Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and
913	desynchronization: basic principles. Clinical Neurophysiology 110:1842-1857.
914	Pfurtscheller G, Stancak A, Neuper C (1996) Event-related synchronization (ERS) in the alpha
915	band - an electrophysiological correlate of cortical idling: a review. International
916	Journal of Psychophysiology 24:39-46.
917	Piantoni G, Kline KA, Eagleman DM (2010) Beta oscillations correlate with the probability of
918	perceiving rivalrous visual stimuli. Journal of Vision 10:18-18.
919	Ramaswami M (2014) Network plasticity in adaptive filtering and behavioral habituation.
920	Neuron 82:1216-1229.
921	Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND, Miller EK, Fusi S (2013) The importance
922	of mixed selectivity in complex cognitive tasks. Nature 497:585-590.
923	Romo R, de Lafuente V (2013) Conversion of sensory signals into perceptual decisions.
924	Progress in Neurobiology 103:41-75.
925	Romo R, Brody CD, Hernández A, Lemus L (1999) Neuronal correlates of parametric working
926	memory in the prefrontal cortex. Nature 399:470-473.
927	Romo R, Hernández A, Zainos A, Lemus L, Brody CD (2002) Neuronal correlates of decision-
928	making in secondary somatosensory cortex. Nature Neuroscience 5:1217-1225.
929	Roopun AK, Middleton SJ, Cunningham MO, LeBeau FEN, Bibbig A, Whittington MA, Traub
930	RD (2006) A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of
931	somatosensory cortex. Proceedings of the National Academy of Sciences 103:15646-
932	15650.
933	Roopun AK, Kramer MA, Carracedo LM, Kaiser M, Davies CH, Traub RD, Kopell NJ,
934	Whittington MA (2008) Period concatenation underlies interactions between gamma
935	and beta rhythms in neocortex. Frontiers in Cellular Neuroscience 2:1.

936	Rose NS, Lakocque II, Riggaii AC, Gosseries O, Starrett MI, Meyering EE, Postie BR (2016)
937	Reactivation of latent working memories with transcranial magnetic stimulation.
938	Science 354:1136-1139.
939	Roux F, Uhlhaas PJ (2014) Working memory and neural oscillations: alpha–gamma versus
940	theta-gamma codes for distinct WM information? Trends in Cognitive Sciences
941	18:16-25.
942	Rule ME, Vargas-Irwin CE, Donoghue JP, Truccolo W (2017) Dissociation between sustained
943	single-neuron spiking β -rhythmicity and transient β -LFP oscillations in primate motor
944	cortex. Journal of Neurophysiology:jn.00651.02016-00652.
945	Sacchet MD, LaPlante RA, Wan Q, Pritchett DL, Lee AKC, Hamalainen M, Moore Cl, Kerr CE,
946	Jones SR (2015) Attention drives synchronization of alpha and beta rhythms between
947	right inferior frontal and primary sensory neocortex. Journal of Neuroscience
948	35:2074-2082.
949	Salazar RF, Dotson NM, Bressler SL, Gray CM (2012) Content-specific fronto-parietal
950	synchronization during visual working memory. Science 338:1097-1100.
951	Sanes JN, Donoghue JP (1993) Oscillations in local field potentials of the primate motor
952	cortex during voluntary movement. Proceedings of the National Academy of Sciences
953	90:4470-4474.
954	Schmiedt JT, Maier A, Fries P, Saunders RC, Leopold DA, Schmid MC (2014) Beta oscillation
955	dynamics in extrastriate cortex after removal of primary visual cortex. Journal of
956	Neuroscience 34:11857-11864.
957	Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of
958	sensory selection. Trends in Neurosciences 32:9-18.
959	Schubert R, Haufe S, Blankenburg F, Villringer A, Curio G (2009) Now you'll feel it, now you
960	won't: EEG rhythms predict the effectiveness of perceptual masking. Journal of
961	Cognitive Neuroscience 21:2407-2419.
962	Sederberg PB, Gauthier LV, Terushkin V, Miller JF, Barnathan JA, Kahana MJ (2006)
963	Oscillatory correlates of the primacy effect in episodic memory. NeuroImage
964	32:1422-1431.
965	Sherman MA, Lee S, Law R, Haegens S, Thorn CA, Hämäläinen MS, Moore CI, Jones SR (2016)
966	Neural mechanisms of transient neocortical beta rhythms: Converging evidence from

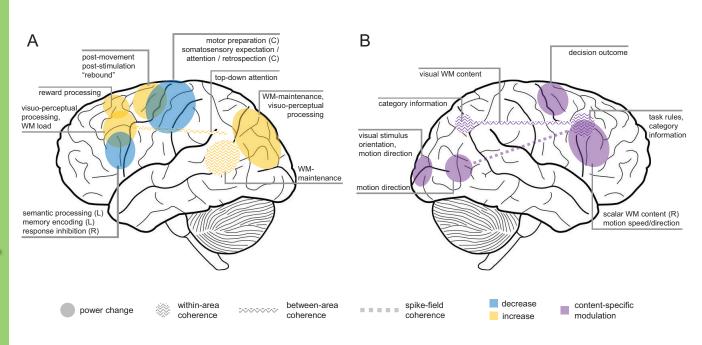
967	numans, computational modeling, monkeys, and mice. Proceedings of the National
968	Academy of Sciences.
969	Siegel M, Warden MR, Miller EK (2009) Phase-dependent neuronal coding of objects in
970	short-term memory. Proceedings of the National Academy of Sciences 106:21341-
971	21346.
972	Siegel M, Engel A, Donner T (2011) Cortical network dynamics of perceptual decision-making
973	in the human brain. Frontiers in Human Neuroscience 5:12.
974	Spitzer B, Blankenburg F (2011) Stimulus-dependent EEG activity reflects internal updating of
975	tactile working memory in humans. Proceedings of the National Academy of Sciences
976	108:8444-8449.
977	Spitzer B, Blankenburg F (2012) Supramodal parametric working memory processing in
978	humans. Journal of Neuroscience 32:3287-3295.
979	Spitzer B, Wacker E, Blankenburg F (2010) Oscillatory correlates of vibrotactile frequency
980	processing in human working memory. Journal of Neuroscience 30:4496-4502.
981	Spitzer B, Fleck S, Blankenburg F (2014a) Parametric alpha- and beta-band signatures of
982	supramodal numerosity information in human working memory. Journal of
983	Neuroscience 34:4293-4302.
984	Spitzer B, Gloel M, Schmidt TT, Blankenburg F (2014b) Working memory coding of analog
985	stimulus properties in the human prefrontal cortex. Cerebral Cortex 24:2229-2236.
986	Spitzer B, Hanslmayr S, Opitz B, Mecklinger A, Bäuml K-H (2009) Oscillatory correlates of
987	retrieval-induced forgetting in recognition memory. Journal of Cognitive
988	Neuroscience 21:976-990.
989	Sprague TC, Ester EF, Serences JT (2016) Restoring Latent Visual Working Memory
990	Representations in Human Cortex. Neuron 91:694-707.
991	Stanley DA, Roy JE, Aoi MC, Kopell NJ (2016) Low-beta oscillations turn up the gain during
992	category judgments. Cerebral Cortex.
993	Stokes MG (2015) 'Activity-silent' working memory in prefrontal cortex: a dynamic coding
994	framework. Trends in Cognitive Sciences 19:394-405.
995	Tallon-Baudry C, Bertrand O, Fischer C (2001) Oscillatory synchrony between human
996	extrastriate areas during visual short-term memory maintenance. Journal of
997	Neuroscience 21:RC177

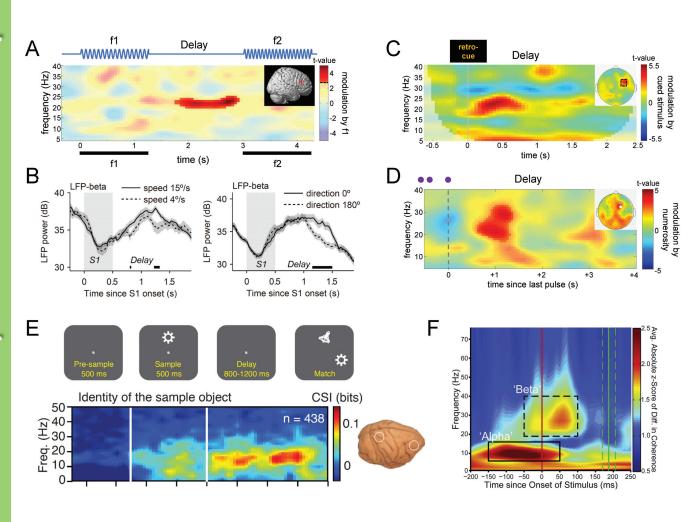
998	railon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) induced γ-band activity during the
999	delay of a visual short-term memory task in humans. Journal of Neuroscience
1000	18:4244-4254.
1001	Tallon-Baudry C, Mandon S, Freiwald WA, Kreiter AK (2004) Oscillatory synchrony in the
1002	monkey temporal lobe correlates with performance in a visual short-term memory
1003	task. Cerebral Cortex 14:713-720.
1004	Twomey DM, Kelly SP, O' Connell RG (2016) Abstract and effector-selective decision
1005	signals exhibit qualitatively distinct dynamics before delayed perceptual reports.
1006	Journal of Neuroscience 36:7346-7352.
1007	Van Ede F, Jensen O, Maris E (2010) Tactile expectation modulates pre-stimulus beta-band
1008	oscillations in human sensorimotor cortex. NeuroImage 51:867-876.
1009	Van Ede F, de Lange F, Jensen O, Maris E (2011) Orienting attention to an upcoming tactile
1010	event involves a spatially and temporally specific modulation of sensorimotor alpha-
1011	and beta-band oscillations. Journal of Neuroscience 31:2016-2024.
1012	Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization
1013	and large-scale integration. Nature Reviews Neuroscience 2:229-239.
1014	Vergara J, Rivera N, Rossi-Pool R, Romo R (2016) A neural parametric code for storing
1015	information of more than one sensory modality in working memory. Neuron 89:54-
1016	62.
1017	Wang X-J (2010) Neurophysiological and computational principles of cortical rhythms in
1018	cognition. Physiological Reviews 90:1195-1268.
1019	Warden MR, Miller EK (2007) The representation of multiple objects in prefrontal neuronal
1020	delay activity. Cerebral Cortex 17 Suppl 1:i41-50.
1021	Watanabe K, Funahashi S (2014) Neural mechanisms of dual-task interference and cognitive
1022	capacity limitation in the prefrontal cortex. Nature Neuroscience 17:601-611.
1023	Weiss S, Mueller HM (2012) "Too many betas do not spoil the broth": The role of beta brain
1024	oscillations in language processing. Frontiers in Psychology 3.
1025	Whittingstall K, Logothetis NK (2009) Frequency-band coupling in surface EEG reflects spiking
1026	activity in monkey visual cortex. Neuron 64:281-289.
1027	Wimmer K, Ramon M, Pasternak T, Compte A (2016) Transitions between multiband
1028	oscillatory patterns characterize memory-guided perceptual decisions in prefrontal
1029	circuits. Journal of Neuroscience 36:489-505.

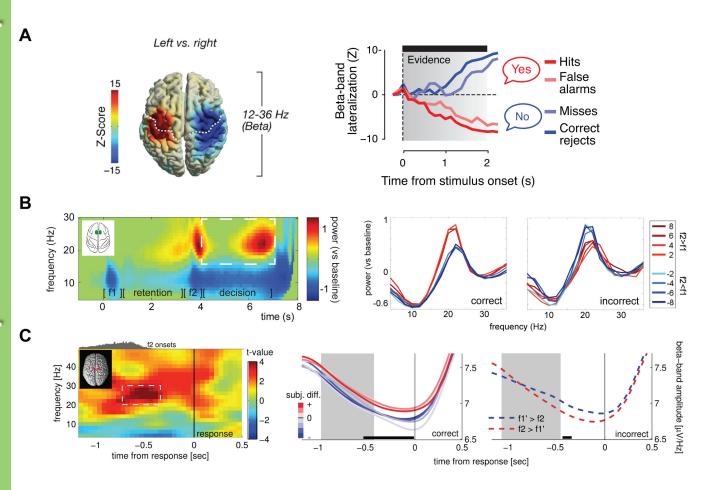
1030	Wong YT, Fabiszak MM, Novikov Y, Daw ND, Pesaran B (2016) Coherent neuronal ensembles
1031	are rapidly recruited when making a look-reach decision. Nature Neuroscience
1032	19:327-334.
1033	Wyart V, Myers NE, Summerfield C (2015) Neural mechanisms of human perceptual choice
1034	under focused and divided attention. Journal of Neuroscience 35:3485-3498.
1035	Wyart V, de Gardelle V, Scholl J, Summerfield C (2012) Rhythmic fluctuations in evidence
1036	accumulation during decision making in the human brain. Neuron 76:847-858.
1037	Zhang Y, Chen Y, Bressler SL, Ding M (2008) Response preparation and inhibition: The role of
1038	the cortical sensorimotor beta rhythm. Neuroscience 156:238-246.
1039	
1040	
1041	

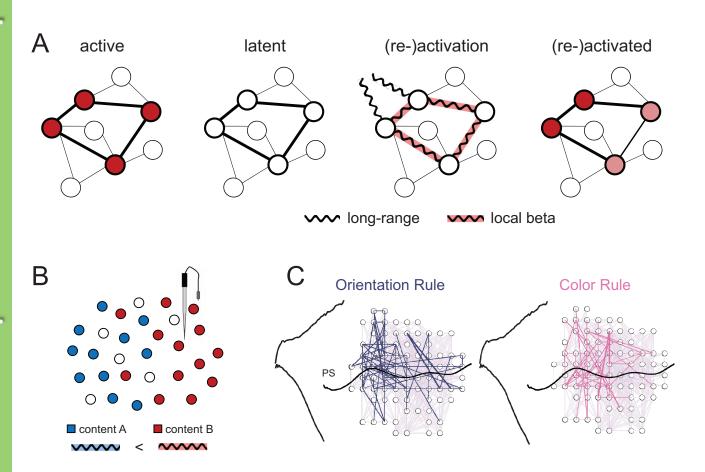
Figure Legends

Figure 1. Beyond motor control: Schematic overview of oscillatory beta-band effects across cortex. A. Overall beta activity changes (in-/decreases) associated with different cognitive functions (NB: non-exhaustive). **B.** Content-specific modulations of beta-band activity; see text for details. For convenience, findings from human- and non-human primate studies are rendered on a common template. Unless specified (L: left, R: right; C: contralateral), effects were not systematically lateralized.


Figure 2. Content-specific beta activity during WM processing. A. During WM maintenance of vibrotactile frequency information, prefrontal EEG beta power is parametrically modulated by the frequency of the to-be-maintained stimulus (f1). Adapted with permission from Spitzer et al. (2010). B. Similar beta power modulations were found in LFP recordings in monkey prefrontal cortex during WM maintenance of visual motion information. Adapted with permission from Wimmer et al. (2016). Note that in the standard delay tasks in A-B, beta modulations occurred mostly late in the WM delay period. C. In contrast, when participants were retro-cued to focus on a given WM content for further maintenance, beta was modulated early after the cue. Adapted with permission from Spitzer and Blankenburg (2011). D. Similar early modulations were observed during WM processing of the approximate number of previously presented inputs (3–8 pulses in rapid sequence, illustrated in purple). Adapted with permission from Spitzer et al. (2014a). E. Content-specific fronto-parietal beta synchronization during WM maintenance of visual object information in monkeys. As in A-D, these effects were absent during stimulus encoding. Adapted with permission from Salazar et al. (2012). Reprinted with permission from AAAS. F. Rule-


dependent beta-synchronization in monkey prefrontal cortex at the time of the to-beevaluated stimulus (see also Figure 4C). Adapted with permission from Buschman et al. (2012). Reprinted with permission from Elsevier.


Figure 3. Content-specific beta activity during decision-making. A. Source reconstruction showing lateralized, effector-selective beta activity (left- versus right-hand response) prior to button press, in human subjects performing a visual motion detection task (left panel). Time courses of lateralized beta activity in motor cortex indicate accumulative updating of the motor plan as a decision evolves (right panel). Adapted with permission from Donner et al. (2009). Reprinted with permission from Elsevier. B. Beta power modulation in monkey medial premotor cortex prior to motor response in vibrotactile discrimination task reflects binary decision outcome, also on error trials. Spectra on the right are averaged over the time window indicated by dashed box in the left panel, per stimulus class (sorted by f2-f1 difference), for correct and incorrect trials separately. Adapted with permission from Haegens et al. (2011b). C. Remarkably similar observation as in B, in human EEG recordings using the same paradigm. Adapted with permission from Herding et al. (2016). © 2016 by the Massachusetts Institute of Technology, published by the MIT Press.


Figure 4. A framework for content-specific beta activity. A. Content-specific beta synchronization as endogenously driven transition from latent to active cortical representation. Left: *active* cortical representations (e.g., of currently perceived, task-relevant information) are characterized by spiking activity (symbolized in red) in content-specific neuronal ensembles. Second from left: In the absence of perceptual input and/or attentional prioritization, information can be retained in *latent* memory representations,

without spiking activity in the content-specific ensemble, e.g., in patterns of synaptic weights. Second from right: Endogenously driven (re-)activation of a content-coding ensemble is characterized by a brief period of beta synchronization, involving both local and long-range (top-down) interactions (see text for details). Right: (re-)activated content representations may again be characterized by spiking ensemble activity, similar (but not necessarily exactly identical) to representations of just perceived information (cf. left). B. Local beta activity appears content-specific when population-level recordings register the synchronization of individual subpopulations (symbolized in blue and red) with differential sensitivity (e.g., red>blue, by spatial proximity to recording site). C. Transient network-level beta coherence in monkey prefrontal cortex during application of different task rules (see also Figure 2F, dashed rectangle). Adapted with permission from Buschman et al. (2012). Reprinted with permission from Elsevier.

