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Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified

as an unambiguous cause of late-onset, autosomal dominant familial Parkinson’s
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disease (PD) and LRRK2 mutations are the strongest genetic risk factor for sporadic PD
known to date. A number of transgenic mice expressing wild type or mutant LRRK2
have been described with varying degrees of LRRK2-related abnormalities and modest
pathologies. None of these studies directly addressed the role of the kinase domain in
the changes observed and none of the mice present with robust features of the human
disease. In an attempt to address these issues we created a conditional LRRK2
G2019S (LRRK2 GS) mutant and a functionally negative control, LRRK2
G2019S/D1994A (LRRK2 GS/DA). Expression of LRRK2 GS or LRRK2 GS/DA was
conditionally controlled using the tet-off system in which the presence of tetracycline-

transactivator protein (tTA) with a CAMKII & promoter (CAMKII -tTA) induced

expression of TetP-LRRK2 GS or TetP-LRRK2 GS/DA in the mouse forebrain.
Overexpression of LRRK2 GS in mouse forebrain induced behavioral deficits and o-
synuclein pathology in a kinase dependent manner. Similar to other genetically
engineered LRRK2 GS mice, there was no significant loss of dopaminergic neurons.
These mice provide an important new tool to study neurobiological changes associated
with the increased kinase activity from the LRRK2 G2019S mutation which may
ultimately lead to a better understanding of not only the physiologic actions of LRRK2,

but also potential pathologic actions that underlie LRRK2 GS associated PD.

Significance Statement
Mutations in LRRK2 are the most common genetic cause for both familial and
sporadic Parkinson’s disease (PD) to date with the G2019S LRRK2 (LRRK2 GS) being

the most prevalent mutation. The clinical presentation of patients carrying LRRK2 GS is
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indistinguishable from sporadic disease in many cases. Many lines of evidence indicate
that LRRK2 GS has increased kinase activity and in vitro LRRK2 inhibitors or kinase-
dead G2019S/D1994A double mutants (LRRK2 GS/DA) reduce LRRK2 GS-mediated
toxicity, indicating that LRRK2 associated toxicity is kinase-dependent. However, this
concept remains controversial. To address this question in vivo, we developed a new
tet-inducible conditional transgenic LRRK2 GS and LRRK2 GS/DA mouse model, which

exhibits behavioral deficits and a-synuclein pathology in a kinase dependent manner.

Introduction

Parkinson’s disease (PD) is recognized as the most common movement disorder.
The cardinal symptoms are caused by the progressive degeneration of dopaminergic
(DA) neurons in the substantia nigra pars compacta (SNpc) (Lees et al., 2009).
Mutations in LRRK2 have been linked to both familial and sporadic forms of PD
(Paisan-Ruiz et al., 2004; Zimprich et al., 2004). The LRRK2 protein contains two
enzymatic domains, the GTPase and kinase domains, and multiple protein-protein
interacting domains including a leucine-rich repeat (LRR), a WD40 repeat, and a
LRRK2-specific repeat domain (Cookson, 2010; Mata et al., 2006). The G2019S (GS)
mutation within the kinase domain is the most common mutation of LRRK2, which alters
LRRK2 GTPase and kinase activities (Lees et al., 2009; Martin et al., 2014b). LRRK2
GS mutations lead to alterations in vesicle trafficking, neurite outgrowth, autophagy,
cytoskeletal dynamics in vitro (Cookson, 2015; Martin et al., 2014b), as well as, defects
in protein translation both in vitro and in vivo (Dorval and Hebert, 2012; Gehrke et al.,

2010; Imai et al., 2008; Martin et al., 2014a; Martin et al., 2014b; Martin et al., 2014c).
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To study the function of LRRK2 and potential pathologic actions of LRRK2 mutations
many lines of transgenic or knock-in mice have been generated. These animal models
have provided interesting and valuable biochemical and physiologic insights, but none
of these models have recapitulated key features of PD (Beccano-Kelly et al., 2015;
Chen et al., 2012; Garcia-Miralles et al., 2015; Herzig et al., 2011; Li et al., 2010; Li et
al., 2009; Lin et al., 2009; Liu et al., 2015; Melrose et al., 2010; Ramonet et al., 2011;
Tong et al., 2009; Tsika et al., 2014; Volta et al., 2015; Weng et al., 2016; Yue et al.,
2015). Interestingly, no animal models have been created to directly test the role of
increased kinase activity with the common LRRK2 GS mutation. To address this, we
developed a new Tet-inducible conditional LRRK2 mutant G2019S (TetP-LRRK2 GS)
transgenic mouse line and a corresponding functionally-negative control
G2019S/D1994A (TetP-LRRK2 GS/DA) mouse line under the control of a tetracycline
responsive regulator. Crossbreeding the TetP-LRRK2 GS or TetP-LRRK2 GS/DA mice
to CamKIl @-tTA mice (Mayford et al., 1996) led to high expression levels of LRRK2 GS
or the control LRRK2 GS/DA in adult mouse forebrain. High expression of LRRK2 GS
induces behavioral deficits and a-synuclein pathology but does not cause significant
dopamine neurodegeneration. Nevertheless, these novel transgenic mice offer an
excellent platform to explore and elucidate the kinase-dependent actions of LRRK2 in

the brain.

Materials and Methods

Animals
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Mice were housed and treated in accordance with the National Institutes of Health
‘Guide for the Care and Use of Laboratory Animals’ and Institutional Animal Care and
Use Committees. Animals were housed in a 12 h dark and light cycle with free access
to water and food. Both male and female animals were assigned to groups by
computer-generated randomization for all experiments. Mice were acclimatized for 3
days in the procedure room before any experiments were started. Sample size was

justified by Power analysis.

Generation of conditional LRRK2 transgenic mouse

A Tandem Affinity Purification (TAP) tag composed of the Streptavidin Binding Peptide
(SBP) and Calmodulin Binding Peptide (CBP) was cloned into C-terminal human
LRRK2 GS or a LRRK2 GS/DA under the control of a tetracycline responsive regulator
(Fig. 1A). The transgenic constructs were linearized by the Notl enzyme and
subsequently microinjected into the embryos of B6C3F2 mice. One- or two-cell embryos
were transferred into B6D2F1 pseudopregnant female mice. Genomic DNA was
prepared from tail snip (Proteinase K, Roche Diagnostics; direct PCR tail Lysis, Viagen)
and pups were genotyped by PCR (DreamTaq Green Master Mix, Thermo Scientific)
using TetP-LRRK2 primers (forward: CGG GTC GAG TAG GCG TGT AC; reverse: TCT
AGA TGA TCC CCG GGT ACC GAG; PCR product = 173 bp). Positive founders were
selected and further subjected to semi quantitative PCR and normalized to GAPDH
PCR (forward: AAA CCC ATC ACC ATC TTC CAG,; reverse: AGG GGC CAT CCA
CAG TCT TCT; PCR product = 300 bp) to screen for high copy-number founders. The

three highest copy founders were selected and bred with C57/BL6 mice to generate F1
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progeny and to establish the transgenic lines. The following primer sets were used for
genotyping of CamKIl a-tTA (forward: TGA AAG TGG GTC CGC GTA C; reverse: TAC

TCG TCA ATT CCA AGG GC; PCR product = 391 bp). LRRK2 induction in conditional
transgenic mice was suppressed by feeding the mice with doxycycline-containing food

(doxycycline Diet-Sterile, 200 mg per kg doxycycline, Bio-Serv).

Stereological assessment of the number of tyrosine hydroxylase- and Nissl-
positive cells.

Mice were perfused with ice-cold phosphate-buffered saline (PBS), followed by 4%
paraformaldehyde/PBS (pH 7.4). Brains were removed and post-fixed overnight in the
same fixative. After cryoprotection in 30% sucrose/PBS, brains were frozen on dry ice,
and serial coronal sections (40 um sections) were cut with a microtome. Every four
sections were collected for subsequent procedures. Free-floating sections were blocked
with 4% goat serum (Sigma-Aldrich)/PBS plus 0.3% Triton X-100 and incubated with
antibodies to tyrosine hydroxylase (rabbit polyclonal; Novus Biologicals
RRID:AB_1218296), followed by incubation with biotin-conjugated antibody to rabbit,
ABC reagents (Vector Laboratories) and Sigmafast 3,3-diaminobenzidine (DAB) tablets
(Sigma-Aldrich). Sections were counterstained with Nissl (0.09% thionin) after tyrosine
hydroxylase staining as previously described (Karuppagounder et al., 2016; Lee et al.,
2013). Sections were dehydrated in 100% ethanol and cleared in Xylene (Fisher
Scientific) followed by mounting with DPX (Sigma-Aldrich) before imaging under a
microscope. TH-positive and Nissl positive DA neurons from the SNpc region were

counted through an optical fractionator, the unbiased method for cell counting. This
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unbiased stereological counting was carried out by a computer-assisted image analysis
system consisting of an Axiophot photomicroscope (Carl Zeiss Vision) equipped with a
computer-controlled motorized stage (Ludl Electronics), a Hitachi HV C20 video camera
and Stereo Investigator software (MicroBrightField). Fiber density in the striatum was
quantified by optical density (OD). Image J software (NIH) was used to analyze the OD

as previously described (Karuppagounder et al., 2016).

Western blotting

Brain extracts from indicated genotype were prepared by homogenization in lysis buffer
[1 X phosphate-buffered saline, 1% Triton X-100, 1 X Complete protease inhibitor
(4693116001, Sigma), 1 X PhosSTOP phosphatase inhibitor (4906845001; Sigma)].
Protein concentration was determined by BCA method (Pierce Biotech). About 100 ug
of protein was resolved by sodium dodecyl sulfate—polyacrylamide gel electrophoresis,
transferred to polyvinylidene fluoride (PVDF) membrane and probed with mouse anti-
LRRK2 antibody (N136/8, NeuroMab RRID:AB_2234791) or rabbit anti-LRRK2 antibody
(1304; D18E12, Cell Signaling Technology) recognizing both mouse and human
LRRK2. Membrains were also probed with rabbit anti-LRRK2 phospho Ser1292
antibody (ab203181; MJFR-19-7-8, Abcam), or with mouse anti-o-synuclein antibody
(610787; BD Transduction Laboratories; RRID:AB_398108) or rabbit anti-a-synuclein
antibody (2642; Cell Signaling Technology; RRID:AB_2192679), or with anti-actin-
peroxidase rabbit polyclonal antibody for loading control (A3854; Sigma-Aldrich;
RRID:AB_262011). Densitometric analysis was conducted to quantify the fold

overexpression of LRRK2 relative to endogenous mouse LRRK2. Total LRRK2 protein
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levels were normalized to actin and expressed as the percent of non-transgenic (Tg)
controls. Mean values from three mice per genotype/control were analyzed for statistical

significance by two-tailed unpaired Student's t-test compared with non-Tg controls.

Open field test and d-amphetamine administration

Spontaneous locomotor and exploratory activities were assessed in open field square-
shaped (16 X 16) chambers equipped with an automated photobeam tracking system
(San Diego Instruments, San Diego, CA, USA). Briefly, a mouse was placed in the
center of the open field arena and allowed to explore the area for 25 min, following by d-
amphetamine injection (7 mg/kg s.c.) (A-5880 Lot #: 34H0145 Sigma-Aldrich) and
another 25 min exploration. The activities of a mouse were recorded every minute by
Photobeam Activity System (PAS) software installed on a computer connected to the
open field equipment. Before and after each testing, the clear acrylic enclosure of the
surface of the arena was cleaned with 70% ethanol. The total number of beam breaks
during the total 50 min period was used to determine gross locomotor activity of a

mouse.

Rotarod test

Motor coordination of mice was measured as the retention time on an accelerating
rotarod of the rotamex V instrument equipped with photobeams and a sensor to
automatically detect mice that fell from the rotarod (Columbus Instruments, Columbus,
OH). Before the actual test the mice were trained on the rotarod at 4.0 to 40 r.p.m. for 5

min and allowed to rest for at least 30 min. The training occurred over three consecutive
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days and consists of three test trials. On the day of the test, four mice were placed on
separate rods and the durations on the accelerating rods were recorded automatically
by the software installed on a computer connected to the instrument. The setting of the
rotamex was: Start speed, 4.0 r.p.m.; maximum speed, 40 r.p.m.; acceleration interval,
30 s; acceleration step, 4 r.p.m., and the setting remained constant throughout all trials.
The tests were blinded and evaluated in three sessions and the average retention time
and end speed were recorded for each mouse. The retention time was used to

determine the motor coordination of the mouse.

Pole test

The pole consists of a 2.5 ft metal rod with a 9 mm diameter that is wrapped with
bandage gauze. Briefly, the mice were placed 3 inches from the top of the pole facing
head-up. Total time taken to turn and reach the base of the pole was recorded. Before
the actual test the mice were trained for three consecutive days and each training
session consisted of three test trials. On the day of the test, mice were evaluated in
three sessions with one hour intervals in between, and total times were recorded.

Results were expressed in total time in seconds (Karuppagounder et al., 2016)

Statistical analysis
Two-way ANOVA and two-tailed unpaired Student's t test was used for data analysis.
Data represent mean £ SEM, and p < 0.05 was considered statistically significant.

*p <0.05, **p < 0.01, ***p < 0.001. Power analysis was performed by using G*Power 3.1

10
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software to determine approximate sample sizes for behavior tests or stereological

analysis.

Results

Generation of TET-inducible conditional LRRK2 transgenic mice. We generated
tetracycline responsive transgenic mice (TetP-LRRK2 GS or TetP-LRRK2 GS/DA) using
C-terminal tandem affinity purification (TAP) tagged human LRRK2 GS or LRRK2
GS/DA under the control of a tetracycline responsive regulator (Fig. 1A). 27 TetP-
LRRK2 GS founders and 33 TetP-LRRK2 GS/DA founder mice were identified by PCR
screening for the tetracycline promoter (Fig. 1B, C). Three male mice with the highest
copy number were selected as founders and crossbred to CamKIl o-tTA transgenic
mice (Mayford et al., 1996) (Fig. 1D). Dams were maintained on doxycycline food until
pups were weaned to prevent expression of transgenes and possible compensation
during development. Mice expressing both CamKIl a-tTA and TetP-LRRK2 GS or TetP-
LRRK2 GS/DA were identified by PCR (Fig. 1E). At approximately 2 months of age,
doxycycline food was withdrawn and overexpression of LRRK2 GS or LRRK2 GS/DA
was monitored. LRRK2 GS is overexpressed 16, 5, 2-fold in line 569, 648 and 597,
respectively and LRRK2 GS/DA is overexpressed 6, 15, 3-fold in line 767, 763 and 768
respectively (Fig. 1F, G). Since line 569 and line 763 overexpress LRRK2 at similar
levels they were selected for further study. A regional assessment of the overexpression
of LRRK2 GS (line 569) and LRRK2 GS/DA (line 763) were monitored by western blot
analysis (Fig. 1H, 1). LRRK2 GS or GS/DA is overexpressed about 5, 15, 17, 9, 4-Fold

in the olfactory bulb (OB), cortex (CTX), striatum (STR), hippocampus (HIP) and ventral

11
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midbrain (VMB), respectively, while there is no significant change in LRRK2 expression
in the brain stem (BS) and cerebellum (CER) (Fig. 1H, 1). Collectively, LRRK2 was
induced at very high levels in the mouse forebrain. To monitor LRRK2 kinase activity
and confirm that LRRK2 GS/DA is kinase dead in vivo, the phosphorylation status of
LRRK2 was examined in LRRK2 GS and LRRK2 GS/DA mice by LRRK2 phosphor
S$1292 antibody (Fig. 1J, K). Western blots of total protein from mouse brains of control,
LRRK2 GS and LRRK2 GS/DA revealed that LRRK2 GS has high phosphorylation level

and LRRK2 GS/DA does not have a detectable kinase activity (Fig. 1J, K).

Behavioral deficits of conditional LRRK2-G2019S transgenic mice. The potential
effects of LRRK2 GS expression on motor behavior was assessed. Open field, pole test
and rotarod testing were performed with LRRK2 GS and LRRK2 GS/DA transgenic
mice. LRRK2 GS and LRRK2 GS/DA transgenic mice performed similarly as non-
transgenic control mice under normal conditions in the open field test at 10, 15 and 22
months of age (Fig. 2A and data not shown). There was no significant difference
between LRRK2 GS and LRRK2 GS/DA at 10 and 15 months of age (data not shown).
Interestingly, LRRK2 GS mice have a blunted response to d-amphetamine
administration (7 mg/kg s.c.) at 22 months whereas non-transgenic and LRRK2 GS/DA
mice exhibit increased activity (Fig. 2A). In the dopamine-sensitive pole test assessed at
22 months of age, LRRK2 GS transgenic mice had an insignificant deficit in ability to
descend the pole (p=0.0514). The LRRK2 GS/DA performed similar to non-transgenic
control mice (Fig. 2B). In the rotarod test, both the LRRK2 GS and LRRK2 GS/DA

transgenic mice performed normally at 10, 15 and 22 months of age (Fig. 2C and data

12
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not shown). Taken together, these results indicate that the LRRK2 GS mice have no

robust DA sensitive behavioral deficits.

Conditional LRRK2-G2019S transgenic mice exhibit normal nigrostriatal
dopaminergic pathway. To determine whether temporal overexpression of LRRK2 GS
in the mouse forebrain induces degeneration of midbrain DA neurons, we assessed DA
neuronal number by unbiased stereological counting of TH and Nissl positive neurons at
22 months of age. No significant DA neuronal loss was observed (Fig. 3A,B,C).
Dopaminergic neurons are of normal size and morphology in the substantia nigra of
LRRK2 GS mice (Fig. 3A). The fiber density of TH-positive dopaminergic nerve
terminals in the striatum are unaltered in LRRK2 GS mice at 22 months of age (Fig. 3D,
E). Taken together our data suggest that the high levels of expression of LRRK2 GS in
mouse forebrain are not sufficient to induce degeneration of dopaminergic neurons of
the nigrostriatal dopaminergic pathway with advancing age. These findings are

consistent with the behavioral data.

o-Synuclein pathology in conditional LRRK2-G2019S transgenic mice. Since the
majority of patients carrying the LRRK2 GS mutation have a-synuclein positive Lewy
bodies and increased levels of phospho-serine 129 (pS129) a-synuclein, the status of
endogenous o-synuclein was monitored in the non-transgenic control, LRRK2 GS and
LRRK2 GS/DA mice. Immunoblot analysis for a-synuclein in the Triton-X100 soluble
fraction reveals no substantial difference in the immunoreactivity for a-synuclein (Fig.

4A) and no detectable immunoreactivity for pS129 a-synuclein (data not shown) at 22
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months between LRRK2 GS mice and LRRK2 GS/DA mice. In the Triton-X100
insoluble fraction, the observed high molecular weight species (above 75 kD) of a-
synuclein are indicative of aggregation and are similar between LRRK2 GS and LRRK2
GS/DA mice in the ventral midbrain (VMB), brain stem (BS) and cerebellum (CER)
regions but are significantly increased in the olfactory bulb (OB), cortex (CTX), striatum
(STR) and hippocampus (HIP) of LRRK2 GS mice at 22 months of age compared to
LRRK2 GS/DA and non-Tg control mice (Fig. 4B, C). Moreover, in the Triton-X100
insoluble fraction, low and similar levels of immunoreactivity for pS129 a-synuclein are
observed in STR, VMB, BS and CER brain regions of non-Tg mice, LRRK2 GS and
LRRK2 GS/DA mice. In contrast, pS129 a-synuclein levels are significantly increased in
OB, CTX and HIP brain regions of 22-month-old LRRK2 GS mice compared to LRRK2
GS/DA and non-Tg control mice of the same age (Fig. 4B, D). No significant difference
in the immunoreactivity for a-synuclein and pS129 oa-synuclein in both Triton-X100
soluble and insoluble fractions was observed at the age of 10 and 15 months among
LRRK2 GS, GS/DA and non-Tg control mice (data not shown). This observation
suggests that the LRRK2 GS mutation can promote a-synuclein pathology in a kinase

and age dependent manner.

Discussion

It is well established that the disease causing LRRK2 GS mutation exhibits
increased kinase activity for both autophosphorylation and hyperphosphorylation of
LRRK2 kinase substrates. While LRRK2 kinase inhibitors or kinase-dead

G2019S/D1994A double mutants reduce LRRK2 GS-mediated toxicity indicating that
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LRRK2 toxicity is kinase-dependent (Cookson, 2015; Martin et al., 2014b). This
conclusion remains controversial and alternative hypotheses have been suggested
(Skibinski et al., 2014). To define the kinase dependent and kinase independent
pathophysiologic actions of LRRK2 additional models are needed. Thus, we generated
a conditional tet-off LRRK2 G2019S (LRRK2 GS) mutant and a functionally negative
control, LRRK2 G2019S/D1994A (LRRK2 GS/DA) driven by the CAMKIlo. promoter.
Overexpression of LRRK2 GS in mouse forebrain induced behavioral deficits and a-
synuclein pathology in a kinase dependent manner whereas these events were absent
in the LRRK2 GS/DA mice. However, consistent with other genetically engineered
LRRK2 GS mice there was no significant loss of dopaminergic neurons.

Since the majority of LRRK2 PD patients exhibit a-synuclein aggregation, the role
of LRRK2 in a-synuclein pathology in different LRRK2 mouse models has been
explored. Lin et al. showed that overexpression of LRRK2 in mouse forebrain promotes
the abnormal aggregation of exogenously overexpressed o-synuclein and knockout of
LRRK2 rescued A53T a-synuclein overexpression induced abnormalities (Lin et al.,
2009). However, Tong et al. demonstrated that LRRK2 knockout mice present with a
robust aggregation of a-synuclein while Daher et al. showed that knockout of LRRK2
has no influence on A53T a-synuclein induced neurodegeneration (Daher et al., 2012;
Tong et al., 2010). The different findings between these studies could be due to the
different a-synuclein expression levels or technical concerns. Our LRRK2 mouse model
for provides the first evidence that overexpression of LRRK2 in mouse forebrain induces
endogenous o-synuclein aggregation and increased pS129 a-synuclein levels, which

occur in a kinase dependent manner. Whether LRRK2 could be employed as a
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therapeutic target for a-synuclein-mediated neurodegeneration remains to be
elucidated.

The reasons why past rodent models of the LRRK2 GS mutation as well as our
new transgenic mouse model do not exhibit nigral neurodegeneration is not known
although many alpha-synuclein based mouse models also lack nigral neurodegeneation
(Lee, et al., 2012). Possibilities include compensatory mechanisms, levels of expression
that are higher in brain regions other than the ventral midbrain or substantia nigra, poor
expression in the substantia nigra, or lack of expression of the LRRK2 GS mutation in
cell types other than neurons such as astrocytes or microglia.

All of these possibilities should be taken into consideration in developing new
LRRK2 animal models meant to study neurodegeneration. The lack of
neurodegeneration does not diminish the value of these models for biochemical
investigations of the function of LRRK2. When coupled with the ability to purify the
LRRK2 protein complex via the TAP tag, our new mouse model permit the investigation
of increased kinase activity on LRRK2 biologic substrates and outcomes. Overall, these
mice provide an important new tool to study neurobiologic changes that are due to the
over activation of the kinase activity by the LRRK2 GS mutation, which may lead to a
better understanding of not only the physiological functions of LRRK2, but also the

potential pathologic mechanisms underlying LRRK2 GS-associated PD.
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Figure 1. Generation of TET-inducible conditional LRRK2 transgenic mice. A,
Schematic diagram of the TetP-LRRK2-TAP construct. B. Relative transgene copy
number determined by semi-quantitative PCR performed on genomic DNA expressed in
arbitrary units as the ratio of the TetP-LRRK2-G2019S (GS) transgene to GAPDH for
each founder mouse. C, Relative transgene copy number determined by semi-
quantitative PCR performed on genomic DNA expressed in arbitrary units as the ratio of
the TetP-LRRK2-GS2019S/D1994A (GS/DA) transgene to GAPDH for each founder
mouse. D, Schematic diagram of the generation of LRRK2 inducible transgenic mice
using the “tet-off” system. E, Representative genotyping PCR for TetP-LRRK2 and
CamKllo-tTA using genomic DNA. GAPDH PCR was used as an internal control. F,
Western blot analysis of LRRK2 expression from LRRK2 transgenic mouse brain. Each
number represents a single LRRK2 transgenic founder line: 569, 648 and 597 of
LRRK2-GS, 767, 763 and 768 LRRK2-GS/DA transgenic mice. G, Quantification of
LRRK2 expression in mouse brains normalized to p-actin, n=3. Differences between
transgenic and control groups were assessed by unpaired, two-tailed Student's f-test.
Quantified data are expressed as mean + SEM. *P < 0.05, ***P < 0.001. H,
Representative western blots of LRRK2 distribution in brain subregions from control and
LRRK2-GS (line 569) and LRRK2-GS/DA (line 763) transgenic mice (OB, olfactory bulb;
CTX, cortex; STR, striatum; HIP, hippocampus; VMB, ventral midbrain; BS, brain stem;
CER, cerebellum). I, Quantification of LRRK2 distribution in mouse brains normalized to
B-actin, n = 3. J, Western blot analysis of total protein from mouse brains of control,

LRRK2 GS and LRRK2 GS/DA by anti-LRRK2 and LRRK2 phosphor S1292 antibodies.
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K, Quantification of phosphor Ser1292 LRRK2 levels in mouse brains normalized to
total LRRK2 protein level, n=3. Quantified data are expressed as mean + SEM, *P <
0.05, **P < 0.01, ***P < 0.001, Differences between transgenic and control groups for
were assessed by two-way ANOVA. Non-significant difference between LRRK2 GS and

LRRK2 GS/DA groups.

Figure 2. Behavioral deficits of conditional LRRK2-G2019S transgenic mice. A,
Open field analysis under normal conditions and following amphetamine challenge.
Mice were placed in the center of the open field arena and allowed to explore the area
for 25 min, following by d-amphetamine injection (7 mg/kg s.c.) and another 25 min
exploration. The total activities of mice were recorded every minute (Control n=7, GS
n=9, GS/DA n=8). B, Pole test to monitor the behavioral abnormalities of 22 month old
LRRK2 GS and GSDA transgenic and age-matched littermate controls (Control n=8, GS
n=8, GS/DA n=7). C, Assessment of latency to fall in an accelerated rotarod test
(Control n=8, GS n=9, GS/DA n=8). Data are the means + SEM. Statistical significance
was determined by two-way ANOVA. *p <0.05 n.s.: non-significant.

Figure 3. Characterization of the nigrostriatal pathway of LRRK2 conditional
transgenic mice. A, Representative tyrosine hydroxylase (TH) immunohistochemistry
of the midbrain coronal sections of 22 month-old LRRK2 GS and GSDA transgenic and
age-matched littermate controls. B, C, Stereological assessment of (B) TH and(C) Nissl
positive neurons in the SNpc (Control n=9, GS n=9, GS/DA n=9). Data are the mean
number of cells per region + SEM, n = 9 mice per group. Statistical significance was

determined by two-tailed unpaired Student's t test. D, Representative images of TH
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immunostaining of nerve terminals in the striatum of LRRK2 conditional transgenic mice
at 22 months. E, Quantitation of TH immunostaining in the striatum using Image J
software (NIH) (Control n=7, GS n=7, GS/DA n=7). Differences between groups were
assessed by two-way ANOVA, Bars represent the mean + SEM (n =5

animals/genotype). n.s.: non-significant.

Figure 4. The levels of a-synuclein aggregation in the LRRK2 GS and LRRK2
GSDA mice. A, Representative immunoblots of a-syn and B-actin in the Triton-X100
(TX)-soluble fraction of different brain regions from 22-month-old transgenic mice and
age-matched littermate non-Tg controls. B, Representative immunoblots of a-syn and
B-actin in the TX-insoluble fraction of different brain regions from 22-month-old
transgenic mice and age-matched littermate non-Tg controls. In the insoluble fractions,
high molecular weight (75 kD) species of a~-synuclein are detected in OB, CTX, STR,
HIP, but not VMB, BS and CER of LRRK2 GS mice. C, Quantification of high molecular
weight (HMW) a-syn protein levels in B normalized to B-actin. (Control n=3, GS n=3,
GS/DA n=3). D. Quantification of pS129 a-syn protein levels in B normalized to o-syn
monomer (17KD). (Control n=3, GS n=3, GS/DA n=3). Differences between LRRK2 GS
versus Control or LRRK2 GS/DA groups were assessed by two-way ANOVA, Bars
represent the mean + SEM. *P < 0.05, **P < 0.01, ***P < 0.001. Non-significant

difference between LRRK2 GS/DA and control groups.
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