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Abstract

Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key
components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal
pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is
dependent on energy status and unmasking metabolic factors responsible for
modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-
like peptide-1 (GLP-1), an anorexigenic neuropeptide produced by brainstem
preproglucagon neurons. As GLP fiber projections and the GLP-1 receptor (GLP-1R)
are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC
Kiss1 action. Using ovariectomized (OVX) mice, we found that GLP-producing fibers
come in close apposition with ARC Kiss1 neurons; these neurons also contain Glplr
mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R
agonist) increased action potential firing and caused a direct membrane depolarization
of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon
mRNA is decreased following a 48 h fast in mice, a negative energy state in which ARC
Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently
suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was
not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-
1R antagonist, exendin (9-39) in ad libitum fed mice did not alter ARC Kiss1 mRNA or
plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with
ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the

maintenance of LH during fasting or normal feeding.



74  Significance Statement

75 Reproductive dysfunction is associated with metabolic imbalance, and identifying
76  the underlying molecular mechanisms linking metabolic status with reproductive

77  function is of great importance. Kisspeptin neurons (Kiss1) located in the arcuate

78 nucleus of the hypothalamus (ARC) are essential for fertility and are potently inhibited
79  during negative energy balance; this inhibition occurs in the presence or absence of
80 ovarian steroids. Preproglucagon-expressing neurons located in the brainstem send
81 abundant fiber projections to the ARC where they release the anorexigenic

82  neuropeptide, glucagon-like peptide-1 (GLP-1). The aim of these studies was to

83  determine the interaction of the CNS GLP-1 system with ARC Kiss1 activity to

84  potentially provide a link between systems that control energy balance with those that
85  control reproductive neuroendocrine output.

86

87 Key Words

88  Kisspeptin, LH, GLP-1, liraglutide, fasting, hypothalamus
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Introduction

Adequate nutrient availability is essential to maintain proper reproductive function
and states of chronic negative energy balance lead to the suppression of the
hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin (Kiss1) expressing neurons are
positive regulators of gonadotropin-releasing hormone (GnRH) release, and Kiss1
signaling through its receptor (Kiss1r) is essential for fertility (de Roux et al., 2003;
Seminara et al., 2003). Kiss1 neurons located in the arcuate nucleus (ARC) of the
hypothalamus act on GnRH nerve terminals in the median eminence and regulate basal
pulsatile GnRH/luteinizing hormone (LH) release (Li et al., 2009; Han et al., 2015).
Similar to other ARC neurons, ARC Kiss1 neurons respond to metabolic cues denoting
changes in energy status and alter their activity (True et al., 2013; Frazao et al., 2014;
Nestor et al., 2014). Therefore, ARC Kiss1 neurons are thought to be key integrators of
metabolic status with proper output of GhnRH/LH release. However, the identity of
nutrient sensing systems that regulate ARC Kiss1 action in response to changes in
energy status remains elusive. Previously, our laboratory used rodent models to show
that low leptin and insulin levels associated with negative energy balance do not appear
to be responsible for the suppression of GnRH/LH release (Xu et al., 2009; True et al.,

2011).

We identified glucagon-like peptide-1 (GLP-1) as a potential nutrient sensing
system that integrates metabolic status with reproductive neuroendocrine function in
part through the regulation of ARC Kiss1. Post-translational processing of the

preproglucagon gene (Gcg) gives rise to GLP-1 which is mainly produced in the
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gastrointestinal tract and brain (Sandoval and D'Alessio, 2015). GLP-1 mediates its
action through the GLP-1 receptor (GLP-1R), a 7-transmembrane G-protein coupled
receptor (Mayo et al., 2003). Peripherally and centrally administered GLP-1R agonists
activate the GLP-1R in the central nervous system (CNS) which suppresses feeding
and body weight (Heppner and Perez-Tilve, 2015). This effect is mediated in part
through activation of anorexigenic neurons that express proopiomelanocortin (POMC)
and cocaine-and amphetamine-regulated transcript (CART) neurons, as well as
inhibition of orexigenic neurons that express neuropeptide Y (NPY) and agouti-related
peptide (AgRP) located in the ARC (Secher et al., 2014). Preproglucagon-expressing
neuronal cell bodies produce GLP-1, GLP-2, and oxyntomodulin (Larsen et al., 1997)
and are confined to the brainstem, whereas their fibers project to numerous areas of the
brain. Preproglucagon-expressing neurons project heavily to areas of the hypothalamus
that regulate energy metabolism (Llewellyn-Smith et al., 2011; Vrang and Grove, 2011)
which is consistent with a functional role of GLP-1 in the regulation of feeding and body
weight. One hypothalamic nucleus with the highest levels of preproglucagon-expressing
fibers, as well as the GLP-1R, is the ARC (Merchenthaler et al., 1999; Llewellyn-Smith
et al., 2011; Vrang and Grove, 2011; Ronnekleiv et al., 2014; Heppner et al., 2015).
GLP-1-producing neurons are activated in response to calorie ingestion (Kreisler et al.,
2014). Furthermore, brainstem preproglucagon expression is inhibited during fasting
(Huo et al., 2008) and upregulated during high-fat diet feeding (Knauf et al., 2008)

suggesting that preproglucagon neurons act as metabolic fuel sensors.
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Reports on the role of GLP-1 in regulating reproductive function, however, are
limited. Female Glplr-/- mice have a delayed onset of puberty suggesting a role for
GLP-1R signaling in regulating reproductive function (MacLusky et al., 2000). Functional
studies indicate that GLP-1 promotes GnRH secretion from isolated hypothalamic tissue
and acts centrally to enhance LH levels in male rats (Beak et al., 1998). More recent
studies demonstrate that GLP-1 acts centrally to enhance the pre-ovulatory LH surge of
intact female rats (Outeirino-Iglesias et al., 2015). Taken together, these data suggest
that GLP-1 promotes GnRH/LH release. Based on the neuroanatomical distribution of
GLP-1 producing fibers as well as the functional role of stimulating GnRH/LH release,
we hypothesized that GLP-1R signaling activates ARC Kiss1 neurons to enhance
GnRH/LH release. Thus, decreased brainstem preproglucagon could contribute to the
suppression of ARC Kiss1 activity and suppression of downstream GnRH/LH release
during negative energy balance. The aims of these studies were to: 1) determine
whether the CNS GLP-1 system has neuroanatomical and functional interaction with
ARC Kiss1 neurons and 2) assess whether GLP-1R signaling plays a role in the
suppression of the reproductive neuroendocrine axis that occurs during fasting, using

an ovariectomized (OVX) mouse model.

Materials and Methods
Animals

All animals were fed a standard chow diet (Purina lab chow; catalog # 5001) and
maintained on a 12:12-h light-dark cycle at 22°C with free access to food and water

unless noted otherwise. For histology experiments and electrophysiological recordings,
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Kiss1-CreGFP mice on a C57BL/6 background were produced by Elias and colleagues
at the University of Michigan (Cravo et al., 2011) and bred at the facilities at OHSU. For
single cell RT-PCR experiments, female Kiss1-CreGFP mice (C57BL/6J and S129
background) were originally produced by Steiner and colleagues at the University of
Washington (Gottsch et al., 2011) and then bred at the facilities at OHSU. For studies
involving fasting or intracerebroventricular (icv) infusion, adult female C57BL/6J mice
(12-14 weeks old) were purchased from the Jackson Laboratory. For studies involving
dual in situ hybridization, adult female mice were purchased and ovariectomized at
Jackson Laboratory. All animal procedures were approved by the Oregon Health and
Science University and the Novo Nordisk Research Center Institutional Animal Care

and Use Committees.

Ovariectomy (OVX) and estradiol (E,) replacement

Adult female mice were anesthetized using 2.5 % isoflurane in oxygen delivered
by a nose cone. After receiving a pre-operative dose of carprofen (5 mg/kg), the
ovaries were removed through bilateral lumbar incisions. The vasculature to the ovary
and body wall were sutured, and wound clips were used to close the incision. For
surgeries involving E, replacement, an E,-filled capsule was implanted in the
interscapular region immediately after OVX surgery. The E; implants were made of
Silastic tubing (0.59 in long, 0.078 in inner diameter, 0.125 in outer diameter; Dow
Corning) and filled with a low dose of crystalline E; (20 ug/mL, in sesame oil) as

previously described (Navarro et al., 2015).
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Immunohistochemistry

Female Kiss1-CreGFP mice (Cravo et al., 2011) underwent OVX surgery and a
week later were sedated with ketamine (80 mg/kg) and xylazine (10 mg/kg) and were
then perfused with 4% PFA in 0.1 m phosphate (PB) buffer, pH 7.4. Brains were
removed and post-fixed in 4% PFA overnight at 4°C and then cryoprotected with 25%
sucrose in 0.05 M potassium phosphate buffered saline (KPBS) and stored at -80°C
until sectioning. Sections were cut at 25 um on a freezing microtome in a one-in-six
series. For analysis of preproglucagon-expressing fiber contacts onto Kiss1 neurons,
the tissue sections were washed in KPBS several times and preincubated in blocking
buffer (KPBS plus 0.4% Triton X-100 plus 2% normal donkey serum) for 30 min before
incubating in chicken anti-GFP (1:5K; Aves Labs cat # GFP-1020) and mouse anti-GLP-
2 (1:2K; Novo Nordisk A/S) in blocking buffer for 24 h at 4°C. The monoclonal GLP-2
antibody was raised against full-length human GLP-2 (GLP-21_33) and has shown to
have complete overlap with GLP-1 immunostaining ((Tang-Christensen et al., 2000;
Vrang et al., 2007). Because of this overlap, no distinction is made whether fibers are
GLP-1 or GLP-2, and are referred to as GLP fibers. Following washes in KPBS, tissue
sections were incubated for 1 h in a cocktail of Alexa Fluor 568 donkey anti-mouse
antibody (1:1K; Life Technologies; catalog #A10037) and Alexa Fluor 488 goat anti-
chicken (1:1K; Life Technologies cat # A11039) at room temperature, then subsequently
washed and mounted on gelatin-coated glass slides and coverslipped with SlowFade
Gold antifade reagent (Invitrogen; catalog #S36936). For analysis of GLP contacts onto
GnRH neurons the same protocol as above was implemented using the primary

antibodies mouse anti-GLP-2 (1:2K; Novo Nordisk A/S) and rabbit anti-GnRH (1:32K;
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EL-14;(Ellinwood et al., 1985)) and the secondary antibodies Alexa Fluor 647 donkey
anti-mouse (1:1K; Life Technologies, catalog #A31571) and Alexa Fluor donkey anti-

rabbit 568 (1:1K; Life Technologies, catalog #A10042).

Confocal analysis

Immunofluorescence images were taken with a Leica SP5 confocal microscope
with Acousto-Optical Beam Splitter (Buffalo Grove, lllinois). Analyses of GLP-
immunoreactive (GLP-ir) fibers making close appositions to ARC Kiss1 fibers and
GnRH cell bodies were performed as previously described (True et al., 2013).
Photomicrographs were taken at a 40X magnification at 1024 x 1024 pixel resolution
and at a speed of 700 Hz. Focal planes were 1 um apart for analysis, and 4 ARC
sections and 5-7 preoptic area (POA) were analyzed per animal. For more abundant
ARC Kiss1 cells, all visible cells in confocal photomicrographs of 4 ARC sections
(unilateral) were analyzed for contact analysis. Stacks were analyzed using ImageJ

software (NIH).

Single Cell RT-PCR

Kiss1-CreGFP mice (Gottsch et al., 2011) were OVX bilaterally and euthanized a
week later for tissue collection. Single cell transcriptomes were isolated from Kiss1-
CreGFP cells as previously described (Bosch et al., 2013; Navarro et al., 2015).
Primers were designed to span at least one intron-exon boundary using the Clone
Manager software program (Scientific and Educational software). Stringent PCR

conditions were tested to determine the optimal primer concentration, magnesium

10
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concentration and annealing temperature to produce a single clear band. The primer
sequences for Glplr and Kissl were Glplr (149 bp product, accession number
NM_021332, forward primer 474-494 nt, reverse primer 602-622 nt); Kiss1 primers were
described previously (Zhang et al., 2013). PCR was performed on 3 ul of cDNA in a 30
ul final volume containing 1X Go Taq Flexi buffer (Promega), 2mM MgCl,, 0.33mM
deoxynucleoside triphosphate, 0.33 uM forward and reverse primers, 2-U Go Taq and
0.22 ug TagStart antibody (Clontech) for 50 cycles of amplification with specific
annealing temperatures (Glp1lr, 60°C; Kiss1, 57°C). PCR products were visualized with
ethidium bromide on a 2% agarose gel and confirmed by sequencing. As a negative
control, aCSF samples were collected in the vicinity of the dispersed cells and processed in
the RT-PCR assays. Water blanks were also included in each RT-PCR assay. In addition,
several single cells were processed in the RT-PCR but without reverse transcriptase (RT) in
order to assure that genomic DNA was not being amplified. Basal hypothalamic tissue RNA

was also included as a positive control (with RT) and negative control (without RT).

For determination of neuronal expression of a particular transcript, 127 neurons
(16-33 cells/animal) were harvested from 5 animals. The number of arcuate Kiss1-GFP
neurons expressing Glplr was counted for each animal and the mean number of
neurons/animal was determined and used for further analysis of mean, SEM, and

percentage expression.

Dual in situ hybridization
For dual in situ hybridization (ISH), formalin-fixed paraffin embedded (FFPE)

brain tissue was cut into 5 um sections using a rotary microtome (RM2255, Leica

11
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Biosystems) and mounted onto Superfrost Plus glass (Fisher Scientific). We sectioned
brains from OVX females (n=4) and sampled the ARC at two distinct anatomical
locations within the ARC (-1.3 from bregma, and -1.8 from bregma, respectively). Brain
tissues were prepared for RNAscope ISH (ACD Bio, Hayward, CA) following the
manufacturer’'s recommendations (ACD Bio #322452-USM), and duplex chromogenic
ISH was executed in a HybEZ System following the protocol from ACD Bio (#322500).
Our experiments utilized probes to Mm-Glplr (#418851-C2) and Mm-KISS1 (#408001),
which were labeled with red and green chromogens after signal amplification steps,
respectively. After staining, slides were counterstained in twenty dips of Mayer’'s
hematoxylin (Sigma Aldrich), dried in an oven a 60°C for 2 hours, and were cover
slipped with Ecomount mounting medium (BioCare). Finished slides were scanned at
40x on a Zeiss AxioScan.Z1 for post-hoc analysis. All representative images were

matched for zoom level and brightness/contrast.

Electrophysiology

All recordings were performed in ARC Kiss1-CreGFP neurons (Cravo et al.,
2011) between 60-90 days of age. OVX and OVX + E; surgeries were performed 8-10
days prior to recordings using the methods described above. Coronal slices containing
the ARC were prepared as previously described (Qiu et al., 2010). Briefly, brain slices
(200 pm) containing ARC were maintained with constant flow (1-2 ml/min) of aCSF
containing the following (in mM): 124 NaCl, 5 KCI, 2.6 NaH,PO4, 2 MgSO4, 1 CaCly, 10
HEPES, 10 glucose; oxygenated (95% O3, 5% CO,) osmolarity ~300 at 32°C-33°C. For

current-clamp experiments, microelectrodes had resistances of 3—6 mQ and were filled

12
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with an internal solution containing the following (in mM): 125 K-gluconate, 2 KCI, 10
EGTA 5 HEPES, 1 ATP, 0.3 GTP; pH 7.25 with KOH, osmolarity ~295 mosmM. Data
acquisition was performed using a multiclamp 700B amplifier (Molecular Devices). Data
were filtered at 3 KHz and sampled at 5-10 KHz using a computer interface Digidata
1322 and pClamp 9.2 software (Molecular Devices). The liquid junction potential of 5
mV was corrected in the analysis. All solutions were made fresh the day of the
experiment. Liraglutide was obtained from Novo Nordisk Inc. 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonovaleric acid (APV)
were obtained from Tocris, (Ellisville, MO) and tetrodotoxin (TTX) from Alomone Labs

(Jerusalem, Israel).

48 h fasting and brainstem dissection

Adult C57BL/6J female mice from the Jackson Laboratory (12-14 weeks)
underwent OVX surgery as described above. One week after surgery animals were
maintained on an ad libitum chow-fed diet or fasted for 48 h. We chose a 48 h fast
because both brainstem preproglucagon (Huo et al., 2008) and LH levels (Huang et al.,
2008) have previously been reported to be inhibited in mice using this paradigm. After
the 48 h fast, all animals were anesthetized with isoflurane and decapitated. The brain
was placed into a 1 mm coronal brain matrix and a 3 mm section containing the
brainstem was collected (-6 mm to -9 mm posterior to bregma). The tissue was then
frozen immediately on liquid nitrogen and stored at -80°C until RNA extraction was

performed.
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48 h fasting and liraglutide treatment

Adult C57BL/6J female mice from the Jackson Laboratory (12-14 weeks old)
underwent OVX surgery as described above. One week after surgery animals were fed
ad libitum or had their food removed at 0900h. Also at this time, ad libitum fed animals
received twice-daily subcutaneous saline injections and fasted animals received twice-
daily subcutaneous injections of saline or the GLP-1R agonist, liraglutide (30nmol/kg
per injection; Novo Nordisk). Peripheral injection of liraglutide has been reported to
penetrate into the ARC (Secher et al., 2014). After 48h, all animals were anesthetized

with isoflurane and decapitated to collect trunk blood.

Intracerebroventricular Exendin (9-39) infusion and arcuate dissection

Adult C57BL/6J female mice from Jackson laboratory (12-14 weeks old)
underwent OVX surgery as described above. One week later, animals were
stereotaxically implanted (David Kopf Instruments, Tujunga, CA) with a cannula (brain
infusion kit #3, Alzet, Cupertino, CA) placed in the lateral cerebral ventricle as
previously described (Heppner et al., 2012). A polyethylene catheter attached the
cannula to an osmotic mini-pump (1007D Alzet, Cupertino, CA) that was
subcutaneously implanted. The osmotic mini-pump infused either saline or Exendin 9-
39 (Ex-9; 7.5nmol/day; American Peptide, catalog # 46-3-10). After 6 days of icv
infusion animals were anesthetized with isoflurane and decapitated. Trunk blood was
collected and then the brain was dissected out from the skull and placed in a 1mm

coronal brain matrix. The first blade was placed at the caudal extent of the
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hypothalamus and the second blade was placed 2 mm rostral. The 2 mm thick coronal
slice was placed on chilled petri dish and a dissection razor (Harris Uni-Core; catalog #
7093508) was used to collect the ventral aspect of the brain containing the ARC. The
tissue was then immediately frozen on liquid nitrogen and stored at -80°C until RNA
extraction was performed. Cannula placement was confirmed by increased expression
of Agrp mRNA in ARC tissue of Ex-9 treated mice as compared to saline treated

controls.

RNA extraction and gPCR for brainstem and arcuate tissue

RNA was isolated using Trizol and the RNeasy micro kit with on-column
deoxyribonuclease | treatment (Qiagen). Quality and integrity of RNA was determined
using nanodrop spectrophotometer ND-1000. Reverse transcriptase reactions were
prepared using 1 ug of RNA and iScript cDNA Synthesis Kit (Bio-Rad). Quantitative
real-time PCR was completed using TagMan probes (Applied Biosystems) for Gcg
(MmO01269055_m1), Agrp (Mm00475829_g1), Npy (Mm00445771_m1), Cart
(Mm04210469_m1), Kiss1 (Mm03058560_m1), Pomc (Mm00435874_m1), and
housekeeping gene 18s (Hs03003631_g1) was used as an endogenous control to
normalize each sample and gene. PCRs were in a 10 pl volume using 0.5 yl TagMan
probe, 10 ng cDNA template, 5 yl TagMan Gene Expression Master Mix 1l with UNG
(Applied Biosystems), and 2.5 pl DNase/RNase free molecular grade water (Qiagen).
Real-time PCR was run using an Applied Biosystems 7900HT Fast Real-Time PCR

system with an initial denaturing at 50°C for 2 min, 95°C for 10 min, followed by 40
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cycles at 95°C for 15 s, and annealing at 60°C for 1 min. Results were calculated using

the Pfaffl method (Pfaffl, 2001).

LH measurements

For experiments involving LH measurements, trunk blood was collected into a
tube containing a cocktail of heparin (10 yl of 1000 USP/mL) and protease inhibitor (10
I of aprotinin 10,000KIU/ml; Fisher Scientific, Catalog # BP2503-10). Plasma was sent
to the University of Virginia Center for Research in Reproduction Ligand Assay and

Analysis Core (Charlottesville, VA) to be measured for LH by radioimmunoassay.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 6.0 (GraphPad
Software, San Diego, California, USA). Statistical significance was determined either by
unpaired Student’s t-test, one-way ANOVA followed by Tukey’s multiple comparison or
Bonferroni's correction post hoc test or two-way ANOVA followed by Bonferroni's
multiple comparison post hoc test. The statistical analysis for each experiment is stated
in the figure legend. All results are given as means + SEM. Results were considered

statistically significant when p < 0.05.

Results
Neuroanatomical interaction of the CNS GLP system with ARC Kiss1 cells
We used immunohistochemistry to assess GLP fiber contacts onto ARC Kiss1-

CreGFP neurons in OXV mice (Figure 1A-C). The GLP-2 primary antibody has
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previously been described and has complete overlap with GLP-1 distribution (Tang-
Christensen et al., 2000; Vrang et al., 2007; Vrang and Grove, 2011). We determined
that GLP-ir fibers come in close apposition with an average of 22% of ARC Kiss1 cells
(range of 10.1%-28.6%; n=5 animals, 4 sections per animal) (Figure 1A-C). We also
determined that the Glplr mRNA is expressed within a subpopulation (20%) of Kiss1
cells using single cell RT-PCR (range of 18-25%; 16-33 cells/animal; n=5 animals;
Figure 1D). Furthermore, GLP-ir fibers come in close apposition to an average of 10.9%
of GnRH cell bodies (range of 8.1%-14.7; n=4 animals, 5-7 sections per animal; data
not shown). Our data are consistent with studies in male mice showing GLP-1-ir fiber
contacts onto GnRH cells (Farkas et al., 2016).

To gain a better understanding of the neuroanatomical location of Kiss1 cells that
co-express Glplr mRNA we performed dual in situ hybridization (ISH) on brain sections
from OVX mice. We detected an average of 21.3% of ARC Kiss1 neurons co-express
Glplr mRNA (Figure 1E,F), which is consistent with our single-cell RT-PCR co-
expression analysis (Figure 1D). In this mixed population of Glp1+ and Kiss1+ neurons,
we observed a higher number of Kiss1/Glp-1r co-expressing cells in the ventrolateral
portion of the ARC (Figure 1F). Taken together, these data provide neuroanatomical
and molecular evidence that the CNS GLP system interacts with the reproductive

neuroendocrine axis in an OVX mouse model.

Electrophysiological recordings in ARC Kiss1 neurons treated with the GLP-1R agonist

liraglutide
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We determined that GLP-producing neurons come in close contact with ARC
Kiss1 cells and that the GLP-1R is expressed within a subset of ARC Kiss1 neurons in
OVX mice (Figure 1). To assess the function of GLP-1R signaling within ARC Kiss1
cells we performed current clamp recordings with application of the long acting GLP-1R
agonist, liraglutide. We found that liraglutide at 100 nM and 300 nM caused a
membrane depolarization in ARC Kiss1 neurons (Figure 2A) and an increase in action
potential firing with the 300 nM concentration of liraglutide (Figure 2A). To determine if
GLP-1R signaling is directly activating ARC Kiss1 cells, we performed similar
experiments in the presence of presynaptic blockers. Liraglutide at 300 nM
concentration caused a membrane depolarization even in the presence of presynaptic
blockers (Figure 2B), which occurred in 60% of the ARC Kiss1 neurons that were
tested. It should be noted that a greater percentage of ARC Kiss1 cells responded to
GLP-1R agonism (~60%) than expressed Glplr mRNA (~20%), which may reflect a
greater sensitivity of electrophysiology methods compared to single-cell RT-PCR/dual
ISH. Alternatively, there may be a higher level of functional GLP-1R protein at the cell
surface as compared to Glplr mRNA expression. Nevertheless, these
electrophysiological data indicate that GLP-1R signaling directly activates ARC Kiss1
cell action suggesting that GLP-1R signaling may have a stimulatory effect on

downstream GnRH/LH release.

The stimulatory effect of GLP-1R signaling on ARC Kiss1 cells in OVX mice led

us to determine whether this effect is sex specific or if estradiol modifies the action of

GLP-1R signaling in ARC Kiss1 neurons. We then performed current clamp recordings
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in male and OVX+E; Kiss1-CreGFP mice. ARC Kiss1 neurons from OVX+E»
responded to liraglutide with membrane depolarization (Figure 3A) although there was a
reduction in the magnitude of liraglutide-mediated responses in OVX+E; as compared to
OVX, these differences were not significant. Male ARC Kiss1 neurons showed similar
depolarization in the presence of liraglutide treatment. Overall, we observed that
liraglutide caused a membrane depolarization in 52% of ARC Kiss1 neurons from
OVX+E, mice and 60% of ARC Kiss1 neurons from males. From these data we also
determined that the initiation of spontaneous action potentials depends upon the
magnitude of liraglutide-mediated depolarization (Figure 3C). We observed that the
magnitude of liraglutide-mediated depolarization was greater in males. However, this
was only statistically significant between OVX+E, and male mice. As a whole, these
data suggest that GLP-1R signaling activates ARC Kiss1 neurons and this activation is

not sex specific or modified by the presence of estradiol.

Brainstem preproglucagon (Gcg) expression during calorie restriction and effect on LH
levels in response to GLP-1R agonism during 48 h fasting

It is well established that hypothalamic Kiss1 is inhibited during fasting and
calorie restriction (Luque et al., 2007; True et al., 2011). Data in male mice also
indicate that brainstem preproglucagon expression is suppressed in response to
prolonged fasting (Huo et al., 2008). To determine if brainstem preproglucagon is
decreased in response to fasting in OVX mice, we exposed OVX mice to a 48 h fast.
Consistent with what has been observed in males, female OVX mice also have a

decrease in brainstem preproglucagon expression following a 48 h fast (Figure 4A;
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p=0.0006, unpaired t-test). As we determined that GLP-1R signaling stimulates ARC
Kiss1 cell action in brain slices from OVX mice we hypothesized that lack of this
stimulatory signal coming from brainstem preproglucagon neurons is contributing to the
downstream suppression GnRH/LH. To determine whether restoring GLP-1R signaling
will relieve the inhibition of LH during fasting, we treated OVX mice with liraglutide
during a 48 h fast. Liraglutide is a long acting GLP-1R agonist that has been
demonstrated to enter into the ARC upon peripheral administration (Secher et al.,
2014). We took advantage of this property of liraglutide to penetrate into ARC tissue
and gave twice-daily subcutaneous injections of liraglutide during a 48 h fast in OVX
mice. After the 48 h fast, body weight was significantly reduced in fasted mice treated
with either saline or liraglutide as compared saline-treated fed controls (Figure 4B;
p=0.0007, two-way ANOVA with Bonferroni’'s post-hoc test). As expected, fasted
animals treated with saline experience an inhibition of LH (Figure 4C; p<0.0001, one-
way ANOVA with Tukey’s post-hoc test). In contrast to what we had predicted, animals
that were fasted and treated with liraglutide also experienced a similar inhibition of LH
(Figure 4C; p<0.0001, one-way ANOVA with Tukey’s post-hoc test) indicating that
enhancing GLP-1R signaling with peripheral injections of liraglutide is not sufficient to

prevent LH inhibition during fasting in OVX mice.

Chronic ICV infusion of Ex 9-39 to OVX mice
The data from Figure 3 and 4 suggest that although GLP-1R signaling can
stimulate ARC Kiss1 action, it may not be a potent enough signal to override the

inhibition on the reproductive neuroendocrine axis during extreme cases of nutrient
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deprivation such as a 48 h fast in mice. It could also suggest that other stimulatory
signals may be more important to maintaining ARC Kiss1 action and downstream
GnRH/LH release. Therefore, we next aimed to determine whether GLP-1R signaling is
critical for maintaining ARC Kiss1 expression and circulating LH levels. To do this, we
gave chronic ICV infusion of the GLP-1R antagonist Exendin 9-39 (Ex-9) to OVX mice.
We chose a dose of 7.5 nmol/day of Ex-9 as this dose has been previously used in
adult male mice (Nogueiras et al., 2009). After 6 days of ICV infusion of Ex-9 in OVX
mice, no differences in cumulative food intake (24.62 + 0.57 g vs 24.99 £ 0.46 g; Saline
vs Ex-9; p=0.62, unpaired t-test, n=9 animals per group) were observed between saline
and Ex-9 treated animals which is consistent with previous reports in male mice
(Nogueiras et al., 2009). We did not detect a difference in body weight in Ex-9 treated
animals as compared to saline-treated controls, however we did note a sizable body
weight gain in both groups at the end of the infusion period (percent increase in body
weight, Saline 12.79 + 1.02% and Ex-9 13.01 £ 1.39%). The ICV implantation was
started 1-week post-OVX surgery which is about the time that mice tend to increase
their body weight in response to removal of ovarian hormones (Witte et al., 2010).
Therefore, the rise in body weight in response to removal of ovarian hormones may be
masking the body weight effects of Ex-9 at this dose. Despite seeing no differences in
body weight between saline and Ex-9 treated animals, ARC expression of Agrp was
increased in Ex-9 treated mice (Figure 5A; p=0.0023, unpaired t-test) confirming proper
cannula placement. We did not detect differences in ARC Kissl (p=0.26, unpaired t-

test) expression or in plasma LH levels (p=0.91, unpaired t-test) in Ex-9 treated animals
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as compared to saline controls (Figure 5B,C), suggesting that GLP-1R signaling is not

essential to maintaining ARC Kiss1 and circulating LH.

Discussion

These data are the first to provide direct neuroanatomical, molecular and
electrophysiological evidence of the interaction of the CNS GLP-1 system with ARC
Kiss1 neurons to stimulate their activity. Although our studies focus on CNS-
preproglucagon interactions with ARC Kiss1, we cannot discount that GLP-1 produced
by the gastrointestinal tract may also activate GLP-1Rs on ARC Kiss1 neurons.
Nevertheless, our reports are consistent with others demonstrating that GLP-1R
signaling stimulates the reproductive neuroendocrine axis as GLP-1 increases
GnRH/LH levels in animals under normal feeding conditions (Beak et al., 1998;
Outeirino-Iglesias et al., 2015). Our data suggest that GLP-1 stimulatory action on
GnRH/LH may be due, in part to upstream activation of ARC Kiss1 neurons. We show
that the GLP-1R agonist liraglutide causes a membrane depolarization in approximately
60% of ARC Kiss1 neurons from OVX mice. Furthermore, we find that liraglutide
depolarizes ARC Kiss1 cells from intact male and OVX+E;, mice suggesting that this
effect is not sex or estrogen dependent. Follow-up studies will be necessary to further
characterize the pharmacological properties of GLP-1R signaling in both female and
male ARC Kiss1 neurons.

In addition to acting indirectly through ARC Kiss1 neurons to modulate LH
release we also find that GLP-producing fibers come in close contact with GnRH

neurons which is consistent with the findings of other groups (Farkas et al., 2016).
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Furthermore, recent electrophysiological studies demonstrated that the GLP-1R agonist,
exendin-4 activates GnRH neurons (Farkas et al., 2016). Although our studies focused
on GLP-1R activation of ARC Kiss1 neurons, it appears that GLP-1R signaling may

modify GnRH/LH release through activation of both ARC Kiss1 and GnRH neurons.

Our current electrophysiological data, as well as data in the literature (Beak et al.,
1998; Outeirino-Iglesias et al., 2015), describe an interaction of GLP-1R signaling with
CNS Kiss1 action and downstream GnRH/LH in animals under normal energy balance,
but no reports have investigated this interaction in animals under negative energy
balance. Decreased circulating leptin and insulin during negative energy balance were
believed to be key metabolic signals that reduced the activation of CNS kisspeptin
neurons resulting in suppressed downstream GnRH/LH release. However, previous
work from our group indicates that restoration of leptin and/or insulin infused at
physiological levels was not sufficient to prevent this inhibition (Xu et al., 2009; True et
al., 2011). Therefore, the factors that contribute to the inhibition of the reproductive axis
during negative energy balance remain elusive. Our current data reveal that GLP-1R
activation stimulates ARC Kiss1 neuronal activity leading us to hypothesize that a
reduction in CNS preproglucagon may be one of these key metabolic factors. Although
we do find that brainstem preproglucagon expression is reduced following a 48h fast in
OVX mice, restoring GLP-1R signaling with peripheral injections of liraglutide was not
sufficient to prevent LH inhibition. Assessing GLP-1R action in electrophysiological
recordings of ARC Kiss1 neurons from 48h fasted mice would clarify whether GLP-1R

signaling has full potency during fasting. Previous data demonstrate that the anorectic
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action of central GLP-1R signaling is blunted in fasted rats (Sandoval et al., 2012).
Furthermore, activation of GLP-1 producing neurons by cholecystokinin as measured by
cfos is reduced in food deprived rats (Maniscalco and Rinaman, 2013). The decreased
function of CNS GLP-1R signaling or brainstem preproglucagon activity during negative
energy balance could be due to a lack of other metabolic signals necessary for full
potency of action. For example, leptin is significantly reduced during nutrient deprivation
(Ahren et al., 1997), and leptin relieves the blunted anorexigenic action of CNS GLP-1R
in fasted rats (Sandoval et al., 2012). Moreover, leptin prevents the suppression of
brainstem preproglucagon expression in fasted mice (Huo et al., 2008) which may be
due to direct action on brainstem preproglucagon neurons (Hisadome et al., 2010). In
the future, studies that aim to restore multiple metabolic factors (ie leptin, GLP-1,
insulin) may more effectively restore GnRH/LH release during negative energy balance.
This multi-agonist approach is currently being explored as a potential therapeutic for
obesity, a disease that encompasses the dysfunction of multiple metabolic pathways
(Finan et al., 2015a). Promising preclinical studies demonstrate that treating obese
animal models with dual (Finan et al., 2013) and triagonists (Finan et al., 2015b) could
have more potent effects on weight loss as compared to single molecule therapies.
Further investigation is necessary to determine whether a similar multiagonist
therapeutic approach will ameliorate reproductive dysfunction associated with negative

energy balance.

It is possible that the lack of effectiveness of GLP-1R agonism on LH levels

during fasting reflects the presence of multiple inhibitory pathways that block GnRH/LH
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release. For example, ghrelin (Tschop et al., 2000), corticosterone (Dallman et al.,
1999), and FGF21 (Zhang et al., 2015) are all significantly elevated during food
deprivation. Interestingly, all of these hormones inhibit the reproductive neuroendocrine
axis (Barreiro and Tena-Sempere, 2004; Kinsey-Jones et al., 2009; Owen et al., 2013).
Similarly, upregulation of brainstem glucose-sensing neurons during fasting may be
overriding excitatory signals on the reproductive neuroendocrine axis. Noradrenergic
glucose-sensing neurons in the A1 region of the ventral lateral medulla (VLM) are
potent regulators of LH (Ritter et al., 2006) and ablation of these neurons prevents LH
inhibition in response to glucoprivation (I'Anson et al., 2003). Recent studies reveal that
preproglucagon-expressing neurons make close appositional contacts onto
catecholaminergic neurons of the A1/C1 region of the VLM (Llewellyn-Smith et al.,
2013). The physiological significance of these contacts has not been studied. Itis
interesting to hypothesize that under normal feeding conditions, preproglucagon-
expressing neurons inhibit A1 glucose-sensing neurons. Therefore, decreased
brainstem preproglucagon expression during fasting allows for the disinhibition of A1
glucose-sensing neurons in the VLM contributing to the shutdown of the reproductive
neuroendocrine axis. This interpretation is in accordance with our studies where
liraglutide did not prevent LH inhibition as preproglucagon neurons lack GLP-1R
expression and are not activated by exogenous GLP-1R agonism (Hisadome et al.,
2010). Determining whether preproglucagon-expressing neurons aid in the regulation
of glucose-sensing neurons in the brainstem to control proper neuroendocrine output

according to metabolic status would be of interest to explore in the future.
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Our present data demonstrate that pharmacological inhibition with the GLP-1R
antagonist, Ex-9 does not alter ARC Kiss1 gene expression or circulating LH levels.
This is consistent with transgenic mouse data demonstrating that global deletion of the
GLP-1R does not alter the number or distribution of gonadotrophs and adult GlpZ1r-/-
mice are fertile (MacLusky et al., 2000). Together, these data suggest that GLP-1R
signaling may not be essential for maintaining ARC Kiss1 and LH in animals that are in
normal energy balance. In contrast, a recent publication examined CNS GLP-1R action
in prepubertal female rats and demonstrated that low doses of icv GLP-1 synchronized
vaginal opening and increased LH whereas the GLP-1R agonist exendin-4 inhibited
vaginal opening and decreased LH independently of reduced feeding (Outeirino-Iglesias
et al., 2015). These data are inconsistent with our current data where pharmacological
doses of a GLP-1R agonist failed to alter LH release in adult animals during fasting.
The reason for this discrepancy is unclear.

Our in vivo pharmacological studies were all performed in OVX mice, so as to be
able to measure the inhibitory effect of fasting on basal LH levels. Intact and OVX + E;
mice have very low levels of basal LH, making it technically difficult to measure the
inhibition of LH in these models. Therefore, if GLP-1 is playing a role in the inhibition of
LH due to negative energy balance, its effects should be manifested in the OVX model.
Although our results show that estradiol appears to have little effects on the ability of
Kiss1 cells to be activated by GLP-1, it is possible that there may be estradiol
dependent effects of GLP-1 during other reproductive states such as puberty, and

follow-up studies in OVX + E, models may be warranted.
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In addition to regulating reproductive neuroendocrine function, Kiss1r signaling
may regulate energy homeostasis as loss of Kiss1r signaling leads to body weight gain
(Tolson et al., 2014). The kisspeptin population responsible for this effect is unknown
but ARC Kiss1 neurons may be prime candidates as they are in a primary brain area
that regulates energy homeostasis and send fiber projections to numerous
hypothalamic nuclei that regulate feeding and energy expenditure (Yeo and Herbison,
2011; Yeo, 2013). Furthermore, kisspeptin-ir neurons are in close apposition with ARC
proopiomelanocortin (POMC) neurons and electrophysiological recordings demonstrate
that kisspeptin directly excites ARC POMC and indirectly inhibits ARC neuropeptide Y
(NPY) neurons (Fu and van den Pol, 2010). Although GLP-1R signaling was reported
to regulate GnRH/LH release (Beak et al., 1998; Outeirino-Iglesias et al., 2015), the
most consistent physiological output of GLP-1 mimetics is reduced body weight, which
requires CNS GLP-1R signaling (Sisley et al., 2014). Activation of GLP-1R signaling
directly stimulates ARC POMC neurons and indirectly inhibits ARC NPY neurons, which
are thought to be important mechanisms whereby GLP-1R agonists mediate a reduction
in body weight (Secher et al., 2014). In addition to regulating ARC POMC and NPY, our
electrophysiological data may suggest that GLP-1R signaling regulates energy
homeostasis through activation of ARC Kiss1 neurons. Determining the effectiveness of
GLP-1R agonists on weight loss in transgenic animals with a specific inhibition of ARC

Kiss1 neurons may help to clarify this role of ARC Kiss1.

In summary, we find that GLP-producing fibers interact with ARC Kiss1 cells

which express the GLP-1R. Furthermore, GLP-1R signaling directly activates ARC
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Kiss1 function in an estradiol independent manner. Despite a clear stimulatory effect on
ARC Kiss1 action we find that pharmacological activation of GLP-1R signaling during
fasting or pharmacological inhibition of CNS GLP-1R signaling during normal feeding
does not alter circulating LH levels suggesting that GLP-1R activation is not critical for
the maintenance of LH in adult animals. Alternatively, GLP-1R signaling within ARC
Kiss1 cells may regulate an unidentified physiological output of ARC Kiss1 activation.
Further studies are necessary to fully understand the significance of GLP-1R activation
of ARC Kiss1. Collectively, these data not only identify a novel signal that stimulates
ARC Kiss1 cell activity, but also highlights the complexity of metabolic signals that

regulate the reproductive neuroendocrine axis.
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Figure Legend

Figure 1: Interaction of the CNS GLP system with ARC Kiss1 in OVX mice. GLP-ir
fibers (red) come in close apposition with an average of 22% of ARC kisspeptin-ir cells
(green). A) Maximal projection at 40x zoom B) Maximal projection at 63x zoom C) 1um
plane at 63x zoom. Scale bars= 10 ym. n= 5 animals, 4 sections per animal. D)
Representative gel of single cell RT-PCR demonstrating that a subpopulation (20%) of
ARC Kiss1 cells from OVX mice express Glplr mRNA. n=5 animals, 16-33 cells per
animal. The expected sizes for the PCR products are 120 bp for Kiss1 and 148 bp for
Glplr. MM, molecular marker; -RT, Kiss1-GFP cell reacted without reverse transcriptase
(RT); Tissue controls (+, -), basal hypothalamic RNA reacted with (+) or without (-) RT. E)
Dual in situ hybridization demonstrating co-expression of Glplr (red) and Kiss1 (green)
mRNA in the ARC (51 out of 240 cells, 21.3% co-expression). In this example, an OVX
animal showed robust Kiss1 mRNA expression in neurons intermingled with a larger
population of Glplr+ neurons in the ARC. F) Inset from panel E. At higher magnification,
a subpopulation of ARC Kiss1 neurons express robust and detectable mRNA signal for
Glplr. Filled black arrows indicate high Glplr expression, open arrows indicate low

Glplr expression. n=4 animals; Scale bars = 100 um. 3V = third ventricle.

Figure 2: Electrophysiological recordings in brain slices demonstrating effects of
GLP-1R signaling on ARC Kiss1 cells of OVX mice. Current clamp recordings in
brain slices from OVX mice demonstrate that ARC Kiss1 cells treated with the long-
acting GLP-1R agonist, liraglutide, showed a membrane depolarization and increased
action potential firing (A). *p<0.05, **p<0.01 vs RMP, one-way RM-ANOVA with

Bonferroni’'s post-hoc test; 11p0.01, 100nM vs 300nM liraglutide, one-way RM-ANOVA
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with Bonferroni’s post-hoc test. Current clamp recordings performed in the presence of
presynaptic blockers demonstrate that liraglutide caused a membrane depolarization in
ARC Kiss1 cells of OVX mice (B). **p<0.01 RMP vs TTX+CNXQ+AP5+Liraglutide
300nM, one-way RM-ANOVA with Bonferroni’s post-hoc test; t1p0.01, 100nM vs
300nM liraglutide, one-way RM-ANOVA with Bonferroni’s post-hoc test. ##p<0.01
TTX+CNXQ+AP5 vs TTX+CNXQ+AP5+Liraglutide 300nM, one-way RM-ANOVA with
Bonferroni’'s post-hoc test; n=23 cells from 16 animals. ~60% of ARC Kiss1 cells

respond to liraglutide.

Figure 3: Electrophysiological recordings in brain slices demonstrating effects of
GLP-1R signaling on ARC Kiss1 cells of OVX+E; and male mice. Current clamp
recordings in ARC Kiss1 cells from brain slices treated with the long-acting GLP-1R
agonist, liraglutide, showed a membrane depolarization in both OVX+E; (A; 52% of cells
responded) and male (B; 60% of cells responded). ***p<0.001, ****p<0.0001 vs RMP,
one-way RM-ANOVA with Bonferroni’s post-hoc test; 111p<0.001, 100nM vs 300nM
liraglutide; one-way RM-ANOVA with Bonferroni’s post-hoc test. The magnitude of
depolarization was greater in males as compared to OVX+E; females at 100nM and
300nM concentrations (C). *p<0.05 OVX+E; vs males, one-way ANOVA with

Bonferroni’'s post-hoc test. n=13 male and 27 OVX +E; mice.

Figure 4: Effects of fasting in OVX mice on brainstem preproglucagon

expression and on GLP-1R agonism to restore fasting-suppressed LH levels.

Brainstem preproglucagon (Gcg) expression was assessed using qPCR and is
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decreased following a 48h fast (A;***p<0.001, unpaired t-test). To determine whether
GLP-1R agonism prevents LH inhibition during calorie restriction, liraglutide (30nmol/kg)
was administered subcutaneously twice-daily at the start of a 48h fast (B,C). Saline-
fasted and liraglutide-fasted animals display decreased body weight compared to
saline-fed controls (B; **p<0.01, two-way ANOVA with Bonferroni’s post-hoc test).
Saline-fasted and liraglutide-fasted animals display significantly lower levels of LH as
compared to saline-fed controls (C; ****p<0.0001, one-way ANOVA with Tukey’s post-

hoc test). n=7-8 animals per group.

Figure 5: Effect of chronic icv Ex-9 on food intake, body weight, ARC gene
expression and plasma LH in OVX mice. C57BL/6 mice were OVX and one week
later received an icv infusion of saline or the long-acting GLP-1 antagonist, Ex-9, for 6
days (7.5 nmol/ day). Ex-9 caused a significant increase in ARC expression of Agrp (A;
**p<0.01, unpaired t-test), but did not alter ARC expression of Kiss1 (B). Plasma LH

levels were similar in saline and Ex-9 treated mice (C). n=9 animals per group.
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