eNeuro

Research Article: New Research | Integrative Systems

GLP-1R signaling directly activates arcuate nucleus kisspeptin action in brain slices but does not rescue LH inhibition in OVX mice during negative energy balance

GLP-1R action on reproductive neuroendocrinology

Kristy M. Heppner¹, Arian F. Baquero¹, Camdin M. Bennett¹, Sarah R. Lindsley¹, Melissa A. Kirigiti¹, Baylin Bennett¹, Martha A. Bosch², Aaron J. Mercer³, Oline K. Rønnekleiv^{2,4}, Cadence True¹, Kevin L. Grove^{1,3} and M. Susan Smith^{1,2,4}

¹Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006 USA

²Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon, USA ³Novo Nordisk Research Center, Seattle, Washington, 98109 USA

⁴Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006 USA

DOI: 10.1523/ENEURO.0198-16.2016

Received: 11 July 2016

Revised: 28 November 2016

Accepted: 21 December 2016

Published: 5 January 2017

Author contributions: KMH was responsible for data collection, study conception and design, data analysis and interpretation, and writing of the manuscript. AFB, CB, SRL, MAK, BB, MAB, CT, AJM, and OKR collected, analyzed, and interpreted data. AFB, OKR, MSS and KLG advised on study concept and design as well as critical revision of the manuscript.

Funding: Collins Medical Trust 100002028

Funding: NIH P51 OD011092

Funding: NIH HD014643

Funding: NIH DK068098

KMH, AFB, CB, AJM and KLG are full-time employees of Novo Nordisk which markets liraglutide for the treatment of type II diabetes mellitus and obesity. SRL, MAK, BB, MAB, OKR, CT, and MSS have nothing to disclose.

Corresponding Author: M. Susan Smith, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Ave, Beaverton, OR 97006, USA. Email: smithsu@ohsu.edu

Cite as: eNeuro 2017; 10.1523/ENEURO.0198-16.2016

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

GLP-1R signaling directly activates arcuate nucleus kisspeptin action in brain
 slices but does not rescue LH inhibition in OVX mice during negative energy
 balance

4

5 Abbreviated title: GLP-1R action on reproductive neuroendocrinology

6

7 Kristy M. Heppner¹, Arian F. Baquero¹, Camdin M. Bennett¹, Sarah R. Lindsley¹,

8 Melissa A. Kirigiti¹, Baylin Bennett¹, Martha A. Bosch², Aaron J. Mercer³, Oline K.

9 Rønnekleiv^{2,4}, Cadence True¹, Kevin L. Grove^{1,3}, M. Susan Smith^{1,2,4}

10

11 Affiliations: ¹Division of Diabetes, Obesity and Metabolism, Oregon National Primate

12 Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006 USA

13 ²Department of Physiology and Pharmacology, Oregon Health & Science University,

14 Portland, Oregon, USA

¹⁵ ³Novo Nordisk Research Center, Seattle, Washington, 98109 USA

⁴Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &

17 Science University, Beaverton, Oregon, 97006 USA

18

19 **Corresponding Author:**

- 20 M. Susan Smith
- 21 Oregon National Primate Research Center
- 22 Oregon Health and Science University
- 23 505 NW 185th Ave.
- 24 Beaverton, OR 97006, USA
- 25 Email: smithsu@ohsu.edu

- 26 Number of pages: 36
- 27 Number of Figures/tables: 5
- 28 Abstract word count: 249
- 29 Introduction word count: 694
- 30 Discussion word count: 1666
- 31
- Author contributions: KMH was responsible for data collection, study conception and design, data analysis and interpretation, and writing of the manuscript. AFB, CB, SRL, MAK, BB, MAB, CT, AJM, and OKR collected, analyzed, and interpreted data. AFB, OKR, MSS and KLG advised on study concept and design as well as critical revision of the manuscript.
- 37
- Conflict of interest: KMH, AFB, CB, AJM and KLG are full-time employees of Novo
 Nordisk which markets liraglutide for the treatment of type II diabetes mellitus and
 obesity. SRL, MAK, BB, MAB, OKR, CT, and MSS have nothing to disclose.

- Acknowledgements: We thank K. Baquero, Anda Cornea, Niels Rekers, and Deanna Saxbe for providing technical assistance for these studies. The University of Virginia Center for Research in Reproduction Ligand Assay and Analysis Core is supported by the Eunice Kennedy Shriver NICHD/NIH (NCTRI) Grant P50-HD28934. KMH received funding from the Collins Medical Trust. NIH grants that supported this work are HD014643, DK068098, P51 OD011092. We would also like to thank the Oregon National Primate Research Center Imaging and Morphology Support Core.
- 50

51 Abstract

52 Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key 53 components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal 54 pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is 55 dependent on energy status and unmasking metabolic factors responsible for 56 modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-57 like peptide-1 (GLP-1), an anorexigenic neuropeptide produced by brainstem 58 preproglucagon neurons. As GLP fiber projections and the GLP-1 receptor (GLP-1R) 59 are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC 60 Kiss1 action. Using ovariectomized (OVX) mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r 61 62 mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R 63 agonist) increased action potential firing and caused a direct membrane depolarization 64 of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon 65 mRNA is decreased following a 48 h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently 66 67 suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was 68 not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-69 1R antagonist, exendin (9-39) in ad libitum fed mice did not alter ARC Kiss1 mRNA or 70 plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with 71 ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the 72 maintenance of LH during fasting or normal feeding.

74 Significance Statement

75	Reproductive dysfunction is associated with metabolic imbalance, and identifying
76	the underlying molecular mechanisms linking metabolic status with reproductive
77	function is of great importance. Kisspeptin neurons (Kiss1) located in the arcuate
78	nucleus of the hypothalamus (ARC) are essential for fertility and are potently inhibited
79	during negative energy balance; this inhibition occurs in the presence or absence of
80	ovarian steroids. Preproglucagon-expressing neurons located in the brainstem send
81	abundant fiber projections to the ARC where they release the anorexigenic
82	neuropeptide, glucagon-like peptide-1 (GLP-1). The aim of these studies was to
83	determine the interaction of the CNS GLP-1 system with ARC Kiss1 activity to
84	potentially provide a link between systems that control energy balance with those that
85	control reproductive neuroendocrine output.
86	

87 Key Words

88 Kisspeptin, LH, GLP-1, liraglutide, fasting, hypothalamus

90 Introduction

91 Adequate nutrient availability is essential to maintain proper reproductive function 92 and states of chronic negative energy balance lead to the suppression of the hypothalamic-pituitary-gonadal (HPG) axis. Kisspeptin (Kiss1) expressing neurons are 93 94 positive regulators of gonadotropin-releasing hormone (GnRH) release, and Kiss1 95 signaling through its receptor (Kiss1r) is essential for fertility (de Roux et al., 2003; 96 Seminara et al., 2003). Kiss1 neurons located in the arcuate nucleus (ARC) of the 97 hypothalamus act on GnRH nerve terminals in the median eminence and regulate basal pulsatile GnRH/luteinizing hormone (LH) release (Li et al., 2009; Han et al., 2015). 98 99 Similar to other ARC neurons, ARC Kiss1 neurons respond to metabolic cues denoting 100 changes in energy status and alter their activity (True et al., 2013; Frazao et al., 2014; 101 Nestor et al., 2014). Therefore, ARC Kiss1 neurons are thought to be key integrators of 102 metabolic status with proper output of GnRH/LH release. However, the identity of 103 nutrient sensing systems that regulate ARC Kiss1 action in response to changes in 104 energy status remains elusive. Previously, our laboratory used rodent models to show 105 that low leptin and insulin levels associated with negative energy balance do not appear 106 to be responsible for the suppression of GnRH/LH release (Xu et al., 2009; True et al., 107 2011).

108

We identified glucagon-like peptide-1 (GLP-1) as a potential nutrient sensing system that integrates metabolic status with reproductive neuroendocrine function in part through the regulation of ARC Kiss1. Post-translational processing of the preproglucagon gene (Gcg) gives rise to GLP-1 which is mainly produced in the

113	gastrointestinal tract and brain (Sandoval and D'Alessio, 2015). GLP-1 mediates its
114	action through the GLP-1 receptor (GLP-1R), a 7-transmembrane G-protein coupled
115	receptor (Mayo et al., 2003). Peripherally and centrally administered GLP-1R agonists
116	activate the GLP-1R in the central nervous system (CNS) which suppresses feeding
117	and body weight (Heppner and Perez-Tilve, 2015). This effect is mediated in part
118	through activation of anorexigenic neurons that express proopiomelanocortin (POMC)
119	and cocaine-and amphetamine-regulated transcript (CART) neurons, as well as
120	inhibition of orexigenic neurons that express neuropeptide Y (NPY) and agouti-related
121	peptide (AgRP) located in the ARC (Secher et al., 2014). Preproglucagon-expressing
122	neuronal cell bodies produce GLP-1, GLP-2, and oxyntomodulin (Larsen et al., 1997)
123	and are confined to the brainstem, whereas their fibers project to numerous areas of the
124	brain. Preproglucagon-expressing neurons project heavily to areas of the hypothalamus
125	that regulate energy metabolism (Llewellyn-Smith et al., 2011; Vrang and Grove, 2011)
126	which is consistent with a functional role of GLP-1 in the regulation of feeding and body
127	weight. One hypothalamic nucleus with the highest levels of preproglucagon-expressing
128	fibers, as well as the GLP-1R, is the ARC (Merchenthaler et al., 1999; Llewellyn-Smith
129	et al., 2011; Vrang and Grove, 2011; Ronnekleiv et al., 2014; Heppner et al., 2015).
130	GLP-1-producing neurons are activated in response to calorie ingestion (Kreisler et al.,
131	2014). Furthermore, brainstem preproglucagon expression is inhibited during fasting
132	(Huo et al., 2008) and upregulated during high-fat diet feeding (Knauf et al., 2008)
133	suggesting that preproglucagon neurons act as metabolic fuel sensors.
134	

135	Reports on the role of GLP-1 in regulating reproductive function, however, are
136	limited. Female Glp1r-/- mice have a delayed onset of puberty suggesting a role for
137	GLP-1R signaling in regulating reproductive function (MacLusky et al., 2000). Functional
138	studies indicate that GLP-1 promotes GnRH secretion from isolated hypothalamic tissue
139	and acts centrally to enhance LH levels in male rats (Beak et al., 1998). More recent
140	studies demonstrate that GLP-1 acts centrally to enhance the pre-ovulatory LH surge of
141	intact female rats (Outeirino-Iglesias et al., 2015). Taken together, these data suggest
142	that GLP-1 promotes GnRH/LH release. Based on the neuroanatomical distribution of
143	GLP-1 producing fibers as well as the functional role of stimulating GnRH/LH release,
144	we hypothesized that GLP-1R signaling activates ARC Kiss1 neurons to enhance
145	GnRH/LH release. Thus, decreased brainstem preproglucagon could contribute to the
146	suppression of ARC Kiss1 activity and suppression of downstream GnRH/LH release
147	during negative energy balance. The aims of these studies were to: 1) determine
148	whether the CNS GLP-1 system has neuroanatomical and functional interaction with
149	ARC Kiss1 neurons and 2) assess whether GLP-1R signaling plays a role in the
150	suppression of the reproductive neuroendocrine axis that occurs during fasting, using
151	an ovariectomized (OVX) mouse model.
152	

153 Materials and Methods

154 Animals

All animals were fed a standard chow diet (Purina lab chow; catalog # 5001) and maintained on a 12:12-h light-dark cycle at 22°C with free access to food and water unless noted otherwise. For histology experiments and electrophysiological recordings,

158 Kiss1-CreGFP mice on a C57BL/6 background were produced by Elias and colleagues 159 at the University of Michigan (Cravo et al., 2011) and bred at the facilities at OHSU. For 160 single cell RT-PCR experiments, female Kiss1-CreGFP mice (C57BL/6J and S129 161 background) were originally produced by Steiner and colleagues at the University of 162 Washington (Gottsch et al., 2011) and then bred at the facilities at OHSU. For studies 163 involving fasting or intracerebroventricular (icv) infusion, adult female C57BL/6J mice 164 (12-14 weeks old) were purchased from the Jackson Laboratory. For studies involving 165 dual in situ hybridization, adult female mice were purchased and ovariectomized at 166 Jackson Laboratory. All animal procedures were approved by the Oregon Health and 167 Science University and the Novo Nordisk Research Center Institutional Animal Care 168 and Use Committees.

169

170 Ovariectomy (OVX) and estradiol (E₂) replacement

171 Adult female mice were anesthetized using 2.5 % isoflurane in oxygen delivered 172 by a nose cone. After receiving a pre-operative dose of carprofen (5 mg/kg), the 173 ovaries were removed through bilateral lumbar incisions. The vasculature to the ovary 174 and body wall were sutured, and wound clips were used to close the incision. For 175 surgeries involving E₂ replacement, an E₂-filled capsule was implanted in the 176 interscapular region immediately after OVX surgery. The E_2 implants were made of 177 Silastic tubing (0.59 in long, 0.078 in inner diameter, 0.125 in outer diameter; Dow 178 Corning) and filled with a low dose of crystalline E₂ (20 µg/mL, in sesame oil) as 179 previously described (Navarro et al., 2015).

181 Immunohistochemistry

182	Female Kiss1-CreGFP mice (Cravo et al., 2011) underwent OVX surgery and a
183	week later were sedated with ketamine (80 mg/kg) and xylazine (10 mg/kg) and were
184	then perfused with 4% PFA in 0.1 m phosphate (PB) buffer, pH 7.4. Brains were
185	removed and post-fixed in 4% PFA overnight at 4° C and then cryoprotected with 25%
186	sucrose in 0.05 M potassium phosphate buffered saline (KPBS) and stored at -80 $^\circ$ C
187	until sectioning. Sections were cut at 25 μm on a freezing microtome in a one-in-six
188	series. For analysis of preproglucagon-expressing fiber contacts onto Kiss1 neurons,
189	the tissue sections were washed in KPBS several times and preincubated in blocking
190	buffer (KPBS plus 0.4% Triton X-100 plus 2% normal donkey serum) for 30 min before
191	incubating in chicken anti-GFP (1:5K; Aves Labs cat # GFP-1020) and mouse anti-GLP-
192	2 (1:2K; Novo Nordisk A/S) in blocking buffer for 24 h at 4°C. The monoclonal GLP-2
193	antibody was raised against full-length human GLP-2 (GLP- 2_{1-33}) and has shown to
194	have complete overlap with GLP-1 immunostaining ((Tang-Christensen et al., 2000;
195	Vrang et al., 2007). Because of this overlap, no distinction is made whether fibers are
196	GLP-1 or GLP-2, and are referred to as GLP fibers. Following washes in KPBS, tissue
197	sections were incubated for 1 h in a cocktail of Alexa Fluor 568 donkey anti-mouse
198	antibody (1:1K; Life Technologies; catalog #A10037) and Alexa Fluor 488 goat anti-
199	chicken (1:1K; Life Technologies cat # A11039) at room temperature, then subsequently
200	washed and mounted on gelatin-coated glass slides and coverslipped with SlowFade
201	Gold antifade reagent (Invitrogen; catalog #S36936). For analysis of GLP contacts onto
202	GnRH neurons the same protocol as above was implemented using the primary
203	antibodies mouse anti-GLP-2 (1:2K; Novo Nordisk A/S) and rabbit anti-GnRH (1:32K;

EL-14;(Ellinwood et al., 1985)) and the secondary antibodies Alexa Fluor 647 donkey anti-mouse (1:1K; Life Technologies, catalog #A31571) and Alexa Fluor donkey antirabbit 568 (1:1K; Life Technologies, catalog #A10042).

207

208 Confocal analysis

Immunofluorescence images were taken with a Leica SP5 confocal microscope
 with Acousto-Optical Beam Splitter (Buffalo Grove, Illinois). Analyses of GLP-

211 immunoreactive (GLP-ir) fibers making close appositions to ARC Kiss1 fibers and

212 GnRH cell bodies were performed as previously described (True et al., 2013).

213 Photomicrographs were taken at a 40X magnification at 1024 × 1024 pixel resolution

and at a speed of 700 Hz. Focal planes were 1 µm apart for analysis, and 4 ARC

215 sections and 5-7 preoptic area (POA) were analyzed per animal. For more abundant

216 ARC Kiss1 cells, all visible cells in confocal photomicrographs of 4 ARC sections

217 (unilateral) were analyzed for contact analysis. Stacks were analyzed using ImageJ
218 software (NIH).

219

220 Single Cell RT-PCR

Kiss1-CreGFP mice (Gottsch et al., 2011) were OVX bilaterally and euthanized a
week later for tissue collection. Single cell transcriptomes were isolated from *Kiss1*CreGFP cells as previously described (Bosch et al., 2013; Navarro et al., 2015).
Primers were designed to span at least one intron-exon boundary using the Clone
Manager software program (Scientific and Educational software). Stringent PCR
conditions were tested to determine the optimal primer concentration, magnesium

227	concentration and annealing temperature to produce a single clear band. The primer
228	sequences for Glp1r and Kiss1 were Glp1r (149 bp product, accession number
229	NM_021332, forward primer 474-494 nt, reverse primer 602-622 nt); Kiss1 primers were
230	described previously (Zhang et al., 2013). PCR was performed on 3 μl of cDNA in a 30
231	µl final volume containing 1X Go <i>Taq</i> Flexi buffer (Promega), 2mM MgCl ₂ , 0.33mM
232	deoxynucleoside triphosphate, 0.33 μM forward and reverse primers, 2-U Go Taq and
233	0.22 μ g TaqStart antibody (Clontech) for 50 cycles of amplification with specific
234	annealing temperatures (Glp1r, 60°C; Kiss1, 57°C). PCR products were visualized with
235	ethidium bromide on a 2% agarose gel and confirmed by sequencing. As a negative
236	control, aCSF samples were collected in the vicinity of the dispersed cells and processed in
237	the RT-PCR assays. Water blanks were also included in each RT-PCR assay. In addition,
238	several single cells were processed in the RT-PCR but without reverse transcriptase (RT) in
239	order to assure that genomic DNA was not being amplified. Basal hypothalamic tissue RNA
240	was also included as a positive control (with RT) and negative control (without RT).
241	
242	For determination of neuronal expression of a particular transcript, 127 neurons

(16-33 cells/animal) were harvested from 5 animals. The number of arcuate Kiss1-GFP
neurons expressing *Glp1r* was counted for each animal and the mean number of
neurons/animal was determined and used for further analysis of mean, SEM, and
percentage expression.

247

248 Dual in situ hybridization

For dual *in situ* hybridization (ISH), formalin-fixed paraffin embedded (FFPE)
brain tissue was cut into 5 μm sections using a rotary microtome (RM2255, Leica

251	Biosystems) and mounted onto Superfrost Plus glass (Fisher Scientific). We sectioned
252	brains from OVX females (n=4) and sampled the ARC at two distinct anatomical
253	locations within the ARC (-1.3 from bregma, and -1.8 from bregma, respectively). Brain
254	tissues were prepared for RNAscope ISH (ACD Bio, Hayward, CA) following the
255	manufacturer's recommendations (ACD Bio #322452-USM), and duplex chromogenic
256	ISH was executed in a HybEZ System following the protocol from ACD Bio (#322500).
257	Our experiments utilized probes to Mm-Glp1r (#418851-C2) and Mm-KISS1 (#408001),
258	which were labeled with red and green chromogens after signal amplification steps,
259	respectively. After staining, slides were counterstained in twenty dips of Mayer's
260	hematoxylin (Sigma Aldrich), dried in an oven a 60°C for 2 hours, and were cover
261	slipped with Ecomount mounting medium (BioCare). Finished slides were scanned at
262	40x on a Zeiss AxioScan.Z1 for post-hoc analysis. All representative images were
263	matched for zoom level and brightness/contrast.
~	

265 Electrophysiology

266 All recordings were performed in ARC Kiss1-CreGFP neurons (Cravo et al., 267 2011) between 60-90 days of age. OVX and OVX + E₂ surgeries were performed 8-10 268 days prior to recordings using the methods described above. Coronal slices containing 269 the ARC were prepared as previously described (Qiu et al., 2010). Briefly, brain slices 270 (200 µm) containing ARC were maintained with constant flow (1–2 ml/min) of aCSF 271 containing the following (in mM): 124 NaCl, 5 KCl, 2.6 NaH₂PO₄, 2 MgSO₄, 1 CaCl₂, 10 272 HEPES, 10 glucose; oxygenated (95% O₂, 5% CO₂) osmolarity ~300 at 32°C-33°C. For 273 current-clamp experiments, microelectrodes had resistances of $3-6 \text{ m}\Omega$ and were filled

274	with an internal solution containing the following (in mM): 125 K-gluconate, 2 KCl, 10
275	EGTA 5 HEPES, 1 ATP, 0.3 GTP; pH 7.25 with KOH, osmolarity \sim 295 mosmM. Data
276	acquisition was performed using a multiclamp 700B amplifier (Molecular Devices). Data
277	were filtered at 3 KHz and sampled at 5–10 KHz using a computer interface Digidata
278	1322 and pClamp 9.2 software (Molecular Devices). The liquid junction potential of 5
279	mV was corrected in the analysis. All solutions were made fresh the day of the
280	experiment. Liraglutide was obtained from Novo Nordisk Inc. 6-cyano-7-
281	nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonovaleric acid (APV)
282	were obtained from Tocris, (Ellisville, MO) and tetrodotoxin (TTX) from Alomone Labs
283	(Jerusalem, Israel).
284	
285	48 h fasting and brainstem dissection
286	Adult C57BL/6J female mice from the Jackson Laboratory (12-14 weeks)
287	underwent OVX surgery as described above. One week after surgery animals were
288	maintained on an ad libitum chow-fed diet or fasted for 48 h. We chose a 48 h fast

because both brainstem preproglucagon (Huo et al., 2008) and LH levels (Huang et al.,

200 2008) have previously been reported to be inhibited in mice using this paradigm. After

291 the 48 h fast, all animals were anesthetized with isoflurane and decapitated. The brain

was placed into a 1 mm coronal brain matrix and a 3 mm section containing the

293 brainstem was collected (-6 mm to -9 mm posterior to bregma). The tissue was then

frozen immediately on liquid nitrogen and stored at -80°C until RNA extraction was

295 performed.

296

298 48 h fasting and liraglutide treatment

299 Adult C57BL/6J female mice from the Jackson Laboratory (12-14 weeks old) 300 underwent OVX surgery as described above. One week after surgery animals were fed 301 ad libitum or had their food removed at 0900h. Also at this time, ad libitum fed animals 302 received twice-daily subcutaneous saline injections and fasted animals received twice-303 daily subcutaneous injections of saline or the GLP-1R agonist, liraglutide (30nmol/kg 304 per injection; Novo Nordisk). Peripheral injection of liraglutide has been reported to 305 penetrate into the ARC (Secher et al., 2014). After 48h, all animals were anesthetized 306 with isoflurane and decapitated to collect trunk blood.

307

308 Intracerebroventricular Exendin (9-39) infusion and arcuate dissection

309 Adult C57BL/6J female mice from Jackson laboratory (12-14 weeks old)

310 underwent OVX surgery as described above. One week later, animals were

311 stereotaxically implanted (David Kopf Instruments, Tujunga, CA) with a cannula (brain

312 infusion kit #3, Alzet, Cupertino, CA) placed in the lateral cerebral ventricle as

313 previously described (Heppner et al., 2012). A polyethylene catheter attached the

314 cannula to an osmotic mini-pump (1007D Alzet, Cupertino, CA) that was

315 subcutaneously implanted. The osmotic mini-pump infused either saline or Exendin 9-

316 39 (Ex-9; 7.5nmol/day; American Peptide, catalog # 46-3-10). After 6 days of icv

317 infusion animals were anesthetized with isoflurane and decapitated. Trunk blood was

318 collected and then the brain was dissected out from the skull and placed in a 1mm

319 coronal brain matrix. The first blade was placed at the caudal extent of the

hypothalamus and the second blade was placed 2 mm rostral. The 2 mm thick coronal slice was placed on chilled petri dish and a dissection razor (Harris Uni-Core; catalog # 7093508) was used to collect the ventral aspect of the brain containing the ARC. The tissue was then immediately frozen on liquid nitrogen and stored at -80°C until RNA extraction was performed. Cannula placement was confirmed by increased expression of *Agrp* mRNA in ARC tissue of Ex-9 treated mice as compared to saline treated controls.

327

328 RNA extraction and qPCR for brainstem and arcuate tissue

329 RNA was isolated using Trizol and the RNeasy micro kit with on-column 330 deoxyribonuclease I treatment (Qiagen). Quality and integrity of RNA was determined 331 using nanodrop spectrophotometer ND-1000. Reverse transcriptase reactions were 332 prepared using 1 µg of RNA and iScript cDNA Synthesis Kit (Bio-Rad). Quantitative 333 real-time PCR was completed using TagMan probes (Applied Biosystems) for Gcg 334 (Mm01269055 m1), Agrp (Mm00475829 g1), Npy (Mm00445771 m1), Cart 335 (Mm04210469 m1), Kiss1 (Mm03058560 m1), Pomc (Mm00435874 m1), and 336 housekeeping gene 18s (Hs03003631 g1) was used as an endogenous control to 337 normalize each sample and gene. PCRs were in a 10 µl volume using 0.5 µl TaqMan 338 probe, 10 ng cDNA template, 5 µl TagMan Gene Expression Master Mix II with UNG 339 (Applied Biosystems), and 2.5 µl DNase/RNase free molecular grade water (Qiagen). 340 Real-time PCR was run using an Applied Biosystems 7900HT Fast Real-Time PCR 341 system with an initial denaturing at 50°C for 2 min, 95°C for 10 min, followed by 40

342 cycles at 95°C for 15 s, and annealing at 60°C for 1 min. Results were calculated using
343 the Pfaffl method (Pfaffl, 2001).

344

345 LH measurements

For experiments involving LH measurements, trunk blood was collected into a
tube containing a cocktail of heparin (10 µl of 1000 USP/mL) and protease inhibitor (10
µl of aprotinin 10,000KIU/ml; Fisher Scientific, Catalog # BP2503-10). Plasma was sent
to the University of Virginia Center for Research in Reproduction Ligand Assay and
Analysis Core (Charlottesville, VA) to be measured for LH by radioimmunoassay.

351

352 Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 6.0 (GraphPad Software, San Diego, California, USA). Statistical significance was determined either by unpaired Student's t-test, one-way ANOVA followed by Tukey's multiple comparison or Bonferroni's correction post hoc test or two-way ANOVA followed by Bonferroni's multiple comparison post hoc test. The statistical analysis for each experiment is stated in the figure legend. All results are given as means \pm SEM. Results were considered statistically significant when p < 0.05.

360

361 **Results**

362 Neuroanatomical interaction of the CNS GLP system with ARC Kiss1 cells

363 We used immunohistochemistry to assess GLP fiber contacts onto ARC Kiss1-

364 CreGFP neurons in OXV mice (Figure 1A-C). The GLP-2 primary antibody has

365	previously been described and has complete overlap with GLP-1 distribution (Tang-
366	Christensen et al., 2000; Vrang et al., 2007; Vrang and Grove, 2011). We determined
367	that GLP-ir fibers come in close apposition with an average of 22% of ARC Kiss1 cells
368	(range of 10.1%-28.6%; n=5 animals, 4 sections per animal) (Figure 1A-C). We also
369	determined that the <i>Glp1r</i> mRNA is expressed within a subpopulation (20%) of <i>Kiss1</i>
370	cells using single cell RT-PCR (range of 18-25%; 16-33 cells/animal; n=5 animals;
371	Figure 1D). Furthermore, GLP-ir fibers come in close apposition to an average of 10.9%
372	of GnRH cell bodies (range of 8.1%-14.7; n=4 animals, 5-7 sections per animal; data
373	not shown). Our data are consistent with studies in male mice showing GLP-1-ir fiber
374	contacts onto GnRH cells (Farkas et al., 2016).
375	To gain a better understanding of the neuroanatomical location of Kiss1 cells that
376	co-express Glp1r mRNA we performed dual in situ hybridization (ISH) on brain sections
377	from OVX mice. We detected an average of 21.3% of ARC Kiss1 neurons co-express
378	Glp1r mRNA (Figure 1E,F), which is consistent with our single-cell RT-PCR co-

379 expression analysis (Figure 1D). In this mixed population of *Glp1*+ and *Kiss1*+ neurons,

380 we observed a higher number of *Kiss1/Glp-1r* co-expressing cells in the ventrolateral

381 portion of the ARC (Figure 1F). Taken together, these data provide neuroanatomical

382 and molecular evidence that the CNS GLP system interacts with the reproductive

383 neuroendocrine axis in an OVX mouse model.

384

Electrophysiological recordings in ARC Kiss1 neurons treated with the GLP-1R agonist
 liraglutide

387	We determined that GLP-producing neurons come in close contact with ARC
388	Kiss1 cells and that the GLP-1R is expressed within a subset of ARC Kiss1 neurons in
389	OVX mice (Figure 1). To assess the function of GLP-1R signaling within ARC Kiss1
390	cells we performed current clamp recordings with application of the long acting GLP-1R
391	agonist, liraglutide. We found that liraglutide at 100 nM and 300 nM caused a
392	membrane depolarization in ARC Kiss1 neurons (Figure 2A) and an increase in action
393	potential firing with the 300 nM concentration of liraglutide (Figure 2A). To determine if
394	GLP-1R signaling is directly activating ARC Kiss1 cells, we performed similar
395	experiments in the presence of presynaptic blockers. Liraglutide at 300 nM
396	concentration caused a membrane depolarization even in the presence of presynaptic
397	blockers (Figure 2B), which occurred in 60% of the ARC Kiss1 neurons that were
398	tested. It should be noted that a greater percentage of ARC Kiss1 cells responded to
399	GLP-1R agonism (~60%) than expressed <i>Glp1r</i> mRNA (~20%), which may reflect a
400	greater sensitivity of electrophysiology methods compared to single-cell RT-PCR/dual
401	ISH. Alternatively, there may be a higher level of functional GLP-1R protein at the cell
402	surface as compared to Glp1r mRNA expression. Nevertheless, these
403	electrophysiological data indicate that GLP-1R signaling directly activates ARC Kiss1
404	cell action suggesting that GLP-1R signaling may have a stimulatory effect on
405	downstream GnRH/LH release.
406	

407 The stimulatory effect of GLP-1R signaling on ARC Kiss1 cells in OVX mice led 408 us to determine whether this effect is sex specific or if estradiol modifies the action of 409 GLP-1R signaling in ARC Kiss1 neurons. We then performed current clamp recordings

410 in male and OVX+E2 Kiss1-CreGFP mice. ARC Kiss1 neurons from OVX+E2 411 responded to liraglutide with membrane depolarization (Figure 3A) although there was a 412 reduction in the magnitude of liraglutide-mediated responses in OVX+E₂ as compared to 413 OVX, these differences were not significant. Male ARC Kiss1 neurons showed similar 414 depolarization in the presence of liraglutide treatment. Overall, we observed that 415 liraglutide caused a membrane depolarization in 52% of ARC Kiss1 neurons from 416 OVX+E₂ mice and 60% of ARC Kiss1 neurons from males. From these data we also 417 determined that the initiation of spontaneous action potentials depends upon the 418 magnitude of liraglutide-mediated depolarization (Figure 3C). We observed that the 419 magnitude of liraglutide-mediated depolarization was greater in males. However, this 420 was only statistically significant between OVX+E₂ and male mice. As a whole, these 421 data suggest that GLP-1R signaling activates ARC Kiss1 neurons and this activation is 422 not sex specific or modified by the presence of estradiol. 423

424 Brainstem preproglucagon (Gcg) expression during calorie restriction and effect on LH

425 levels in response to GLP-1R agonism during 48 h fasting

It is well established that hypothalamic Kiss1 is inhibited during fasting and
calorie restriction (Luque et al., 2007; True et al., 2011). Data in male mice also
indicate that brainstem preproglucagon expression is suppressed in response to
prolonged fasting (Huo et al., 2008). To determine if brainstem preproglucagon is
decreased in response to fasting in OVX mice, we exposed OVX mice to a 48 h fast.
Consistent with what has been observed in males, female OVX mice also have a
decrease in brainstem preproglucagon expression following a 48 h fast (Figure 4A;

433	p=0.0006, unpaired t-test). As we determined that GLP-1R signaling stimulates ARC
434	Kiss1 cell action in brain slices from OVX mice we hypothesized that lack of this
435	stimulatory signal coming from brainstem preproglucagon neurons is contributing to the
436	downstream suppression GnRH/LH. To determine whether restoring GLP-1R signaling
437	will relieve the inhibition of LH during fasting, we treated OVX mice with liraglutide
438	during a 48 h fast. Liraglutide is a long acting GLP-1R agonist that has been
439	demonstrated to enter into the ARC upon peripheral administration (Secher et al.,
440	2014). We took advantage of this property of liraglutide to penetrate into ARC tissue
441	and gave twice-daily subcutaneous injections of liraglutide during a 48 h fast in OVX
442	mice. After the 48 h fast, body weight was significantly reduced in fasted mice treated
443	with either saline or liraglutide as compared saline-treated fed controls (Figure 4B;
444	p=0.0007, two-way ANOVA with Bonferroni's post-hoc test). As expected, fasted
445	animals treated with saline experience an inhibition of LH (Figure 4C; p<0.0001, one-
446	way ANOVA with Tukey's post-hoc test). In contrast to what we had predicted, animals
447	that were fasted and treated with liraglutide also experienced a similar inhibition of LH
448	(Figure 4C; p<0.0001, one-way ANOVA with Tukey's post-hoc test) indicating that
449	enhancing GLP-1R signaling with peripheral injections of liraglutide is not sufficient to
450	prevent LH inhibition during fasting in OVX mice.
451	

452 Chronic ICV infusion of Ex 9-39 to OVX mice

The data from Figure 3 and 4 suggest that although GLP-1R signaling can stimulate ARC Kiss1 action, it may not be a potent enough signal to override the inhibition on the reproductive neuroendocrine axis during extreme cases of nutrient

456	deprivation such as a 48 h fast in mice. It could also suggest that other stimulatory
457	signals may be more important to maintaining ARC Kiss1 action and downstream
458	GnRH/LH release. Therefore, we next aimed to determine whether GLP-1R signaling is
459	critical for maintaining ARC Kiss1 expression and circulating LH levels. To do this, we
460	gave chronic ICV infusion of the GLP-1R antagonist Exendin 9-39 (Ex-9) to OVX mice.
461	We chose a dose of 7.5 nmol/day of Ex-9 as this dose has been previously used in
462	adult male mice (Nogueiras et al., 2009). After 6 days of ICV infusion of Ex-9 in OVX
463	mice, no differences in cumulative food intake (24.62 \pm 0.57 g vs 24.99 \pm 0.46 g; Saline
464	vs Ex-9; p=0.62, unpaired t-test, n=9 animals per group) were observed between saline
465	and Ex-9 treated animals which is consistent with previous reports in male mice
466	(Nogueiras et al., 2009). We did not detect a difference in body weight in Ex-9 treated
467	animals as compared to saline-treated controls, however we did note a sizable body
468	weight gain in both groups at the end of the infusion period (percent increase in body
469	weight, Saline 12.79 \pm 1.02% and Ex-9 13.01 \pm 1.39%). The ICV implantation was
470	started 1-week post-OVX surgery which is about the time that mice tend to increase
471	their body weight in response to removal of ovarian hormones (Witte et al., 2010).
472	Therefore, the rise in body weight in response to removal of ovarian hormones may be
473	masking the body weight effects of Ex-9 at this dose. Despite seeing no differences in
474	body weight between saline and Ex-9 treated animals, ARC expression of Agrp was
475	increased in Ex-9 treated mice (Figure 5A; p=0.0023, unpaired t-test) confirming proper
476	cannula placement. We did not detect differences in ARC Kiss1 (p=0.26, unpaired t-
477	test) expression or in plasma LH levels (p=0.91, unpaired t-test) in Ex-9 treated animals

478 as compared to saline controls (Figure 5B,C), suggesting that GLP-1R signaling is not
479 essential to maintaining ARC Kiss1 and circulating LH.

480

481 **Discussion**

482 These data are the first to provide direct neuroanatomical, molecular and 483 electrophysiological evidence of the interaction of the CNS GLP-1 system with ARC 484 Kiss1 neurons to stimulate their activity. Although our studies focus on CNS-485 preproglucagon interactions with ARC Kiss1, we cannot discount that GLP-1 produced by the gastrointestinal tract may also activate GLP-1Rs on ARC Kiss1 neurons. 486 487 Nevertheless, our reports are consistent with others demonstrating that GLP-1R 488 signaling stimulates the reproductive neuroendocrine axis as GLP-1 increases 489 GnRH/LH levels in animals under normal feeding conditions (Beak et al., 1998; 490 Outeirino-Iglesias et al., 2015). Our data suggest that GLP-1 stimulatory action on 491 GnRH/LH may be due, in part to upstream activation of ARC Kiss1 neurons. We show 492 that the GLP-1R agonist liraglutide causes a membrane depolarization in approximately 493 60% of ARC Kiss1 neurons from OVX mice. Furthermore, we find that liraglutide 494 depolarizes ARC Kiss1 cells from intact male and OVX+E₂ mice suggesting that this 495 effect is not sex or estrogen dependent. Follow-up studies will be necessary to further 496 characterize the pharmacological properties of GLP-1R signaling in both female and 497 male ARC Kiss1 neurons.

In addition to acting indirectly through ARC Kiss1 neurons to modulate LH
release we also find that GLP-producing fibers come in close contact with GnRH
neurons which is consistent with the findings of other groups (Farkas et al., 2016).

Furthermore, recent electrophysiological studies demonstrated that the GLP-1R agonist,
exendin-4 activates GnRH neurons (Farkas et al., 2016). Although our studies focused
on GLP-1R activation of ARC Kiss1 neurons, it appears that GLP-1R signaling may
modify GnRH/LH release through activation of both ARC Kiss1 and GnRH neurons.

506 Our current electrophysiological data, as well as data in the literature (Beak et al., 507 1998; Outeirino-Iglesias et al., 2015), describe an interaction of GLP-1R signaling with 508 CNS Kiss1 action and downstream GnRH/LH in animals under normal energy balance, 509 but no reports have investigated this interaction in animals under negative energy 510 balance. Decreased circulating leptin and insulin during negative energy balance were 511 believed to be key metabolic signals that reduced the activation of CNS kisspeptin 512 neurons resulting in suppressed downstream GnRH/LH release. However, previous 513 work from our group indicates that restoration of leptin and/or insulin infused at 514 physiological levels was not sufficient to prevent this inhibition (Xu et al., 2009; True et 515 al., 2011). Therefore, the factors that contribute to the inhibition of the reproductive axis 516 during negative energy balance remain elusive. Our current data reveal that GLP-1R 517 activation stimulates ARC Kiss1 neuronal activity leading us to hypothesize that a 518 reduction in CNS preproglucagon may be one of these key metabolic factors. Although 519 we do find that brainstem preproglucagon expression is reduced following a 48h fast in 520 OVX mice, restoring GLP-1R signaling with peripheral injections of liraglutide was not 521 sufficient to prevent LH inhibition. Assessing GLP-1R action in electrophysiological 522 recordings of ARC Kiss1 neurons from 48h fasted mice would clarify whether GLP-1R 523 signaling has full potency during fasting. Previous data demonstrate that the anorectic

524	action of central GLP-1R signaling is blunted in fasted rats (Sandoval et al., 2012).
525	Furthermore, activation of GLP-1 producing neurons by cholecystokinin as measured by
526	cfos is reduced in food deprived rats (Maniscalco and Rinaman, 2013). The decreased
527	function of CNS GLP-1R signaling or brainstem preproglucagon activity during negative
528	energy balance could be due to a lack of other metabolic signals necessary for full
529	potency of action. For example, leptin is significantly reduced during nutrient deprivation
530	(Ahren et al., 1997), and leptin relieves the blunted anorexigenic action of CNS GLP-1R
531	in fasted rats (Sandoval et al., 2012). Moreover, leptin prevents the suppression of
532	brainstem preproglucagon expression in fasted mice (Huo et al., 2008) which may be
533	due to direct action on brainstem preproglucagon neurons (Hisadome et al., 2010). In
534	the future, studies that aim to restore multiple metabolic factors (ie leptin, GLP-1,
535	insulin) may more effectively restore GnRH/LH release during negative energy balance.
536	This multi-agonist approach is currently being explored as a potential therapeutic for
537	obesity, a disease that encompasses the dysfunction of multiple metabolic pathways
538	(Finan et al., 2015a). Promising preclinical studies demonstrate that treating obese
539	animal models with dual (Finan et al., 2013) and triagonists (Finan et al., 2015b) could
540	have more potent effects on weight loss as compared to single molecule therapies.
541	Further investigation is necessary to determine whether a similar multiagonist
542	therapeutic approach will ameliorate reproductive dysfunction associated with negative
543	energy balance.
544	

545 It is possible that the lack of effectiveness of GLP-1R agonism on LH levels 546 during fasting reflects the presence of multiple inhibitory pathways that block GnRH/LH

547	release. For example, ghrelin (Tschop et al., 2000), corticosterone (Dallman et al.,
548	1999), and FGF21 (Zhang et al., 2015) are all significantly elevated during food
549	deprivation. Interestingly, all of these hormones inhibit the reproductive neuroendocrine
550	axis (Barreiro and Tena-Sempere, 2004; Kinsey-Jones et al., 2009; Owen et al., 2013).
551	Similarly, upregulation of brainstem glucose-sensing neurons during fasting may be
552	overriding excitatory signals on the reproductive neuroendocrine axis. Noradrenergic
553	glucose-sensing neurons in the A1 region of the ventral lateral medulla (VLM) are
554	potent regulators of LH (Ritter et al., 2006) and ablation of these neurons prevents LH
555	inhibition in response to glucoprivation (l'Anson et al., 2003). Recent studies reveal that
556	preproglucagon-expressing neurons make close appositional contacts onto
557	catecholaminergic neurons of the A1/C1 region of the VLM (Llewellyn-Smith et al.,
558	2013). The physiological significance of these contacts has not been studied. It is
559	interesting to hypothesize that under normal feeding conditions, preproglucagon-
560	expressing neurons inhibit A1 glucose-sensing neurons. Therefore, decreased
561	brainstem preproglucagon expression during fasting allows for the disinhibition of A1
562	glucose-sensing neurons in the VLM contributing to the shutdown of the reproductive
563	neuroendocrine axis. This interpretation is in accordance with our studies where
564	liraglutide did not prevent LH inhibition as preproglucagon neurons lack GLP-1R
565	expression and are not activated by exogenous GLP-1R agonism (Hisadome et al.,
566	2010). Determining whether preproglucagon-expressing neurons aid in the regulation
567	of glucose-sensing neurons in the brainstem to control proper neuroendocrine output
568	according to metabolic status would be of interest to explore in the future.

569 Our present data demonstrate that pharmacological inhibition with the GLP-1R 570 antagonist, Ex-9 does not alter ARC Kiss1 gene expression or circulating LH levels. 571 This is consistent with transgenic mouse data demonstrating that global deletion of the 572 GLP-1R does not alter the number or distribution of gonadotrophs and adult Glp1r-/-573 mice are fertile (MacLusky et al., 2000). Together, these data suggest that GLP-1R 574 signaling may not be essential for maintaining ARC Kiss1 and LH in animals that are in 575 normal energy balance. In contrast, a recent publication examined CNS GLP-1R action 576 in prepubertal female rats and demonstrated that low doses of icv GLP-1 synchronized 577 vaginal opening and increased LH whereas the GLP-1R agonist exendin-4 inhibited 578 vaginal opening and decreased LH independently of reduced feeding (Outeirino-Iglesias 579 et al., 2015). These data are inconsistent with our current data where pharmacological 580 doses of a GLP-1R agonist failed to alter LH release in adult animals during fasting. 581 The reason for this discrepancy is unclear.

582 Our in vivo pharmacological studies were all performed in OVX mice, so as to be 583 able to measure the inhibitory effect of fasting on basal LH levels. Intact and OVX + E_2 584 mice have very low levels of basal LH, making it technically difficult to measure the 585 inhibition of LH in these models. Therefore, if GLP-1 is playing a role in the inhibition of 586 LH due to negative energy balance, its effects should be manifested in the OVX model. 587 Although our results show that estradiol appears to have little effects on the ability of 588 Kiss1 cells to be activated by GLP-1, it is possible that there may be estradiol 589 dependent effects of GLP-1 during other reproductive states such as puberty, and 590 follow-up studies in OVX + E₂ models may be warranted.

591

592	In addition to regulating reproductive neuroendocrine function, Kiss1r signaling
593	may regulate energy homeostasis as loss of Kiss1r signaling leads to body weight gain
594	(Tolson et al., 2014). The kisspeptin population responsible for this effect is unknown
595	but ARC Kiss1 neurons may be prime candidates as they are in a primary brain area
596	that regulates energy homeostasis and send fiber projections to numerous
597	hypothalamic nuclei that regulate feeding and energy expenditure (Yeo and Herbison,
598	2011; Yeo, 2013). Furthermore, kisspeptin-ir neurons are in close apposition with ARC
599	proopiomelanocortin (POMC) neurons and electrophysiological recordings demonstrate
600	that kisspeptin directly excites ARC POMC and indirectly inhibits ARC neuropeptide Y
601	(NPY) neurons (Fu and van den Pol, 2010). Although GLP-1R signaling was reported
602	to regulate GnRH/LH release (Beak et al., 1998; Outeirino-Iglesias et al., 2015), the
603	most consistent physiological output of GLP-1 mimetics is reduced body weight, which
604	requires CNS GLP-1R signaling (Sisley et al., 2014). Activation of GLP-1R signaling
605	directly stimulates ARC POMC neurons and indirectly inhibits ARC NPY neurons, which
606	are thought to be important mechanisms whereby GLP-1R agonists mediate a reduction
607	in body weight (Secher et al., 2014). In addition to regulating ARC POMC and NPY, our
608	electrophysiological data may suggest that GLP-1R signaling regulates energy
609	homeostasis through activation of ARC Kiss1 neurons. Determining the effectiveness of
610	GLP-1R agonists on weight loss in transgenic animals with a specific inhibition of ARC
611	Kiss1 neurons may help to clarify this role of ARC Kiss1.

In summary, we find that GLP-producing fibers interact with ARC Kiss1 cells which express the GLP-1R. Furthermore, GLP-1R signaling directly activates ARC

615	Kiss1 function in an estradiol independent manner. Despite a clear stimulatory effect on
616	ARC Kiss1 action we find that pharmacological activation of GLP-1R signaling during
617	fasting or pharmacological inhibition of CNS GLP-1R signaling during normal feeding
618	does not alter circulating LH levels suggesting that GLP-1R activation is not critical for
619	the maintenance of LH in adult animals. Alternatively, GLP-1R signaling within ARC
620	Kiss1 cells may regulate an unidentified physiological output of ARC Kiss1 activation.
621	Further studies are necessary to fully understand the significance of GLP-1R activation
622	of ARC Kiss1. Collectively, these data not only identify a novel signal that stimulates
623	ARC Kiss1 cell activity, but also highlights the complexity of metabolic signals that
624	regulate the reproductive neuroendocrine axis.

627 Figure Legend

628 Figure 1: Interaction of the CNS GLP system with ARC Kiss1 in OVX mice. GLP-ir 629 fibers (red) come in close apposition with an average of 22% of ARC kisspeptin-ir cells 630 (green). A) Maximal projection at 40x zoom B) Maximal projection at 63x zoom C) 1µm 631 plane at 63x zoom. Scale bars= 10 μ m. n= 5 animals, 4 sections per animal. D) 632 Representative gel of single cell RT-PCR demonstrating that a subpopulation (20%) of 633 ARC Kiss1 cells from OVX mice express Glp1r mRNA. n=5 animals, 16-33 cells per 634 animal. The expected sizes for the PCR products are 120 bp for Kiss1 and 148 bp for 635 Glp1r. MM, molecular marker; -RT, Kiss1-GFP cell reacted without reverse transcriptase 636 (RT); Tissue controls (+, -), basal hypothalamic RNA reacted with (+) or without (-) RT. E) 637 Dual in situ hybridization demonstrating co-expression of Glp1r (red) and Kiss1 (green) 638 mRNA in the ARC (51 out of 240 cells, 21.3% co-expression). In this example, an OVX 639 animal showed robust Kiss1 mRNA expression in neurons intermingled with a larger 640 population of Glp1r+ neurons in the ARC. F) Inset from panel E. At higher magnification, 641 a subpopulation of ARC Kiss1 neurons express robust and detectable mRNA signal for 642 Glp1r. Filled black arrows indicate high Glp1r expression, open arrows indicate low 643 *Glp1r* expression. n=4 animals; Scale bars = $100 \mu m$. 3V = third ventricle.

644

Figure 2: Electrophysiological recordings in brain slices demonstrating effects of
GLP-1R signaling on ARC Kiss1 cells of OVX mice. Current clamp recordings in
brain slices from OVX mice demonstrate that ARC Kiss1 cells treated with the longacting GLP-1R agonist, liraglutide, showed a membrane depolarization and increased
action potential firing (A). *p<0.05, **p<0.01 vs RMP, one-way RM-ANOVA with
Bonferroni's post-hoc test; ††p0.01, 100nM vs 300nM liraglutide, one-way RM-ANOVA

651 with Bonferroni's post-hoc test. Current clamp recordings performed in the presence of 652 presynaptic blockers demonstrate that liraglutide caused a membrane depolarization in 653 ARC Kiss1 cells of OVX mice (B). **p<0.01 RMP vs TTX+CNXQ+AP5+Liraglutide 654 300nM, one-way RM-ANOVA with Bonferroni's post-hoc test; ++p0.01, 100nM vs 655 300nM liraglutide, one-way RM-ANOVA with Bonferroni's post-hoc test. ##p<0.01 656 TTX+CNXQ+AP5 vs TTX+CNXQ+AP5+Liraglutide 300nM, one-way RM-ANOVA with 657 Bonferroni's post-hoc test; n=23 cells from 16 animals. ~60% of ARC Kiss1 cells 658 respond to liraglutide. 659

660 Figure 3: Electrophysiological recordings in brain slices demonstrating effects of 661 GLP-1R signaling on ARC Kiss1 cells of OVX+E2 and male mice. Current clamp 662 recordings in ARC Kiss1 cells from brain slices treated with the long-acting GLP-1R 663 agonist, liraglutide, showed a membrane depolarization in both $OVX+E_2$ (A; 52% of cells 664 responded) and male (B; 60% of cells responded). ***p<0.001, ****p<0.0001 vs RMP, 665 one-way RM-ANOVA with Bonferroni's post-hoc test; t+tp<0.001</pre>, 100nM vs 300nM 666 liraglutide; one-way RM-ANOVA with Bonferroni's post-hoc test. The magnitude of 667 depolarization was greater in males as compared to OVX+E₂ females at 100nM and 300nM concentrations (C). *p<0.05 OVX+E2 vs males, one-way ANOVA with 668 669 Bonferroni's post-hoc test. n=13 male and 27 OVX +E₂ mice. 670

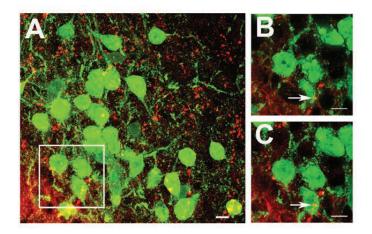
671 Figure 4: Effects of fasting in OVX mice on brainstem preproglucagon

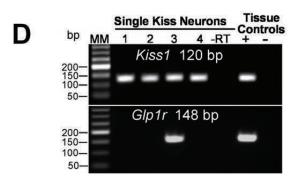
672 expression and on GLP-1R agonism to restore fasting-suppressed LH levels.

673 Brainstem preproglucagon (Gcg) expression was assessed using qPCR and is

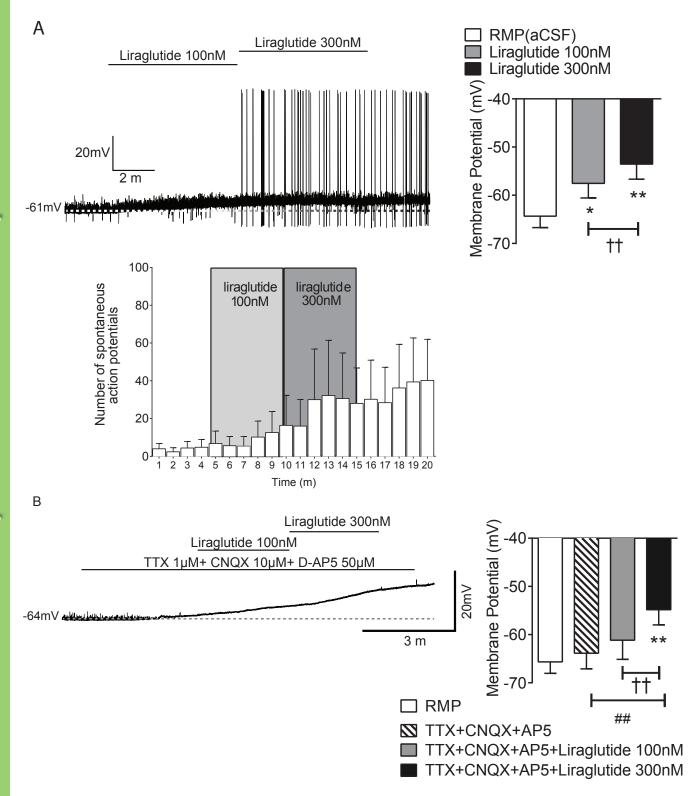
674	decreased following a 48h fast (A;***p<0.001, unpaired t-test). To determine whether
675	GLP-1R agonism prevents LH inhibition during calorie restriction, liraglutide (30nmol/kg)
676	was administered subcutaneously twice-daily at the start of a 48h fast (B,C). Saline-
677	fasted and liraglutide-fasted animals display decreased body weight compared to
678	saline-fed controls (B; **p<0.01, two-way ANOVA with Bonferroni's post-hoc test).
679	Saline-fasted and liraglutide-fasted animals display significantly lower levels of LH as
680	compared to saline-fed controls (C; ****p<0.0001, one-way ANOVA with Tukey's post-
681	hoc test). n=7-8 animals per group.
682	
683	Figure 5: Effect of chronic icv Ex-9 on food intake, body weight, ARC gene
684	expression and plasma LH in OVX mice. C57BL/6 mice were OVX and one week
685	later received an icv infusion of saline or the long-acting GLP-1 antagonist, Ex-9, for 6
686	days (7.5 nmol/ day). Ex-9 caused a significant increase in ARC expression of Agrp (A;
687	**p<0.01, unpaired t-test), but did not alter ARC expression of <i>Kiss1</i> (B). Plasma LH
688	levels were similar in saline and Ex-9 treated mice (C). n= 9 animals per group.
689	
690	
691	
692	
693	
694	
695	
696	

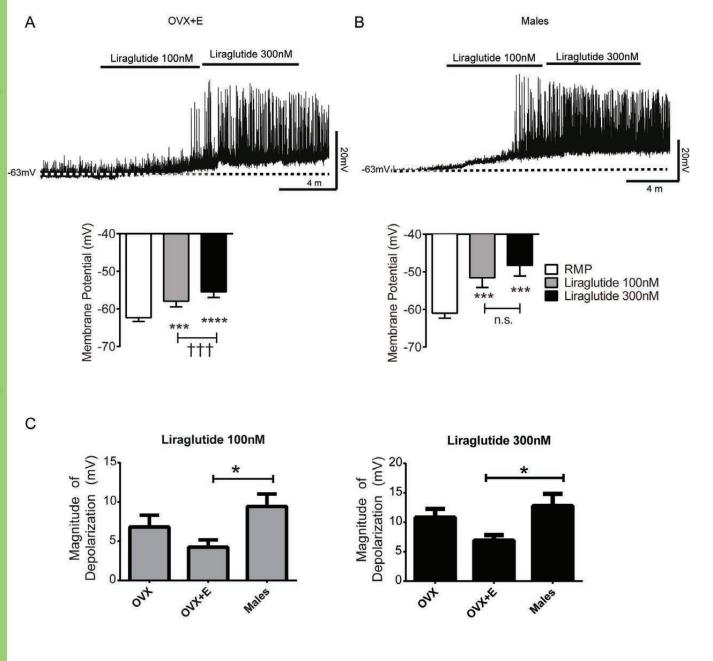
697 References


698 699	Ahren B, Mansson S, Gingerich RL, Havel PJ (1997) Regulation of plasma leptin in mice: influence of age, high-fat diet, and fasting. The American journal of
700	physiology 273:R113-120.
701	Barreiro ML, Tena-Sempere M (2004) Ghrelin and reproduction: a novel signal linking
702	energy status and fertility? Molecular and cellular endocrinology 226:1-9.
702	Beak SA, Heath MM, Small CJ, Morgan DG, Ghatei MA, Taylor AD, Buckingham JC,
704	Bloom SR, Smith DM (1998) Glucagon-like peptide-1 stimulates luteinizing
705	hormone-releasing hormone secretion in a rodent hypothalamic neuronal cell
706	line. The Journal of clinical investigation 101:1334-1341.
707	Bosch MA, Tonsfeldt KJ, Ronnekleiv OK (2013) mRNA expression of ion channels in
708	GnRH neurons: subtype-specific regulation by 17beta-estradiol. Molecular and
709	cellular endocrinology 367:85-97.
710	Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J, Jr., Atkin S, Bookout AL,
711	Rovinsky S, Frazao R, Lee CE, Gautron L, Zigman JM, Elias CF (2011)
712	Characterization of Kiss1 neurons using transgenic mouse models.
713	Neuroscience 173:37-56.
714	Dallman MF, Akana SF, Bhatnagar S, Bell ME, Choi S, Chu A, Horsley C, Levin N,
715	Meijer O, Soriano LR, Strack AM, Viau V (1999) Starvation: early signals,
716	sensors, and sequelae. Endocrinology 140:4015-4023.
717	de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003)
718	Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived
719	peptide receptor GPR54. Proceedings of the National Academy of Sciences of
720	the United States of America 100:10972-10976.
721	Ellinwood WE, Ronnekleiv OK, Kelly MJ, Resko JA (1985) A new antiserum with
722	conformational specificity for LHRH: usefulness for radioimmunoassay and
723	immunocytochemistry. Peptides 6:45-52.
724	Farkas I, Vastagh C, Farkas E, Balint F, Skrapits K, Hrabovszky E, Fekete C, Liposits Z
725	(2016) Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic
726	Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone
727	(GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and
728	Suppression of Endocannabinoid Signaling Pathways. Frontiers in cellular
729	neuroscience 10:214.
730	Finan B, Clemmensen C, Muller TD (2015a) Emerging opportunities for the treatment of
731	metabolic diseases: Glucagon-like peptide-1 based multi-agonists. Molecular and
732	cellular endocrinology.
733	Finan B et al. (2015b) A rationally designed monomeric peptide triagonist corrects
734	obesity and diabetes in rodents. Nature medicine 21:27-36.
735	Finan B et al. (2013) Unimolecular dual incretins maximize metabolic benefits in
736	rodents, monkeys, and humans. Science translational medicine 5:209ra151.
737	Frazao R, Dungan Lemko HM, da Silva RP, Ratra DV, Lee CE, Williams KW, Zigman
738	JM, Elias CF (2014) Estradiol modulates Kiss1 neuronal response to ghrelin.
739	American journal of physiology Endocrinology and metabolism 306:E606-614.
740	Fu LY, van den Pol AN (2010) Kisspeptin directly excites anorexigenic
741	proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an


742	indirect synaptic mechanism. The Journal of neuroscience : the official journal of
743	the Society for Neuroscience 30:10205-10219.
744	Gottsch ML, Popa SM, Lawhorn JK, Qiu J, Tonsfeldt KJ, Bosch MA, Kelly MJ,
745	Ronnekleiv OK, Sanz E, McKnight GS, Clifton DK, Palmiter RD, Steiner RA
746	(2011) Molecular properties of Kiss1 neurons in the arcuate nucleus of the
747	mouse. Endocrinology 152:4298-4309.
748	Han SY, McLennan T, Czieselsky K, Herbison AE (2015) Selective optogenetic
749	activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone
750	secretion. Proceedings of the National Academy of Sciences of the United States
751	of America 112:13109-13114.
752	Heppner KM, Perez-Tilve D (2015) GLP-1 based therapeutics: simultaneously
753	combating T2DM and obesity. Frontiers in neuroscience 9:92.
754	Heppner KM, Kirigiti M, Secher A, Paulsen SJ, Buckingham R, Pyke C, Knudsen LB,
755	Vrang N, Grove KL (2015) Expression and distribution of glucagon-like peptide-1
756	receptor mRNA, protein and binding in the male nonhuman primate (Macaca
757	mulatta) brain. Endocrinology 156:255-267.
758	Heppner KM, Chaudhary N, Muller TD, Kirchner H, Habegger KM, Ottaway N, Smiley
759	DL, Dimarchi R, Hofmann SM, Woods SC, Sivertsen B, Holst B, Pfluger PT,
760	Perez-Tilve D, Tschop MH (2012) Acylation type determines ghrelin's effects on
761	energy homeostasis in rodents. Endocrinology 153:4687-4695.
762	Hisadome K, Reimann F, Gribble FM, Trapp S (2010) Leptin directly depolarizes
763	preproglucagon neurons in the nucleus tractus solitarius: electrical properties of
764	glucagon-like Peptide 1 neurons. Diabetes 59:1890-1898.
765	Huang W, Acosta-Martinez M, Horton TH, Levine JE (2008) Fasting-induced
766	suppression of LH secretion does not require activation of ATP-sensitive
767	potassium channels. American journal of physiology Endocrinology and
768	metabolism 295:E1439-1446.
769	Huo L, Gamber KM, Grill HJ, Bjorbaek C (2008) Divergent leptin signaling in
770	proglucagon neurons of the nucleus of the solitary tract in mice and rats.
771	Endocrinology 149:492-497.
772	l'Anson H, Sundling LA, Roland SM, Ritter S (2003) Immunotoxic destruction of distinct
773	catecholaminergic neuron populations disrupts the reproductive response to
774	glucoprivation in female rats. Endocrinology 144:4325-4331.
775	Kinsey-Jones JS, Li XF, Knox AM, Wilkinson ES, Zhu XL, Chaudhary AA, Milligan SR,
776	Lightman SL, O'Byrne KT (2009) Down-regulation of hypothalamic kisspeptin and
777	its receptor, Kiss1r, mRNA expression is associated with stress-induced
778	suppression of luteinising hormone secretion in the female rat. Journal of
779	neuroendocrinology 21:20-29.
780	Knauf C, Cani PD, Ait-Belgnaoui A, Benani A, Dray C, Cabou C, Colom A, Uldry M,
781	Rastrelli S, Sabatier E, Godet N, Waget A, Penicaud L, Valet P, Burcelin R
782	(2008) Brain glucagon-like peptide 1 signaling controls the onset of high-fat diet-
783	induced insulin resistance and reduces energy expenditure. Endocrinology
784	149:4768-4777.
785	Kreisler AD, Davis EA, Rinaman L (2014) Differential activation of chemically identified
786	neurons in the caudal nucleus of the solitary tract in non-entrained rats after
787	intake of satiating vs. non-satiating meals. Physiology & behavior 136:47-54.

788	Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C (1997) Distribution of glucagon-like
789	peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus
790	and brainstem. Neuroscience 77:257-270.
791	Li XF, Kinsey-Jones JS, Cheng Y, Knox AM, Lin Y, Petrou NA, Roseweir A, Lightman
792	SL, Milligan SR, Millar RP, O'Byrne KT (2009) Kisspeptin signalling in the
793	hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the
794	rat. PloS one 4:e8334.
795	Llewellyn-Smith IJ, Reimann F, Gribble FM, Trapp S (2011) Preproglucagon neurons
796	project widely to autonomic control areas in the mouse brain. Neuroscience
797	180:111-121.
798	Llewellyn-Smith IJ, Gnanamanickam GJ, Reimann F, Gribble FM, Trapp S (2013)
799	Preproglucagon (PPG) neurons innervate neurochemically identified autonomic
800	neurons in the mouse brainstem. Neuroscience 229:130-143.
801	Luque RM, Kineman RD, Tena-Sempere M (2007) Regulation of hypothalamic
802	expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using
803	mouse models and a cell line. Endocrinology 148:4601-4611.
804	MacLusky NJ, Cook S, Scrocchi L, Shin J, Kim J, Vaccarino F, Asa SL, Drucker DJ
805	(2000) Neuroendocrine function and response to stress in mice with complete
806	disruption of glucagon-like peptide-1 receptor signaling. Endocrinology 141:752-
807	762. Manianalian IVV. Dianaman I. (2042). Our ministrictical demoistration membradus attenuestes.
808	Maniscalco JW, Rinaman L (2013) Overnight food deprivation markedly attenuates
809	hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural
810 811	responses to exogenous cholecystokinin in male rats. Physiology & behavior.
812	Mayo KE, Miller LJ, Bataille D, Dalle S, Goke B, Thorens B, Drucker DJ (2003) International Union of Pharmacology. XXXV. The glucagon receptor family.
813	Pharmacological reviews 55:167-194.
814	Merchenthaler I, Lane M, Shughrue P (1999) Distribution of pre-pro-glucagon and
815	glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous
816	system. The Journal of comparative neurology 403:261-280.
817	Navarro VM, Bosch MA, Leon S, Simavli S, True C, Pinilla L, Carroll RS, Seminara SB,
818	Tena-Sempere M, Ronnekleiv OK, Kaiser UB (2015) The integrated
819	hypothalamic tachykinin-kisspeptin system as a central coordinator for
820	reproduction. Endocrinology 156:627-637.
821	Nestor CC, Kelly MJ, Ronnekleiv OK (2014) Cross-talk between reproduction and
822	energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling.
823	Hormone molecular biology and clinical investigation 17:109-128.
824	Nogueiras R, Perez-Tilve D, Veyrat-Durebex C, Morgan DA, Varela L, Haynes WG,
825	Patterson JT, Disse E, Pfluger PT, Lopez M, Woods SC, DiMarchi R, Dieguez C,
826	Rahmouni K, Rohner-Jeanrenaud F, Tschop MH (2009) Direct control of
827	peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the
828	sympathetic nervous system and blunted in diet-induced obesity. The Journal of
829	neuroscience : the official journal of the Society for Neuroscience 29:5916-5925.
830	Outeirino-Iglesias V, Romani-Perez M, Gonzalez-Matias LC, Vigo E, Mallo F (2015)
831	GLP-1 increases pre-ovulatory LH source and the number of mature follicles, as
832	well as synchronizing the onset of puberty in female rats.
833	Endocrinology:en20141978.


834 835 836	Owen BM, Bookout AL, Ding X, Lin VY, Atkin SD, Gautron L, Kliewer SA, Mangelsdorf DJ (2013) FGF21 contributes to neuroendocrine control of female reproduction. Nature medicine 19:1153-1156.
837	Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-
838	PCR. Nucleic acids research 29:e45.
839	Qiu J, Fang Y, Ronnekleiv OK, Kelly MJ (2010) Leptin excites proopiomelanocortin
840	neurons via activation of TRPC channels. The Journal of neuroscience : the
841	official journal of the Society for Neuroscience 30:1560-1565.
842	Ritter S, Dinh TT, Li AJ (2006) Hindbrain catecholamine neurons control multiple
843	glucoregulatory responses. Physiology & behavior 89:490-500.
844	Ronnekleiv OK, Fang Y, Zhang C, Nestor CC, Mao P, Kelly MJ (2014) Research
845	resource: Gene profiling of G protein-coupled receptors in the arcuate nucleus of
846	the female. Molecular endocrinology 28:1362-1380.
847	Sandoval D, Barrera JG, Stefater MA, Sisley S, Woods SC, D'Alessio DD, Seeley RJ
848	(2012) The anorectic effect of GLP-1 in rats is nutrient dependent. PloS one
849	7:e51870.
850	Sandoval DA, D'Alessio DA (2015) Physiology of proglucagon peptides: role of
851	glucagon and GLP-1 in health and disease. Physiological reviews 95:513-548.
852	Secher A, Jelsing J, Baquero AF, Hecksher-Sorensen J, Cowley MA, Dalboge LS,
853	Hansen G, Grove KL, Pyke C, Raun K, Schaffer L, Tang-Christensen M, Verma
854	S, Witgen BM, Vrang N, Bjerre Knudsen L (2014) The arcuate nucleus mediates
855	GLP-1 receptor agonist liraglutide-dependent weight loss. The Journal of clinical
856	investigation 124:4473-4488. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Jr., Shagoury JK,
857 858	Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser
859	UB, Slaugenhaupt SA, Gusella JF, O'Rahilly S, Carlton MB, Crowley WF, Jr.,
860	Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty.
861	The New England journal of medicine 349:1614-1627.
862	Sisley S, Gutierrez-Aguilar R, Scott M, D'Alessio DA, Sandoval DA, Seeley RJ (2014)
863	Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect.
864	The Journal of clinical investigation 124:2456-2463.
865	Tang-Christensen M, Larsen PJ, Thulesen J, Romer J, Vrang N (2000) The
866	proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter
867	involved in the regulation of food intake. Nature medicine 6:802-807.
868	Tolson KP, Garcia C, Yen S, Simonds S, Stefanidis A, Lawrence A, Smith JT, Kauffman
869	AS (2014) Impaired kisspeptin signaling decreases metabolism and promotes
870	glucose intolerance and obesity. The Journal of clinical investigation 124:3075-
871	3079.
872	True C, Verma S, Grove KL, Smith MS (2013) Cocaine- and Amphetamine-Regulated
873	Transcript Is a Potent Stimulator of GnRH and Kisspeptin Cells and May
874	Contribute to Negative Energy Balance-induced Reproductive Inhibition in
875	Females. Endocrinology 154:2821-2832.
876	True C, Kirigiti MA, Kievit P, Grove KL, Smith MS (2011) Leptin is not the critical signal
877	for kisspeptin or luteinising hormone restoration during exit from negative energy
878	balance. Journal of neuroendocrinology 23:1099-1112.


879	Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature
880	407:908-913.
881	Vrang N, Grove K (2011) The brainstem preproglucagon system in a non-human
882	primate (Macaca mulatta). Brain research 1397:28-37.
883	Vrang N, Hansen M, Larsen PJ, Tang-Christensen M (2007) Characterization of
884	brainstem preproglucagon projections to the paraventricular and dorsomedial
885	hypothalamic nuclei. Brain research 1149:118-126.
886	Witte MM, Resuehr D, Chandler AR, Mehle AK, Overton JM (2010) Female mice and
887	rats exhibit species-specific metabolic and behavioral responses to ovariectomy.
888	General and comparative endocrinology 166:520-528.
889	Xu J, Kirigiti MA, Grove KL, Smith MS (2009) Regulation of food intake and
890	gonadotropin-releasing hormone/luteinizing hormone during lactation: role of
891	insulin and leptin. Endocrinology 150:4231-4240.
892	Yeo SH (2013) Neuronal circuits in the hypothalamus controlling gonadotrophin-
893	releasing hormone release: the neuroanatomical projections of kisspeptin
894	neurons. Experimental physiology 98:1544-1549.
895	Yeo SH, Herbison AE (2011) Projections of arcuate nucleus and rostral periventricular
896	kisspeptin neurons in the adult female mouse brain. Endocrinology 152:2387-
897	2399.
898	Zhang C, Tonsfeldt KJ, Qiu J, Bosch MA, Kobayashi K, Steiner RA, Kelly MJ,
899	Ronnekleiv OK (2013) Molecular mechanisms that drive estradiol-dependent
900	burst firing of Kiss1 neurons in the rostral periventricular preoptic area. American
901	journal of physiology Endocrinology and metabolism 305:E1384-1397.
902	Zhang F, Yu L, Lin X, Cheng P, He L, Li X, Lu X, Tan Y, Yang H, Cai L, Zhang C (2015)
903	Minireview: Roles of fibroblast growth factors 19 and 21 in metabolic regulation
904	and chronic diseases. Molecular endocrinology:me20151155.
905	

