o)

.

>CTI

dild

ol )Y

Lec

LCEDP

aNeuroe A

This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version.

Meuro

Research Article: New Research | Cognition and Behavior

Involvement of CRFR1 in the basolateral amygdalain theimmediate fear
extinction deficit

CRFR1 inimmediate fear extinction deficit

Fiona Hollis, Yannick Sevelinges, Jocelyn Grosse, Olivia Zanoletti and Carmen Sandi

Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
DOI: 10.1523/ENEURO.0084-16.2016

Received: 18 April 2016

Revised: 12 October 2016

Accepted: 12 October 2016

Published: 17 October 2016

Author Contributions: FH, YS and CS Designed Research; FH, YS, JG, OZ Performed Research; FH
Analyzed Data; FH and CS Wrote the Paper.

Funding: Swiss National Science Foundation
31003A-152614
Conflict of Interest: Authors report no conflict of interest.

This work was supported by grants from the Swiss National Science Foundation (31003A-152614; NCCR
Synapsy) and intramural funding from the EPFL.

Correspondence should be addressed to Carmen Sandi at Laboratory of Behavioral Genetics, Brain
Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19 - Office SV-2810, CH-1015 Lausanne
Switzerland. E-mail: carmen.sandi@epfl.ch

Cite as: eNeuro 2016; 10.1523/ENEURO.0084-16.2016

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this
article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading
process.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any
medium provided that the original work is properly attributed.

Copyright © 2016 the authors



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

—_—
— O O 0 NN N R W N~

W L W LW LW W W N DN DD DN NN NN = = == = = = =
AN R WD~ O 0O 0NN R WD RO 0O 0NN W

Title Page

Manuscript Title:
Involvement of CRFR; in the basolateral amygdala in the immediate fear extinction
deficit

2. Abbreviated Title: CRFR; in immediate fear extinction deficit

13.

14.

15.

Authors and Affiliations:

Fiona Hollis, Ph.D.}, Yannick Sevelinges, Ph.D., Jocelyn Grosse, Olivia Zanoletti, and
Carmen Sandi, Ph.D. *

Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015
Lausanne, Switzerland

Current address: Department of Fundamental Neuroscience, Université de Lausanne
(UNIL), 1005 Lausanne, Switzerland

Author Contributions: FH, YS and CS Designed Research; FH, YS, JG, OZ Performed
Research; FH Analyzed Data; FH and CS Wrote the Paper.

Correspondence should be addressed to Carmen Sandi at Laboratory of Behavioral
Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19
- Office SV-2810, CH-1015 Lausanne Switzerland. Tel.: +41 (0)21 693 9534. Fax: +41
(0)21 693 9636. E-mail: carmen.sandi@epfl.ch

Figures: 6 9. Abstract: 186 words
Tables: 2 10. Significance Statement: 117 words
Multimedia: 0 11. Introduction: 743 words

12. Discussion: 1682 words

Acknowledgments:

We thank D. Grigoriadis for the generous gift of the NBI30775 CRFR1 antagonist.
Conflict of Interest

A. No.

Funding Sources

This work was supported by grants from the Swiss National Science Foundation
(31003A-152614; NCCR Synapsy) and intramural funding from the EPFL.



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Abstract

Several animal and clinical studies have highlighted the ineffectiveness of fear extinction
sessions delivered shortly after trauma exposure. This phenomenon, termed the immediate
extinction deficit, refers to situations in which extinction programs applied shortly after fear
conditioning may result in the reduction of fear behaviors (in rodents frequently measured
as freezing responses to the conditioned cue/s) during extinction training, but failure to
consolidate this reduction in the long-term. The molecular mechanisms driving this
immediate extinction resistance remain unclear. Here we present evidence for the
involvement of the corticotropin releasing factor (CRF) system in the basolateral amygdala
(BLA) in male Wistar rats. Intra-BLA micro-infusion of the CRFR; antagonist NBI30775
enhances extinction recall, while administering the CRF agonist CRFe33 before delayed
extinction disrupts recall of extinction. We link the immediate fear extinction deficit with

dephosphorylation of GIuAl glutamate receptors at Ser®*

and enhanced activity of the
protein phosphatase calcineurin in the BLA. Their reversal following treatment with the
CRFR; antagonist indicates their dependency on CRFR; actions. These findings can have
important implications for the improvement of therapeutic approaches to trauma, as well as

furthering our understanding of the neurobiological mechanisms underlying fear-related

disorders.

Significance Statement

Trauma-related disorders are costly, highlighting the need to understand the reduction of
fear through extinction learning for the development of better therapies. When extinction
programs are applied too soon after the traumatic event, numerous studies have found it to
be ineffective, though the underlying mechanisms were unclear. Here we confirm that
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futility of immediate extinction and provide a mechanistic explanation. Using a
pharmacological approach, we show evidence for the involvement of the corticotropin
releasing factor (CRF) system in the basolateral amygdala in this extinction deficit. We link
this involvement with downstream molecular targets of the CRF system that are critical in
synaptic plasticity, thus explaining the futility of immediate extinction and providing further

insight into fear-related disorders.
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Introduction

Trauma-related disorders impose a high burden to both individuals and society (Kessler et
al., 2012), inspiring numerous studies of the mechanisms underlying fear extinction learning
(Pape and Pare, 2010; Milad and Quirk, 2012). Learning to reduce fear responses to
previously fearful stimuli through fear extinction learning is a complex process involving a
broad network of brain structures, including the basolateral nucleus of the amygdala (BLA)
(Sotres-bayon et al., 2004; Quirk and Mueller, 2008, Herry et al., 2010). Several molecular
targets have been identified for the development of therapeutic interventions for
posttraumatic stress disorders (PTSD) and other fear-related disorders (Milad and Quirk,
2012; Singewald et al., 2015). Among them, emerging evidence points to a key role for the
central corticotropin releasing factor (CRF) system, which is well-known for its role in the
regulation of stress, fear, stressful learning and anxiety responses (Bale, 2005; Nemeroff et
al., 2006; Regev and Baram, 2014). CRF, a 41 amino acid peptide involved in the activation of
the hypothalamic-pituitary-adrenal (HPA) axis, also exerts extra-hypothalamic actions in
different brain regions through activation of two G-protein coupled receptors, CRFR; and
CRFR,. Both the BLA and the central nucleus of the amygdala contain CRF-expressing

neurons, and the BLA presents particularly high CRFR; densities (Korosi and Baram, 2008).

Recently, a key role for the CRF system in impaired extinction processes has been suggested.
In humans, enhanced CRF levels found in the cerebrospinal fluid of PTSD patients have
indicated a link between increased CRF concentrations and disrupted fear extinction
observed in PTSD and anxiety disorders (for reviews, see Gafford and Ressler, 2015;
Bangasser and Kawasumi, 2015). In rats, administration of CRF into the lateral amygdala

before fear recall testing in formerly fear conditioned animals induced enhanced freezing
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responses to the conditioned stimulus (Isogawa et al., 2013). Additionally, pharmacological
enhancement of CRF in the BLA impaired long-term retention of fear extinction, while CRFR;
antagonism had the opposite effect (Abiri et al., 2014), supporting a detrimental role of CRF
in the BLA in the consolidation of cued fear extinction. Furthermore, cell-specific genetic
disruption of GABAAal within CRF-expressing neurons in mice was found to specifically
impair fear extinction (i.e., not affecting fear conditioning or retention) processes, while
systemic administration of a CRF antagonist partially rescued the fear extinction deficit in
these mice (Gafford et al., 2012). Accordingly, an overactive CRF system in the BLA seems to

interfere with extinction processes.

Importantly, it is not known whether the CRF system is involved in a particularly challenging
extinction case known as ‘immediate fear extinction deficit’ (Maren, 2014). This refers to the
ineffectiveness of fear extinction programs, frequently observed both in animals and
humans, when extinction training is administered soon (e.g., from minutes to a few hours)
after fear conditioning. Specifically, despite exhibiting decreased within-session freezing
during extinction training, subjects fail to maintain this response over long-term retention
intervals (Maren and Chang, 2006; Woods and Bouton, 2008; Schiller et al., 2008; Chang and
Maren 2009; Archbold et al., 2010; but see Myers et al., 2006). Given that, in addition to its
involvement in the acquisition and consolidation of fear conditioning (see Sah et al., 2008),
the BLA has been implicated in fear extinction (Sotres-Bayon et al., 2004; Quirk and Mueller,
2008, Herry et al.,, 2010), we hypothesized that mechanisms that contribute to fear
conditioning in the BLA might underlie the effectiveness of immediate extinction trials.
Converging lines of evidence support the involvement of the BLA CRF system in the

immediate extinction deficit. First, acute stress has been shown to rapidly induce CRF release
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in the amygdala (Pich et al., 1995; Merali et al., 1998) leading to activation of CRFR; in the
BLA in the consolidation of fear learning (Roozendaal et al., 2002; 2008; Hubbard et al.,
2007). Secondly, CRF increases excitability of CRFRj-containing BLA projection neurons
(Rainnie et al., 1992) and induces long-lasting increases on the amplitude of field post-
synaptic potentials in the BLA (Ugolini et al., 2008; Sandi et al., 2008). These effects are
reversed by antagonizing CRFR;, but not CRFR; (Rainnie et al., 1992; Ugolini et al., 2008).
Finally, whereas CRF infusions in the lateral amygdala before long-term memory testing
enhanced freezing responses to the conditioned stimulus (Isogawa et al., 2013), CRFR;
antagonism in the BLA facilitated long-term retention of fear extinction (Abiri et al., 2014).
Therefore, we evaluated the involvement of the CRF system in the amygdala in the minimal
fear suppression induced by extinction training given shortly after fear conditioning and

explored the molecular machinery involved.

Materials and Methods

Subjects

Male Wistar rats (Charles River, L'Arbresle, France) weighing 250-300g at the start of the
experimentation served as subjects and were singly-housed in polypropylene cages (34 x 29
x 17 ¢cm) lined with abundant pine shavings. Animals had ad libitum access to food and
water, and were maintained in constant temperature (23°C) and lighting (0700-1900 hr)
conditions. All experiments were performed during the light phase. Animals were allowed to
habituate to the vivarium for one week and were then handled for 2 minutes on 3 days prior

to the beginning of all experiments.
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All procedures were conducted in conformity with the [Author University’s] guidelines for
animal experimentation. All efforts were made to minimize suffering and reduce the number

of animals used.

Elevated plus maze

Prior to experiments, anxiety-related behavior was measured using the Elevated Plus Maze
(EPM) according to the procedure described in Herrero et al., 2006. As previous reports
indicate that CRF antagonist NBI30775 affects subjects differently depending on their natural
anxiety level (Sandi et al., 2008), all groups were matched according to similar scores in this
test. EPM sessions for all experiments were conducted 4-7 days before the first fear

conditioning session.

Fear conditioning

Conditioning session. The training cage (Context A) consisted of a Plexiglas transparent
chamber (30 x 37 x 25 c¢cm; Panlab, Spain) that was positioned inside a sound-attenuating
chamber. This chamber was constructed of black stainless steel walls of smooth texture,
with a ceiling and door made of Plexiglas. The floor consisted of 20 steel rods wired to a
shock source and solid-state scrambler for the delivery of footshocks. Conditioning took
place in a single session. After 3-min of free exploration, rats received five pairings of a 2-sec
CS tone (80 db, 2000 Hz) and a 0.5-sec US footshock (0.6 mA). The inter-shock interval was
60-sec. Subjects were removed from the chambers 58-sec after the final shock presentation
(thus, the training session lasted 8-min) and left undisturbed in their home cage until the

extinction session.
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Extinction session. Extinction of cued fear learning took place in a different context (Context
B). The context shape was modified, the grid replaced by a plastic smooth floor, and visual
and odor cues were changed. Animals were free to explore the environment during the first
three minutes and then, 70 CS were presented every 40-sec. Depending on the protocol, the
extinction session took place 30-min, 3, or 24h after training. For each behavioral
experiment, separate groups of animals were placed in the extinction context without any

CS presentation as controls.

Testing session. 48h after training, extinction memory was assessed in Context B. After 3-min
of free exploration, the rats received five CS presentations with an inter-trial interval of 60-
sec. Rats were removed from the chambers 58-sec after the final CS presentation (8-min

total duration)

In all sessions, behavior was monitored with a camera connected to a video-recorder for
offline analysis which were performed by an experimenter blind to the animal’s
experimental condition. Fear was assessed by measuring the percentage of time spent
freezing, characterized by a crouching posture and an absence of any visible movement

except for that due to breathing.

Surgery and amygdala microinfusions

Animals were anaesthetized with i.p. ketamine (70 mg/kg) and xylazine (6 mg/kg). They were
then implanted with two 18-mm stainless steel guide cannulae (23-gauge, Plastic One,
Roanoke, VA) using a standard stereotaxic frame (Kopf Instruments, Bioseb, France).
Cannulae were bilaterally implanted at the BLA coordinates (antero-posterior, -2.8 mm

relative to Bregma; lateral, £ 5.1 mm from midline; ventral, -5.5 mm from dura). The tips of
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the cannulae were aimed 2 mm above the intended area. The cannulae were fixed to the
skull with dental acrylic cement. Stylets were inserted into the guide cannulae to prevent
clogging. Rats were given one week to recover from surgery, after which they received the

EPM and fear sessions as described above.

All animals were handled individually for approximately 1-2 min each day during the 2-3 days
preceding infusion to habituate them to the infusion procedure. Immediately after training,
rats were gently restrained, stylets removed and injection needles (30 gauges) inserted,
extending 2 mm from the tip of the guide cannula. The injection needles were connected via
polyethylene tubing to two 10 pl Hamilton microsyringes driven by an automated
microinfusion pump (Harvard Apparatus, Bioseb, France). The needles were then left in
position for an additional minute to enable diffusion of the solution into the tissue and to

minimize dragging of the liquid along the injection track.

Drugs

NBI30775 (3-[6-(dimethylamino)-4-methyl-pyrid-3-yl]-2, 5-dimethyl-N, N-dipropyl-pyrazolo
[2,3-a]lpyrimidin-7-amine), a non-peptide CRFR; antagonist (also known as R121919) was a
generous gift from Dimitri Grigoriadis (Neurocrine Inc). It was dissolved in DMSO and
bilaterally infused in the BLA at different concentrations, 0.1, 0.3, 1, or 10ug in 0.5ul, at a
rate of 0.3ul/min immediately after fear conditioning. Vehicle infusions of DMSO were
administered in a similar manner. The infusion volume for NBI experiments was
0.5ul/hemisphere. Depending on the experiment, animals were subject to extinction 30min

thereafter or left undisturbed until the testing session 48hr and 7d after training.
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The CRF agonist CRFg33 (Sigma-Aldrich, Saint-Louis, MO, USA) was dissolved in saline and
infused bilaterally in the BLA at a concentration of 0.1ug in 0.2 l, at a rate of 0.3pl/min just
prior to a delayed (24hr after training) extinction session. The infusion volume for agonist
experiments was 0.2ul/hemisphere. Animals were tested 48h after training. Vehicle

infusions of saline were administered in a similar manner.

After completion of behavioral experiments, animals were overdosed with sodium
pentobarbital (100 mg/kg i.p.). The brains were removed and immediately frozen at -50°C in
isopentane and stored at -20°C. Coronal sections (40um thick) were stained with thionine for
histological checking. Out of the 84 implanted animals, 12 were discarded due to

misplacement of one or both cannulae.

Western blot

Tissue preparation. Immediately after decapitation, the amygdala was rapidly dissected out
and frozen at -80° C until processing. Tissue was homogenized in ten volumes of ice-cold
sucrose (0.32 m) and HEPES (5 mm) buffer that contained a cocktail of protease inhibitors
(Complete TM, Roche, UK) with 16 strokes and centrifuged at 1000 x g for 5 min. The
resulting total fraction pellet was resuspended in Krebs buffer with 1% NP40, incubated at
4C for 40 minutes, and then centrifuged at 10000 x g for 20 minutes at 4C. Protein

concentration for each sample was estimated by BCA protein analysis (Bio-Rad).

Quantification of phosphorylation of the AMPA GIuAl subunits. Ten pg of protein were
loaded in each well and then separated on 10% (w / v) SDS-PAGE and transferred (70V, 1h30
minutes) to a Nitrocellulose membrane (Whatman). Membranes were incubated overnight

845

at 4°C with a rabbit anti-Phospho-Ser®™ GluA1 polyclonal antibody (detects phosphorylation

10
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on GluA1l serine-845 only; 1:5000; PhosphoSolutions cat. P1160-845, RRID: AB_2492128), a

rabbit anti-Phospho- Ser®!

GluAl monoclonal antibody (detects phosphorylation on GluAl
serine-831 only; 1:5000; Merck-Millipore cat. 04-823, RRID: AB_1977218), and a rabbit anti-
GluAl polyclonal antibody (detects GluAl irrespective of modifications; 1:10000; Assay
Designs cat. ADI-905-416-1, RRID: AB 2039139). Monoclonal mouse anti-Actin (1:5000;
Sigma-Aldrich cat. A3853, RRID: AB 262137) and a mouse monoclonal anti-GAPDH
(1:40000; Abcam cat. Ab8245, RRID: AB_2107448) were incubated as loading controls. The
blots were washed with PBS-T, incubated for 1h with a secondary antibody, a goat anti-
rabbit IgG HRP conjugate (1:5000; ThermoFisher Scientific cat. G-21234, RRID: AB_1500696)
and a goat anti-mouse IgG peroxidase conjugate for loading controls (1:5000; Calbiochem
cat. 401215, RRID: AB_10682749) and developed using an enhanced chemiluminescence
system (Pierce). Bands were revealed with a ChemiDoc imaging system (Bio-Rad) for
optimum exposure time. Images were analyzed using QuantityOne software v4.6.3 (Bio-Rad)
where the adjusted volume was calculated for each band. For each group, the value of
pGIluAl Serine subunit was normalized to total GluAl following normalization to loading

controls. In order to assess changes relative to the basal state, each experimental group is

reported as a percentage of Home cage group values.

Calcineurin activity ELISA assay

Tissue preparation. Immediately following rapid decapitation, brains were dissected out and
flash frozen in ice-cold isopentane. The basolateral amygdala was tissue punched on a
freezing cryostat and stored at -80C for further processing. Samples were homogenized and
processed according to the manufacturer’s protocol for the Calcineurin Cellular Activity kit

(Enzo Life Sciences, BML-AK816, Switzerland), with the following adjustments. Punches were

11



]
O
-
O
Vp)
)
-
(O
>
O
)
)
O
()
O
O
<(
O
S
>
(D)
Z
@

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

homogenized in 200uL lysis buffer with protease inhibitor using a motorized pestle and then
passed through a desalting column to remove excess phosphate. Calcineurin activity was

then measured according to manufacturer’s specifications.

Data Analyses

Intergroup comparisons were evaluated using Student’s unpaired t-test, one- or two-way
ANOVA followed by the Fisher test for post hoc analysis where appropriate. Differences were
considered significant if p<0.05. Superscript letters listed with p-values correspond to the
statistical tests shown in Table 1. For western blot data and calcineurin activity, data are

shown as % of home cage controls.

Results

In all experiments, we verified that freezing levels during fear conditioning did not differ for
the different experimental groups included. For the sake of clarity, these analyses are

reported in Table 2.

Immediate extinction sessions result in inefficient extinction

In order to identify appropriate experimental conditions to evaluate mechanisms underlying
the immediate fear extinction deficit phenomenon, we first examined the efficiency of
performing extinction training at several time points post-conditioning (Figure 1A). Here,
efficiency means that we examined whether animals exposed to extinction training at
particular post-conditioning intervals were able to demonstrate significantly reduced
freezing levels during a test, compared to corresponding non-extinguished (No-EXT) groups.

All groups were balanced for trait anxiety using the Elevated Plus Maze (EPM) such that

12
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there were no a priori significant differences in the time spent on the open arms (F(1,35=0.03;
p°=0.86; Figure 1B). While pre-tone freezing levels for the immediate extinction groups were
high, we found this behavior to be common in the literature when extinction training
sessions were given shortly following fear conditioning (Maren and Chang, 2006; Chang and
Maren, 2009; Chan et al., 2010; Goode et al., 2015). A three-way repeated measures general
linear model (extinction x interval x trial) for the percentage of time spent freezing during
exposure to either the extinction training (EXT) or context B (No-Ext). EXT groups found
significant, but equivalent changes in freezing behavior, as indicated by a significant main
effect of trial (Fy36=47.8; pb<0.0001), extinction x trial interaction (F(;3¢=8.47; p‘=0.001),
but no significant interval x trial (F(,74=1.53; p°=0.21) or extinction x interval x trial
interaction (F4,74=0.322; p°=0.86; Figure 1C). During the extinction test performed 48h after
conditioning, a two-way ANOVA (extinction x interval) revealed a significant effect of
extinction (F1,42=18.85, pf<0.001), interval (F(2,42=8.05, p9=0.001) and extinction x interval
interaction (F(y55=3.22, p"=0.026, Figure 1D). Fisher’s post-hoc tests revealed that extinction
applied 30min after conditioning was ineffective in suppressing CS-elicited fear responses
since the level of freezing of animals with extinction was not significantly different than non-
extinguished control animals (pi=0.63). However, animals were able to extinguish fear
responses when extinction training was given following a post-conditioning delay of 3h
(p'=0.01) and 24h (p*<0.001). The extinction was more efficient for a delay of 24h than for 3h
since animals extinguished 24h after conditioning exhibited significantly less freezing than

animals of the 3h group (p'<0.01) during the test.

Then, in order to examine the relationship between fear training and extinction, we

performed Pearson’s correlational analyses between the percentage of time spent freezing

13
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during fear conditioning and during the extinction test. We found a significant positive
correlation in animals who received extinction 30min after conditioning, such that those that
exhibited the greatest fear during conditioning also exhibited the greatest deficit (R*=0.74,
p™=0.006; Figure 1E). Conversely, in animals who received extinction 24h after conditioning,
we found the opposite correlation, with those who exhibited the least freezing during
conditioning exhibiting the highest levels of freezing during the extinction test (R’=0.52,
p"=0.044; Figure 1F). Animals who received extinction 3h after conditioning had no
significant correlation between freezing behaviors during the fear conditioning and the

extinction test (data not shown; R?=0.28, p°=0.17).

Intra-BLA infusion of a CRFR;-antagonist post-conditioning facilitates immediate extinction

without interfering with fear learning consolidation

Given the above behavioral results, we chose to perform pharmacological experiments
(intra-BLA infusion of NBI30775 at doses of 0.1, 0.3, 1, and 10ug; Figure 2A-C) at a post-
conditioning interval of 30min with groups balanced for their a priori anxiety-like behavior
on the elevated plus maze (F(33=0.33; p°=0.86; Figure 2B). During extinction sessions, all
groups significantly decreased their freezing across extinction training trials (F(;,32=294.8;
p?<0.0001), with no significant differences in freezing between vehicle- and drug-treated
animals (F values <1; Figure 2D). For the extinction test performed 48h after fear
conditioning, a one-way ANOVA revealed a significant effect of the drug infusion (F(,32=3.51,
p'=0.01; Figure 2E). Fisher’s post-hoc tests showed that infusion of the highest dose of
NBI30775, i.e. 10ug, promoted extinction efficiency since these animals exhibited
significantly less freezing than vehicle-treated control animals (p°=0.009, Figure 2E). For the

second test performed 1 week after fear conditioning, a one-way ANOVA revealed a

14
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significant effect of the prior drug infusion (F(434=3.51, p'=0.017). Fisher’s post-hoc tests
showed that infusion of both 1ug/0.5ul and 10ug/0.5ul promoted long-term extinction
efficiency since these animals exhibited significantly less freezing than vehicle-treated

control animals (p“=0.04 and p'=0.004 respectively, Figure 2F).

Subsequently, we performed a follow up experiment to investigate whether the observed
effects of the CRFR; antagonist could have been due to an interference with the
consolidation of fear conditioning. In this experiment, animals were infused with 10ug of NBI
30775 into the BLA immediately after conditioning and did not receive any extinction
session. When they were tested 48h afterwards, NBI-treated animals did not differ in their

freezing levels from the vehicle-infused group (Student’s t-test t=1.32, p=0.21, Figure 2G).

Taken together, these results reveal that blocking CRF activity in the BLA immediately after
fear conditioning facilitates an immediate extinction carried out 30min after training but

does not interfere with normal consolidation processes.

Intra-BLA infusion of a CRF-agonist immediately before a delayed extinction impairs

extinction

Given the above findings, we then wanted to investigate whether CRH activation was
sufficient to produce an extinction deficit. We focused on a delayed extinction protocol (24h
following fear conditioning) where we found no evidence of an extinction deficit (Figure 1).
We reasoned that if, in immediate extinction protocols, endogenously shock-induced
activation of CRH is sufficient for the extinction deficit, then enhancing CRH activation in the
BLA before a delayed extinction protocol should also induce a deficit. Thus, we infused a CRF

agonist into the BLA 30 min prior to a delayed extinction session given 24h after fear
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conditioning (Figure 3A) in groups balanced for their a priori anxiety-like behavior on the
EPM (t=1.7; p*=0.12; Figure 3B). During extinction training, both groups exhibited significant
decreases in freezing behavior indicated by a main effect of trial (F,=9.94; p’=0.007) at a
similar level (interaction and treatment effect F values<1; Figure 3C). As hypothesized, pre-
extinction training infusion of 1ug/0.2ul of CRFs.33 into the BLA altered extinction efficiency
as these animals exhibited significantly more freezing than vehicle-infused animals in the
extinction test given 24 h afterwards (Student’s t-test t=2.90, p°=0.028, Figure 3D). These
results indicate that infusion of a CRF agonist just before extinction training reduces

subsequent fear extinction efficiency.

Alteration of extinction is correlated with alteration of phosphorylation of the AMPA

GluA1 subunits

To uncover possible mechanisms underlying the involvement of the CRF system in the BLA in
impaired extinction learning, we examined phosphorylation of AMPA receptors at specific
serine residues as they have been previously linked with extinction learning (Monfils et al.,
2009). A new cohort of animals was conditioned and received an extinction session (CtxB CS)
either immediately (30min: CtxB CS 30min) or following a delay (24h: CtxB CS 24h) following
the fear conditioning session, and animals were sacrificed at the end of the session (Figure
4A) and western blots were performed against phosphorylated AMPA receptor subunits. In
order to compare our results with others who have examined phosphorylated AMPA
receptor subunit changes following 3 min of CS extinction exposure, we included an
additional group (CtxB 3 min CS) where animals were exposed to 3 minutes of extinction
following either 30min or 24h after training, and took brain samples immediately afterwards.

To control for possible effects of the new context, an additional group of animals was
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exposed to the context B without any CS presentations (CtxB no CS). All groups were
balanced for their a priori anxiety-like behavior on the EPM (F(2,31)=.0002; p“’=0.99; Figure
4B). During extinction training, all groups exhibited significant decreases in freezing
behaviors indicated by a main effect of trial (F(131)=103.1, pbb<0.0001), but no significant
effects of training interval (F(,31)=2.18; p“=0.15), group (F(231)=2.37; pdd=0.11), or interaction
(Fi2,31)=1.45; p®®=0.25; Figure 4C). For the 30min post-conditioning interval, i.e. when animals
exhibited a deficit in fear extinction efficiency, a one-way ANOVA revealed a significant
effect of condition (F19=4.35, pff=0.017). Fisher’s post-hoc tests showed that the

percentage of phosphorylation of the AMPA GluAl Ser®®

subunit in Home cage was not
significantly different from the CtxtB no CS control group (p??=0.75) but was significantly
higher than CtxB CS 30min and CtxB 3minCS groups (phh=0.042, p"=0.019 respectively; Figure
4D), indicating that AMPA GluAl Ser®® phosphorylation is decreased 30min following fear
conditioning. For the 24 h post-conditioning interval, i.e. when animals did not show any
deficit in fear extinction learning, a one-way ANOVA did not reveal any significant effect (F
values<1). Analysis of phosphorylation at another serine residue, GluAl Ser®®!, found no
significant alterations in phosphorylation compared to home cage controls in any condition

(F values<1; Figure 4E). Importantly, analysis of the total GIuAl receptors also revealed no

significant differences between groups (F values<1; Figure 4F).
Modulation of AMPA GluA1 Ser **° phosphorylation by CRFR; antagonist in the BLA

To determine whether AMPA GluAl Ser®®® phosphorylation levels were modulated by the
actions of CRF following fear conditioning, we examined phosphorylation in the amygdala in
animals infused with either vehicle or NBI30775 and sacrificed subsequent to an extinction

session delivered 30min post-conditioning (Figure 5A) in groups balanced for their a priori
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anxiety-like behavior on the EPM (F(,,7=0.004; p’7=0.99; Figure 5B). During extinction
training, there was a significant main effect of trial (F(;26=89.4; p*“<0.0001) indicating that
both groups decreased their freezing over time. There was also a significant effect of
treatment (F(1,13)=7.26; p"=0.02) and a trend for an interaction (F(1 207)=3.06; p™"=0.08;
Figure 5C), where NBI treatment reduced freezing during extinction training. Western blots
were performed against phosphorylated AMPA receptor subunits in samples from the
amygdala (Figure 5D). Vebhicle-treated animals exhibited significantly reduced

phosphorylation on the Ser®*®

subunit compared to Home cage controls (Student’s t-test,
t=4.68; p""<0.01; Figure 5D,E). Infusion of the CRFR; antagonist NBI30775 restored the
phosphorylation levels of this subunit to those of home cage levels (Student’s t-test, t=0.18;

p°°=0.86). Notably, there was no effect of either vehicle or NBI treatment on GluAl Ser®**

phosphorylation (Figure 5D,F) nor an effect of NBI treatment alone on GluAl Ser®®®

phosphorylation after fear conditioning (F(1, s¢=0.388; p”’=0.54; Figure 5G).
Calcineurin modulates AMPA GluA1 Ser®® phosphorylation in the BLA

We next investigated whether activity of the phosphatase calcineurin might be mediating
the actions of CRF on AMPA GluAl Ser®”® phosphorylation during extinction. In the 30min
post-conditioning interval, as both CtxB 3min CS and CtxB CS 30min groups exhibited
significantly decreased phosphorylation (see Figure 4D), we examined whether treatment
with NBI30775 reduced calcineurin activity, which would allow for the restoration of
phosphorylation levels. Animals were divided into groups (Figure 6A) balanced for their a
priori anxiety-like behavior on the EPM (F360=0.07; p?=0.97; Figure 6B). Then, they were
treated with either NBI30775 or vehicle and sacrificed 30min post-conditioning following

either 3min (CtxB 3min CS) or a full (CtxB CS 30min) extinction exposure. A second group of
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animals received the same behavioral and pharmacological treatments but were sacrificed
from the home cage as controls. Treatment with NBI30775 significantly reduced calcineurin
activity in the BLA compared to vehicle-treated extinction (CtxB-CS 30min and CtxB-3minCS)
groups (two-way ANOVA, Fi 67 = 6.17; p"=0.015; Figure 6C), indicative of a link between CRF
levels and calcineurin activity. Post-hoc tests revealed a significant increase in calcineurin
activity in the vehicle-treated CtxB-CS 30min group (p*°=0.02) that was blocked by NBI

treatment (p"=0.75) compared to vehicle-treated home cage controls.

Discussion

Previous work has highlighted a deficit for extinction programs that are delivered shortly
after fear conditioning, as opposed to a better efficiency of delayed extinction sessions (for a
review see Maren, 2014). Similarly, psychotherapeutic interventions provided soon after a
traumatic event have been reported to be rather ineffective in reducing long-term fear
responses (Rothbaum and Davis, 2003; Gray and Litz, 2005) though the underlying
mechanisms were unclear. Here, we provide strong evidence implicating the CRF system in
the BLA as a key mechanism mediating this immediate extinction deficit and identify the
phosphorylation of GluAl and enhanced calcineurin activity as potential downstream

mechanisms for CRF actions.

First, in agreement with substantial work in the literature (Maren and Chang, 2006; Woods
and Bouton, 2008; Chang and Maren, 2009; reviewed in Maren 2014), we show here in rats
that long-term extinction efficiency is impaired when extinction training occurs shortly
(30min) after fear conditioning, but correctly retained when extinction training is given
following a longer delay period (24 h; note that some effectiveness of the extinction training

can be observed at the 3h time point). Furthermore, individuals exhibiting the greatest
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amount of freezing during training also show the greatest extinction impairment when the
extinction training occurs shortly after fear conditioning, as opposed to the opposite

relationship between freezing at training extinction efficiency when extinction occurs.

In our effort to investigate underlying mechanisms, we reasoned that mechanisms
facilitating fear conditioning in the BLA might be at the core of the immediate extinction
deficit and postulated that a fear training-activated CRF system in the BLA interferes with the
immediate extinction process. This hypothesis was based on previous work implicating CRF
in delayed extinction deficits (Gafford et al., 2012) and evidence for a rapid activation of CRF
in the amygdala elicited by acute stress, including footshock (Merali et al., 1998; Yamano et
al., 2004) which facilitates fear consolidation processes (Roozendaal et al., 2008; Pitts and
Takahashi, 2011; but see Isogawa et al., 2013) through the activation of CRFR; in the BLA
(Roozendaal et al., 2002; Hubbard et al., 2007). In agreement with our hypothesis, we found
that intra-BLA post-training infusion of the CRFR; antagonist NBI30775 (0.1-10ug) given
shortly after fear conditioning promoted, at the higher doses tested, long-term extinction
learning in animals submitted to extinction training 30 min post-conditioning and tested for
extinction 48 hours and 7 days post-conditioning. Importantly, the reduced long-term
freezing exhibited by animals treated with the CRFR; antagonist is not simply the result of
disrupted fear consolidation, as animals just treated with NBI30775 post-training (i.e., not
submitted to extinction learning) show freezing levels comparable to vehicle-infused animals
when tested 48 hours afterwards. In supplementary experiments using delayed extinction
procedures, we obtained further evidence in support of a causal link between shock-
immediacy and/or increased CRF in the BLA and extinction deficits. Similarly to the

immediate extinction deficit, we found that the effectiveness of extinction training was
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impaired when an intra-BLA infusion of the CRF agonist CRFg.33 (0.1g) was applied just prior
to a delayed (i.e., 24 h post-conditioning) extinction training session. Although this evidence
supports our line of reasoning, our data do not allow us to exclude the alternative possibility
that CRF treatment could have acted as a CS on the extinction session, inducing some sort of
aversive conditioning to context B which would then be manifested as increased freezing
during the extinction testing session. Further experiments including extinction testing in a
different “C” context are warranted for unambiguously concluding the impact of increased

CRF on extinction efficiency.

Therefore, we identify here the activation of CRFR; in the BLA as a key mechanism
interfering with the effectiveness of immediate fear extinction training. This novel finding fits
with previous reports that had implicated the BLA CRF system in impaired extinction in
delayed extinction training paradigms (Gafford et al., 2012; Abiri et al., 2014), and fits with
the view that the degree of fear individuals experience just prior to the onset of an
extinction session might determine the efficacy of extinction learning (Maren and Chang,
2006; Maren, 2014). Although whether BLA CRFR; activation precisely reflects the CS-related
degree of amygdalar excitation remains to be established, intra-BLA CRF infusions were
shown to lead to robust increases in anxiety behaviors (Sajdyk et al., 1999) and to induce
long-lasting sensitization of noradrenergic substrates and PTSD-like symptoms (Rajbhandari
et al.,, 2015) in rodents. Moreover, in vivo release of CRF in the BLA has been found to
correlate with the level of freezing behavior in response to fear conditioning experiments

(Mountney et al., 2011).

In addition, we show evidence implicating a decrease in phosphorylation of the GIuAl

glutamate receptors at Ser®®, but not Ser®, as a downstream mechanism of BLA CRFR;
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implication in the immediate fear extinction deficit. GIuA1 membrane insertion was shown
to be required for fear conditioning-induced synaptic plasticity and consolidation (Rumpel et
al., 2005) and regulated by GluAl phosphorylation at Ser®®® (Blackstone et al., 1994).
Importantly, a transient up-regulation of GluA1 phosphorylation at Ser®® has been critically
implicated in the susceptibility of long-term expressed memories to fear erasure by
manipulations involving reconsolidation (Clem and Huganir, 2010) or extinction (Monfils et
al., 2009) protocols after a brief retrieval of the fear memory. Conversely, administration of
two retrieval sessions of a long-term established auditory fear memory close in time (i.e., the
second within 1 h after the first retrieval session) led to a rapid dephosphorylation of GluA1

at Ser®®

that was associated with the inability to induce memory-impairing effects (i.e., fear
memory reconsolidation) by a protein synthesis inhibition (Jarome et al., 2012). These data
suggest that the second retrieval rapidly altered the phosphorylation state of GIuA1l. This fits
with our findings that, whereas fear conditioned animals placed in a novel context 30 min
post-training showed similar levels as home cage controls, those exposed to either a short (3
min) or long (30 min) extinction protocol displayed a dephosphorylation of GluA1 at Ser®® in
the BLA. Importantly, the same extinction treatments did not affect the phosphorylation rate
when they were given 24 hours after fear conditioning, further supporting a potential role of

® in the BLA in the immediate extinction deficit. As

dephosphorylation of GluAl at Ser®
observed in our study, the proximity of the CS application in the short and long extinction
sessions to fear conditioning in the immediate fear extinction deficit phenomenon mimics
mechanisms underlying the repetition of stimuli and conditions described by Jarome et al.
(2012) that make the fear memory resistant to erasure. The rapid dephosphorylation of

GluAl, as observed in our study, has been linked to AMPAR endocytosis, leading to

alterations in synaptic strength (Ehlers 2000) and shown to depend on increased activity of
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the protein phosphatase 2B or calcineurin (Ehlers 2000; Snyder et al. 2003). In full
agreement with these findings, we observed increased calcineurin activity in the BLA in the
groups submitted to short (3 min) or long (30 min) extinction protocols starting 30 min after
fear conditioning, the same time points which also display a dephosphorylation of GIuR; at
Ser845. Calcineurin has been previously linked to the regulation of anxiety and fear
conditioning in the amygdala (Lin et al., 2003; Baumgartel et al., 2008). Importantly, intra-
BLA infusion of NBI30775 immediately after fear training (at the dose of 10 pg that enables
efficient extinction in the immediate extinction protocol) in animals that were exposed to
extinction training 30 min after fear conditioning prevented: (1) the dephosphorylation
GluAl at Ser®® and (2) the increase in calcineurin activity in the BLA observed in vehicle-
treated animals following extinction. Therefore, our findings suggest a possible mechanism
whereby fear conditioning-induced enhancement of CRF and activation of CRFR; in the BLA
may act to prevent immediate extinction learning by blocking GIuAl insertion into the
synapse via targeted dephosphorylated GIuA1 AMPA subunits by enhanced calcineurin

activity.

While CRFR; is primarily associated with increased production of cyclic AMP (cAMP) through
adenyl cyclases, studies have shown that it can also interact and influence other g-protein
systems, such as those of protein phosphokinases, modifying the balance between several
signaling cascades rather than just one pathway, in a tissue-specific manner
(Grammatopoulos and Chrousos, 2002; Gallagher et al., 2008). Evidence from the literature
point to spiny pyramidal glutamatergic projection neurons in the BLA as particularly involved
in the CRFR;-mediated effects reported in this study. For example, administration of CRF into

the BLA produced a specific dose-dependent increase in the expression of cFos-ir in
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pyramidal neurons (Rostkowski et al., 2013). In addition, calcineurin is predominantly found
in pyramidal neurons in the BLA (Leitermann et al., 2012). The involvement of BLA projection
neurons is particularly relevant in the context of extinction learning, as substantial work
shows that the BLA regulates the consolidation of fear extinction not only through local
mechanisms, but also through reciprocal projections to other brain regions, particularly the
medial prefrontal cortex (Akirav and Maroun, 2007; Quirk and Mueller, 2008; Herry et al.,
2010; Pape and Pare, 2010). In fact, the medial prefrontal cortex has been critically
implicated in the encoding and retrieval of extinction (reviewed in Maren, 2014) and with
stress-induced morphological changes associated with impaired extinction (lzquierdo et al.,
2006; Miracle et al., 2006; Wilber et al., 2011). Furthermore, studies have identified links
between BLA activity and mPFC function (Dilgen et al., 2013). Thus, in the case of immediate
extinction deficit, it has been proposed that amygdalar hyperexcitability may inhibit mPFC
circuitry and interfere with extinction retrieval. Given the ability of CRF to render the BLA
excitable for long periods of time (Rainnie et al., 1992; Sandi et al., 2008), our data here

support this hypothesis via a CRF-mediated mechanism.

Immediate extinction therapies have been offered as a potential solution to combat the
development of PTSD in individuals exposed to traumatic events. Studies from animal
research have demonstrated that these kinds of therapies may not be effective. Here we go
beyond the behavioral level and identify the activation of CRFR; in the BLA as a critical
mechanism underlying this phenomenon. Our findings highlight the treatment with CRFR;
antagonists as a potential adjuvant capable to improve the effectiveness of behavioral

therapies given shortly after exposure to trauma.
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Figure Legends

Figure 1: Efficient fear extinction is dependent on the interval between training and
extinction sessions. Animals were separated into extinction (EXT) and no-extinction (No-EXT;
NE) groups (A), balanced for anxiety-like behavior on the elevated plus maze (B) and trained
to similarly associate a footshock with a tone assessed by levels of freezing (see also Table
2). Animals in the EXT group were then exposed to an extinction session either 30min 3h or
24h after training with all interval groups showing similar patterns of extinction (C, open
symbols). Animals in the No-EXT group were exposed to the context B arena without tones
and each subgroup shows similar levels of freezing during this period (C, filled symbols).
Animals exposed to extinction sessions immediately after training (30min) exhibited similar
levels of freezing as the No-EXT group during the extinction test (D). Animals exposed to
delayed (3h 24h) extinction sessions exhibited significantly reduced freezing levels. “BL” =
baseline freezing during the first 3 minutes pre-tone. The freezing behavior during the
extinction test in animals exposed to an extinction session 30min after training was
positively and significantly correlated with the amount of fear shown during the initial fear
training sessions (E), while those receiving an extinction session 24h after training had a
significant negative correlation between freezing behavior in the extinction test versus fear
training (F). Data depicted as mean percentage of time spent freezing + SEM; *: Significant

difference (p<0.05) with the corresponding No-EXT group; n=8/group.

Figure 2: Impaired extinction efficiency due to immediate post-training interval is restored
by a post-training bilateral infusion of CRFR; antagonist NBI30775 in the BLA. Animals were
separated into groups (A), balanced for anxiety-like behavior on the elevated plus maze (B)

and following successful training received a bilateral infusion (C) of NBI30775 or vehicle
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immediately at the end of the session and given an extinction training session 30min later
(D). Animals infused with the 10ug dose of NBI30775 showed significantly reduced freezing
levels during the first testing session 48h post-training (E). Both 1ug and 10ug doses showed
significantly reduced freezing levels when tested one week later (F). A separate group of
animals were trained and received NBI or vehicle afterwards and left undisturbed until
testing 48h later. Treated animals showed similar levels of freezing in the test suggesting
that infusion of NBI does not affect memory consolidation (G). “BL” = baseline freezing
during the first 3 minutes pre-tone. Data depicted as mean percentage of time spent
freezing + SEM; *: Significant difference (p<0.05) with the DMSO vehicle group; n= 6-

10/group.

Figure 3: Infusion of CRF agonist CRFs33 in the BLA immediately before delayed extinction
session alters extinction efficacy. Animals were separated into groups (A) balanced for
anxiety-like behavior on the elevated plus maze (B), successfully fear conditioned to a similar
level (C) and infused with CRFg_33 or saline 30min prior to a delayed (24h) extinction session.
Treated animals showed significantly increased freezing levels compared to vehicle (D). “BL”
= baseline freezing during the first 3 minutes pre-tone. Data depicted as percentage of time
spent freezing * SEM; *: Significant difference (p<0.05) with the CRF agonist CRFg.33 group

(0.1pg/0.2ul); n=5-6/group.

Figure 4: Immediate extinction impairment is associated with reduced phosphorylation of
the AMPA GluAl Ser®® subunit. Animals were separated into groups (A), balanced for
anxiety-like behavior on the elevated plus maze (B), trained and sacrificed (denoted as “X”)
immediately following various context B (CtxB) exposures either 30min or 24h after training,

with each group showing similar levels of freezing during CtxB exposure (C). Phosphorylation
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of AMPA GluAl Ser®® was significantly decreased in animals exposed to CS presentations
30min post-training but not in those with a delayed (24h) exposure (D) compared to the
home cage controls (HC). There were no significant differences in the phosphorylation levels
of AMPA GluA1 Ser®! (E) or in total GluAl receptor protein (F). Data depicted as percentage
of control group + SEM; *: Significant difference (p<0.05) with the home cage (HC) group;

n=6/group.

Figure 5: GluAl Ser®” phosphorylation levels are reversed with administration of NBI.
Animals were separated into groups (A), balanced for anxiety-like behavior on the elevated
plus maze (B), and received a post-training infusion of either the CRFR; antagonist NBI30775
or vehicle and an immediate extinction session 30min later (C; open box denote NBI-treated
animals; filled box denotes vehicle-treated animals). Treatment with NBI30775 restored
GluA1 Ser®® phosphorylation to vehicle home cage (HC) levels (D-E) but had no effect on
GluAl Ser®! (D,F) or on its own (G). Data depicted as percentage of vehicle home cage
control group (hatched bar and also dotted line) * SEM; *: Significant difference (p<0.05)

with the vehicle-treated home cage group; n=8-12/group.

Figure 6: Enhanced calcineurin activity following extinction is reversed by NBI
administration. Animals were trained and infused post-training with either NBI30775 or
vehicle and separated into groups (A) balanced for anxiety-like behavior on the elevated plus
maze (B) and then sacrificed (denoted as “X”) for calcineurin activity assessment after either
3min or a full extinction session 30min after training. Calcineurin activity tended to increase
following the extinction session in vehicle-treated animals (CtxB CS group) but was blocked

by post-training treatment of NBI30775 (C). Data depicted as percentage of vehicle home
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cage control group (hatched bar and also dotted line) + SEM; *: Significant difference

(p<0.05) with the vehicle-treated home cage group; n=8-10/group.

Tables

Table 1: Summary of statistics for all experiments.
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Figure Description Data structure Type of test Power
a 1B EPM: time spent on the open arms Normal Distribution 2-way ANOVA 1
b 1C  Extinction training: effect of "trial" Normal Distribution 3-way repeated ANOVA 1
c 1C  Extinction training: "extinction" x "trial" interaction Normal Distribution 3-way repeated ANOVA 0.95
d 1C  Extinction training: interval x trial interaction Normal Distribution 3-way repeated ANOVA 0.45
e 1C  Extinction training: extinction x interval x trial Normal Distribution 3-way repeated ANOVA 0.12
f 1D  Extinction test: effect of extinction Normal Distribution 2-way ANOVA 0.99
g 1D  Extinction test: effect of interval Normal Distribution 2-way ANOVA 0.94
h 1D  Extinction test: extinction x interval interaction Normal Distribution 2-way ANOVA 0.69
i 1D  Extinction test: freezing (30min EXT vs 30min No-EXT) Normal Distribution  Fisher's post hoc test 0.24
j 1D  Extinction test: freezing (3h EXT vs 3h No-EXT) Normal Distribution  Fisher's post hoc test 1
k 1D  Extinction test:freezing (24h EXT vs 24h No-EXT) Normal Distribution  Fisher's post hoc test 1
| 1D  Extinction test:freezing (3h EXT vs 24h EXT) Normal Distribution  Fisher's post hoc test 1
m 1E  Correlation: 30m post-conditioning train vs test Normal Distribution  Linear correlation  R?-0.74
n 1F  Correlation: 24h post-conditioning train vs test Normal Distribution  Linear correlation  R?=0.52
o Correlation: 3h post-conditioning train vs test, not shown Normal Distribution Linear correlation  R?=0.28
p 2B EPM: time spent on the open arms Normal Distribution 1-way ANOVA 1
q 2D  Extinction training: effect of "trial" Normal Distribution 2-way repeated ANOVA 1
r 2E  Extinction test: effect of drug Normal Distribution 1-way ANOVA 0.81
s 2E  Extinction test: freezing (VEH vs 10ug) Normal Distribution  Fisher's post hoc test 1
t 2F  Extinction test-7d: effect of drug Normal Distribution 1-way ANOVA 0.81
u 2F  Extinction test-7d: freezing (VEH vs 1ug) Normal Distribution  Fisher's post hoc test 1
v 2F  Extinction test-7d: freezing (VEH vs 10ug) Normal Distribution  Fisher's post hoc test 1
w 2G Consolidation control: freezing (VEH vs 10ug) Normal Distribution Student's 2-tailed t-test 0.96
X 3B EPM: time spent on the open arms Normal Distribution Student's 2-tailed t-test 0.8
y 3C  Extinction training: effect of "trial" Normal Distribution 2-way repeated ANOVA 0.91
z 3D  Extinction test: effect Normal Distribution Student's 2-tailed t-test 0.83
aa 4B EPM: time spent on the open arms Normal Distribution 2-way ANOVA 1
bb 4C  Protein: Extinction training effect of "trial" Normal Distribution 2-way repeated ANOVA 1
cc 4C  Protein: Extinction training effect of "interval" Normal Distribution 2-way repeated ANOVA 0.3
dd 4C  Protein: Extinction training: effect of "group" Normal Distribution 2-way repeated ANOVA 0.44
ee 4C  Protein: Extinction training: interaction Normal Distribution 2-way repeated ANOVA 0.29
ff 4D  Protein: 30min interval Normal Distribution 1-way ANOVA 0.79
g8 4D  Protein: 30min (HOME vs CtxB no CS) Normal Distribution  Fisher's post hoc test 0.12
hh 4D  Protein: 3min (HOME vs CtxB CS) Normal Distribution  Fisher's post hoc test 1
ii 4D  Protein: 30min (HOME vs CtxB-3minCS Normal Distribution  Fisher's post hoc test 1
ji 5B EPM: time spent on the open arms Normal Distribution 1-way ANOVA 1
kk 5C  Protein: Extinction training: effect of "trial" Normal Distribution 2-way repeated ANOVA 1
Il 5C  Protein: Extinction training: effect of "treatment" Normal Distribution 2-way repeated ANOVA 0.7
mm 5C  Protein: Extinction training: interaction Normal Distribution 2-way repeated ANOVA 0.47
nn S5E  Protein (VEH vs HOME) Normal Distribution Student's 2-tailed t-test 1
[o¢} 5E  Protein (NBI vs HOME) Normal Distribution Student's 2-tailed t-test 0.06
pp 5G  Protein: effect of treatment Normal Distribution 2-way ANOVA 0.11
qq 6B EPM: time spent on the open arms Normal Distribution 2-way ANOVA 1
m 6C  Calcineurin activity: effect of "NBI" Normal Distribution 2-way ANOVA 0.79
ss 6C  Calcineurin activity (VEH CtxB-CS vs home cage) Normal Distribution  Fisher's post hoc test 0.99
|tt 6C  Calcineurin activity (NBI CtxB-CS vs home cage) Normal Distribution  Fisher's post hoc test 0.07

Table 2: Summary of statistics for fear conditioning sessions.
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No-Ext 30min 80.154 3.378
Ext 30min 77.576 2.659 Three- Time: <0.0001
Figure 1 No-Ext 3h 100.147  12.016 way  TimexExtinct: 0.51
Ext 3h 91.933  10.933 repeated Timexinterval: 0.51
No-Ext24h  88.575  1.827 ANOVA |nteraction: 0.17
Ext 24h 78.4 2.728
VEH 81.8 3.872
0.1lug 85.033 2.789 One-way Time: <0.0001
Figure 2 0.3ug 83.571 3.521 repeated Group: 0.21
lug 69.486 8.752 ANOVA
10ug 77.28 3.238
VEH 75.566 7.053 One-way Time: <0.0001
Figure 3 0.1lug 84.853 3.149 repeated Group: 0.89
ANOVA
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