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Abstract 59 Neural activity in monkey motor cortex (M1) and dorsal premotor cortex (PMd) can 60 reflect a chosen movement well before that movement begins. The pattern of neural 61 activity then changes profoundly just before movement onset. We considered the 62 prediction, derived from formal considerations, that the transition from preparation 63 to movement might be accompanied by a large overall change in the neural state 64 that reflects when movement is made rather than which movement is made. 65 Specifically, we examined ‘components’ of the population response: time-varying 66 patterns of activity from which each neuron’s response is approximately composed. 67 Amid the response complexity of individual M1 and PMd neurons, we identified 68 robust response components that were ‘condition-invariant’: their magnitude and 69 time course were nearly identical regardless of reach direction or path. These 70 condition-invariant response components occupied dimensions orthogonal to those 71 occupied by the ‘tuned’ response components. The largest condition-invariant 72 component was much larger than any of the tuned components; i.e., it explained 73 more of the structure in individual-neuron responses. This condition-invariant 74 response component underwent a rapid change before movement onset. The timing 75 of that change predicted most of the trial-by-trial variance in reaction time. Thus, 76 although individual M1 and PMd neurons essentially always reflected which 77 movement was made, the largest component of the population response reflected 78 movement timing rather than movement type. 79  80 
  81 
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Significance 82 The activity of neurons often conveys information about externally observable 83 variables, such as the location of a nearby object or the direction of a reach made to 84 that object. Yet neural signals can also relate to ‘internal’ factors: the thoughts and 85 computations that link perception to action. We characterized a neural signal that 86 occurs during the transition from preparing a reaching movement to actually 87 reaching. This neural signal conveys remarkably accurate information about when 88 the reach will occur, but carries essentially no information about what that reach 89 will be. The identity of the reach itself is carried by other signals. Thus, the brain 90 appears to employ distinct signals to convey what should be done and when it 91 should be done.  92  93  94   95 
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Introduction 96 The responses of individual neurons are often characterized in terms of 97 tuning: how the firing rate varies across different stimuli or behaviors (“conditions”). 98 Additionally, neural responses may contain untuned features which are shared 99 across many conditions, such as an abrupt rise in firing rate after the onset of any 100 stimulus. These untuned response features may appear non-specific, and thus of 101 secondary interest. However, there is evidence that response features can be 102 correlated across conditions yet still carry computationally-relevant information. 103 Neural activity in prefrontal cortex contains a large response component reflecting 104 the passage of time (Machens et al., 2010), and time-varying signals have also been 105 observed in premotor cortex during anticipation of an informative cue (Confais et al., 106 2012). A related example is the time-encoding urgency signal observed during 107 decision-making, which is shared across neurons that encode different choices in 108 both the oculomotor system (Churchland et al., 2008; Hanks et al., 2011) and 109 premotor cortex (Thura et al., 2012). Here we investigate another possible ‘untuned’ 110 signal in motor/premotor cortex: one that arises after the desired target is known, 111 at the time of the sudden transition from preparation to movement. 112 We were motivated by the observation that motor cortex neurons sometimes 113 display broadly tuned movement-period responses (Fortier et al., 1993; Crammond 114 and Kalaska, 2000) – e.g., a rise in rate for all directions – such that tuning models 115 benefit from an omnidirectional term (Georgopoulos et al., 1986; Moran and 116 Schwartz, 1999). More generally, many studies identify significant proportions of 117 neurons with responses that are task-modulated yet not strongly selective for the 118 
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parameter being examined (Evarts, 1968; Weinrich et al., 1984; Hocherman and 119 Wise, 1991; Riehle et al., 1994; Messier and Kalaska, 2000). These findings argue 120 that there must be some aspect of neural responses – i.e., some response 121 ‘component’ – that is at least moderately correlated across conditions. What are the 122 temporal properties of such a signal and is its timing predictive of behavior? Does 123 the signal make a small or large contribution to the overall population response? Is 124 the signal merely correlated across conditions (‘condition-correlated’)? Or might it 125 be nearly identical across conditions (‘condition-invariant’) and thus untuned in the 126 traditional sense?  127 These questions derive both from a general desire to fully characterize the 128 response during movement and from specific theoretical considerations. A 129 condition-invariant signal could, despite its seeming lack of specificity, be important 130 to the overall computation performed by the population. Presumably there is a large 131 change in computation just before movement onset, at the moment when the motor 132 system transitions from preparing to move while holding a posture (Kurtzer et al., 133 2005) to generating the muscle activity that will drive the desired movement. 134 Consistent with the idea of a change in computation, neural tuning changes 135 suddenly and dramatically at a point ~150 ms before movement (Churchland et al., 136 2010) so that a neuron’s ‘preference’ during movement can be quite unrelated to its 137 preference during preparation (Wise et al., 1986; Crammond and Kalaska, 2000; 138 Kaufman et al., 2010). A similar transition is observed at the population level: 139 population dynamics are relatively stable and attractor-like during preparation but 140 become strongly rotational just before movement onset (Churchland et al., 2012). 141 
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This sudden change in network properties is presumably driven by an appropriately 142 timed input (which could itself be the output of a computation that decides when to 143 move; Romo and Schultz, 1987; Thaler et al., 1988; Schurger et al., 2012; Murakami 144 and Mainen, 2015). One might initially expect a ‘triggering’ input to be tuned 145 (Johnson et al., 1999; Erlhagen and Schoner, 2002). Yet theoretical considerations 146 suggest that a simple, condition-invariant change in input is sufficient to trigger 147 large changes in network dynamics and tuning (Hennequin et al., 2014). In 148 particular, a recent neural network model of motor cortex (Sussillo et al., 2015) 149 employs a condition-invariant input to trigger a change in dynamics that initiates 150 movement. The model’s population-level responses resemble the empirical neural 151 responses, and from inspection both clearly show at least some features that are 152 invariant across conditions.  153 Critically, there are many ways in which activity patterns can be correlated 154 across conditions. Only a minority of such possibilities involve a truly condition-155 invariant signal at the population level: that is, a signal that is nearly identical across 156 conditions. Is a condition-invariant signal present in motor cortex? On a trial-by-157 trial basis, does it exhibit timing locked to target onset, the go cue, or movement 158 onset? Only the latter would be consistent with the role in movement triggering 159 suggested by the model of Sussillo et al. (2015). 160 We found that a condition-invariant signal was not only present but was the 161 largest aspect of the motor cortex response – considerably larger than any of the 162 condition-specific (tuned) response components. The condition-invariant signal 163 resembled the previously reported omnidirectional or ‘speed-tuned’ response 164 
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component (Georgopoulos et al., 1986; Moran and Schwartz, 1999), but was 165 essentially invariant with reach speed, distance and curvature. In addition, the 166 condition-invariant signal underwent a large and sudden change ~150 ms before 167 movement onset. The timing of this change was an excellent predictor of reaction 168 time on a trial-by-trial basis. Finally, the dimensions in neural state space that were 169 occupied by the condition-invariant signal were almost perfectly orthogonal to the 170 dimensions occupied by the condition-specific components. Overall, the profile, 171 timing, and population-level manifestation of the condition-invariant signal were 172 remarkably similar to the structure naturally produced by the model of Sussillo et al. 173 (2015). Our findings thus suggest a potential role for a large response component 174 that initially appears non-specific yet reflects movement timing very precisely. 175 
  176 
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Materials and methods 177 The key features of the task and analyses are described in the Results. Below 178 we detail all aspects of the apparatus, task, neural recordings, muscle recordings, 179 data preprocessing, analyses, and controls. 180  181 
Subjects and task 182 Animal protocols were approved by the Stanford University Institutional 183 Animal Care and Use Committee. Experiments employed two adult male rhesus 184 monkeys (Macaca mulatta), J and N, performing a delayed-reach task on a 185 frontoparallel screen (Churchland et al., 2010; Churchland et al., 2012; Kaufman et 186 al., 2013). The monkey initially fixated a central spot with his eyes and touched it 187 with a cursor. The cursor was projected slightly above the right fingertip, which was 188 tracked optically. The task involved a large number of conditions – i.e., different 189 target locations and reach paths – which was useful when attempting to identify 190 response components that are invariant across conditions. On 1/3 of trials (‘no-191 barrier’ conditions) a lone target appeared within a frame around the workspace. 192 On another 1/3 of trials (‘maze’ conditions) a target and up to nine virtual barriers 193 appeared. The remaining 1/3 of trials (‘maze-with-distractor’ conditions) were 194 identical to the maze trials but included two distractor ‘targets’ that were 195 unreachable due to the barrier locations. The same set of target positions was used 196 for the no-barrier, maze, and maze-with-distractor conditions. When barriers were 197 present, the monkey had to perform a curved reach or the cursor would collide with 198 and “stick” to the barrier. This paradigm evoked both straight and curved reaches in 199 
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different directions and of varying speed and distance. Most datasets employed 27 200 conditions (9 of each type) while one (NAC) employed 108. No attempt was made to 201 produce a uniform arrangement of target locations or initial reach directions, but we 202 note that all datasets involved reaches that spanned the space of directions in two 203 dimensional space, and that results were consistent across the different datasets, 204 which typically employed different arrangements of targets and barriers. More 205 broadly, the large variety of conditions we employed provides a stringent test 206 regarding whether a signal is truly condition-invariant.  207 A randomized delay period separated target onset from a Go cue. During the 208 delay, targets jittered slightly (2-3 mm), indicating to the monkey that he could not 209 yet reach or saccade. The Go cue consisted of three simultaneous and salient cues: 210 the cessation of jitter, the targets changing from open to filled, and the central spot 211 disappearing. Juice reward was delivered if the monkey swiftly reached to the target 212 then held it for 450 ms (monkey J) or 700 ms (monkey N).  213  214 
Delay-period statistics 215 The delay period lasted 0-1000 ms. Different datasets employed different 216 delay-period statistics depending on the analyses we wished to apply. Three 217 datasets (JC, NAC and NS) were collected with the primary goal of analyzing trials 218 with longer delays. Longer delays enabled examination of the transition between a 219 relatively stable plateau of preparatory activity and subsequent movement-related 220 activity. To this end, delays of 450-1000 ms were approximately twice as probable 221 as delays of 0-450 ms. Three further datasets (JAD1, JAD2, NAD) were recorded with 222 



 

 11

the goal of characterizing the single-trial relationship between neural activity and 223 RT. For these datasets, delay durations of 0, 100, 200, and 500 ms were intentionally 224 overrepresented. These dataset names end with “D”, indicating that this set of 225 discrete delays was overrepresented. This allowed key analyses to be restricted to a 226 set of trials with the same delay, removing the potential confound that RT can vary 227 with delay. For these datasets most trials (78%, 78%, 84% for datasets JAD1, JAD2, 228 NAD) used one of the discrete delays, with roughly equal probability. The remaining 229 trials had random delays from 0-1000 ms as above. Because these datasets were 230 each collected in a single day utilizing implanted multi-electrode arrays, monkeys 231 were not anticipating the overrepresented delay durations.  232 Most analyses focused on the transition from movement preparation to 233 movement and thus used only trials with delays >450 ms (datasets without discrete 234 delays) or delays = 500 ms (datasets with discrete delays). For analyses of the 235 single-trial relationship with RT we focused on datasets with discrete delay 236 durations. For simplicity of presentation, for these analyses only trials with no delay 237 (“zero delay”) or a 500 ms delay (“long delay”) are shown. All results were similar 238 for delays of 100 or 200 ms.  239  240 
Catch trials and trial counts 241 Several types of unanalyzed catch trials ensured the task was performed as 242 desired. In particular, we presented novel mazes made by randomly removing 243 barriers from a standard maze (10-15% of all trials), or randomly placing the target 244 and two barriers (0-10% of all trials). These trials ensured that the monkey had to 245 
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solve each trial independently, as similar-looking mazes could have different 246 solutions. 247 Delay periods were randomly chosen on each trial. Conditions were 248 organized in pseudorandom blocks. The array datasets had 3352, 2340, 2622, and 249 3590 successful trials (datasets JAD1, JAD2, NAD, and NAC) from a single session. 250 For the “discrete delay” datasets (JAD1, JAD2, NAD) there were ~250-500 usable 251 trials for each of the four overrepresented delays. Usable trials excluded catch-trials, 252 failed trials (e.g., if a barrier were struck), rare trials with an unusual velocity profile 253 that did not allow a reliable RT measurement, and trials with a very short RT (in 254 rare instances where the monkey ‘jumped the gun’) or an overly long RT (in rare 255 instances where the monkey was presumably distracted). Datasets that included 256 single-unit recordings (JC and NS) contained an average of 336 and 305 usable trials 257 per unit. 258  259 
Neural and muscle recordings 260  For both monkeys, we first performed single-electrode recordings (datasets 261 JC and NS) using moveable tungsten microelectrodes (Frederick Haer, Bowdoinham, 262 ME) and a Plexon Multichannel Acquisition Processor (Plexon, Dallas, TX). These 263 recordings included the caudal portion of dorsal premotor cortex (PMd) and both 264 surface and sulcal M1. All units recorded with single electrodes were well-isolated 265 single neurons recorded from regions where microstimulation produced movement 266 of the arm (typically the upper arm and/or shoulder). Each monkey was then 267 implanted with two 96-electrode silicon arrays (Blackrock Microsystems, Salt Lake 268 
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City, UT), located in M1 and caudal PMd, as estimated from anatomical landmarks 269 and previous mapping with microstimulation. Spikes were sorted offline using 270 custom software (MKsort, https://github.com/ripple-neuro/mksort). For array 271 recordings, both single units and stable multi-unit isolations (typically two neurons 272 whose spikes could not be reliably separated) were analyzed. A strong condition-273 invariant signal (see below) was present regardless of whether a dataset involved 274 pure single-unit isolations or a mixture of single-unit and multi-unit isolations. This 275 is unsurprising: dimensionality reduction techniques such as dPCA or PCA typically 276 produce nearly identical results regardless of whether isolations involve one unit or 277 a small number of units. These techniques are forgiving because the components 278 needed to compose the responses of a single neuron are the same components 279 needed to compose the summed response of more than one neuron. All neural 280 recordings were from the left hemisphere. Array recordings produced datasets JAD1, 281 JAD2, NAD, and NAC, and were included in dataset JC. 282  We analyzed all units where the firing rate range (over conditions and times) 283 was greater than the maximal s.e.m. (for all conditions and times). This signal-to-284 noise (SNR) criterion does not insist on any particular form of response or tuning – 285 only that there be some response. For dataset JAD1, 116 of 123 units passed the SNR 286 criterion; for dataset JAD2, 136 of 171 units passed; for dataset JC, 186 of 278 units 287 passed; for dataset NAD, 172 of 188 units passed; for dataset NAC, 213 of 223 units 288 passed; for dataset NS, 118 of 118 units passed. Of these, 67, 28, 108, 62, 58, and 289 118 were considered single units (datasets JAD1, JAD2, JC, NAD, NAC, NS). For all 290 
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analyses, results were similar when data from PMd and M1 were analyzed 291 separately. These recordings were therefore pooled. 292 Data preprocessing involved three steps. First, spike trains were smoothed 293 with a Gaussian (28 ms s.d.). Second, the firing rate was averaged across trials of the 294 same type (excepting analyses of single trials, see below). We computed two 295 averages: one with data aligned to target onset and one with data aligned to 296 movement onset. Third, the firing rate of each neuron was normalized to prevent 297 analyses from being dominated by a few high-rate neurons; this is especially 298 important (Yu et al., 2009) when performing PCA-based analyses. To normalize 299 without over-amplifying the greater noise associated with low firing rates, we “soft 300 normalized”: for each neuron we normalized the firing rate by its range (across all 301 times and conditions) plus a constant, chosen to be 5 spikes/s. This choice follows 302 our previous work, and was made before performing analyses. Results were 303 extremely similar and sometimes stronger if we used a soft-normalization constant 304 of zero. 305 Electromyographic (EMG) recordings employed hook-wire electrodes (44 306 gauge with a 27 gauge cannula; Nicolet Biomedical, Madison, WI), inserted 307 percutaneously into the muscles of the right arm. Electrodes were inserted with the 308 monkey awake and calm, with one recording per session. For monkey J, recordings 309 were made sequentially from trapezius, latissimus dorsi, pectoralis, triceps brachii, 310 medial and lateral aspects of the biceps brachii, and anterior, medial, and posterior 311 aspects of the deltoid. The recording from the triceps was excluded because it was 312 not sufficiently modulated during the task. For monkey N, recordings were made 313 
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from proximal, middle, and distal aspects of the trapezius, latissimus dorsi, 314 pectoralis, triceps brachii, medial and lateral aspects of the biceps, and anterior, 315 medial, and posterior aspects of the deltoid. Two recordings were made for each 316 deltoid site. The recordings from the triceps and latissimus dorsi were excluded 317 because they were not sufficiently modulated during the task. Raw EMG signals 318 were band-pass filtered (150–500 Hz, four pole, 24 db/octave), differentiated, 319 rectified, smoothed with a Gaussian (15 ms SD), and averaged across trials 320 (Kaufman et al., 2013). 321  322 
Projections of neural data 323 We identified response components by projecting the population response 324 onto dimensions of interest. We began with a matrix, R, of trial-averaged neural 325 responses (or EMG, for one analysis). Each of n columns contained the normalized 326 response of one neuron over time, with responses concatenated across conditions. 327 To project the data onto a given dimension we computed = , where  is a set 328 of weights specifying the dimension. The projection  is therefore a weighted 329 average of neurons’ firing rates. We refer to the projected activity pattern as a 330 ‘component’ of the population response, because the activity of any given neuron 331 can be (approximately) composed of a weighted sum of multiple such components. 332 This use of the term ‘component’ follows the usage of Kobak et al. (2016) and others. 333 Note that this use of ‘component’ is not synonymous with ‘principal component’, 334 which refers to a component of the neural covariance matrix and thus corresponds 335 to a neural dimension. 336 
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A large literature concerns how to best find projections given different goals 337 and hypotheses. In this study the most important projection method employs 338 Demixed Principal Component Analysis (dPCA; Machens et al., 2010; Brendel et al., 339 2011) to find the dimensions . This application of dPCA is detailed more 340 thoroughly in the next section. 341 We also employ a number of other projection methods, including standard 342 Principal Component Analysis (PCA), and simply computing the mean across 343 neurons (equivalent to setting all weights to 1/n). Two analyses employ the jPCA 344 method (Churchland et al., 2012), and in one case we used a classifier trained via a 345 supervised algorithm. In every case it should be stressed that the projections shown 346 (i.e., the response components) are simply linear weightings of the recorded neural 347 responses. The use of multiple methods is desirable because no single method can 348 capture all aspects of the response (e.g., the mean captures some aspects of the 349 response and hides others). 350 All projection methods used here employ orthonormal dimensions. The 351 orthogonality of these dimensions does not impose orthogonality on aspects of the 352 neural response; it is simply a way of choosing a coordinate system. An orthonormal 353 basis makes interpretation simpler: among other benefits, it allows each component 354 to be independently quantified in terms of variance explained, making it harder to 355 unintentionally interpret weak structure as meaningful. In all cases, when a 356 percentage of variance is quoted, it is the fraction of the variance captured in the 357 low-dimensional space (10-12 dimensions). 358  359 
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Identifying the condition-invariant signal via dPCA 360  Many of our central analyses sought to determine whether there exist neural 361 dimensions that segregate condition-specific (“tuned”) components from condition-362 invariant components of the population response. By “condition-specific” we mean 363 that different conditions (reach directions, curvatures, etc.) evoke different 364 responses when the population response is projected onto that dimension. 365 By “condition-invariant” we mean that the response varies with time but is similar 366 across conditions when projected onto that dimension. To address this question we 367 applied dPCA (Machens et al., 2010; Brendel et al., 2011), a variant of PCA. dPCA 368 leverages information normally discarded by PCA: each row of the data matrix R is 369 assigned labels. Here, those labels indicated the condition and time for which that 370 set of firing rates was recorded. dPCA then finds a matrix  that produces a 371 projection  of the data , with = . Each column of  is a dimension and each 372 column of  is a component of the population response. Like PCA, dPCA attempts to 373 find a projection that captures much of the variance in , so that ≈ . Unlike 374 PCA, dPCA attempts to find  such that the resulting columns of  co-vary strongly 375 with one label or the other. In the present case, dPCA attempts to find  such that 376 some columns of  (some components) vary with time but not condition and other 377 columns vary across conditions but not with time. As will be discussed below, such 378 segregation is not necessarily possible: in general there will not exist a  with the 379 desired properties. Indeed, in the present study, dPCA always found components 380 that varied primarily with time (and not condition) but never found components 381 that varied primarily with condition and not time. We therefore divided the 382 
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components found by dPCA into two groups: condition-invariant (reflecting 383 primarily time) and condition-specific (reflecting both condition and time). We refer 384 to the group of condition-invariant components collectively as the condition-385 invariant signal or ‘CIS’. 386  As a technical note, dPCA (unlike PCA) requires that the number of 387 dimensions be specified in advance. Prior analyses indicate that 6-8 dimensions 388 capture much of the condition-specific structure of the data (Churchland et al., 389 2010). We therefore wished that dPCA should capture a similar amount of 390 condition-specific structure, in addition to any condition-invariant structure that 391 might be present. We empirically picked the number of requested dimensions such 392 that dPCA returned eight condition-specific dimensions (defined as containing 393 <50% condition-invariant variance). In principle this might have necessitated 394 requesting exactly eight dimensions (if all structure were tuned) or many more than 395 eight (if little structure were tuned). In practice it was only necessary to request 396 modestly more than eight total dimensions. For example, for dataset JAD1 we 397 requested 10 total dimensions, which yielded two condition-invariant response 398 components and eight condition-specific response components. The choice of eight 399 condition-specific components is an arbitrary but reasonable cutoff. We always 400 found a strong condition-invariant signal regardless of the exact number of 401 dimensions requested. 402 dPCA identified dimensions ( ) based on the population response from -200 403 to +400 ms relative to target onset and -300 to +600 ms relative to movement onset. 404 The data matrix being analyzed contained trial-averaged firing rates for long-delay 405 
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trials (trials with delay periods > 450 ms). For subsequent analyses of trial-to-trial 406 variability in reaction time, we projected data from individual trials, including zero-407 delay trials, onto the same dimensions. The probabilistic-model version of dPCA was 408 used (from the Python code available online associated with Brendel et al., 2011). 409 We measured the marginal variances of each response component (Machens et al., 410 2010; Brendel et al., 2011) which indicate how much of a component’s variance was 411 condition-specific (activity varying with condition or with both time and condition) 412 versus condition-invariant (activity varying with time alone). 413 Because EMG responses were lower dimensional than neural responses, for 414 the EMG datasets dPCA was performed at an overall dimensionality that returned 3 415 condition-specific dimensions. The resulting 4-5 dimensions (monkey J, N) 416 accounted for 95-97% of the total variance in the EMG data. This reduced number of 417 dimensions did not produce the differences between neural and muscle data: 418 repeating the analysis on neural data using 4-5 dimensions yielded essentially 419 identical results to those obtained with more dimensions. 420  421 
Note regarding interpretation of the segregation produced via dPCA 422 Below we describe a key interpretational point regarding the dPCA method. 423 The cost function optimized by dPCA attempts to find  such that each column of  424 (each response component) varies with exactly one of the provided labels (time and 425 condition in this study) and not with the other(s). Yet as stated above, this 426 segregation is not in general possible. In the present case this has two implications. 427 First, it is not guaranteed that dPCA will be able to find components that vary with 428 
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condition but not with time; perhaps every component that strongly reflects 429 condition also reflects time (this was indeed true of our data). Second, it is similarly 430 not guaranteed that dPCA will be able to find components that vary with time but 431 not condition; it may be that every component that strongly reflects time also 432 reflects condition.  433 This last fact is worth stressing because many individual neurons exhibit 434 what we refer to as ‘condition-correlated’ structure: responses that are different 435 across conditions, yet display an increase (or decrease) in firing rate that has a 436 somewhat similar time course across conditions. Yet this structure at the single-437 neuron level is not sufficient, in and of itself, to indicate condition-invariant 438 structure at the population level. Would dPCA, when applied to a population of such 439 neurons, inevitably find condition-invariant components? In short, it would not. 440 This can be demonstrated empirically (Results) or formally via construction, as 441 follows. Consider a simple case in which each neuron’s response rn is a linear 442 combination of two independent components  (which will also be functions of 443 condition c and time t): , , = ∑ , , ,: . Let both , ,  and , ,  be condition 444 specific, but suppose , ,  contains an overall correlation between conditions. Due 445 to the correlation of , ,  across conditions, the responses r will also have shared 446 response features across conditions. Nevertheless, it is not in general possible to 447 find a linear combination of the , , ’s that is condition-invariant. A linear 448 combination of the , , ’s is equivalent to a linear combination of , ,  and , , . 449 Since these components are independent, finding a condition-invariant linear 450 
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combination is equivalent to solving the following system of ( − 1)  equations, 451 where C is the number of conditions (here, 2), and T is the number of time points: 452 ∑ , ,: = ∑ , ,:   453 for all times t and all pairs of conditions c and c+1 (this is a sufficient constraint to 454 ensure that all pairs of conditions are equal, since equality is transitive).  455 The number of free variables  is equal to the number of components D, 456 which in this example is 2. In general, then, this system is not solvable if 457 ( − 1) > , which will be true for even modest numbers of times and conditions. 458 The presence of correlated structure within , ,  (and/or , , ) would not in 459 general change this fact. In practice, then, it would be rare for condition-correlated 460 responses to coincidentally produce a fully condition-invariant component. As one 461 example, choose , , = sin( ) and , ,  = ℎ sin(3 ), with  and ℎ  being 462 positive scalars that vary with condition. Both , ,  and , ,  would be perfectly 463 condition correlated, yet no linear combination of , ,  and , ,  would be 464 condition-invariant. 465  466 
Control: producing synthetic PSTHs with matched spectral content 467 To illustrate empirically that condition-invariant components are not found 468 in ‘generic’ data, we generated synthetic PSTHs with the same frequency content as 469 the original neurons. Each unit was matched with a corresponding synthetic PSTH. 470 The steps below were performed on the vector containing the trial-averaged firing 471 rate over time for one condition. We first preprocessed each vector by smoothing 472 lightly (10 ms s.d. Gaussian) to reduce the small discontinuity between target-473 
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aligned and movement-aligned data, then multiplying by a Hann window. The 474 Fourier transform was performed, and the magnitude of the result was computed at 475 each frequency (i.e., the square root of power spectral density). These curves were 476 averaged over conditions to give the overall power-by-frequency curve for that unit. 477 To construct a synthetic PSTH, for each condition we chose a random phase for each 478 frequency component, then took the inverse Fourier transform. 479 
 480 
Control: removing the CIS from the neural responses 481 To ask whether condition-invariant components (collectively the condition-482 invariant signal, CIS) might result from the rectification of firing rates at zero, we 483 removed the true condition-invariant components, re-rectified firing rates, then 484 applied dPCA. Specifically, we projected the population response onto the eight 485 condition-specific dimensions identified by dPCA, then transformed the data back to 486 the original n-dimensional space. This produced as many PSTHs as the original 487 neurons. We rescaled and re-centered each “neuron’s” response to restore its 488 original mean and range of firing rates. Finally, we set all negative firing rates to 489 zero. This resulted in a population of surrogate neurons that are responsive and 490 have positive firing rates, yet should have no ‘true’ CIS. Thus, a strong CIS in this 491 control population would indicate that rectified firing rates could create an 492 artifactual CIS. 493  494 
Control: adding a condition-correlated component 495 
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We constructed additional surrogate data that resembled the empirical data 496 but lacked condition-invariant components. For each empirical condition-invariant 497 component, we constructed a new component with the same time course, but with 498 varying amplitude across conditions. That is, we created components that were 499 condition-correlated but not condition-invariant. These components were re-500 centered to have a zero mean during the baseline period (before target/maze onset), 501 and then were added to the response of each neuron. Specifically, to each neuron’s 502 response rn,c,t we added wn,ikcx’i,t, where wn,i is the neuron’s original weight for the ith 503 condition-invariant component, x’i,t is the time course of the ith new condition-504 correlated component, and the coefficients kc were chosen randomly from a unit-505 variance Gaussian distribution. We rectified the resulting firing rates (setting all 506 negative rates to zero). These operations largely preserved the time course of each 507 neuron’s across-condition mean (because the kc’s were zero-mean). Because the 508 new components were condition-correlated, the responses of most neurons were 509 strongly condition-correlated. Yet because the original condition-invariant 510 components are now “contaminated” with condition-specific components of the 511 same time course, the surrogate population should have no separable condition-512 invariant components. 513  514 
Identifying a speed-predicting dimension 515 To identify a speed-predicting dimension, we began with the same neural 516 data matrix R used for PCA and dPCA. We then regressed the trial-averaged speed 517 profile for each condition against R: = + , where  is the vector produced by 518 
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taking the speed profile for each condition and concatenating the conditions, b is the 519 bias (a constant offset), and  specifies a set of weights. The speed profile was 520 advanced by 150 ms before regression to accommodate known lags. 521  522 
Trial-by-trial analysis 523  To assess how well projections onto different dimensions predict trial-by-524 trial movement onset we performed four steps: (1) we chose a potentially 525 informative weighted sum of neurons (“dimension of interest”); (2) we binned and 526 smoothed the spiking data on individual trials; (3) we projected the population 527 neural response from each trial onto the dimension of interest; and (4) for each trial 528 we found the time point at which that projection exceeded a criterion value. That 529 time, relative to the go cue, was the predicted RT. These steps are explained in more 530 detail below. 531  For the first step, we compared the performance of several different 532 techniques for finding the dimension of interest. Three of these techniques were 533 unsupervised: dimensions were identified based on the structure of the data 534 without exploiting prior knowledge of the RT. These three methods – the CIS1 535 method, the PC1 method, and the mean-over-all-neurons method – used dPCA, PCA, 536 and simple averaging, respectively. The CIS1 dimension (producing the largest 537 condition-invariant component) and the PC1 dimension (the largest principal 538 component) were found using the long-delay, trial-averaged data (as above). We 539 also employed a linear decoder of reach speed (see above) and a supervised 540 “classifier” method, described later. 541 
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 For the second step, spikes were counted in 10 ms bins, from 60 ms before to 542 500 ms after the go cue. Each trial’s spike counts were convolved with a 30 ms 543 Gaussian to produce a smooth spike rate. For the third step, we computed a 544 weighted sum of the neurons’ spike rates. The weights depended on the dimension 545 of interest, found during step one. We refer to the result of this third step as z(t,r), 546 the projection of the neural data as a function of time and trial. 547 For the final step, we wished to determine when z(t,r) changed in advance of 548 movement onset. To estimate that time, for each trial we asked when z(t,r) first 549 crossed a criterion value derived from the long-delay trials. To find that criterion 550 value, we took the median of z(t,r) across trials, producing ̃( ). We set the criterion 551 value to be the midpoint of ̃( ): [max ̃( ) + min ̃( ) ]/2. The midpoint is an 552 arbitrary but reasonable choice to ensure robustness. For each trial, we found the 553 time at which the criterion value was crossed. Trials that never exceeded the 554 criterion value, or that exceeded it before the Go cue, were discarded from the 555 analysis. Such trials were uncommon, especially for the better prediction methods 556 (0-9%, depending on dataset and method). 557  The three methods described above – the CIS1 method, the PC1 method, and 558 the mean-over-all-neurons method – predict RT in an unsupervised manner. They 559 were compared with a supervised method that was allowed to use knowledge of 560 each trial’s RT. This “classifier” method was based on logistic regression. Single-trial 561 data were first aligned to movement onset, then projected into the dPCA space 562 (including both condition-specific and condition-invariant dimensions). Data were 563 binned into a “pre-movement” time point (-360 to -150 ms relative to movement 564 
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onset) and a “movement” time point (-150 to +60 ms relative to movement onset). 565 The dividing point of 150 ms before movement onset was chosen to approximate 566 the delay between when neural firing rates begin to change and when the hand 567 begins to move. Logistic regression returned both a projection dimension and a 568 criterion value that best discriminated between the pre-movement and movement 569 data. 570  As with the other projection methods, the classifier produces a projection 571 vector  with as many coefficients as dimensions of the data (in this case, the 572 number of components from dPCA). To characterize the classifier, we asked how 573 much each dPCA component contributed to this projection. Specifically, we took the 574 quantity | | ∙ [( ) ], where | | is the absolute value of the dth element of , 575 
D is the dPCA projection matrix (called W in previous equations), (RD)d indicates the 576 
dth column of the matrix resulting from multiplying RD, and var[] indicates taking 577 the variance. This tells us how strongly each of the response components (returned 578 by dPCA) contributed to the final classification. 579 Finally, we employed a semi-supervised method where RT was predicted as 580 the time when the decoded reach speed crossed a 50% threshold. Importantly, for 581 all the above methods training employed only the long-delay data. Trial-by-trial 582 prediction of RT for zero-delay data was entirely based on generalization. Analyses 583 were based on 385 / 465 trials for dataset JAD1 (long-delay / zero-delay), 249 / 264 584 trials for dataset JAD2, 260 / 427 trials for dataset NAD, and 2982 long-delay trials 585 for dataset NAC. 586  587 
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Finding a rotational plane 588  For some analyses we wished to identify planes (two dimensional 589 projections of the population response) containing rotational structure. We 590 performed dPCA and then applied jPCA (Churchland et al., 2012) to the condition-591 specific components, using an epoch when neural activity is changing rapidly (-200 592 to +150 ms relative to movement onset). As a technical detail, the PCA step and 593 mean subtraction were disabled in the jPCA algorithm; dPCA served as a more 594 principled way of focusing jPCA on the strongly condition-specific dimensions. 595 Because both dPCA and jPCA produce linear projections, the final result is also a 596 linear projection of the data. 597  598   599 



 

 28

Results 600 
Behavior and neural recordings 601 Two monkeys (J and N) performed a variant of the standard delayed-602 reaching task: the “maze” task (Figure 1A-B; Churchland et al., 2010; Churchland et 603 al., 2012; Kaufman et al., 2013). The monkey touched and fixated a central spot on a 604 screen, then was presented with a target and, on most trials, a set of virtual barriers 605 (magenta rectangles). After a randomized delay period a go cue was presented, and 606 the monkey was required to reach to the target, curving around barriers if present. 607 We refer to each target/barrier configuration as a “condition.” Reaction times (RTs) 608 were brisk: medians of 296 ms (monkey J) and 304 ms (monkey N). 609  We analyzed six datasets. Three datasets (JAD1, JAD2, NAD) were collected 610 specifically for this study. For these, recordings were from a single session, made via 611 a pair of 96-electrode arrays, one in dorsal premotor cortex (PMd) and one in motor 612 cortex (M1). To ensure robustness, we also re-analyzed three datasets that have 613 been previously examined. One (NAC) was recorded using a pair of 96-electrode 614 arrays, one (NS) was recorded over many days using single electrodes, and one (JC) 615 combined one day of array recordings and many days of single-electrode recordings. 616 These latter two datasets allowed us to analyze large populations that contained 617 both surface PMd/M1 recordings and sulcal M1 recordings. 618  The firing rate versus time of a representative neuron is illustrated in Figure 619 1C (for ease of visualization, four of 27 conditions are shown). The neuron began 620 responding approximately 50 ms after target onset, and achieved different firing 621 rates depending on which reach the monkey was preparing (Tanji and Evarts, 1976; 622 
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Weinrich et al., 1984; Godschalk et al., 1985; Kurata, 1989; Riehle and Requin, 1989; 623 Snyder et al., 1997). Firing rates plateaued during the delay period, changing little 624 until after the Go cue. Approximately 150 ms before movement onset there was a 625 large transition in the response pattern: activity subsequently evolved in a 626 seemingly complex fashion, producing a series of peaks and valleys. Such features 627 were not due to sampling error but were very reliable (standard errors of the firing 628 rate were ~2 spikes/s, compared to the overall firing-rate range of ~45 spikes/s). 629 The pattern illustrated in Figure 1C was typical: most neurons showed a relatively 630 stable plateau of tuned preparatory activity followed by temporally complex 631 responses. The relevant transition occurred just before movement onset. The 632 response of this neuron across all 27 conditions is plotted in Figure 2A. Figure 2B 633 plots the response of another example neuron with complex multiphasic responses 634 that varied strongly across conditions.  635 The complexity and heterogeneity of responses makes it difficult to ascertain 636 whether there might exist an underlying signal that is shared across reaches of 637 different types. However, we did occasionally observe neurons where, following the 638 go cue, the response was similar across conditions: i.e., an overall increase or 639 decrease in rate (Figure 2C,D). This observation is consistent with the utility of 640 including an omnidirectional component when fitting tuning curves (Georgopoulos 641 et al., 1986; Moran and Schwartz, 1999). More generally, the presence of such 642 neurons is consistent with many prior reports in which some reasonable percentage 643 of neurons were modulated by the task yet not strongly selective for the parameter 644 being tested: e.g., left versus right reaches (Weinrich et al., 1984), three curvatures 645 
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(Hocherman and Wise, 1991), two or three distances (Riehle et al., 1994; Messier 646 and Kalaska, 2000) or two loads (Evarts, 1968). The present results underscore that 647 prior findings were not a trivial result of using a small number of conditions. We 648 employed 27 conditions (108 for dataset NAC) spanning different directions, 649 distances, and reach curvatures, yet still found neurons whose responses were 650 similar across all conditions. Nevertheless, we stress that while individual neurons 651 often showed related structure across conditions – i.e., they were condition-652 correlated – they essentially never showed fully condition-invariant responses. For 653 example, even the neuron in Figure 2C, which has unusually strong condition-654 correlated structure, displayed peak firing rates that differed between conditions by 655 almost a factor of two. 656  657 
Population-level structure 658 Given that single neurons can exhibit condition-correlated responses, some 659 underlying population-level component must be correlated across conditions. To 660 appreciate how this can happen, consider the standard model in which each 661 neuron’s response is a weighted sum of population-level components. The response 662 
r of neuron n at time t for condition c is: 663  , , = ∑ , , ,        (1) 664 where , ,  is the ith response component (one element of the population state , ) 665 and ,  determines the contribution of component i to the response of neuron n. A 666 component is “condition-correlated” if , ,: ,  , ,:  is positive when averaged 667 across all choices of conditions  and .  668 
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The possible presence of a condition-correlated component has been 669 considered in many contexts: e.g., decision variables are often modeled as reflecting 670 evidence for a choice (which differs across conditions) plus a growing urgency to 671 make some choice (which is shared across conditions; Churchland et al., 2008; 672 Hanks et al., 2011; Thura et al., 2012; Thura and Cisek, 2014). In the case of reaching, 673 many models include a non-directional term reflecting hand speed (Georgopoulos et 674 al., 1986; Moran and Schwartz, 1999). Since speed is always positive, and is by 675 definition time-locked to movement onset, a component that reflects speed will be 676 strongly condition-correlated. 677 In general a condition-correlated component can vary strongly across 678 conditions; the temporal profile must be similar but the amplitude can vary. As a 679 special case, though, such a component may be nearly identical for every condition 680 and thus ‘condition-invariant’. That is, there might exist an ith component where 681 
, , ≈ , ,  for all choices of conditions  and  and times t. This more 682 constrained possibility is suggested by a recent model (Sussillo et al., 2015) where 683 the input that triggers movement generation produces population-level components 684 that are close to condition-invariant. 685 The presence of a condition-invariant component versus a merely condition-686 correlated component can be determined only at the population level. To do so we 687 applied Demixed Principal Component Analysis (dPCA; Machens et al., 2010; 688 Brendel et al., 2011), a variant of PCA. Each component identified by dPCA is a 689 pattern of responses across conditions and times (i.e., ,:,: in equation 1) from which 690 the response of each neuron in the population is composed. dPCA exploits 691 
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knowledge discarded by traditional PCA: the response of a neuron is not simply a 692 vector of firing rates. Rather, each element of that vector is associated with a 693 particular condition and time. dPCA attempts to find components that vary strongly 694 with condition (but not time) or vary strongly with time (but not condition). In 695 practice dPCA never found components of the first type; all components that varied 696 with condition also varied with time. We term these components ‘condition-specific’. 697 However, dPCA consistently found components that varied with time but not 698 condition (i.e., that were condition-invariant).  699 Indeed, for every dataset the largest component found by dPCA was close to 700 purely condition-invariant. Figure 3 quantifies the total variance captured by each 701 component (length of each bar) and the proportion of that variance that was 702 condition-invariant (red) versus condition-specific (blue). The largest component 703 (top bar in each panel) exhibited 89-98% condition-invariant variance across 704 datasets. 705  As a working definition, we term a component ‘condition-invariant’ if >50% 706 of the variance is condition-invariant. We term a component ‘condition-specific’ if 707 <50% of the variance is condition-invariant. Empirically components were either 708 strongly condition-invariant (much greater than 50% condition-invariant variance) 709 or strongly condition-specific (much less than 50% condition-invariant variance). 710 Each bar plot in Figure 3 thus groups condition-invariant components at top and 711 condition-specific components at bottom. All datasets contained multiple condition-712 invariant components: respectively two, three, three, four, four, and four for 713 datasets JAD1, JAD2, JC, NAD, NAC, and NS. For a given dataset, we refer to the set of 714 
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condition-invariant components as the condition-invariant signal (CIS). We refer to 715 the largest condition-invariant component as CIS1. 716  717 
Time course of the strongest condition-invariant component 718 CIS1, like all the components, is a linear combination of individual-neuron 719 responses; it is a ‘proto-neural’ response that is strongly reflected in single-neuron 720 PSTHs. The structure of CIS1 can thus be plotted using the format typically used for a 721 single-neuron PSTH. Figure 3 does so for each dataset (colored traces below bar 722 plots). 723 CIS1 displayed a large and rapid change before movement onset that was 724 similar across conditions. This pattern was present for all datasets. The sudden 725 change occurred ~150 ms before movement onset, corresponding to 50-100 ms 726 before the first change in EMG activity (not shown). The condition-invariance of the 727 signal can be visualized by noting that most individual traces (one per condition) 728 overlap. In particular, during the moments before movement onset, CIS1 increases in 729 a similar way and to a similar degree for every condition. Modest differences 730 between conditions appeared primarily around the end of the movement and during 731 the subsequent hold period (for reference, movement duration was on average 400 732 ms). Thus, while CIS1 was not identical across conditions, it was very close: on 733 average 94% of its structure was dependent on time but not condition. 734  735 
The condition-invariant signal is large 736 
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For every dataset, CIS1 captured the most variance of any single component. 737 That is, CIS1 was the component that made the largest contribution to the response 738 structure of individual neurons. More generally, the set of condition-invariant 739 components (the CIS, top grouping of bars within each panel of Figure 3) together 740 captured 49-77% of the total variance captured by dPCA (respectively 49%, 49%, 741 62%, 67%, 77%, 75% for datasets JAD1, JAD2, JC, NAD, NAC, NS). Thus, not only is a 742 condition-invariant signal present, it typically comprises half or more of the data 743 variance.  744 While each condition-specific component captured much less variance than 745 CIS1, there were relatively more condition-specific components (bottom groupings 746 of bars in Figure 3) whose combined variance was 23-51% of the total variance 747 captured by dPCA. These condition-specific components often contained 748 preparatory activity followed by multiphasic responses during the movement. We 749 return later to the structure captured by the condition-specific components.  750 We did not expect that such a large fraction of the structure in the data – half 751 or more – would be condition-invariant. Most prior work (including our own) has 752 concentrated on the tuned, condition-specific aspects of neural responses. This is 753 reasonable: the presence of a large condition-invariant response component is not 754 obvious at the single neuron level. Essentially all neurons had contributions from 755 condition-specific components and were therefore tuned for condition. Such tuning 756 is the typical focus of analysis in most studies. Yet the fact that the CIS is so large 757 argues that its properties should also be characterized.  758 
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While a few neurons (e.g., Figure 2C,D) had an unusually large contribution 759 from the condition-invariant components, we found no evidence for separate 760 populations of condition-invariant and condition-specific neurons. Weights wn,1 761 were continuously distributed, and could be positive (e.g., for the neuron in Figure 762 2C) or negative (e.g., for the neuron in Figure 2D). We also note that the average 763 
,  was similar for neurons recorded in PMd and M1, indicating that the CIS is of 764 similar size in the two areas. 765  766 

Assessing demixing 767 Importantly, dPCA cannot take condition-specific components and render 768 them into a condition-invariant component. This is true even if condition-specific 769 components are strongly condition-correlated (mathematical proof in Methods and 770 empirical controls described below). Thus, the degree to which the population 771 contains truly condition-invariant components can be assessed by the degree to 772 which dPCA “demixes” responses; that is, the degree to which projecting onto 773 orthogonal dimensions yields some response components that are close to purely 774 condition-invariant. Demixing will be successful only if such condition-invariant 775 structure is present in the data. 776 As noted above, demixing was successful for all datasets: most components 777 were either strongly condition-invariant or strongly condition-specific. The 778 condition-invariant components (top grouping of bars in each panel of Figure 3) 779 displayed 75-98% condition-invariant variance (mean 88%). The condition-specific 780 components (bottom grouping of bars) displayed 74-99% condition-specific 781 



 

 36

variance (mean 91%). As discussed above, the largest component – CIS1 – was 782 always very close to purely condition-invariant (mean 94%). To put these findings 783 in context, we analyze below a set of model and surrogate populations.  784  785 
A CIS in a network model 786 In addition to the six physiological datasets, we analyzed two model 787 populations. The models were recurrent neural networks trained (Sussillo and 788 Abbott, 2009; Martens and Sutskever, 2011) to generate the empirical patterns of 789 muscle activity for two monkeys (Sussillo et al., 2015). Model populations exhibited 790 a CIS (Figure 4) that closely resembled that of the neural populations. In particular, 791 there was a sudden change in CIS1 shortly before movement onset that was almost 792 purely condition-invariant, with a small amount of condition-specific structure 793 appearing after that transition. Similar to the neural datasets, CIS1 was the largest 794 component of the data and was overall very close (99% and 96%) to purely 795 condition-invariant. As with the physiological data, demixing was successful: the 796 model population response could be separated into components that were either 797 nearly condition-invariant (top grouping of bars in each panel of Figure 4) or 798 strongly condition-specific (bottom grouping of bars). The model datasets exhibited, 799 respectively, two and four condition-invariant components – similar to the range of 800 two to four seen for the empirical datasets.  801 As will be shown below, a CIS is not a general feature of any large complex 802 dataset. In the case of the model, the presence of a strong CIS is a consequence of the 803 network inputs (which include a condition-invariant trigger signal) and of the 804 
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“strategy,” found via optimization, by which the network solves the task. The 805 network was designed such that condition-specific preparatory inputs produce 806 networks states (one per condition) appropriate to seed subsequent movement-807 period dynamics. Those movement-period dynamics are ‘turned on’ by a strong 808 triggering input that contains no condition-specific information. Because the 809 network was optimized to achieve smooth dynamics, non-linear interactions are 810 modest, and the triggering input produces a nearly condition-invariant signal in the 811 population response. Whether the neural data exhibit a CIS for similar reasons 812 remains unknown, but the temporal structure of the CIS is remarkably similar for 813 the model and for the data. 814  815 
Controls: comparison of dPCA and PCA 816 One potential concern is that an algorithm such as dPCA might be able to 817 ‘successfully’ demix any high-dimensional data and find a condition-invariant 818 component. As discussed above (and shown formally in the Methods) it is not in 819 general mathematically possible to find a condition-invariant component if one is 820 not truly present.  Yet in practice, for a finite number of conditions, random smooth 821 data will likely contain some (probably low variance) signal that may be roughly 822 condition-invariant. Is the empirical CIS larger than expected given this potential 823 concern? Is the CIS found simply because dPCA attempts to find it?  824 One way to address this concern is to compare the performance of dPCA with 825 that of PCA. PCA identifies dimensions that capture the most data variance possible. 826 If dPCA achieved spurious demixing by finding components with the desired 827 
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structure but little variance, then dPCA should capture much less variance than PCA. 828 In fact, the dimensions found via dPCA captured almost as much variance as the 829 dimensions found via PCA. Specifically, the set of dPCA dimensions captured 96-830 99% as much variance as the same number of PCA dimensions. Furthermore, the 831 projections onto the first two PCA dimensions showed structure that was naturally 832 very close to condition-invariant. This was a simple consequence of the fact that the 833 first few dimensions found by dPCA and PCA were very similar: the first dimension 834 found via PCA formed an angle of only 5° on average with the first dimension found 835 by dPCA. This was true for both the neural and model data. Thus, dPCA simply 836 allows one to gain an ideal view of condition-invariant structure that is naturally 837 present in the data. 838  839 
Controls: demixing of real and surrogate data 840 Despite the above control, one might remain concerned that perhaps any 841 generic data will tend to contain a condition-invariant component that would 842 become apparent when applying dPCA (or PCA). A related potential concern is that a 843 CIS might be found simply because firing rates are constrained to be positive. We 844 addressed these potential concerns by applying dPCA to various surrogate datasets.  845 First, for each empirical dataset we replaced each neuron’s response with a 846 random set of responses that was matched with that neuron for frequency content 847 (Methods). Across 1,000 repetitions for each of the six datasets, dPCA never 848 identified a component with greater than 18% condition-invariant variance. In 849 contrast, the original data contained components with up to 98% condition-850 
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invariant variance. This control thus demonstrates that ‘random’ data is very 851 unlikely to yield a strongly condition-invariant component, even when temporal 852 smoothness is matched to that of the empirical data. However, although the 853 randomized responses (not shown) are frequency-matched to the data, they do not 854 form realistic-looking PSTHs because the phases have been randomized (they are 855 essentially just filtered noise). The second and third controls below, in contrast, do 856 result in surrogate responses that look realistic at the level of PSTHs. 857 For the next control we produced surrogate datasets by removing the CIS 858 from each real neuron’s response and then applying a firing-rate threshold at zero 859 (Methods). The goal was to determine whether it was possible to produce an 860 artifactual CIS by constraining firing rates to be positive. None of these surrogate 861 populations exhibited a CIS. For example, for the original dataset JAD1, CIS1 862 contained >90% condition-invariant variance (Figure 5A,D). The corresponding 863 control dataset (Figure 5B,E) had no CIS components; all components had <50% 864 condition-invariant variance. For each of the six surrogate datasets, the first 865 component found by dPCA had <21% condition-invariant structure (mean 6%), in 866 strong contrast to the data where the first component was always strongly 867 condition-invariant. Thus, if a population response does not contain a CIS, a CIS is 868 not created via the constraint that firing rates must be positive. 869 Finally, we wished to perform a control that could address both of the above 870 concerns while preserving the surface-level features of the original data as closely 871 as possible. To do so, we began with the original neural population (Figure 5A) and 872 added condition-correlated components (Methods). These condition-correlated 873 
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components had the same temporal profiles as the original condition-invariant 874 components, but the response had a different magnitude for each condition. The 875 surrogate population possessed single-neuron responses (Figure 5C) that looked 876 remarkably similar to the original responses, and exhibited changes in the average 877 across-condition firing rate that were almost identical to the original responses. Yet 878 the surrogate population lacked any CIS (Figure 5F). There were no components 879 with >50% condition-invariant variance for any of the surrogate populations, even 880 though these are prominent in all the empirical datasets. 881 In summary, the presence of a CIS requires very specific population-level 882 structure and does not arise as a simple consequence of single-neuron response 883 features. Of course, the presence of a CIS is fully consistent with prior work where 884 fits to single-neuron firing rates (e.g., directional tuning curves) typically require a 885 non-directional component. However, a non-directional component would also be 886 required when fitting the surrogate responses in Figure 5B,C, which contain no CIS. 887 Thus, the presence of a CIS is consistent with, but not implied by, prior results at the 888 single-neuron level. 889  890 
Relationship of the CIS to reach speed and muscle activity 891  For the model of Sussillo et al. (2015) the CIS plays an ‘internal role’: it 892 reflects the arrival of a trigger signal that recruits strong dynamics. Might the CIS in 893 the neural population play a similar internal role? Or might it be more readily 894 explained in terms of external factors: for example, some aspect of kinematics or 895 muscle activity that is invariant across conditions? In particular, tuning for reach 896 
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speed has been a natural and reasonable way to model non-directional aspects of 897 single-neuron responses (Moran and Schwartz, 1999). However, it is unlikely that 898 the population-level CIS directly reflects reach speed for three reasons. First, the CIS 899 had a rather different profile from reach speed, which was more sharply phasic 900 (lasting as little as ~200 ms depending on the condition) and returned to zero as the 901 movement ended (Figure 6, red trace and blue trace have very different temporal 902 profiles). Second, for the task used here reach speed is not condition-invariant: it 903 varies considerably (~2X) across the different distances and reach curvatures. 904 Finally, even the small variations that were present in the CIS across conditions did 905 not parallel variations in reach speed. For monkey J, peak speed and the peak 906 magnitude of CIS1 were not significantly correlated (Figure 6A-B; overall r=0.097, 907 p=0.63 for JAD1; r=–0.018, p=0.93 for JAD2). For monkey N, they were anti-908 correlated (r=–0.502, p=0.008 for NAD, r=–0.364, p<0.001 for NAC). Thus, the CIS 909 and reach speed bore little consistent relation. As a side note, the dissimilarity 910 between the CIS and hand speed does not imply that speed information could not be 911 decoded. Using regression, we could identify a dimension that predicted speed fairly 912 well (JAD1: r=0.663; JAD2: r=0.743; NAD: r=0.833; NAC: r=0.720), consistent with 913 prior results that have found strong correlations between neural responses and 914 reach speed (Moran and Schwartz, 1999). The projection onto this dimension, 915 however, captured much less variance (4-16% as much) than CIS1. 916  A related possibility is that the CIS might reflect non-directional aspects of 917 muscle activity. We performed dPCA on EMG recordings made from 9-11 key arm 918 and shoulder muscles. The muscle populations did not exhibit a strong CIS. This can 919 
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be seen by comparing the first component found via dPCA of the neural data (Figure 920 7A-B) with the first component found via dPCA of the muscle data (Figure 7C-D). 921 The former is nearly condition-invariant while the latter is not. For each component 922 found via dPCA we measured the fraction of variance that was condition-invariant 923 (the ‘purity’ of condition-invariance) and the variance accounted for relative to the 924 condition-specific components (the ‘strength’ of that component). Unlike the neural 925 populations (Figure 7E, green) the muscle populations (purple) did not contain 926 condition-invariant components that were both relatively pure and reasonably 927 strong; there are no purple symbols in the upper right corner. Certainly the muscle 928 population response contained some non-directional aspects: there existed 929 components in which there was an overall change that was mostly of the same sign 930 across all conditions, resulting in a proportion of condition-invariant variance as 931 high as 0.5-0.75 (purple symbols at left). This variance is not negligible, as evidenced 932 by the fact that it could be further reduced via the control manipulations that were 933 applied to the neural population in Figure 5 (muscle version not shown). However, 934 the components in question captured relatively modest amounts of variance, and 935 were not nearly as pure as the components found for the neural populations. Thus, 936 the presence of condition-invariant structure in the neural population cannot be 937 secondary to features of the muscle activity: only the neural population contained 938 components that were both close to purely condition-invariant and captured a large 939 percentage of the overall variance. 940 The muscle responses further underscore that the presence or absence of a 941 CIS cannot be inferred from surface-level features. Individual muscle responses 942 
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closely resembled neural responses in many ways, and often showed overall rises in 943 activity across conditions. Thus, fits to muscle activity would benefit from a non-944 directional component just as do fits to neural activity. Yet as a population, the 945 muscles showed only condition-correlated structure, and had little or no CIS. 946  947 
Trial-by-trial prediction of RT 948  In all datasets the sudden change in the CIS occurred ~150 ms after the go 949 cue and ~150 ms before the onset of physical movement (50-100 ms before muscle 950 activity began to change). The change in the CIS might thus be a visuo-spatial 951 response locked to the go cue, consistent with the presence of other visuo-spatial 952 signals in premotor cortex (Crammond and Kalaska, 1994; Shen and Alexander, 953 1997). Alternatively, the change in the CIS could be locked to the transition from 954 preparation to movement, consistent with the model of Sussillo et al. (2015). These 955 two possibilities can be distinguished at the single-trial level. If the CIS reflects the 956 visual go cue, it would have no ability to predict the subsequent variable reaction 957 time (RT) between the go cue and movement onset. If the CIS reflects an internal 958 transition related to movement onset, the CIS should be strongly predictive of RT. 959 We were able to address the trial-by-trial timing of the CIS in three datasets 960 (JAD1, JAD2, and NAD) that were collected specifically for this purpose. These 961 datasets involved simultaneous recordings (116-213 units) from two chronically 962 implanted 96-electrode arrays, allowing single-trial estimates of the CIS. Critically, 963 for these datasets we employed a task structure that allowed examination of trial-964 by-trial RT variability independent of delay-period duration. Over the course of 965 
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training and most experiments, monkeys experienced a continuous distribution of 966 delay-period durations from 0-1000 ms. It is well known that delay-period duration 967 has an impact on RT (Rosenbaum, 1980; Riehle and Requin, 1989; Churchland et al., 968 2006b). To study RT variability independent of such effects, for these three datasets 969 we interleaved additional trials with a discrete set of delay durations: 0, 100, 200, 970 and 500 ms (Methods). This allowed us to examine the relationship between neural 971 and RT variability for sets of trials with a matched delay. Below we present data for 972 trials with zero delay and trials with a ‘long’ (500 ms) delay. Results were very 973 similar when we analyzed the sets of trials with 100 ms and 200 ms delays. For 974 comparison, we repeated these analyses of RT for dataset NAC (which did not 975 contain discrete delays) using all trials with delays longer than 150 ms. All results 976 were very similar across all four datasets. 977  CIS1 was readily resolved on individual trials (Figure 8 shows data for JAD1 978 with analyses repeated in Figure 9 for NAD). The neural weights defining CIS1 were 979 found using data from the long-delay trials. Example single-trial projections of the 980 long-delay data are shown in Figures 8B, 9B. These same weights successfully 981 generalized and revealed an essentially identical CIS1 for the zero-delay trials 982 (Figures 8A, 9A). The latency of the rise time of CIS1, relative to the go cue, varied 983 from trial to trial. To estimate this latency we measured when CIS1 crossed a 984 criterion value following the go cue (gray line in Figures 8A,B, 9A,B). We selected a 985 50% criterion that is simply a practical and robust criterion for estimating rise time 986 (and should not be interpreted as suggesting a physiological threshold). The 987 estimated rise time strongly predicted the subsequent RT on individual trials 988 
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(Figures 8C, 9C) for both long-delay (blue) and zero-delay (red) trials. This was true 989 across all analyzed datasets: the average correlation was r = 0.805 for long-delay 990 trials, and r = 0.827 for zero-delay trials. 991  The CIS strongly predicts RT on a single-trial basis, but does it do so more 992 accurately than other reasonable methods? The projection of the data onto the first 993 principal component of the data (PC1) predicted RT almost as well as did CIS1. This 994 was especially true for monkey J (Figure 8D) and somewhat less so for monkey N 995 (Figure 9D) due to a tendency for the projection onto PC1 to occasionally exceed the 996 criterion early. Given the ability of CIS1 to predict RT, the similar success of the 997 projection onto PC1 is unsurprising: as discussed above the dimensions containing 998 PC1 and CIS1 were closely aligned. Nonetheless, CIS1 always predicted RT at least 999 slightly better than the projection onto PC1, despite PC1 capturing (by construction) 1000 slightly more variance. The average firing rate across all neurons (Figures 8E, 9E) 1001 predicted RT less well than did CIS1 or the projection onto PC1. Finally, because RT 1002 was quantified based on measured hand speed, we considered the projection that 1003 best decoded hand speed (found via regression, see above). Decoded hand speed 1004 performed acceptably, but noticeably less well than CIS1 (Figures 8F, 9F; across all 1005 analyzed datasets, mean r = 0.666 for long-delay, r = 0.674 for zero-delay). Thus, 1006 CIS1 predicted RT better than did other reasonable unsupervised and semi-1007 supervised methods. 1008  Might there exist another signal in the data that could considerably 1009 outperform CIS1? To address this, we trained a classifier based on logistic regression 1010 (Methods) to distinguish neural data recorded before versus after the sudden 1011 
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transition in neural activity 150 ms before movement onset. The classifier – which 1012 has the advantage of being optimized using knowledge of RT – predicted RT for 1013 zero-delay trials slightly better than CIS1 for one dataset (Figure 8G) and slightly 1014 worse for the other (Figure 9G; note that when assessing generalization a 1015 supervised method is not guaranteed to outperform an unsupervised method). We 1016 then asked which dimensions the classifier relied upon. The coefficients of the 1017 classifier (Figures 8H, 9H) revealed that the condition-invariant dimensions (red) 1018 were used more strongly than the condition-specific dimensions (black); 74% of the 1019 classifier was based on the CIS (79% for dataset NAD). Thus, the CIS is a particularly 1020 good predictor of RT, and it is difficult to improve on the performance it provides. 1021 Results were similar for the other two datasets (for dataset JAD2: 69% of classifier 1022 based on CIS; dataset NAC: 82% of classifier based on CIS). Thus, the timing of the 1023 CIS reflects the pending onset of movement, rather than the arrival of a visual signal. 1024 Had the latter been true, the CIS would have had no ability to predict RT when data 1025 are time-locked to the go cue as they were here. 1026   1027 
Neural and model population trajectories 1028 We recently reported that the population response exhibits a strong ~2 Hz 1029 oscillatory component during movement, manifested as a rotation of the neural 1030 state (Churchland et al., 2012; Churchland and Cunningham, 2014). This oscillatory 1031 component is condition-specific: rotation amplitude and phase differ across reach 1032 directions, curvatures, speeds and distances. As expected given these prior results, 1033 we found that the eight-dimensional condition-specific space identified via dPCA 1034 
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contained components with strong rotational structure. This conveniently allows 1035 the population structure to be plotted as a neural trajectory in a state space, with 1036 one dimension capturing CIS1 and two dimensions capturing the plane with the 1037 strongest rotations. The resulting three-dimensional projections captured 47% and 1038 45% (for datasets JAD1 and NAD respectively) of the total variance captured by 1039 dPCA. The three dimensional structure is best viewed in video format (Movies 1-4) 1040 but can also be appreciated via inspection of a set of two-dimensional projections 1041 (Figure 10A,C).  1042 Each trace in Figure 10 plots the neural trajectory for one condition. Traces 1043 are colored gray during baseline, blue during the delay period, then shaded from red 1044 to green across conditions (to aid visualization) during a ‘peri-movement period’: –1045 200 to +150 ms relative to movement onset. The overall structure carved out by the 1046 trajectories is roughly conical; neural activity is at the narrow end of the cone 1047 during the delay period, translates along the long axis of the cone just before 1048 movement onset, then exhibits rotations at the wide end of the cone during 1049 movement. Rotations begin with (or just at the end of) the translation and continue 1050 after the translation is over, tracing out a rough disk. The top row plots projections 1051 in which the cone is seen end-on. Middle rows plot projections in which the cone is 1052 seen from the side (the rotational disk being viewed from the edge) and the bottom 1053 row plots a projection that illustrates (as best as possible in two dimensions) the full 1054 three dimensional structure. 1055 Consistent with the large literature demonstrating the existence of 1056 preparatory activity (Tanji and Evarts, 1976; Weinrich and Wise, 1982; Hocherman 1057 
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and Wise, 1991; Messier and Kalaska, 2000; Churchland et al., 2006a) condition 1058 specificity first develops during the delay period. For example, in the third row, blue 1059 traces spread out over a larger range of states than do gray traces. The subsequent 1060 rotations are also condition-specific. The CIS produces the long axis of the cone: a 1061 large translation of the neural state that is similar for every condition. This 1062 translation is almost perfectly orthogonal to the rotations. Such orthogonality is not 1063 a consequence of the analysis method: the axes are orthogonal by construction, but 1064 that in no way constrains the condition-invariant and condition-specific structure to 1065 be orthogonal. Indeed, demixing (as in Figure 3) is successful precisely because the 1066 condition-invariant and condition-specific response structure is orthogonal, as 1067 revealed directly in Figure 10. The other four datasets showed the same structure. 1068 A striking feature of the response structure is that condition-specific 1069 preparatory activity occurs in one region of state space, while condition-specific 1070 rotational structure during movement occurs in a different region of state space. 1071 Given the above results showing that the CIS predicts reaction time, a natural 1072 question is whether the transition from one region to another relates to the 1073 behavioral transition from preparing to move (while holding a steady posture) to 1074 actually moving. This is indeed how the network model of Sussillo et al. (2015) 1075 functions. Through optimization, that model adopted a strategy where an incoming 1076 ‘trigger signal’ produced a large translation, bringing the population state near a 1077 fixed point where local dynamics were rotational and produced the multiphasic 1078 patterns of muscle activity. That study noted the general similarity between neural 1079 and model data, as revealed via canonical correlation analysis, and the presence of a 1080 
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change in the overall mean firing rate. That overall change is a natural product of the 1081 CIS, which as documented above is present in both neural (Figure 3) and model 1082 (Figure 4) populations. 1083 To further compare, we projected the model population response (Figure 1084 10B,D) as we had the neural population response. Model and neural populations 1085 exhibited remarkably similar structure when viewed from all angles. Preparatory 1086 activity developed in one region of space, and the CIS then caused an overall 1087 translation to another region of space. The rotations of the neural state (at a little 1088 less than 2 Hz) began during that translation and continued to unfold after the 1089 translation was complete.  1090  1091 
Relative timing of the CIS and rotations 1092  The above results suggest that the CIS may relate to the transition from 1093 relatively stable preparatory dynamics to strongly rotational movement-period 1094 dynamics. This hypothesis makes a specific prediction: the CIS should begin to 1095 change just as, or perhaps shortly before, the onset of rotational dynamics. The 1096 hypothesis would be falsified if the CIS began changing after rotations had already 1097 begun, or if the CIS began changing long before rotations began. To assess relative 1098 timing, we computed the ‘speed’ of the neural trajectory: the rate of change of the 1099 neural state. This was done separately for the CIS dimensions and the two 1100 dimensions with the strongest rotations (Figure 11). In all cases, for both the model 1101 and data, the peak speed in the CIS dimensions (red) slightly leads the peak speed in 1102 
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the rotational dimensions (blue). Thus, both the neural and model data showed the 1103 predicted effect.  1104 
  1105 
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Discussion 1106 We found that the largest component of the population response in M1/PMd 1107 is consistently condition-invariant: it changes in an almost identical fashion 1108 regardless of reach direction, curvature and distance. More generally, a small set of 1109 condition-invariant components (the condition-invariant signal, CIS) contained half 1110 or more of the population-level variance. Thus, although essentially all individual 1111 motor cortex neurons are ‘tuned,’ the population response is dominated by the CIS. 1112 This result could not be inferred from, but is consistent with, three prior findings. 1113 First, single neurons often exhibit an overall change in firing rate during movement 1114 (e.g., with most conditions showing an increase in rate, or most conditions showing 1115 a decrease in rate; Fortier et al., 1993; Crammond and Kalaska, 2000). Second, a 1116 strong non-directional ensemble response is present in motor cortex (Moran and 1117 Schwartz, 1999; Churchland and Shenoy, 2007) such that fits are greatly aided by a 1118 non-directional term (Georgopoulos et al., 1986; Moran and Schwartz, 1999). Third, 1119 population summaries often show a rise in activity for both the ‘preferred’ and ‘anti-1120 preferred’ direction around the time of the movement (e.g., Bastian et al., 2003). Yet 1121 importantly, the presence of the CIS could not be directly inferred from the above 1122 findings; they are all equally consistent with structure that is condition-correlated 1123 but far from condition-invariant. For example, the surrogate data in Figure 5 show 1124 all three of the above features yet lack any condition-invariant component. In 1125 summary, the current data and analyses reveal something that could not be inferred 1126 previously: the data contain condition-invariant components that constitute a very 1127 large percentage of the overall structure of the neural responses. 1128 
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 1129 
Temporal properties of the CIS 1130 Although one might initially be tempted to view untuned response aspects as 1131 ‘non-specific,’ the CIS exhibits specific temporal structure. For all six neural datasets 1132 and both model datasets, there is a sudden change in the CIS ~150 ms before 1133 movement begins. The sudden change can be visualized on individual trials and is 1134 strongly predictive of trial-by-trial reaction time (RT). This strong relationship 1135 reflects the fact that the CIS is tied to movement onset (rather than the appearance 1136 of the go cue) and is large enough to be readily measured on single trials. The CIS 1137 also has a specific population-level structure that was consistent across datasets: 1138 the CIS is manifested as a large translation of the neural state from one region of 1139 neural state space (occupied when the monkey is preparing the movement) to 1140 another region (occupied just before and during overt movement). 1141 While neural responses are often interpreted in terms of their tuning for 1142 external factors, the CIS did not relate to any external factor we examined. The 1143 temporal profile of the CIS did not resemble that of hand speed, nor were condition-1144 to-condition variations in hand speed paralleled by the (very small) condition-to-1145 condition variations in the CIS. This is consistent with the noisiness associated with 1146 decoding pure hand speed in neural prosthetics (Golub et al., 2014), and suggests 1147 that the CIS could be useful for applications seeking to decode a rest vs. move signal 1148 (Velliste et al., 2014). The CIS also did not relate to any measureable aspect of 1149 muscle activity. Although muscles often exhibited overall changes in activity that 1150 were correlated across conditions, the muscle population exhibited little to no CIS. 1151 
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This again underscores that condition-correlated structure typically does not imply 1152 a CIS. 1153 Finally, the CIS did not simply reflect the visual arrival of the go cue. As 1154 indicated by the ability to predict RT, the CIS was instead related to the time of 1155 movement onset. Furthermore, the sudden change in the CIS occurred well after 1156 (~150 ms) the visual go cue. This contrasts with the very rapid (~60 ms latency) 1157 response of neurons in M1 and PMd to the onset of the target (Ames et al., 2014; 1158 also see Figure 2A,B,D). We also note that the visual go cue was far from condition-1159 invariant: it involved salient changes in the appearance of the target(s), which had 1160 different visual locations across conditions. Thus, a natural interpretation is that the 1161 CIS relates to the go cue only indirectly, and reflects an internal transition from 1162 preparation to movement that follows the go cue with a long and variable latency. 1163 Still, we cannot rule out that the CIS is a long- and variable-latency visual response 1164 to the go cue, and that the reaction time inherits this variability. Addressing this 1165 possibility will require future experiments in which there is no sensory go cue. 1166 Future experiments will also be required to address whether the timing of 1167 the CIS relates in any way to the last moment when movement can be suppressed. A 1168 recent hypothesis is that reaction times are artificially long not because motor 1169 preparation is slow, but because ‘triggering’ is conservative (Haith et al., 2016) 1170 leaving time for the movement to be altered or suppressed (Riehle et al., 2006; 1171 Scangos and Stuphorn, 2010; Mirabella et al., 2011). The relatively long ~150 ms 1172 time between the go cue and the sudden change in the CIS, relative to the ~60 ms 1173 latency of the first ‘preparatory’ response, is consistent with this hypothesis. 1174 
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 1175 
An internal role for the CIS? 1176 The properties of the CIS suggest that it likely relates not to a representation 1177 of external factors, but to some internal process – perhaps the transition from 1178 preparatory neural dynamics to movement-related neural dynamics. It is becoming 1179 increasingly appreciated that many motor cortex signals may not relate cleanly to 1180 external parameters, and are more naturally explained in terms of their internal 1181 roles in computation (Reimer and Hatsopoulos, 2009; Chase and Schwartz, 2011; 1182 Shenoy et al., 2013; Churchland and Cunningham, 2014). The hypothesis that the CIS 1183 might relate to the transition from preparation to movement is further suggested by 1184 the finding that the network model of Sussillo et al. (2015) exhibits a very similar 1185 CIS – and similar overall population structure – to the neural data (Figures 4, 10). In 1186 the case of the model, the CIS is a consequence of the externally delivered trigger 1187 signal, and is in turn the cause of the change in neural dynamics that generates 1188 movement. The original analyses in Sussillo et al. did not focus on or attempt to 1189 isolate a CIS. Yet a condition-invariant translation is clearly present in one key 1190 analysis (Figure 6 of that study) and can be seen to bring the set of network states 1191 close to a fixed point with rotational dynamics. Whether this interpretation is also 1192 correct for the data is of course still uncertain, but the population response 1193 structure is remarkably similar for the model and data. This interpretation is also 1194 supported by both the overall timing of the CIS (it occurs just as, or even slightly 1195 before, the onset of rotational dynamics; Figure 11) and the remarkably strong 1196 
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correlation between the change in the CIS and the moment when movement begins 1197 (Figures 8, 9). 1198 Other, not-necessarily exclusive explanations are also likely. For example, the 1199 CIS could activate, suppress, or alter how the local circuit processes feedback (Cluff 1200 et al., 2015). Similarly, the CIS could relate to an overall modulation of downstream 1201 reflexes or to a disengagement of postural control (Kurtzer et al., 2005; Cluff and 1202 Scott, 2016). After all, the initiation of activity that drives movement must 1203 presumably be accompanied by cessation of the activity that held the hand in place 1204 during the delay period. This is true even of the model of Sussillo et al., which is 1205 involved in a rudimentary form of postural control during the delay period: 1206 producing a constant pattern of muscle activity. For that model, the CIS produces the 1207 transition away from the stable dynamics that maintain constant outputs, and 1208 towards oscillatory dynamics that produce the movement-driving patterns of 1209 muscle activity.  1210  1211 
What inputs might produce a CIS? 1212 If motor cortex undergoes a large condition-invariant change prior to 1213 movement, what drives that change? What other area(s) might supply the relevant 1214 input? A number of candidate regions exist, including the basal ganglia (Romo et al., 1215 1992; Hauber, 1998), superior colliculus (Werner, 1993; Philipp and Hoffmann, 1216 2014), parietal cortex (Scherberger and Andersen, 2007; Pesaran et al., 2008), 1217 supplementary motor area (Orgogozo and Larsen, 1979; Eccles, 1982; Romo and 1218 Schultz, 1992), the dentate nucleus of the cerebellum (Meyer-Lohmann et al., 1977), 1219 
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and, in rodents, secondary motor cortex (Murakami et al., 2014). Moreover, the 1220 origin of the CIS may depend on the task: movements elicited by a strong sensory 1221 cue may be generated differently from self-initiated movement (Kurata and Wise, 1222 1988) or movements that must be made very rapidly (Perfiliev et al., 2010). Along 1223 similar lines, reaction times can be remarkably short when the go cue is provided by 1224 a mechanical perturbation of the limb (Evarts and Tanji, 1976; Pruszynski et al., 1225 2008). These short reaction times may be related to the finding that some neurons 1226 show a rapid perturbation-driven response that is invariant across perturbation 1227 directions (see Figure 3C of Herter et al., 2009). It is thus vital that future studies 1228 address whether a similar CIS is present in motor cortex across the many possible 1229 sensory cues and internal events that can be responsible for causing movement 1230 initiation. 1231  1232 
Summary 1233 In summary, our results build upon the long-standing observation that 1234 responses are often correlated across conditions at the single-neuron level. Our 1235 results reveal that this general surface-level structure reflects a very particular kind 1236 of underlying structure: a large condition-invariant response component with 1237 timing closely tied to movement onset. This adds to a small but growing list of 1238 ‘untuned’ response aspects that might initially appear incidental, but may in fact 1239 play important computational roles.  1240 
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Figure legends 1435  1436 
Figure 1. Task and basic neural responses. A-B. Illustration of the maze task. 1437 Monkeys executed reaches that avoided any intervening barriers. The task was 1438 performed with a cursor presented just above the monkey’s hand. White trace 1439 shows the path of the cursor on one trial. Target, target onset; Go, Go cue; Move, 1440 movement onset. C. PSTH for an example neuron for four (of 27) conditions. Each 1441 trace shows the trial-averaged firing rate for one reach condition (one unique maze) 1442 over time. Averaging was performed twice: locked to target onset (left traces) and 1443 movement onset (right traces). Only trials with a 500 ms delay were included. Inset: 1444 reach trajectories, colored the same as their corresponding neural traces. This 1445 neuron illustrates the transition between stable preparatory activity and rapidly 1446 changing movement-related activity. Scale bars indicate 200 ms and 10 spikes/s in 1447 panels B and C. 1448  1449 
Figure 2. Responses of four example neurons. Format is as in Figure 1C, but 1450 responses are shown for all 27 conditions. A. Unit with complex responses. This 1451 neuron showed both an overall increase in firing rate across conditions and a strong 1452 oscillatory component that was condition-specific (unit JAD1-98, same as in Figure 1453 1C). Scale bars same as Figure 1C. Inset in upper left shows reach trajectories, 1454 colored the same as their corresponding neural traces. B. Another unit with complex 1455 condition-specific responses, recorded from the other monkey (unit NAD-165). C. 1456 Unit with responses that were strongly condition-correlated (unit JAD1-70). D. Unit 1457 
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where the initial response was condition-correlated: a decline across all conditions. 1458 Later activity is more condition-specific (unit JAD1-114). 1459  1460 
Figure 3. Performance of demixing on the empirical data. A. Bars show the relative 1461 variance captured by each dPCA component for dataset JAD1. Each bar’s horizontal 1462 extent indicates the total variance captured by that component. The red portion 1463 indicates condition-invariant variance, while the blue portion indicates condition-1464 specific variance. Components are grouped according to whether they were overall 1465 condition-invariant (top group, >50% condition-invariant variance) or condition-1466 specific (bottom group, >50% condition-specific variance). Traces show the 1467 projection onto the first dimension found by dPCA (CIS1) versus time. Each trace 1468 corresponds to one condition. Target, target onset; Move, movement onset. Scale bar 1469 indicates 200 ms. B-F. Same as A, for the remaining datasets. 1470  1471 
Figure 4. Same as Figure 3, but for the recurrent neural network models. 1472  1473 
Figure 5. Demixing performance for one empirical dataset and two surrogate 1474 control datasets. A. PSTHs of three example units from dataset JAD1. Scale bars 1475 indicate 200 ms and 10 spikes/s. B. PSTHs for a surrogate dataset where we 1476 projected onto the condition-specific dimensions, then rectified so that all firing 1477 rates remained positive (Methods). This surrogate dataset explores the possibility 1478 that a CIS might appear merely due to firing rates being constrained to be positive. 1479 The three PSTHs correspond to the same units shown in A, after modification. C. 1480 
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PSTHs for a surrogate dataset where we added condition-correlated components. 1481 The condition-correlated components had the same temporal profile as the 1482 projections onto the condition-invariant dimensions found by dPCA but had a 1483 different amplitude for each condition (Methods). This surrogate dataset explores 1484 whether condition-correlated structure at the single-neuron level is sufficient to 1485 yield condition-invariant components at the population level. The three PSTHs 1486 correspond to the same units shown in A, after modification. D-F. Quantification of 1487 the CIS as in Figure 3. Panels correspond to examples above. Panel D is reproduced 1488 from Figure 3A for comparison. 1489  1490 
Figure 6. Comparison of the CIS and hand speed. Hand speed (blue) and the first 1491 component of the CIS (red) are shown for four reach conditions. For hand speed, 1492 light traces show all trials, heavy trace shows mean over trials. CIS1 is the mean over 1493 trials. Insets show the maze for that condition and a prototypical reach path. A. A 1494 straight reach with a fast speed profile. Maze ID25. B. A straight reach with a slow 1495 speed profile. Maze ID7. C. A curved reach with a long speed profile. Maze ID5. D. A 1496 curved reach with an unusual speed profile. Maze ID14. The CIS was similar across 1497 all four examples, despite differences in the speed profile. Dataset NAD. 1498  1499 
Figure 7. Comparison of dPCA applied to neural and muscle populations. A-B. 1500 Demixing performance (bars) and the projection onto the first dimension found by 1501 dPCA (CIS1) for neural datasets JAD1 and NAD. Each trace corresponds to one 1502 condition. These panels are reproduced from Figure 3A-B for comparison with the 1503 
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corresponding analysis of EMG. Dots indicate target onset and movement onset. The 1504 scale bar indicates 200 ms. C-D. Similar analysis as in A and B, but for the muscle 1505 populations recorded for monkeys J and N. Muscle activity was recorded for the 1506 same sets of conditions as for the neural data in A and B. E. To compare the 1507 prevalence of condition-invariant structure in the neural and muscle populations, 1508 we focused on nominally ‘condition-invariant’ components with >50% condition-1509 invariant variance. There were many such components for the neural populations 1510 (green) and 1-2 such components for each of the muscle populations (purple). For 1511 each such component two measurements were taken: the fraction of the 1512 component’s variance that was condition-invariant (vertical axis) and the total 1513 variance captured. The latter was expressed in normalized terms: the variance 1514 captured by the kth nominally “condition-invariant” component divided by the total 1515 variance captured by the kth “condition-specific” component (horizontal axis). Only 1516 the neural datasets contained components that were both strongly condition-1517 invariant (high on the vertical axis) and that captured relatively large amounts of 1518 variance (to the right on the horizontal axis). Heaviest symbols correspond to the 1519 first dimension found by dPCA for each dataset; higher-numbered dimensions are 1520 plotted as progressively lighter symbols. Dashed gray line highlights variance ratio 1521 of unity. Circles, monkey J datasets; squares, monkey N datasets. 1522 
 1523 
Figure 8. Predicting reaction time (RT) using projections of the data for dataset 1524 JAD1. A. Each trace plots neural activity over time on a single zero-delay trial. Fifty 1525 trials selected randomly at intervals throughout the day are shown. Projections are 1526 



 

 66

CIS1. Black trace plots the median across all trials. B. Same as in A but for trials with 1527 a 500 ms delay period (“long delay”). The criterion value (gray line) was chosen 1528 using long-delay trials. The same value was used for zero-delay trials (A). C-G. 1529 Correlation of behavioral RT with the time when the neural criterion value was 1530 crossed. For each panel, data are shown for both long-delay trials (blue) and zero-1531 delay trials (red). Lines show linear regressions; dashed lines show 95% confidence 1532 bounds of the fit. Each panel in C-G gives the correlation for a different linear 1533 projection of the population response: CIS1 (C), the projection onto the first PC (D), 1534 the mean over all neurons (E), the projection onto the dimension that best 1535 reconstructed speed according to a linear regression (F), and the projection onto the 1536 axis found by a logistic regression classifier (G). Trials where the neural data did not 1537 cross the criterion value were excluded. H. Coefficient influence for the classifier. 1538 Coefficients for condition-invariant dimensions shown in red, condition-specific 1539 dimensions in black. 1540  1541 
Figure 9. Predicting reaction time using projections of the data for dataset NAD. 1542 Same format as Figure 8. Regarding panel H, note that for this dataset there were 1543 four CIS components. 1544  1545 
Figure 10. Various projections that capture CIS1 and rotations of the neural state 1546 during movement. Data were first projected onto three dimensions: the dimension 1547 that yielded CIS1 and two condition-specific dimensions that captured strong 1548 rotational structure (Methods). Each panel plots a different view of the data 1549 



 

 67

projected onto those three dimensions. A. Four different views of the 3D projection 1550 for dataset JAD1. “Baseline” activity (before target onset) plotted in gray, 1551 preparatory activity plotted in blue, and activity after the Go cue plotted in green 1552 and red (colors chosen arbitrarily for each condition). B. Same for the neural 1553 network model trained to produce EMG recorded from monkey J. C. Same for 1554 dataset NAD. D. Same for the neural network model trained to produce EMG 1555 recorded from monkey N. 1556  1557 
Figure 11. Comparison of the temporal profile of the trajectory of the CIS and the 1558 temporal profile of the condition-specific rotational patterns. The vertical axis plots 1559 ‘neural speed’: the rate of change of the neural state in the condition-invariant 1560 dimensions (red) and in the first jPCA plane (blue), which captures the strongest 1561 rotations. The rate of change was computed separately for each condition, then 1562 averaged across conditions. For each dataset that average was normalized by its 1563 maximum. For statistical power, results for the neural data were averaged across 1564 the three datasets for each monkey. Move, movement onset. Note that because the 1565 data have been smoothed and differentiated, the first moment when the state begins 1566 to change is shifted leftwards: the CIS appears to begin changing >200 ms before 1567 movement onset, when ~150 is a more accurate estimate (see Figure 3). Since both 1568 the condition-invariant dimensions and the jPC dimensions are processed in the 1569 same way, however, their relative timing can be compared. 1570 
  1571 
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Movie legends 1572 
 1573 
Movie 1. Three-dimensional view of Figure 10A (dataset JAD1), rotating to display 1574 structure. 1575  1576 
Movie 2. Three-dimensional view of Figure 10C (dataset NAD), rotating to display 1577 structure. 1578  1579 
Movie 3. Three-dimensional view of Figure 10A bottom panel (dataset JAD1), with 1580 events unfolding over time. Video starts 300 ms before target onset, and ends 400 1581 ms after movement onset. 1582  1583 
Movie 4. Three-dimensional view of Figure 10C bottom panel (dataset NAD), with 1584 events unfolding over time. Video starts 300 ms before target onset, and ends 600 1585 ms after movement onset. 1586  1587 
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