eNeuro

Research Article: New Research | Sensory and Motor Systems

The largest response component in motor cortex reflects movement timing but not movement type

A neural signal reflecting movement timing

Matthew T. Kaufman^{1,2,5}, Jeffrey S. Seely⁶, David Sussillo^{1,2}, Stephen I. Ryu^{2,8}, Krishna V. Shenoy^{1,2,3,4,9} and Mark M. Churchland^{6,7}

¹Neurosciences Program, Stanford University, Stanford, CA 94305
 ²Department of Electrical Engineering, Stanford University, Stanford, CA 94305
 ³Department of Bioengineering, Stanford University, Stanford, CA 94305
 ⁴Department of Neurobiology, Stanford University, Stanford, CA 94305
 ⁵Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
 ⁶Department of Neuroscience, David Mahoney Center for Brain and Behavior Research, Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY 10032
 ⁷Grossman Center for the Statistics of Mind, David Mahoney Center for Brain and Behavior Research, Kavli Institute for Brain Science, Columbia University Medical Center, New York, NY 10032
 ⁸Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301
 ⁹Howard Hughes Medical Institute at Stanford University

Received: 18 April 2016

Revised: 31 July 2016

Accepted: 1 August 2016

Published: 4 August 2016

Author contributions: M.T.K., K.V.S., and M.M.C. designed research; M.T.K. and M.M.C. performed research; M.T.K. analyzed data; M.T.K. and M.M.C. wrote the paper; J.S.S., D.S., and S.R. contributed unpublished reagents/analytic tools.

Funding: Grossman Charitable Trust; National Science Foundation; Swartz Foundation; Burroughs Wellcome Fund; NIH Director's Office: 1DP10D006409. DARPA REPAIR: N66001-10-C-2010. NIH Director's Office; Searle Scholars Foundation; Sloan Research Foundation; McKnight Foundation; Simons Foundation; Esther A. & Joseph Klingenstein Fund;

Conflict of Interest: The authors report no conflict of interest.

Grossman Charitable Trust, National Science Foundation, Swartz Foundation, Burroughs Wellcome Fund, NIH Director's Office, DARPA REPAIR, Searle Scholars Foundation, Sloan Research Foundation, McKnight Foundation, Esther A. & Joseph Klingenstein Fund, and the Simons Foundation.

Correspondence should be addressed to Mark Churchland, Kolb Research Annex, 40 Haven Avenue, New York, NY 10032-2652; mc3502@columbia.edu

Cite as: eNeuro 2016; 10.1523/ENEURO.0085-16.2016

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Title: The largest response component in motor cortex reflects movement timing 1 2 but not movement type 3 4 Abbreviated title: A neural signal reflecting movement timing 5 6 Authors: Matthew T. Kaufman^{1,2,5}, Jeffrey S. Seely⁶, David Sussillo^{1,2}, Stephen I. Ryu^{2,8}, Krishna V. Shenoy^{1,2,3,4,9}, Mark M. Churchland^{6,7} 7 8 9 Affiliations: 1 Neurosciences Program, 2 Department of Electrical Engineering, 3 10 Department of Bioengineering, ⁴ Department of Neurobiology, Stanford University, 11 Stanford, CA 94305 12 13 ⁵ Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 14 15 ⁶ Department of Neuroscience, ⁷ Grossman Center for the Statistics of Mind, David 16 Mahoney Center for Brain and Behavior Research, Kavli Institute for Brain Science, 17 Columbia University Medical Center, New York, NY 10032 18 19 ⁸ Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301 20 21 ⁹ Howard Hughes Medical Institute at Stanford University 22 23 Author contributions: MTK, MMC and KVS designed the research; MTK and MMC 24 performed the research; MTK analyzed the data; JSS contributed analytic tools; DS 25 performed the modeling; SIR implanted the monkeys' arrays; MTK and MMC wrote 26 the paper. 27 28 Correspondence should be addressed to: Prof. Mark Churchland, Kolb Research 29 Annex, 40 Haven Avenue, New York, NY 10032-2652; mc3502@columbia.edu 30 31 Number of Figures: 11 32 Number of Tables: 0 33 Number of Multimedia: 4 34 Number of words for Abstract: 216 35 Number of words for Significance Statement: 120 36 Number of words for Introduction: 915 37 Number of words for Discussion: 1587 38 39 Acknowledgments 40 This work was supported by the Grossman Charitable Trust, National Science 41 Foundation graduate research fellowships (M.T.K., J.S.S.), a Swartz Foundation 42 fellowship (M.T.K.), Burroughs Wellcome Fund Career Awards in the Biomedical 43 Sciences (M.M.C., K.V.S), NIH Director's Pioneer Award 1DP10D006409 (K.V.S.),

- 44 DARPA REPAIR N66001-10-C-2010 (K.V.S.), NIH Director's New Innovator Award
- 45 (M.M.C.), Searle Scholars Award (M.M.C.), Sloan Research Fellowship (M.M.C.),

- 46 McKnight Scholar Award (M.M.C.), a Klingenstein-Simons Fellowship Award
- 47 (M.M.C.) and the Simons Foundation (M.M.C., M.T.K.). We thank W. Brendel for dPCA
- 48 code and advice, M. Mazariegos for expert surgical assistance and veterinary care,
- 49 and D. Haven and B. Oskotsky for technical support.
- 50
- 51 **Conflict of interest**: The authors report no conflict of interest

- 53 Funding sources: Grossman Charitable Trust, National Science Foundation, Swartz
- 54 Foundation, Burroughs Wellcome Fund, NIH Director's Office, DARPA REPAIR,
- 55 Searle Scholars Foundation, Sloan Research Foundation, McKnight Foundation,
- 56 Esther A. & Joseph Klingenstein Fund, and the Simons Foundation.

59 Abstract

60	Neural activity in monkey motor cortex (M1) and dorsal premotor cortex (PMd) can
61	reflect a chosen movement well before that movement begins. The pattern of neural
62	activity then changes profoundly just before movement onset. We considered the
63	prediction, derived from formal considerations, that the transition from preparation
64	to movement might be accompanied by a large overall change in the neural state
65	that reflects when movement is made rather than which movement is made.
66	Specifically, we examined 'components' of the population response: time-varying
67	patterns of activity from which each neuron's response is approximately composed.
68	Amid the response complexity of individual M1 and PMd neurons, we identified
69	robust response components that were 'condition-invariant': their magnitude and
70	time course were nearly identical regardless of reach direction or path. These
71	condition-invariant response components occupied dimensions orthogonal to those
72	occupied by the 'tuned' response components. The largest condition-invariant
73	component was much larger than any of the tuned components; <i>i.e.,</i> it explained
74	more of the structure in individual-neuron responses. This condition-invariant
75	response component underwent a rapid change before movement onset. The timing
76	of that change predicted most of the trial-by-trial variance in reaction time. Thus,
77	although individual M1 and PMd neurons essentially always reflected which
78	movement was made, the largest component of the population response reflected
79	movement timing rather than movement type.
80	

81

82 Significance

83	The activity of neurons often conveys information about externally observable
84	variables, such as the location of a nearby object or the direction of a reach made to
85	that object. Yet neural signals can also relate to 'internal' factors: the thoughts and
86	computations that link perception to action. We characterized a neural signal that
87	occurs during the transition from preparing a reaching movement to actually
88	reaching. This neural signal conveys remarkably accurate information about when
89	the reach will occur, but carries essentially no information about what that reach
90	will be. The identity of the reach itself is carried by other signals. Thus, the brain
91	appears to employ distinct signals to convey what should be done and when it
92	should be done.

96 Introduction

97	The responses of individual neurons are often characterized in terms of
98	tuning: how the firing rate varies across different stimuli or behaviors ("conditions").
99	Additionally, neural responses may contain untuned features which are shared
100	across many conditions, such as an abrupt rise in firing rate after the onset of any
101	stimulus. These untuned response features may appear non-specific, and thus of
102	secondary interest. However, there is evidence that response features can be
103	correlated across conditions yet still carry computationally-relevant information.
104	Neural activity in prefrontal cortex contains a large response component reflecting
105	the passage of time (Machens et al., 2010), and time-varying signals have also been
106	observed in premotor cortex during anticipation of an informative cue (Confais et al.,
107	2012). A related example is the time-encoding urgency signal observed during
108	decision-making, which is shared across neurons that encode different choices in
109	both the oculomotor system (Churchland et al., 2008; Hanks et al., 2011) and
110	premotor cortex (Thura et al., 2012). Here we investigate another possible 'untuned'
111	signal in motor/premotor cortex: one that arises after the desired target is known,
112	at the time of the sudden transition from preparation to movement.
113	We were motivated by the observation that motor cortex neurons sometimes
114	display broadly tuned movement-period responses (Fortier et al., 1993; Crammond
115	and Kalaska, 2000) – <i>e.g.</i> , a rise in rate for all directions – such that tuning models
116	benefit from an omnidirectional term (Georgopoulos et al., 1986; Moran and
117	Schwartz, 1999). More generally, many studies identify significant proportions of
118	neurons with responses that are task-modulated yet not strongly selective for the

119	parameter being examined (Evarts, 1968; Weinrich et al., 1984; Hocherman and
120	Wise, 1991; Riehle et al., 1994; Messier and Kalaska, 2000). These findings argue
121	that there must be some aspect of neural responses – <i>i.e.</i> , some response
122	'component' – that is at least moderately correlated across conditions. What are the
123	temporal properties of such a signal and is its timing predictive of behavior? Does
124	the signal make a small or large contribution to the overall population response? Is
125	the signal merely correlated across conditions ('condition-correlated')? Or might it
126	be nearly identical across conditions ('condition-invariant') and thus untuned in the
127	traditional sense?
128	These questions derive both from a general desire to fully characterize the
129	response during movement and from specific theoretical considerations. A
130	condition-invariant signal could, despite its seeming lack of specificity, be important
131	to the overall computation performed by the population. Presumably there is a large
132	change in computation just before movement onset, at the moment when the motor
133	system transitions from preparing to move while holding a posture (Kurtzer et al.,
134	2005) to generating the muscle activity that will drive the desired movement.
135	Consistent with the idea of a change in computation, neural tuning changes
136	suddenly and dramatically at a point ${\sim}150$ ms before movement (Churchland et al.,
137	2010) so that a neuron's 'preference' during movement can be quite unrelated to its
138	preference during preparation (Wise et al., 1986; Crammond and Kalaska, 2000;
139	Kaufman et al., 2010). A similar transition is observed at the population level:
140	population dynamics are relatively stable and attractor-like during preparation but
141	become strongly rotational just before movement onset (Churchland et al., 2012).

142	This sudden change in network properties is presumably driven by an appropriately
143	timed input (which could itself be the output of a computation that decides when to
144	move; Romo and Schultz, 1987; Thaler et al., 1988; Schurger et al., 2012; Murakami
145	and Mainen, 2015). One might initially expect a 'triggering' input to be tuned
146	(Johnson et al., 1999; Erlhagen and Schoner, 2002). Yet theoretical considerations
147	suggest that a simple, condition-invariant change in input is sufficient to trigger
148	large changes in network dynamics and tuning (Hennequin et al., 2014). In
149	particular, a recent neural network model of motor cortex (Sussillo et al., 2015)
150	employs a condition-invariant input to trigger a change in dynamics that initiates
151	movement. The model's population-level responses resemble the empirical neural
152	responses, and from inspection both clearly show at least some features that are
153	invariant across conditions.
154	Critically, there are many ways in which activity patterns can be correlated
155	across conditions. Only a minority of such possibilities involve a truly condition-
156	invariant signal at the population level: that is, a signal that is nearly identical across
157	conditions. Is a condition-invariant signal present in motor cortex? On a trial-by-
158	trial basis, does it exhibit timing locked to target onset, the go cue, or movement
159	onset? Only the latter would be consistent with the role in movement triggering
160	suggested by the model of Sussillo et al. (2015).
161	We found that a condition-invariant signal was not only present but was the
162	largest aspect of the motor cortex response – considerably larger than any of the
163	condition-specific (tuned) response components. The condition-invariant signal

164 resembled the previously reported omnidirectional or 'speed-tuned' response

165	component (Georgopoulos et al., 1986; Moran and Schwartz, 1999), but was
166	essentially invariant with reach speed, distance and curvature. In addition, the
167	condition-invariant signal underwent a large and sudden change ${\sim}150$ ms before
168	movement onset. The timing of this change was an excellent predictor of reaction
169	time on a trial-by-trial basis. Finally, the dimensions in neural state space that were
170	occupied by the condition-invariant signal were almost perfectly orthogonal to the
171	dimensions occupied by the condition-specific components. Overall, the profile,
172	timing, and population-level manifestation of the condition-invariant signal were
173	remarkably similar to the structure naturally produced by the model of Sussillo et al.
174	(2015). Our findings thus suggest a potential role for a large response component
175	that initially appears non-specific yet reflects movement timing very precisely.
176	

177 Materials and methods

The key features of the task and analyses are described in the Results. Below
we detail all aspects of the apparatus, task, neural recordings, muscle recordings,
data preprocessing, analyses, and controls.

181

182 Subjects and task

183 Animal protocols were approved by the Stanford University Institutional 184 Animal Care and Use Committee. Experiments employed two adult male rhesus 185 monkeys (Macaca mulatta), J and N, performing a delayed-reach task on a 186 frontoparallel screen (Churchland et al., 2010; Churchland et al., 2012; Kaufman et 187 al., 2013). The monkey initially fixated a central spot with his eyes and touched it 188 with a cursor. The cursor was projected slightly above the right fingertip, which was 189 tracked optically. The task involved a large number of conditions – *i.e.*, different 190 target locations and reach paths - which was useful when attempting to identify 191 response components that are invariant across conditions. On 1/3 of trials ('no-192 barrier' conditions) a lone target appeared within a frame around the workspace. 193 On another 1/3 of trials ('maze' conditions) a target and up to nine virtual barriers 194 appeared. The remaining 1/3 of trials ('maze-with-distractor' conditions) were 195 identical to the maze trials but included two distractor 'targets' that were 196 unreachable due to the barrier locations. The same set of target positions was used 197 for the no-barrier, maze, and maze-with-distractor conditions. When barriers were 198 present, the monkey had to perform a curved reach or the cursor would collide with 199 and "stick" to the barrier. This paradigm evoked both straight and curved reaches in

200	different directions and of varying speed and distance. Most datasets employed 27
201	conditions (9 of each type) while one (NAC) employed 108. No attempt was made to
202	produce a uniform arrangement of target locations or initial reach directions, but we
203	note that all datasets involved reaches that spanned the space of directions in two
204	dimensional space, and that results were consistent across the different datasets,
205	which typically employed different arrangements of targets and barriers. More
206	broadly, the large variety of conditions we employed provides a stringent test
207	regarding whether a signal is truly condition-invariant.
208	A randomized delay period separated target onset from a Go cue. During the
209	delay, targets jittered slightly (2-3 mm), indicating to the monkey that he could not
210	yet reach or saccade. The Go cue consisted of three simultaneous and salient cues:
211	the cessation of jitter, the targets changing from open to filled, and the central spot
212	disappearing. Juice reward was delivered if the monkey swiftly reached to the target
213	then held it for 450 ms (monkey J) or 700 ms (monkey N).
214	
215	Delay-period statistics
216	The delay period lasted 0-1000 ms. Different datasets employed different

The delay period lasted 0-1000 ms. Different datasets employed different delay-period statistics depending on the analyses we wished to apply. Three datasets (JC, NAC and NS) were collected with the primary goal of analyzing trials with longer delays. Longer delays enabled examination of the transition between a relatively stable plateau of preparatory activity and subsequent movement-related activity. To this end, delays of 450-1000 ms were approximately twice as probable as delays of 0-450 ms. Three further datasets (JAD1, JAD2, NAD) were recorded with

223	the goal of characterizing the single-trial relationship between neural activity and
224	RT. For these datasets, delay durations of 0, 100, 200, and 500 ms were intentionally
225	overrepresented. These dataset names end with "D", indicating that this set of
226	discrete delays was overrepresented. This allowed key analyses to be restricted to a
227	set of trials with the same delay, removing the potential confound that RT can vary
228	with delay. For these datasets most trials (78%, 78%, 84% for datasets JAD1, JAD2,
229	NAD) used one of the discrete delays, with roughly equal probability. The remaining
230	trials had random delays from 0-1000 ms as above. Because these datasets were
231	each collected in a single day utilizing implanted multi-electrode arrays, monkeys
232	were not anticipating the overrepresented delay durations.
233	Most analyses focused on the transition from movement preparation to
234	movement and thus used only trials with delays >450 ms (datasets without discrete
235	delays) or delays = 500 ms (datasets with discrete delays). For analyses of the
236	single-trial relationship with RT we focused on datasets with discrete delay
237	durations. For simplicity of presentation, for these analyses only trials with no delay
238	("zero delay") or a 500 ms delay ("long delay") are shown. All results were similar
239	for delays of 100 or 200 ms.
240	

241 Catch trials and trial counts

Several types of unanalyzed catch trials ensured the task was performed as desired. In particular, we presented novel mazes made by randomly removing barriers from a standard maze (10-15% of all trials), or randomly placing the target and two barriers (0-10% of all trials). These trials ensured that the monkey had to

solve each trial independently, as similar-looking mazes could have differentsolutions.

248 Delay periods were randomly chosen on each trial. Conditions were 249 organized in pseudorandom blocks. The array datasets had 3352, 2340, 2622, and 250 3590 successful trials (datasets JAD1, JAD2, NAD, and NAC) from a single session. 251 For the "discrete delay" datasets (JAD1, JAD2, NAD) there were ~250-500 usable 252 trials for each of the four overrepresented delays. Usable trials excluded catch-trials, 253 failed trials (e.g., if a barrier were struck), rare trials with an unusual velocity profile 254 that did not allow a reliable RT measurement, and trials with a very short RT (in 255 rare instances where the monkey 'jumped the gun') or an overly long RT (in rare 256 instances where the monkey was presumably distracted). Datasets that included 257 single-unit recordings (JC and NS) contained an average of 336 and 305 usable trials 258 per unit.

259

260 Neural and muscle recordings

261 For both monkeys, we first performed single-electrode recordings (datasets 262 JC and NS) using moveable tungsten microelectrodes (Frederick Haer, Bowdoinham, 263 ME) and a Plexon Multichannel Acquisition Processor (Plexon, Dallas, TX). These 264 recordings included the caudal portion of dorsal premotor cortex (PMd) and both 265 surface and sulcal M1. All units recorded with single electrodes were well-isolated 266 single neurons recorded from regions where microstimulation produced movement 267 of the arm (typically the upper arm and/or shoulder). Each monkey was then 268 implanted with two 96-electrode silicon arrays (Blackrock Microsystems, Salt Lake

269	City, UT), located in M1 and caudal PMd, as estimated from anatomical landmarks
270	and previous mapping with microstimulation. Spikes were sorted offline using
271	custom software (MKsort, https://github.com/ripple-neuro/mksort). For array
272	recordings, both single units and stable multi-unit isolations (typically two neurons
273	whose spikes could not be reliably separated) were analyzed. A strong condition-
274	invariant signal (see below) was present regardless of whether a dataset involved
275	pure single-unit isolations or a mixture of single-unit and multi-unit isolations. This
276	is unsurprising: dimensionality reduction techniques such as dPCA or PCA typically
277	produce nearly identical results regardless of whether isolations involve one unit or
278	a small number of units. These techniques are forgiving because the components
279	needed to compose the responses of a single neuron are the same components
280	needed to compose the summed response of more than one neuron. All neural
281	recordings were from the left hemisphere. Array recordings produced datasets JAD1,
282	JAD2, NAD, and NAC, and were included in dataset JC.
283	We analyzed all units where the firing rate range (over conditions and times)
284	was greater than the maximal s.e.m. (for all conditions and times). This signal-to-
285	noise (SNR) criterion does not insist on any particular form of response or tuning –
286	only that there be some response. For dataset JAD1, 116 of 123 units passed the SNR
287	criterion; for dataset JAD2, 136 of 171 units passed; for dataset JC, 186 of 278 units
288	passed; for dataset NAD, 172 of 188 units passed; for dataset NAC, 213 of 223 units
289	passed; for dataset NS, 118 of 118 units passed. Of these, 67, 28, 108, 62, 58, and
290	118 were considered single units (datasets JAD1, JAD2, JC, NAD, NAC, NS). For all

292 separately. These recordings were therefore pooled. 293 Data preprocessing involved three steps. First, spike trains were smoothed 294 with a Gaussian (28 ms s.d.). Second, the firing rate was averaged across trials of the 295 same type (excepting analyses of single trials, see below). We computed two 296 averages: one with data aligned to target onset and one with data aligned to 297 movement onset. Third, the firing rate of each neuron was normalized to prevent 298 analyses from being dominated by a few high-rate neurons; this is especially 299 important (Yu et al., 2009) when performing PCA-based analyses. To normalize 300 without over-amplifying the greater noise associated with low firing rates, we "soft 301 normalized": for each neuron we normalized the firing rate by its range (across all 302 times and conditions) plus a constant, chosen to be 5 spikes/s. This choice follows 303 our previous work, and was made before performing analyses. Results were 304 extremely similar and sometimes stronger if we used a soft-normalization constant 305 of zero. 306 Electromyographic (EMG) recordings employed hook-wire electrodes (44 307 gauge with a 27 gauge cannula; Nicolet Biomedical, Madison, WI), inserted 308 percutaneously into the muscles of the right arm. Electrodes were inserted with the 309 monkey awake and calm, with one recording per session. For monkey J, recordings 310 were made sequentially from trapezius, latissimus dorsi, pectoralis, triceps brachii, 311 medial and lateral aspects of the biceps brachii, and anterior, medial, and posterior 312 aspects of the deltoid. The recording from the triceps was excluded because it was

analyses, results were similar when data from PMd and M1 were analyzed

313 not sufficiently modulated during the task. For *monkey N*, recordings were made

291

to a neural dimension.

314 from proximal, middle, and distal aspects of the trapezius, latissimus dorsi, 315 pectoralis, triceps brachii, medial and lateral aspects of the biceps, and anterior, 316 medial, and posterior aspects of the deltoid. Two recordings were made for each 317 deltoid site. The recordings from the triceps and latissimus dorsi were excluded 318 because they were not sufficiently modulated during the task. Raw EMG signals 319 were band-pass filtered (150-500 Hz, four pole, 24 db/octave), differentiated, 320 rectified, smoothed with a Gaussian (15 ms SD), and averaged across trials 321 (Kaufman et al., 2013). 322 323 Projections of neural data 324 We identified response components by projecting the population response 325 onto dimensions of interest. We began with a matrix, R, of trial-averaged neural 326 responses (or EMG, for one analysis). Each of *n* columns contained the normalized 327 response of one neuron over time, with responses concatenated across conditions. 328 To project the data onto a given dimension we computed $\vec{x} = R\vec{w}$, where \vec{w} is a set 329 of weights specifying the dimension. The projection \vec{x} is therefore a weighted 330 average of neurons' firing rates. We refer to the projected activity pattern as a 331 'component' of the population response, because the activity of any given neuron 332 can be (approximately) composed of a weighted sum of multiple such components. 333 This use of the term 'component' follows the usage of Kobak et al. (2016) and others. 334 Note that this use of 'component' is not synonymous with 'principal component', 335 which refers to a component of the neural covariance matrix and thus corresponds

and hypotheses. In this study the most important projection method employs Demixed Principal Component Analysis (dPCA; Machens et al., 2010; Brendel et al., 2011) to find the dimensions \vec{w} . This application of dPCA is detailed more thoroughly in the next section. We also employ a number of other projection methods, including standard Principal Component Analysis (PCA), and simply computing the mean across neurons (equivalent to setting all weights to 1/n). Two analyses employ the jPCA method (Churchland et al., 2012), and in one case we used a classifier trained via a supervised algorithm. In every case it should be stressed that the projections shown (*i.e.*, the response components) are simply linear weightings of the recorded neural responses. The use of multiple methods is desirable because no single method can capture all aspects of the response (*e.g.*, the mean captures some aspects of the response and hides others). All projection methods used here employ orthonormal dimensions. The orthogonality of these dimensions does not impose orthogonality on aspects of the neural response; it is simply a way of choosing a coordinate system. An orthonormal

basis makes interpretation simpler: among other benefits, it allows each component

to be independently quantified in terms of variance explained, making it harder to

percentage of variance is quoted, it is the fraction of the variance captured in the

unintentionally interpret weak structure as meaningful. In all cases, when a

low-dimensional space (10-12 dimensions).

A large literature concerns how to best find projections given different goals

360 Identifying the condition-invariant signal via dPCA

361	Many of our central analyses sought to determine whether there exist neural
362	dimensions that segregate condition-specific ("tuned") components from condition-
363	invariant components of the population response. By "condition-specific" we mean
364	that different conditions (reach directions, curvatures, etc.) evoke different
365	responses when the population response is projected onto that dimension.
366	By "condition-invariant" we mean that the response varies with time but is similar
367	across conditions when projected onto that dimension. To address this question we
368	applied dPCA (Machens et al., 2010; Brendel et al., 2011), a variant of PCA. dPCA
369	leverages information normally discarded by PCA: each row of the data matrix R is
370	assigned labels. Here, those labels indicated the condition and time for which that
371	set of firing rates was recorded. dPCA then finds a matrix W that produces a
372	projection X of the data R, with $X = RW$. Each column of W is a dimension and each
373	column of X is a component of the population response. Like PCA, dPCA attempts to
374	find a projection that captures much of the variance in R, so that $R \approx XW^T$. Unlike
375	PCA, dPCA attempts to find W such that the resulting columns of X co-vary strongly
376	with one label or the other. In the present case, dPCA attempts to find W such that
377	some columns of X (some components) vary with time but not condition and other
378	columns vary across conditions but not with time. As will be discussed below, such
379	segregation is not necessarily possible: in general there will not exist a W with the
380	desired properties. Indeed, in the present study, dPCA always found components
381	that varied primarily with time (and not condition) but never found components
382	that varied primarily with condition and not time. We therefore divided the

383 components found by dPCA into two groups: condition-invariant (reflecting 384 primarily time) and condition-specific (reflecting both condition and time). We refer 385 to the group of condition-invariant components collectively as the condition-386 invariant signal or 'CIS'. 387 As a technical note, dPCA (unlike PCA) requires that the number of 388 dimensions be specified in advance. Prior analyses indicate that 6-8 dimensions 389 capture much of the condition-specific structure of the data (Churchland et al., 390 2010). We therefore wished that dPCA should capture a similar amount of 391 condition-specific structure, in addition to any condition-invariant structure that 392 might be present. We empirically picked the number of requested dimensions such 393 that dPCA returned eight condition-specific dimensions (defined as containing 394 <50% condition-invariant variance). In principle this might have necessitated 395 requesting exactly eight dimensions (if all structure were tuned) or many more than 396 eight (if little structure were tuned). In practice it was only necessary to request 397 modestly more than eight total dimensions. For example, for dataset JAD1 we 398 requested 10 total dimensions, which yielded two condition-invariant response 399 components and eight condition-specific response components. The choice of eight 400 condition-specific components is an arbitrary but reasonable cutoff. We always 401 found a strong condition-invariant signal regardless of the exact number of 402 dimensions requested. 403 dPCA identified dimensions (W) based on the population response from -200 404 to +400 ms relative to target onset and -300 to +600 ms relative to movement onset.

The data matrix being analyzed contained trial-averaged firing rates for long-delay

406	trials (trials with delay periods > 450 ms). For subsequent analyses of trial-to-trial
407	variability in reaction time, we projected data from individual trials, including zero-
408	delay trials, onto the same dimensions. The probabilistic-model version of dPCA was
409	used (from the Python code available online associated with Brendel et al., 2011).
410	We measured the marginal variances of each response component (Machens et al.,
411	2010; Brendel et al., 2011) which indicate how much of a component's variance was
412	condition-specific (activity varying with condition or with both time and condition)
413	versus condition-invariant (activity varying with time alone).
414	Because EMG responses were lower dimensional than neural responses, for
415	the EMG datasets dPCA was performed at an overall dimensionality that returned 3
416	condition-specific dimensions. The resulting 4-5 dimensions (monkey J, N)
417	accounted for 95-97% of the total variance in the EMG data. This reduced number of
418	dimensions did not produce the differences between neural and muscle data:
419	repeating the analysis on neural data using 4-5 dimensions yielded essentially
420	identical results to those obtained with more dimensions.
421	
422	Note regarding interpretation of the segregation produced via dPCA
423	Below we describe a key interpretational point regarding the dPCA method.
424	The cost function optimized by dPCA attempts to find W such that each column of X
425	(each response component) varies with exactly one of the provided labels (time and
426	condition in this study) and not with the other(s). Yet as stated above, this
427	segregation is not in general possible. In the present case this has two implications.
428	First, it is not guaranteed that dPCA will be able to find components that vary with

429 condition but not with time; perhaps every component that strongly reflects
430 condition also reflects time (this was indeed true of our data). Second, it is similarly
431 not guaranteed that dPCA will be able to find components that vary with time but
432 not condition; it may be that every component that strongly reflects time also
433 reflects condition.

434 This last fact is worth stressing because many individual neurons exhibit 435 what we refer to as 'condition-correlated' structure: responses that are different 436 across conditions, yet display an increase (or decrease) in firing rate that has a 437 somewhat similar time course across conditions. Yet this structure at the single-438 neuron level is not sufficient, in and of itself, to indicate condition-invariant 439 structure at the population level. Would dPCA, when applied to a population of such 440 neurons, inevitably find condition-invariant components? In short, it would not. 441 This can be demonstrated empirically (Results) or formally via construction, as 442 follows. Consider a simple case in which each neuron's response r_n is a linear 443 combination of two independent components x_i (which will also be functions of condition *c* and time *t*): $r_{n,c,t} = \sum_{i=1:2} w_{n,i} x_{i,c,t}$. Let both $x_{1,c,t}$ and $x_{2,c,t}$ be condition 444 445 specific, but suppose $x_{1,c,t}$ contains an overall correlation between conditions. Due 446 to the correlation of $x_{1,c,t}$ across conditions, the responses *r* will also have shared 447 response features across conditions. Nevertheless, it is not in general possible to find a linear combination of the $r_{n,c,t}$'s that is condition-invariant. A linear 448 449 combination of the $r_{n,c,t}$'s is equivalent to a linear combination of $x_{1,c,t}$ and $x_{2,c,t}$. 450 Since these components are independent, finding a condition-invariant linear

451	combination is equivalent to solving the following system of $(C - 1)T$ equations,
452	where <i>C</i> is the number of conditions (here, 2), and <i>T</i> is the number of time points:
453	$\sum_{i=1:2} p_i x_{i,c,t} = \sum_{i=1:2} p_i x_{i,c+1,t}$
454	for all times t and all pairs of conditions c and $c+1$ (this is a sufficient constraint to
455	ensure that all pairs of conditions are equal, since equality is transitive).
456	The number of free variables p_i is equal to the number of components D,
457	which in this example is 2. In general, then, this system is not solvable if
458	(C - 1)T > D, which will be true for even modest numbers of times and conditions.
459	The presence of correlated structure within $x_{1,c,t}$ (and/or $x_{2,c,t}$) would not in
460	general change this fact. In practice, then, it would be rare for condition-correlated
461	responses to coincidentally produce a fully condition-invariant component. As one
462	example, choose $x_{1,c,t} = g_c \sin(t)$ and $x_{2,c,t} = h_c \sin(3t)$, with g_c and h_c being
463	positive scalars that vary with condition. Both $x_{1,c,t}$ and $x_{2,c,t}$ would be perfectly
464	condition correlated, yet no linear combination of $x_{1,c,t}$ and $x_{2,c,t}$ would be
465	condition-invariant.
466	
467	Control: producing synthetic PSTHs with matched spectral content
468	To illustrate empirically that condition-invariant components are not found
469	in 'generic' data, we generated synthetic PSTHs with the same frequency content as
470	the original neurons. Each unit was matched with a corresponding synthetic PSTH.
471	The steps below were performed on the vector containing the trial-averaged firing

472 rate over time for one condition. We first preprocessed each vector by smoothing

473 lightly (10 ms s.d. Gaussian) to reduce the small discontinuity between target-

aligned and movement-aligned data, then multiplying by a Hann window. The
Fourier transform was performed, and the magnitude of the result was computed at
each frequency (*i.e.*, the square root of power spectral density). These curves were
averaged over conditions to give the overall power-by-frequency curve for that unit.
To construct a synthetic PSTH, for each condition we chose a random phase for each
frequency component, then took the inverse Fourier transform.

481 Control: removing the CIS from the neural responses

482 To ask whether condition-invariant components (collectively the condition-483 invariant signal, CIS) might result from the rectification of firing rates at zero, we 484 removed the true condition-invariant components, re-rectified firing rates, then 485 applied dPCA. Specifically, we projected the population response onto the eight 486 condition-specific dimensions identified by dPCA, then transformed the data back to 487 the original *n*-dimensional space. This produced as many PSTHs as the original 488 neurons. We rescaled and re-centered each "neuron's" response to restore its 489 original mean and range of firing rates. Finally, we set all negative firing rates to 490 zero. This resulted in a population of surrogate neurons that are responsive and 491 have positive firing rates, yet should have no 'true' CIS. Thus, a strong CIS in this 492 control population would indicate that rectified firing rates could create an 493 artifactual CIS.

494

495 Control: adding a condition-correlated component

496	We constructed additional surrogate data that resembled the empirical data
497	but lacked condition-invariant components. For each empirical condition-invariant
498	component, we constructed a new component with the same time course, but with
499	varying amplitude across conditions. That is, we created components that were
500	condition-correlated but not condition-invariant. These components were re-
501	centered to have a zero mean during the baseline period (before target/maze onset),
502	and then were added to the response of each neuron. Specifically, to each neuron's
503	response $r_{n,c,t}$ we added $w_{n,i}k_c x'_{i,t}$, where $w_{n,i}$ is the neuron's original weight for the i^{th}
504	condition-invariant component, $x'_{i,t}$ is the time course of the <i>i</i> th new condition-
505	correlated component, and the coefficients k_c were chosen randomly from a unit-
506	variance Gaussian distribution. We rectified the resulting firing rates (setting all
507	negative rates to zero). These operations largely preserved the time course of each
508	neuron's across-condition mean (because the k_c 's were zero-mean). Because the
509	new components were condition-correlated, the responses of most neurons were
510	strongly condition-correlated. Yet because the original condition-invariant
511	components are now "contaminated" with condition-specific components of the
512	same time course, the surrogate population should have no separable condition-
513	invariant components.
514	

515 Identifying a speed-predicting dimension

To identify a speed-predicting dimension, we began with the same neural data matrix *R* used for PCA and dPCA. We then regressed the trial-averaged speed profile for each condition against *R*: $\vec{s} = R\vec{w} + b$, where \vec{s} is the vector produced by

taking the speed profile for each condition and concatenating the conditions, *b* is the bias (a constant offset), and \vec{w} specifies a set of weights. The speed profile was advanced by 150 ms before regression to accommodate known lags.

522

523 Trial-by-trial analysis

524 To assess how well projections onto different dimensions predict trial-by-525 trial movement onset we performed four steps: (1) we chose a potentially 526 informative weighted sum of neurons ("dimension of interest"); (2) we binned and 527 smoothed the spiking data on individual trials; (3) we projected the population 528 neural response from each trial onto the dimension of interest; and (4) for each trial 529 we found the time point at which that projection exceeded a criterion value. That 530 time, relative to the go cue, was the predicted RT. These steps are explained in more 531 detail below. 532 For the first step, we compared the performance of several different 533 techniques for finding the dimension of interest. Three of these techniques were 534 unsupervised: dimensions were identified based on the structure of the data 535 without exploiting prior knowledge of the RT. These three methods - the CIS₁ 536 method, the PC₁ method, and the mean-over-all-neurons method – used dPCA, PCA, 537 and simple averaging, respectively. The CIS₁ dimension (producing the largest 538 condition-invariant component) and the PC₁ dimension (the largest principal 539 component) were found using the long-delay, trial-averaged data (as above). We 540 also employed a linear decoder of reach speed (see above) and a supervised 541 "classifier" method, described later.

542 For the second step, spikes were counted in 10 ms bins, from 60 ms before to 543 500 ms after the go cue. Each trial's spike counts were convolved with a 30 ms 544 Gaussian to produce a smooth spike rate. For the third step, we computed a 545 weighted sum of the neurons' spike rates. The weights depended on the dimension 546 of interest, found during step one. We refer to the result of this third step as z(t,r), 547 the projection of the neural data as a function of time and trial. 548 For the final step, we wished to determine when z(t,r) changed in advance of 549 movement onset. To estimate that time, for each trial we asked when z(t,r) first 550 crossed a criterion value derived from the long-delay trials. To find that criterion 551 value, we took the median of z(t,r) across trials, producing $\tilde{z}(t)$. We set the criterion 552 value to be the midpoint of $\tilde{z}(t)$: $[\max(\tilde{z}(t)) + \min(\tilde{z}(t))]/2$. The midpoint is an 553 arbitrary but reasonable choice to ensure robustness. For each trial, we found the 554 time at which the criterion value was crossed. Trials that never exceeded the 555 criterion value, or that exceeded it before the Go cue, were discarded from the 556 analysis. Such trials were uncommon, especially for the better prediction methods 557 (0-9%, depending on dataset and method). 558 The three methods described above – the CIS₁ method, the PC₁ method, and 559 the mean-over-all-neurons method – predict RT in an unsupervised manner. They 560 were compared with a supervised method that was allowed to use knowledge of 561 each trial's RT. This "classifier" method was based on logistic regression. Single-trial

- data were first aligned to movement onset, then projected into the dPCA space
- 563 (including both condition-specific and condition-invariant dimensions). Data were
- binned into a "pre-movement" time point (-360 to -150 ms relative to movement

onset) and a "movement" time point (-150 to +60 ms relative to movement onset).
The dividing point of 150 ms before movement onset was chosen to approximate
the delay between when neural firing rates begin to change and when the hand
begins to move. Logistic regression returned both a projection dimension and a
criterion value that best discriminated between the pre-movement and movement
data.

571 As with the other projection methods, the classifier produces a projection 572 vector \vec{w} with as many coefficients as dimensions of the data (in this case, the 573 number of components from dPCA). To characterize the classifier, we asked how 574 much each dPCA component contributed to this projection. Specifically, we took the quantity $|\vec{w}_d| \cdot \sqrt{var[(RD)_d]}$, where $|\vec{w}_d|$ is the absolute value of the d^{th} element of \vec{w} , 575 576 D is the dPCA projection matrix (called W in previous equations), $(RD)_d$ indicates the 577 *d*th column of the matrix resulting from multiplying *RD*, and *var*[] indicates taking 578 the variance. This tells us how strongly each of the response components (returned 579 by dPCA) contributed to the final classification.

580 Finally, we employed a semi-supervised method where RT was predicted as 581 the time when the decoded reach speed crossed a 50% threshold. Importantly, for 582 all the above methods training employed only the long-delay data. Trial-by-trial 583 prediction of RT for zero-delay data was entirely based on generalization. Analyses 584 were based on 385 / 465 trials for dataset JAD1 (long-delay / zero-delay), 249 / 264 585 trials for dataset JAD2, 260 / 427 trials for dataset NAD, and 2982 long-delay trials 586 for dataset NAC.

587

588 Finding a rotational plane

589	For some analyses we wished to identify planes (two dimensional
590	projections of the population response) containing rotational structure. We
591	performed dPCA and then applied jPCA (Churchland et al., 2012) to the condition-
592	specific components, using an epoch when neural activity is changing rapidly (-200
593	to +150 ms relative to movement onset). As a technical detail, the PCA step and
594	mean subtraction were disabled in the jPCA algorithm; dPCA served as a more
595	principled way of focusing jPCA on the strongly condition-specific dimensions.
596	Because both dPCA and jPCA produce linear projections, the final result is also a
597	linear projection of the data.
598	

600 Results

601 Behavior and neural recordings

602 Two monkeys (I and N) performed a variant of the standard delayed-603 reaching task: the "maze" task (Figure 1A-B; Churchland et al., 2010; Churchland et 604 al., 2012; Kaufman et al., 2013). The monkey touched and fixated a central spot on a 605 screen, then was presented with a target and, on most trials, a set of virtual barriers 606 (magenta rectangles). After a randomized delay period a go cue was presented, and 607 the monkey was required to reach to the target, curving around barriers if present. 608 We refer to each target/barrier configuration as a "condition." Reaction times (RTs) 609 were brisk: medians of 296 ms (monkey I) and 304 ms (monkey N). 610 We analyzed six datasets. Three datasets (JAD1, JAD2, NAD) were collected 611 specifically for this study. For these, recordings were from a single session, made via 612 a pair of 96-electrode arrays, one in dorsal premotor cortex (PMd) and one in motor 613 cortex (M1). To ensure robustness, we also re-analyzed three datasets that have

614 been previously examined. One (NAC) was recorded using a pair of 96-electrode

arrays, one (NS) was recorded over many days using single electrodes, and one (JC)

616 combined one day of array recordings and many days of single-electrode recordings.

617 These latter two datasets allowed us to analyze large populations that contained

618 both surface PMd/M1 recordings and sulcal M1 recordings.

The firing rate versus time of a representative neuron is illustrated in Figure
1C (for ease of visualization, four of 27 conditions are shown). The neuron began
responding approximately 50 ms after target onset, and achieved different firing
rates depending on which reach the monkey was preparing (Tanji and Evarts, 1976;

623	Weinrich et al., 1984; Godschalk et al., 1985; Kurata, 1989; Riehle and Requin, 1989;
624	Snyder et al., 1997). Firing rates plateaued during the delay period, changing little
625	until after the Go cue. Approximately 150 ms before movement onset there was a
626	large transition in the response pattern: activity subsequently evolved in a
627	seemingly complex fashion, producing a series of peaks and valleys. Such features
628	were not due to sampling error but were very reliable (standard errors of the firing
629	rate were \sim 2 spikes/s, compared to the overall firing-rate range of \sim 45 spikes/s).
630	The pattern illustrated in Figure 1C was typical: most neurons showed a relatively
631	stable plateau of tuned preparatory activity followed by temporally complex
632	responses. The relevant transition occurred just before movement onset. The
633	response of this neuron across all 27 conditions is plotted in Figure 2A. Figure 2B
634	plots the response of another example neuron with complex multiphasic responses
635	that varied strongly across conditions.
636	The complexity and heterogeneity of responses makes it difficult to ascertain
637	whether there might exist an underlying signal that is shared across reaches of
638	different types. However, we did occasionally observe neurons where, following the
639	go cue, the response was similar across conditions: <i>i.e.</i> , an overall increase or
640	decrease in rate (Figure 2C,D). This observation is consistent with the utility of
641	including an omnidirectional component when fitting tuning curves (Georgopoulos
642	et al., 1986; Moran and Schwartz, 1999). More generally, the presence of such
643	neurons is consistent with many prior reports in which some reasonable percentage
644	of neurons were modulated by the task yet not strongly selective for the parameter
645	being tested, a.g. left yengy a right reaches (Mainrich et al. 1004) three survey

being tested: *e.g.*, left versus right reaches (Weinrich et al., 1984), three curvatures

646	(Hocherman and Wise, 1991), two or three distances (Riehle et al., 1994; Messier
647	and Kalaska, 2000) or two loads (Evarts, 1968). The present results underscore that
648	prior findings were not a trivial result of using a small number of conditions. We
649	employed 27 conditions (108 for dataset NAC) spanning different directions,
650	distances, and reach curvatures, yet still found neurons whose responses were
651	similar across all conditions. Nevertheless, we stress that while individual neurons
652	often showed related structure across conditions – <i>i.e.</i> , they were condition-
653	correlated – they essentially never showed fully condition-invariant responses. For
654	example, even the neuron in Figure 2C, which has unusually strong condition-
655	correlated structure, displayed peak firing rates that differed between conditions by
656	almost a factor of two.
657	
658	Population-level structure
659	Given that single neurons can exhibit condition-correlated responses, some
660	underlying population-level component must be correlated across conditions. To
661	appreciate how this can happen, consider the standard model in which each
662	neuron's response is a weighted sum of population-level components. The response
663	<i>r</i> of neuron <i>n</i> at time <i>t</i> for condition <i>c</i> is:

$$r_{n,c,t} = \sum_i w_{n,i} x_{i,c,t}$$

where $x_{i,c,t}$ is the *i*th response component (one element of the population state $x_{c,t}$) and $w_{n,i}$ determines the contribution of component *i* to the response of neuron *n*. A component is "condition-correlated" if corr $(x_{i,c_{j,:}}, x_{i,c_{k,:}})$ is positive when averaged across all choices of conditions c_j and c_k .

30

(1)

669	The possible presence of a condition-correlated component has been
670	considered in many contexts: <i>e.g.</i> , decision variables are often modeled as reflecting
671	evidence for a choice (which differs across conditions) plus a growing urgency to
672	make some choice (which is shared across conditions; Churchland et al., 2008;
673	Hanks et al., 2011; Thura et al., 2012; Thura and Cisek, 2014). In the case of reaching,
674	many models include a non-directional term reflecting hand speed (Georgopoulos et
675	al., 1986; Moran and Schwartz, 1999). Since speed is always positive, and is by
676	definition time-locked to movement onset, a component that reflects speed will be
677	strongly condition-correlated.
678	In general a condition-correlated component can vary strongly across
679	conditions; the temporal profile must be similar but the amplitude can vary. As a
680	special case, though, such a component may be nearly identical for every condition
681	and thus 'condition-invariant'. That is, there might exist an <i>i</i> th component where
682	$x_{i,c_j,t} \approx x_{i,c_k,t}$ for all choices of conditions c_j and c_k and times t . This more
683	constrained possibility is suggested by a recent model (Sussillo et al., 2015) where
684	the input that triggers movement generation produces population-level components
685	that are close to condition-invariant.
686	The presence of a condition-invariant component versus a merely condition-
687	correlated component can be determined only at the population level. To do so we
688	applied Demixed Principal Component Analysis (dPCA; Machens et al., 2010;
689	Brendel et al., 2011), a variant of PCA. Each component identified by dPCA is a
690	pattern of responses across conditions and times (<i>i.e.</i> , $x_{i,::}$ in equation 1) from which
691	the response of each neuron in the population is composed. dPCA exploits

692	knowledge discarded by traditional PCA: the response of a neuron is not simply a
693	vector of firing rates. Rather, each element of that vector is associated with a
694	particular condition and time. dPCA attempts to find components that vary strongly
695	with condition (but not time) or vary strongly with time (but not condition). In
696	practice dPCA never found components of the first type; all components that varied
697	with condition also varied with time. We term these components 'condition-specific'.
698	However, dPCA consistently found components that varied with time but not
699	condition (<i>i.e.</i> , that were condition-invariant).
700	Indeed, for every dataset the largest component found by dPCA was close to
701	purely condition-invariant. Figure 3 quantifies the total variance captured by each
702	component (length of each bar) and the proportion of that variance that was
703	condition-invariant (<i>red</i>) versus condition-specific (<i>blue</i>). The largest component
704	(top bar in each panel) exhibited 89-98% condition-invariant variance across
705	datasets.
706	As a working definition, we term a component 'condition-invariant' if >50%
707	of the variance is condition-invariant. We term a component 'condition-specific' if
708	<50% of the variance is condition-invariant. Empirically components were either
709	strongly condition-invariant (much greater than 50% condition-invariant variance)
710	or strongly condition-specific (much less than 50% condition-invariant variance).
711	Each bar plot in Figure 3 thus groups condition-invariant components at <i>top</i> and
712	condition-specific components at <i>bottom</i> . All datasets contained multiple condition-
713	invariant components: respectively two, three, three, four, four, and four for

datasets JAD1, JAD2, JC, NAD, NAC, and NS. For a given dataset, we refer to the set of

condition-invariant components as the condition-invariant signal (CIS). We refer to

716 the largest condition-invariant component as CIS_1 .

717

718 Time course of the strongest condition-invariant component

CIS₁, like all the components, is a linear combination of individual-neuron
responses; it is a 'proto-neural' response that is strongly reflected in single-neuron
PSTHs. The structure of CIS₁ can thus be plotted using the format typically used for a
single-neuron PSTH. Figure 3 does so for each dataset (colored traces below bar
plots).

724 CIS₁ displayed a large and rapid change before movement onset that was 725 similar across conditions. This pattern was present for all datasets. The sudden 726 change occurred ~150 ms before movement onset, corresponding to 50-100 ms 727 before the first change in EMG activity (not shown). The condition-invariance of the 728 signal can be visualized by noting that most individual traces (one per condition) 729 overlap. In particular, during the moments before movement onset, CIS₁ increases in 730 a similar way and to a similar degree for every condition. Modest differences 731 between conditions appeared primarily around the end of the movement and during 732 the subsequent hold period (for reference, movement duration was on average 400 733 ms). Thus, while CIS₁ was not identical across conditions, it was very close: on 734 average 94% of its structure was dependent on time but not condition. 735

736 The condition-invariant signal is large

737 For every dataset, CIS₁ captured the most variance of any single component. 738 That is, CIS₁ was the component that made the largest contribution to the response 739 structure of individual neurons. More generally, the set of condition-invariant 740 components (the CIS, top grouping of bars within each panel of Figure 3) together 741 captured 49-77% of the total variance captured by dPCA (respectively 49%, 49%, 742 62%, 67%, 77%, 75% for datasets JAD1, JAD2, JC, NAD, NAC, NS). Thus, not only is a 743 condition-invariant signal present, it typically comprises half or more of the data 744 variance. 745 While each condition-specific component captured much less variance than 746 CIS₁, there were relatively more condition-specific components (*bottom* groupings 747 of bars in Figure 3) whose combined variance was 23-51% of the total variance 748 captured by dPCA. These condition-specific components often contained 749 preparatory activity followed by multiphasic responses during the movement. We 750 return later to the structure captured by the condition-specific components. 751 We did not expect that such a large fraction of the structure in the data - half 752 or more - would be condition-invariant. Most prior work (including our own) has 753 concentrated on the tuned, condition-specific aspects of neural responses. This is 754 reasonable: the presence of a large condition-invariant response component is not 755 obvious at the single neuron level. Essentially all neurons had contributions from 756 condition-specific components and were therefore tuned for condition. Such tuning 757 is the typical focus of analysis in most studies. Yet the fact that the CIS is so large

argues that its properties should also be characterized.

759 While a few neurons (e.g., Figure 2C,D) had an unusually large contribution 760 from the condition-invariant components, we found no evidence for separate 761 populations of condition-invariant and condition-specific neurons. Weights $w_{n,1}$ 762 were continuously distributed, and could be positive (*e.g.*, for the neuron in Figure 763 2C) or negative (e.g., for the neuron in Figure 2D). We also note that the average 764 $|w_{n,1}|$ was similar for neurons recorded in PMd and M1, indicating that the CIS is of 765 similar size in the two areas. 766 767 Assessing demixing 768 Importantly, dPCA cannot take condition-specific components and render

769 them into a condition-invariant component. This is true even if condition-specific 770 components are strongly condition-correlated (mathematical proof in Methods and 771 empirical controls described below). Thus, the degree to which the population 772 contains truly condition-invariant components can be assessed by the degree to 773 which dPCA "demixes" responses; that is, the degree to which projecting onto 774 orthogonal dimensions yields some response components that are close to purely 775 condition-invariant. Demixing will be successful only if such condition-invariant 776 structure is present in the data. 777 As noted above, demixing was successful for all datasets: most components 778 were either strongly condition-invariant or strongly condition-specific. The 779 condition-invariant components (top grouping of bars in each panel of Figure 3) 780 displayed 75-98% condition-invariant variance (mean 88%). The condition-specific

781 components (*bottom* grouping of bars) displayed 74-99% condition-specific

variance (mean 91%). As discussed above, the largest component – CIS₁ – was
always very close to purely condition-invariant (mean 94%). To put these findings
in context, we analyze below a set of model and surrogate populations.

785

786 A CIS in a network model

787 In addition to the six physiological datasets, we analyzed two model 788 populations. The models were recurrent neural networks trained (Sussillo and 789 Abbott, 2009; Martens and Sutskever, 2011) to generate the empirical patterns of 790 muscle activity for two monkeys (Sussillo et al., 2015). Model populations exhibited 791 a CIS (Figure 4) that closely resembled that of the neural populations. In particular, 792 there was a sudden change in CIS₁ shortly before movement onset that was almost 793 purely condition-invariant, with a small amount of condition-specific structure 794 appearing after that transition. Similar to the neural datasets, CIS_1 was the largest 795 component of the data and was overall very close (99% and 96%) to purely 796 condition-invariant. As with the physiological data, demixing was successful: the 797 model population response could be separated into components that were either 798 nearly condition-invariant (top grouping of bars in each panel of Figure 4) or 799 strongly condition-specific (*bottom* grouping of bars). The model datasets exhibited, 800 respectively, two and four condition-invariant components - similar to the range of 801 two to four seen for the empirical datasets. 802 As will be shown below, a CIS is not a general feature of any large complex

dataset. In the case of the model, the presence of a strong CIS is a consequence of the
network inputs (which include a condition-invariant trigger signal) and of the

805	"strategy," found via optimization, by which the network solves the task. The
806	network was designed such that condition-specific preparatory inputs produce
807	networks states (one per condition) appropriate to seed subsequent movement-
808	period dynamics. Those movement-period dynamics are 'turned on' by a strong
809	triggering input that contains no condition-specific information. Because the
810	network was optimized to achieve smooth dynamics, non-linear interactions are
811	modest, and the triggering input produces a nearly condition-invariant signal in the
812	population response. Whether the neural data exhibit a CIS for similar reasons
813	remains unknown, but the temporal structure of the CIS is remarkably similar for
814	the model and for the data.

816 Controls: comparison of dPCA and PCA

817 One potential concern is that an algorithm such as dPCA might be able to 818 'successfully' demix any high-dimensional data and find a condition-invariant 819 component. As discussed above (and shown formally in the Methods) it is not in 820 general mathematically possible to find a condition-invariant component if one is 821 not truly present. Yet in practice, for a finite number of conditions, random smooth 822 data will likely contain some (probably low variance) signal that may be roughly 823 condition-invariant. Is the empirical CIS larger than expected given this potential 824 concern? Is the CIS found simply because dPCA attempts to find it? 825 One way to address this concern is to compare the performance of dPCA with 826 that of PCA. PCA identifies dimensions that capture the most data variance possible. 827 If dPCA achieved spurious demixing by finding components with the desired

828	structure but little variance, then dPCA should capture much less variance than PCA.
829	In fact, the dimensions found via dPCA captured almost as much variance as the
830	dimensions found via PCA. Specifically, the set of dPCA dimensions captured 96-
831	99% as much variance as the same number of PCA dimensions. Furthermore, the
832	projections onto the first two PCA dimensions showed structure that was naturally
833	very close to condition-invariant. This was a simple consequence of the fact that the
834	first few dimensions found by dPCA and PCA were very similar: the first dimension
835	found via PCA formed an angle of only 5° on average with the first dimension found
836	by dPCA. This was true for both the neural and model data. Thus, dPCA simply
837	allows one to gain an ideal view of condition-invariant structure that is naturally
838	present in the data.
839	

840 Controls: demixing of real and surrogate data

841 Despite the above control, one might remain concerned that perhaps any 842 generic data will tend to contain a condition-invariant component that would 843 become apparent when applying dPCA (or PCA). A related potential concern is that a 844 CIS might be found simply because firing rates are constrained to be positive. We 845 addressed these potential concerns by applying dPCA to various surrogate datasets. 846 First, for each empirical dataset we replaced each neuron's response with a 847 random set of responses that was matched with that neuron for frequency content 848 (Methods). Across 1,000 repetitions for each of the six datasets, dPCA never 849 identified a component with greater than 18% condition-invariant variance. In 850 contrast, the original data contained components with up to 98% condition-

851	invariant variance. This control thus demonstrates that 'random' data is very
852	unlikely to yield a strongly condition-invariant component, even when temporal
853	smoothness is matched to that of the empirical data. However, although the
854	randomized responses (not shown) are frequency-matched to the data, they do not
855	form realistic-looking PSTHs because the phases have been randomized (they are
856	essentially just filtered noise). The second and third controls below, in contrast, do
857	result in surrogate responses that look realistic at the level of PSTHs.
858	For the next control we produced surrogate datasets by removing the CIS
859	from each real neuron's response and then applying a firing-rate threshold at zero
860	(Methods). The goal was to determine whether it was possible to produce an
861	artifactual CIS by constraining firing rates to be positive. None of these surrogate
862	populations exhibited a CIS. For example, for the original dataset JAD1, ${ m CIS_1}$
863	contained >90% condition-invariant variance (Figure 5A,D). The corresponding
864	control dataset (Figure 5B,E) had no CIS components; all components had <50%
865	condition-invariant variance. For each of the six surrogate datasets, the first
866	component found by dPCA had <21% condition-invariant structure (mean 6%), in
867	strong contrast to the data where the first component was always strongly
868	condition-invariant. Thus, if a population response does not contain a CIS, a CIS is
869	not created via the constraint that firing rates must be positive.
870	Finally, we wished to perform a control that could address both of the above
871	concerns while preserving the surface-level features of the original data as closely
872	as possible. To do so, we began with the original neural population (Figure 5A) and
873	added condition-correlated components (Methods). These condition-correlated

874	components had the same temporal profiles as the original condition-invariant
875	components, but the response had a different magnitude for each condition. The
876	surrogate population possessed single-neuron responses (Figure 5C) that looked
877	remarkably similar to the original responses, and exhibited changes in the average
878	across-condition firing rate that were almost identical to the original responses. Yet
879	the surrogate population lacked any CIS (Figure 5F). There were no components
880	with >50% condition-invariant variance for any of the surrogate populations, even
881	though these are prominent in all the empirical datasets.
882	In summary, the presence of a CIS requires very specific population-level
002	atmusture and deep not arise as a simple sense quence of single neuron response

structure and does not arise as a simple consequence of single-neuron response
features. Of course, the presence of a CIS is fully consistent with prior work where
fits to single-neuron firing rates (*e.g.*, directional tuning curves) typically require a
non-directional component. However, a non-directional component would also be
required when fitting the surrogate responses in Figure 5B,C, which contain no CIS.
Thus, the presence of a CIS is consistent with, but not implied by, prior results at the
single-neuron level.

890

891 Relationship of the CIS to reach speed and muscle activity

For the model of Sussillo et al. (2015) the CIS plays an 'internal role': it reflects the arrival of a trigger signal that recruits strong dynamics. Might the CIS in the neural population play a similar internal role? Or might it be more readily explained in terms of external factors: for example, some aspect of kinematics or muscle activity that is invariant across conditions? In particular, tuning for reach

897	speed has been a natural and reasonable way to model non-directional aspects of
898	single-neuron responses (Moran and Schwartz, 1999). However, it is unlikely that
899	the population-level CIS directly reflects reach speed for three reasons. First, the CIS
900	had a rather different profile from reach speed, which was more sharply phasic
901	(lasting as little as \sim 200 ms depending on the condition) and returned to zero as the
902	movement ended (Figure 6, red trace and blue trace have very different temporal
903	profiles). Second, for the task used here reach speed is not condition-invariant: it
904	varies considerably (\sim 2X) across the different distances and reach curvatures.
905	Finally, even the small variations that were present in the CIS across conditions did
906	not parallel variations in reach speed. For monkey J, peak speed and the peak
907	magnitude of CIS ₁ were not significantly correlated (Figure 6A-B; overall r=0.097,
908	p=0.63 for JAD1; r=–0.018, p=0.93 for JAD2). For monkey N, they were anti-
909	correlated (r=–0.502, p=0.008 for NAD, r=–0.364, p<0.001 for NAC). Thus, the CIS
910	and reach speed bore little consistent relation. As a side note, the dissimilarity
911	between the CIS and hand speed does not imply that speed information could not be
912	decoded. Using regression, we could identify a dimension that predicted speed fairly
913	well (JAD1: r=0.663; JAD2: r=0.743; NAD: r=0.833; NAC: r=0.720), consistent with
914	prior results that have found strong correlations between neural responses and
915	reach speed (Moran and Schwartz, 1999). The projection onto this dimension,
916	however, captured much less variance (4-16% as much) than CIS_1 .
917	A related possibility is that the CIS might reflect non-directional aspects of
918	muscle activity. We performed dPCA on EMG recordings made from 9-11 key arm
919	and shoulder muscles. The muscle populations did not exhibit a strong CIS. This can

920	be seen by comparing the first component found via dPCA of the neural data (Figure
921	7A-B) with the first component found via dPCA of the muscle data (Figure 7C-D).
922	The former is nearly condition-invariant while the latter is not. For each component
923	found via dPCA we measured the fraction of variance that was condition-invariant
924	(the 'purity' of condition-invariance) and the variance accounted for relative to the
925	condition-specific components (the 'strength' of that component). Unlike the neural
926	populations (Figure 7E, green) the muscle populations (purple) did not contain
927	condition-invariant components that were both relatively pure and reasonably
928	strong; there are no purple symbols in the upper right corner. Certainly the muscle
929	population response contained some non-directional aspects: there existed
930	components in which there was an overall change that was mostly of the same sign
931	across all conditions, resulting in a proportion of condition-invariant variance as
932	high as 0.5-0.75 (<i>purple symbols</i> at left). This variance is not negligible, as evidenced
933	by the fact that it could be further reduced via the control manipulations that were
934	applied to the neural population in Figure 5 (muscle version not shown). However,
935	the components in question captured relatively modest amounts of variance, and
936	were not nearly as pure as the components found for the neural populations. Thus,
937	the presence of condition-invariant structure in the neural population cannot be
938	secondary to features of the muscle activity: only the neural population contained
939	components that were both close to purely condition-invariant and captured a large
940	percentage of the overall variance.
941	The muscle responses further underscore that the presence or absence of a
942	CIS cannot be inferred from surface-level features. Individual muscle responses

closely resembled neural responses in many ways, and often showed overall rises in
activity across conditions. Thus, fits to muscle activity would benefit from a nondirectional component just as do fits to neural activity. Yet as a population, the
muscles showed only condition-correlated structure, and had little or no CIS.

947

948 Trial-by-trial prediction of RT

949 In all datasets the sudden change in the CIS occurred \sim 150 ms after the go 950 cue and \sim 150 ms before the onset of physical movement (50-100 ms before muscle 951 activity began to change). The change in the CIS might thus be a visuo-spatial 952 response locked to the go cue, consistent with the presence of other visuo-spatial 953 signals in premotor cortex (Crammond and Kalaska, 1994; Shen and Alexander, 954 1997). Alternatively, the change in the CIS could be locked to the transition from 955 preparation to movement, consistent with the model of Sussillo et al. (2015). These 956 two possibilities can be distinguished at the single-trial level. If the CIS reflects the 957 visual go cue, it would have no ability to predict the subsequent variable reaction 958 time (RT) between the go cue and movement onset. If the CIS reflects an internal 959 transition related to movement onset, the CIS should be strongly predictive of RT. 960 We were able to address the trial-by-trial timing of the CIS in three datasets 961 (JAD1, JAD2, and NAD) that were collected specifically for this purpose. These 962 datasets involved simultaneous recordings (116-213 units) from two chronically 963 implanted 96-electrode arrays, allowing single-trial estimates of the CIS. Critically, 964 for these datasets we employed a task structure that allowed examination of trial-965 by-trial RT variability independent of delay-period duration. Over the course of

966	training and most experiments, monkeys experienced a continuous distribution of
967	delay-period durations from 0-1000 ms. It is well known that delay-period duration
968	has an impact on RT (Rosenbaum, 1980; Riehle and Requin, 1989; Churchland et al.,
969	2006b). To study RT variability independent of such effects, for these three datasets
970	we interleaved additional trials with a discrete set of delay durations: 0, 100, 200,
971	and 500 ms (Methods). This allowed us to examine the relationship between neural
972	and RT variability for sets of trials with a matched delay. Below we present data for
973	trials with zero delay and trials with a 'long' (500 ms) delay. Results were very
974	similar when we analyzed the sets of trials with 100 ms and 200 ms delays. For
975	comparison, we repeated these analyses of RT for dataset NAC (which did not
976	contain discrete delays) using all trials with delays longer than 150 ms. All results
977	were very similar across all four datasets.
978	CIS_1 was readily resolved on individual trials (Figure 8 shows data for JAD1
979	with analyses repeated in Figure 9 for NAD). The neural weights defining \mbox{CIS}_1 were
980	found using data from the long-delay trials. Example single-trial projections of the
981	long-delay data are shown in Figures 8B, 9B. These same weights successfully
982	generalized and revealed an essentially identical \mbox{CIS}_1 for the zero-delay trials

983 (Figures 8A, 9A). The latency of the rise time of CIS₁, relative to the go cue, varied

984 from trial to trial. To estimate this latency we measured when CIS₁ crossed a

985 criterion value following the go cue (*gray line* in Figures 8A,B, 9A,B). We selected a

986 50% criterion that is simply a practical and robust criterion for estimating rise time

987 (and should not be interpreted as suggesting a physiological threshold). The

988 estimated rise time strongly predicted the subsequent RT on individual trials

(Figures 8C, 9C) for both long-delay (*blue*) and zero-delay (*red*) trials. This was true
across all analyzed datasets: the average correlation was r = 0.805 for long-delay
trials, and r = 0.827 for zero-delay trials.

992 The CIS strongly predicts RT on a single-trial basis, but does it do so more 993 accurately than other reasonable methods? The projection of the data onto the first 994 principal component of the data (PC_1) predicted RT almost as well as did CIS₁. This 995 was especially true for monkey J (Figure 8D) and somewhat less so for monkey N 996 (Figure 9D) due to a tendency for the projection onto PC_1 to occasionally exceed the 997 criterion early. Given the ability of CIS₁ to predict RT, the similar success of the 998 projection onto PC_1 is unsurprising: as discussed above the dimensions containing 999 PC_1 and CIS_1 were closely aligned. Nonetheless, CIS_1 always predicted RT at least 1000 slightly better than the projection onto PC_1 , despite PC_1 capturing (by construction) 1001 slightly more variance. The average firing rate across all neurons (Figures 8E, 9E) 1002 predicted RT less well than did CIS₁ or the projection onto PC₁. Finally, because RT 1003 was quantified based on measured hand speed, we considered the projection that 1004 best decoded hand speed (found via regression, see above). Decoded hand speed 1005 performed acceptably, but noticeably less well than CIS₁ (Figures 8F, 9F; across all 1006 analyzed datasets, mean r = 0.666 for long-delay, r = 0.674 for zero-delay). Thus, 1007 CIS1 predicted RT better than did other reasonable unsupervised and semi-1008 supervised methods. 1009 Might there exist another signal in the data that could considerably 1010 outperform CIS₁? To address this, we trained a classifier based on logistic regression

1011 (Methods) to distinguish neural data recorded before versus after the sudden

1012	transition in neural activity 150 ms before movement onset. The classifier – which
1013	has the advantage of being optimized using knowledge of RT – predicted RT for
1014	zero-delay trials slightly better than \mbox{CIS}_1 for one dataset (Figure 8G) and slightly
1015	worse for the other (Figure 9G; note that when assessing generalization a
1016	supervised method is not guaranteed to outperform an unsupervised method). We
1017	then asked which dimensions the classifier relied upon. The coefficients of the
1018	classifier (Figures 8H, 9H) revealed that the condition-invariant dimensions (<i>red</i>)
1019	were used more strongly than the condition-specific dimensions (<i>black</i>); 74% of the
1020	classifier was based on the CIS (79% for dataset NAD). Thus, the CIS is a particularly
1021	good predictor of RT, and it is difficult to improve on the performance it provides.
1022	Results were similar for the other two datasets (for dataset JAD2: 69% of classifier
1023	based on CIS; dataset NAC: 82% of classifier based on CIS). Thus, the timing of the
1024	CIS reflects the pending onset of movement, rather than the arrival of a visual signal.
1025	Had the latter been true, the CIS would have had no ability to predict RT when data
1026	are time-locked to the go cue as they were here.
1027	
1028	Neural and model population trajectories

We recently reported that the population response exhibits a strong ~2 Hz oscillatory component during movement, manifested as a rotation of the neural state (Churchland et al., 2012; Churchland and Cunningham, 2014). This oscillatory component is condition-specific: rotation amplitude and phase differ across reach directions, curvatures, speeds and distances. As expected given these prior results, we found that the eight-dimensional condition-specific space identified via dPCA

1035	contained components with strong rotational structure. This conveniently allows
1036	the population structure to be plotted as a neural trajectory in a state space, with
1037	one dimension capturing CIS_1 and two dimensions capturing the plane with the
1038	strongest rotations. The resulting three-dimensional projections captured 47% and
1039	45% (for datasets JAD1 and NAD respectively) of the total variance captured by
1040	dPCA. The three dimensional structure is best viewed in video format (Movies 1-4)
1041	but can also be appreciated via inspection of a set of two-dimensional projections
1042	(Figure 10A,C).
1043	Each trace in Figure 10 plots the neural trajectory for one condition. Traces
1044	are colored gray during baseline, blue during the delay period, then shaded from red
1045	to green across conditions (to aid visualization) during a 'peri-movement period': –
1046	200 to +150 ms relative to movement onset. The overall structure carved out by the
1047	trajectories is roughly conical; neural activity is at the narrow end of the cone
1048	during the delay period, translates along the long axis of the cone just before
1049	movement onset, then exhibits rotations at the wide end of the cone during
1050	movement. Rotations begin with (or just at the end of) the translation and continue
1051	after the translation is over, tracing out a rough disk. The top row plots projections
1052	in which the cone is seen end-on. Middle rows plot projections in which the cone is
1053	seen from the side (the rotational disk being viewed from the edge) and the bottom
1054	row plots a projection that illustrates (as best as possible in two dimensions) the full
1055	three dimensional structure.
1056	Consistent with the large literature demonstrating the existence of
1057	preparatory activity (Tanji and Evarts, 1976; Weinrich and Wise, 1982; Hocherman

1058	and Wise, 1991; Messier and Kalaska, 2000; Churchland et al., 2006a) condition
1059	specificity first develops during the delay period. For example, in the third row, blue
1060	traces spread out over a larger range of states than do gray traces. The subsequent
1061	rotations are also condition-specific. The CIS produces the long axis of the cone: a
1062	large translation of the neural state that is similar for every condition. This
1063	translation is almost perfectly orthogonal to the rotations. Such orthogonality is not
1064	a consequence of the analysis method: the axes are orthogonal by construction, but
1065	that in no way constrains the condition-invariant and condition-specific structure to
1066	be orthogonal. Indeed, demixing (as in Figure 3) is successful precisely because the
1067	condition-invariant and condition-specific response structure is orthogonal, as
1068	revealed directly in Figure 10. The other four datasets showed the same structure.
1069	A striking feature of the response structure is that condition-specific
1070	preparatory activity occurs in one region of state space, while condition-specific
1071	rotational structure during movement occurs in a different region of state space.
1072	Given the above results showing that the CIS predicts reaction time, a natural
1073	question is whether the transition from one region to another relates to the
1074	behavioral transition from preparing to move (while holding a steady posture) to
1075	actually moving. This is indeed how the network model of Sussillo et al. (2015)
1076	functions. Through optimization, that model adopted a strategy where an incoming
1077	'trigger signal' produced a large translation, bringing the population state near a
1078	fixed point where local dynamics were rotational and produced the multiphasic
1079	patterns of muscle activity. That study noted the general similarity between neural
1080	and model data, as revealed via canonical correlation analysis, and the presence of a

change in the overall mean firing rate. That overall change is a natural product of the
CIS, which as documented above is present in both neural (Figure 3) and model
(Figure 4) populations.

1084To further compare, we projected the model population response (Figure108510B,D) as we had the neural population response. Model and neural populations1086exhibited remarkably similar structure when viewed from all angles. Preparatory1087activity developed in one region of space, and the CIS then caused an overall1088translation to another region of space. The rotations of the neural state (at a little1089less than 2 Hz) began during that translation and continued to unfold after the1090translation was complete.

1091

1092 Relative timing of the CIS and rotations

1093 The above results suggest that the CIS may relate to the transition from 1094 relatively stable preparatory dynamics to strongly rotational movement-period 1095 dynamics. This hypothesis makes a specific prediction: the CIS should begin to 1096 change just as, or perhaps shortly before, the onset of rotational dynamics. The 1097 hypothesis would be falsified if the CIS began changing after rotations had already 1098 begun, or if the CIS began changing long before rotations began. To assess relative 1099 timing, we computed the 'speed' of the neural trajectory: the rate of change of the 1100 neural state. This was done separately for the CIS dimensions and the two 1101 dimensions with the strongest rotations (Figure 11). In all cases, for both the model 1102 and data, the peak speed in the CIS dimensions (red) slightly leads the peak speed in

- 1103 the rotational dimensions (*blue*). Thus, both the neural and model data showed the
- 1104 predicted effect.

Discussion

1107	We found that the largest component of the population response in M1/PMd
1108	is consistently condition-invariant: it changes in an almost identical fashion
1109	regardless of reach direction, curvature and distance. More generally, a small set of
1110	condition-invariant components (the condition-invariant signal, CIS) contained half
1111	or more of the population-level variance. Thus, although essentially all individual
1112	motor cortex neurons are 'tuned,' the population response is dominated by the CIS.
1113	This result could not be inferred from, but is consistent with, three prior findings.
1114	First, single neurons often exhibit an overall change in firing rate during movement
1115	(e.g., with most conditions showing an increase in rate, or most conditions showing
1116	a decrease in rate; Fortier et al., 1993; Crammond and Kalaska, 2000). Second, a
1117	strong non-directional ensemble response is present in motor cortex (Moran and
1118	Schwartz, 1999; Churchland and Shenoy, 2007) such that fits are greatly aided by a
1119	non-directional term (Georgopoulos et al., 1986; Moran and Schwartz, 1999). Third,
1120	population summaries often show a rise in activity for both the 'preferred' and 'anti-
1121	preferred' direction around the time of the movement (e.g., Bastian et al., 2003). Yet
1122	importantly, the presence of the CIS could not be directly inferred from the above
1123	findings; they are all equally consistent with structure that is condition-correlated
1124	but far from condition-invariant. For example, the surrogate data in Figure 5 show
1125	all three of the above features yet lack any condition-invariant component. In
1126	summary, the current data and analyses reveal something that could not be inferred
1127	previously: the data contain condition-invariant components that constitute a very
1128	large percentage of the overall structure of the neural responses.

1130 Temporal properties of the CIS

1131 Although one might initially be tempted to view untuned response aspects as 1132 'non-specific,' the CIS exhibits specific temporal structure. For all six neural datasets 1133 and both model datasets, there is a sudden change in the CIS \sim 150 ms before 1134 movement begins. The sudden change can be visualized on individual trials and is 1135 strongly predictive of trial-by-trial reaction time (RT). This strong relationship 1136 reflects the fact that the CIS is tied to movement onset (rather than the appearance 1137 of the go cue) and is large enough to be readily measured on single trials. The CIS 1138 also has a specific population-level structure that was consistent across datasets: 1139 the CIS is manifested as a large translation of the neural state from one region of 1140 neural state space (occupied when the monkey is preparing the movement) to 1141 another region (occupied just before and during overt movement). 1142 While neural responses are often interpreted in terms of their tuning for 1143 external factors, the CIS did not relate to any external factor we examined. The 1144 temporal profile of the CIS did not resemble that of hand speed, nor were condition-1145 to-condition variations in hand speed paralleled by the (very small) condition-to-1146 condition variations in the CIS. This is consistent with the noisiness associated with 1147 decoding pure hand speed in neural prosthetics (Golub et al., 2014), and suggests 1148 that the CIS could be useful for applications seeking to decode a rest vs. move signal 1149 (Velliste et al., 2014). The CIS also did not relate to any measureable aspect of 1150 muscle activity. Although muscles often exhibited overall changes in activity that 1151 were correlated across conditions, the muscle population exhibited little to no CIS.

This again underscores that condition-correlated structure typically does not implya CIS.

1154 Finally, the CIS did not simply reflect the visual arrival of the go cue. As 1155 indicated by the ability to predict RT, the CIS was instead related to the time of 1156 movement onset. Furthermore, the sudden change in the CIS occurred well after 1157 $(\sim 150 \text{ ms})$ the visual go cue. This contrasts with the very rapid ($\sim 60 \text{ ms}$ latency) 1158 response of neurons in M1 and PMd to the onset of the target (Ames et al., 2014; 1159 also see Figure 2A,B,D). We also note that the visual go cue was far from condition-1160 invariant: it involved salient changes in the appearance of the target(s), which had 1161 different visual locations across conditions. Thus, a natural interpretation is that the 1162 CIS relates to the go cue only indirectly, and reflects an internal transition from 1163 preparation to movement that follows the go cue with a long and variable latency. 1164 Still, we cannot rule out that the CIS is a long- and variable-latency visual response 1165 to the go cue, and that the reaction time inherits this variability. Addressing this 1166 possibility will require future experiments in which there is no sensory go cue. 1167 Future experiments will also be required to address whether the timing of 1168 the CIS relates in any way to the last moment when movement can be suppressed. A 1169 recent hypothesis is that reaction times are artificially long not because motor 1170 preparation is slow, but because 'triggering' is conservative (Haith et al., 2016) 1171 leaving time for the movement to be altered or suppressed (Riehle et al., 2006; 1172 Scangos and Stuphorn, 2010; Mirabella et al., 2011). The relatively long \sim 150 ms 1173 time between the go cue and the sudden change in the CIS, relative to the \sim 60 ms 1174 latency of the first 'preparatory' response, is consistent with this hypothesis.

1176 An internal role for the CIS?

1177 The properties of the CIS suggest that it likely relates not to a representation 1178 of external factors, but to some internal process - perhaps the transition from 1179 preparatory neural dynamics to movement-related neural dynamics. It is becoming 1180 increasingly appreciated that many motor cortex signals may not relate cleanly to 1181 external parameters, and are more naturally explained in terms of their internal 1182 roles in computation (Reimer and Hatsopoulos, 2009; Chase and Schwartz, 2011; 1183 Shenoy et al., 2013; Churchland and Cunningham, 2014). The hypothesis that the CIS 1184 might relate to the transition from preparation to movement is further suggested by 1185 the finding that the network model of Sussillo et al. (2015) exhibits a very similar 1186 CIS – and similar overall population structure – to the neural data (Figures 4, 10). In 1187 the case of the model, the CIS is a consequence of the externally delivered trigger 1188 signal, and is in turn the cause of the change in neural dynamics that generates 1189 movement. The original analyses in Sussillo et al. did not focus on or attempt to 1190 isolate a CIS. Yet a condition-invariant translation is clearly present in one key 1191 analysis (Figure 6 of that study) and can be seen to bring the set of network states 1192 close to a fixed point with rotational dynamics. Whether this interpretation is also 1193 correct for the data is of course still uncertain, but the population response 1194 structure is remarkably similar for the model and data. This interpretation is also 1195 supported by both the overall timing of the CIS (it occurs just as, or even slightly 1196 before, the onset of rotational dynamics; Figure 11) and the remarkably strong

1197 correlation between the change in the CIS and the moment when movement begins1198 (Figures 8, 9).

1199 Other, not-necessarily exclusive explanations are also likely. For example, the 1200 CIS could activate, suppress, or alter how the local circuit processes feedback (Cluff 1201 et al., 2015). Similarly, the CIS could relate to an overall modulation of downstream 1202 reflexes or to a disengagement of postural control (Kurtzer et al., 2005; Cluff and 1203 Scott, 2016). After all, the initiation of activity that drives movement must 1204 presumably be accompanied by cessation of the activity that held the hand in place 1205 during the delay period. This is true even of the model of Sussillo et al., which is 1206 involved in a rudimentary form of postural control during the delay period: 1207 producing a constant pattern of muscle activity. For that model, the CIS produces the 1208 transition away from the stable dynamics that maintain constant outputs, and 1209 towards oscillatory dynamics that produce the movement-driving patterns of 1210 muscle activity. 1211 1212 What inputs might produce a CIS? 1213 If motor cortex undergoes a large condition-invariant change prior to 1214 movement, what drives that change? What other area(s) might supply the relevant 1215 input? A number of candidate regions exist, including the basal ganglia (Romo et al., 1216 1992; Hauber, 1998), superior colliculus (Werner, 1993; Philipp and Hoffmann,

1217 2014), parietal cortex (Scherberger and Andersen, 2007; Pesaran et al., 2008),

1218 supplementary motor area (Orgogozo and Larsen, 1979; Eccles, 1982; Romo and

1219 Schultz, 1992), the dentate nucleus of the cerebellum (Meyer-Lohmann et al., 1977),

1220	and, in rodents, secondary motor cortex (Murakami et al., 2014). Moreover, the
1221	origin of the CIS may depend on the task: movements elicited by a strong sensory
1222	cue may be generated differently from self-initiated movement (Kurata and Wise,
1223	1988) or movements that must be made very rapidly (Perfiliev et al., 2010). Along
1224	similar lines, reaction times can be remarkably short when the go cue is provided by
1225	a mechanical perturbation of the limb (Evarts and Tanji, 1976; Pruszynski et al.,
1226	2008). These short reaction times may be related to the finding that some neurons
1227	show a rapid perturbation-driven response that is invariant across perturbation
1228	directions (see Figure 3C of Herter et al., 2009). It is thus vital that future studies
1229	address whether a similar CIS is present in motor cortex across the many possible
1230	sensory cues and internal events that can be responsible for causing movement
1231	initiation.
1232	

1233 Summary

1234 In summary, our results build upon the long-standing observation that 1235 responses are often correlated across conditions at the single-neuron level. Our 1236 results reveal that this general surface-level structure reflects a very particular kind 1237 of underlying structure: a large condition-invariant response component with 1238 timing closely tied to movement onset. This adds to a small but growing list of 1239 'untuned' response aspects that might initially appear incidental, but may in fact 1240 play important computational roles.

1241 **References**

1242	Ames KC, Ryu SI, Shenoy KV (2014) Neural Dynamics of Reaching following
1242	Incorrect or Absent Motor Preparation. Neuron 81:438-451.
1244	Bastian A, Schoner G, Riehle A (2003) Preshaping and continuous evolution of motor
1245	cortical representations during movement preparation. Eur J Neurosci
1246	18:2047-2058.
1247	Brendel W, Romo R, Machens C (2011) Demixed Principal Component Analysis.
1248	Advances in Neural Information Processing Systems 24:1-9.
1249	Chase SM, Schwartz AB (2011) Inference from populations: going beyond models.
1250	Prog Brain Res 192:103-112.
1251	Churchland AK, Kiani R, Shadlen MN (2008) Decision-making with multiple
1252	alternatives. Nat Neurosci 11:693-702.
1253	Churchland MM, Shenoy KV (2007) Temporal complexity and heterogeneity of
1254	single-neuron activity in premotor and motor cortex. J Neurophysiol
1255	97:4235-4257.
1256	Churchland MM, Cunningham JP (2014) A Dynamical Basis Set for Generating
1257	Reaches. Cold Spring Harbor symposia on quantitative biology 79:67-80.
1258	Churchland MM, Santhanam G, Shenoy KV (2006a) Preparatory activity in premotor
1259	and motor cortex reflects the speed of the upcoming reach. J Neurophysiol
1260	96:3130-3146.
1261	Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV (2006b) Neural variability
1262	in premotor cortex provides a signature of motor preparation. J Neurosci
1263	26:3697-3712.
1264	Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, Shenoy KV (2010) Cortical
1265	preparatory activity: representation of movement or first cog in a dynamical
1266	machine? Neuron 68:387-400.
1267	Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI,
1268	Shenoy KV (2012) Neural population dynamics during reaching. Nature
1269	487:51-56.
1270	Cluff T, Scott SH (2016) Online Corrections are Faster Because Movement Initiation
1271	Must Disengage Postural Control. Motor control 20:162-170.
1272	Cluff T, Crevecoeur F, Scott SH (2015) A perspective on multisensory integration
1273	and rapid perturbation responses. Vision Res 110:215-222.
1274	Confais J, Kilavik BE, Ponce-Alvarez A, Riehle A (2012) On the anticipatory precue
1275	activity in motor cortex. J Neurosci 32:15359-15368.
1276	Crammond DJ, Kalaska JF (1994) Modulation of preparatory neuronal activity in
1277	dorsal premotor cortex due to stimulus-response compatibility. J
1278	Neurophysiol 71:1281-1284.
1279	Crammond DJ, Kalaska JF (2000) Prior information in motor and premotor cortex:
1280	activity during the delay period and effect on pre-movement activity. J
1281	Neurophysiol 84:986-1005.
1282	Eccles JC (1982) The initiation of voluntary movements by the supplementary
1283	motor area. Archiv fur Psychiatrie und Nervenkrankheiten 231:423-441.
1284	Erlhagen W, Schoner G (2002) Dynamic field theory of movement preparation.
1285	Psychol Rev 109:545-572.

1286	Evarts EV (1968) Relation of pyramidal tract activity to force exerted during
1287	voluntary movement. Journal of Neurophysiology 31:14-27.
1288	Evarts EV, Tanji J (1976) Reflex and intended responses in motor cortex pyramidal
1289	tract neurons of monkey. J Neurophysiol 39:1069-1080.
1290	Fortier PA, Smith AM, Kalaska JF (1993) Comparison of cerebellar and motor cortex
1291	activity during reaching: directional tuning and response variability. J
1292	Neurophysiol 69:1136-1149.
1293	Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of
1294	movement direction. Science 233:1416-1419.
1295	Godschalk M, Lemon RN, Kuypers HG, van der Steen J (1985) The involvement of
1296	monkey premotor cortex neurones in preparation of visually cued arm
1297	movements. Behav Brain Res 18:143-157.
1298	Golub MD, Yu BM, Schwartz AB, Chase SM (2014) Motor cortical control of
1299	movement speed with implications for brain-machine interface control. J
1300	Neurophysiol 112:411-429.
1301	Haith AM, Pakpoor J, Krakauer JW (2016) Independence of Movement Preparation
1302	and Movement Initiation. J Neurosci 36:3007-3015.
1303	Hanks TD, Mazurek ME, Kiani R, Hopp E, Shadlen MN (2011) Elapsed decision time
1304	affects the weighting of prior probability in a perceptual decision task. J
1305	Neurosci 31:6339-6352.
1306	Hauber W (1998) Involvement of basal ganglia transmitter systems in movement
1307	initiation. Prog Neurobiol 56:507-540.
1308	Hennequin G, Vogels TP, Gerstner W (2014) Optimal control of transient dynamics
1309	in balanced networks supports generation of complex movements. Neuron
1310	82:1394-1406.
1311	Herter TM, Korbel T, Scott SH (2009) Comparison of neural responses in primary
1312	motor cortex to transient and continuous loads during posture. Journal of
1313	Neurophysiology 101:150-163.
1314	Hocherman S, Wise SP (1991) Effects of hand movement path on motor cortical
1315	activity in awake, behaving rhesus monkeys. Exp Brain Res 83:285-302.
1316	Johnson MT, Coltz JD, Hagen MC, Ebner TJ (1999) Visuomotor processing as
1317	reflected in the directional discharge of premotor and primary motor cortex
1318	neurons. J Neurophysiol 81:875-894.
1319	Kaufman MT, Churchland MM, Shenoy KV (2013) The roles of monkey M1 neuron
1320	classes in movement preparation and execution. J Neurophysiol 110:817-825.
1321	Kaufman MT, Churchland MM, Santhanam G, Yu BM, Afshar A, Ryu SI, Shenoy KV
1322	(2010) Roles of monkey premotor neuron classes in movement preparation
1323	and execution. J Neurophysiol 104:799-810.
1324	Kobak D, Brendel W, Constantinidis C, Feierstein CE, Kepecs A, Mainen ZF, Qi XL,
1325	Romo R, Uchida N, Machens CK (2016) Demixed principal component
1326	analysis of neural population data. eLife 5.
1327	Kurata K (1989) Distribution of neurons with set- and movement-related activity
1328	before hand and foot movements in the premotor cortex of rhesus monkeys.
1329	Exp Brain Res 77:245-256.

1330 1331	Kurata K, Wise SP (1988) Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed			
1332	motor tasks. Exp Brain Res 72:237-248.			
1333	Kurtzer I, Herter TM, Scott SH (2005) Random change in cortical load			
1334	representation suggests distinct control of posture and movement. Nat			
1335	Neurosci 8:498-504.			
1336	Machens CK, Romo R, Brody CD (2010) Functional, but not anatomical, separation of			
1337	"what" and "when" in prefrontal cortex. J Neurosci 30:350-360.			
1338	Martens J, Sutskever I (2011) Learning recurrent neural networks with hessian-free			
1339	optimization. In: Proceedings of the 28th International Conference on			
1340	Machine Learning (ICML-11), pp 1033-1040.			
1341	Messier J, Kalaska JF (2000) Covariation of primate dorsal premotor cell activity			
1342	with direction and amplitude during a memorized-delay reaching task. J			
1343	Neurophysiol 84:152-165.			
1344	Meyer-Lohmann J, Hore J, Brooks VB (1977) Cerebellar participation in generation			
1345	of prompt arm movements. J Neurophysiol 40:1038-1050.			
1346	Mirabella G, Pani P, Ferraina S (2011) Neural correlates of cognitive control of			
1347	reaching movements in the dorsal premotor cortex of rhesus monkeys. J			
1348	Neurophysiol 106:1454-1466.			
1349	Moran DW, Schwartz AB (1999) Motor cortical representation of speed and			
1350	direction during reaching. J Neurophysiol 82:2676-2692.			
1351	Murakami M, Mainen ZF (2015) Preparing and selecting actions with neural			
1352	populations: toward cortical circuit mechanisms. Curr Opin Neurobiol			
1353	33C:40-46.			
1354	Murakami M, Vicente MI, Costa GM, Mainen ZF (2014) Neural antecedents of self-			
1355	initiated actions in secondary motor cortex. Nat Neurosci 17:1574-1582.			
1356	Orgogozo JM, Larsen B (1979) Activation of the supplementary motor area during			
1357	voluntary movement in man suggests it works as a supramotor area. Science			
1358	206:847-850.			
1359	Perfiliev S, Isa T, Johnels B, Steg G, Wessberg J (2010) Reflexive limb selection and			
1360	control of reach direction to moving targets in cats, monkeys, and humans. J			
1361	Neurophysiol 104:2423-2432.			
1362	Pesaran B, Nelson MJ, Andersen RA (2008) Free choice activates a decision circuit			
1363	between frontal and parietal cortex. Nature 453:406-409.			
1364	Philipp R, Hoffmann K-P (2014) Arm Movements Induced by Electrical			
1365	Microstimulation in the Superior Colliculus of the Macaque Monkey. The			
1366	Journal of Neuroscience 34:3350-3363.			
1367	Pruszynski JA, Kurtzer I, Scott SH (2008) Rapid motor responses are appropriately			
1368	tuned to the metrics of a visuospatial task. J Neurophysiol 100:224-238.			
1369	Reimer J, Hatsopoulos NG (2009) The problem of parametric neural coding in the			
1370	motor system. Adv Exp Med Biol 629:243-259.			
1371	Riehle A, Requin J (1989) Monkey primary motor and premotor cortex: single-cell			
1372	activity related to prior information about direction and extent of an			
1373	intended movement. J Neurophysiol 61:534-549.			

1374 1375	Riehle A, MacKay WA, Requin J (1994) Are extent and force independent movement parameters? Preparation- and movement-related neuronal activity in the
1376	monkey cortex. Exp Brain Res 99:56-74.
1377	Riehle A, Grammont F, MacKay WA (2006) Cancellation of a planned movement in
1378	monkey motor cortex. Neuroreport 17:281-285.
1379	Romo R, Schultz W (1987) Neuronal activity preceding self-initiated or externally
1380	timed arm movements in area 6 of monkey cortex. Exp Brain Res 67:656-662.
1381	Romo R, Schultz W (1992) Role of primate basal ganglia and frontal cortex in the
1382	internal generation of movements. III. Neuronal activity in the
1383	supplementary motor area. Exp Brain Res 91:396-407.
1384	Romo R, Scarnati E, Schultz W (1992) Role of primate basal ganglia and frontal
1385	cortex in the internal generation of movements. II. Movement-related activity
1386	in the anterior striatum. Exp Brain Res 91:385-395.
1387	Rosenbaum DA (1980) Human movement initiation: specification of arm, direction,
1388	and extent. J Exp Psychol Gen 109:444-474.
1389	Scangos KW, Stuphorn V (2010) Medial frontal cortex motivates but does not
1390	control movement initiation in the countermanding task. J Neurosci 30:1968-
1391	1982.
1392	Scherberger H, Andersen RA (2007) Target selection signals for arm reaching in the
1393	posterior parietal cortex. J Neurosci 27:2001-2012.
1394	Schurger A, Sitt JD, Dehaene S (2012) An accumulator model for spontaneous neural
1395	activity prior to self-initiated movement. Proc Natl Acad Sci U S A 109:E2904-
1396	2913.
1397	Shen L, Alexander GE (1997) Preferential representation of instructed target
1398	location versus limb trajectory in dorsal premotor area. J Neurophysiol
1399	77:1195-1212.
1400	Shenoy KV, Sahani M, Churchland MM (2013) Cortical control of arm movements: a
1401	dynamical systems perspective. Annu Rev Neurosci 36:337-359.
1402	Snyder LH, Batista AP, Andersen RA (1997) Coding of intention in the posterior
1403 1404	parietal cortex. Nature 386:167-170. Sussillo D, Abbott LF (2009) Generating Coherent Patterns of Activity from Chaotic
1404 1405	Neural Networks. Neuron 63:544-557.
1405	Sussillo D, Churchland MM, Kaufman MT, Shenoy KV (2015) A neural network that
1400	finds a naturalistic solution for the production of muscle activity. Nat
1408	Neurosci 18:1025-1033.
1409	Tanji J, Evarts EV (1976) Anticipatory activity of motor cortex neurons in relation to
1410	direction of an intended movement. J Neurophysiol 39:1062-1068.
1411	Thaler DE, Rolls ET, Passingham RE (1988) Neuronal activity of the supplementary
1412	motor area (SMA) during internally and externally triggered wrist
1413	movements. Neurosci Lett 93:264-269.
1414	Thura D, Cisek P (2014) Deliberation and Commitment in the Premotor and Primary
1415	Motor Cortex during Dynamic Decision Making. Neuron 81:1401-1416.
1416	Thura D, Beauregard-Racine J, Fradet CW, Cisek P (2012) Decision making by
1417	urgency gating: theory and experimental support. J Neurophysiol 108:2912-
1418	2930.

1419 1420 1421	Velliste M, Kennedy SD, Schwartz AB, Whitford AS, Sohn JW, McMorland AJ (2014) Motor cortical correlates of arm resting in the context of a reaching task and implications for prosthetic control. J Neurosci 34:6011-6022.
1422	Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2:1329-
1423	1345.
1424	Weinrich M, Wise SP, Mauritz KH (1984) A neurophysiological study of the
1425	premotor cortex in the rhesus monkey. Brain 107 (Pt 2):385-414.
1426	Werner W (1993) Neurons in the primate superior colliculus are active before and
1427	during arm movements to visual targets. Eur J Neurosci 5:335-340.
1428	Wise SP, Weinrich M, Mauritz KH (1986) Movement-related activity in the premotor
1429	cortex of rhesus macaques. Prog Brain Res 64:117-131.
1430	Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV, Sahani M (2009) Gaussian-
1431	process factor analysis for low-dimensional single-trial analysis of neural
1432	population activity. J Neurophysiol 102:614-635.
1433	
1434	

1435 Figure legends

1436

1437 Figure 1. Task and basic neural responses. A-B. Illustration of the maze task. 1438 Monkeys executed reaches that avoided any intervening barriers. The task was 1439 performed with a cursor presented just above the monkey's hand. White trace 1440 shows the path of the cursor on one trial. Target, target onset; Go, Go cue; Move, 1441 movement onset. C. PSTH for an example neuron for four (of 27) conditions. Each trace shows the trial-averaged firing rate for one reach condition (one unique maze) 1442 1443 over time. Averaging was performed twice: locked to target onset (left traces) and 1444 movement onset (right traces). Only trials with a 500 ms delay were included. Inset: 1445 reach trajectories, colored the same as their corresponding neural traces. This 1446 neuron illustrates the transition between stable preparatory activity and rapidly 1447 changing movement-related activity. Scale bars indicate 200 ms and 10 spikes/s in 1448 panels B and C. 1449 1450 Figure 2. Responses of four example neurons. Format is as in Figure 1C, but 1451 responses are shown for all 27 conditions. A. Unit with complex responses. This 1452 neuron showed both an overall increase in firing rate across conditions and a strong 1453 oscillatory component that was condition-specific (unit JAD1-98, same as in Figure

1454 1C). Scale bars same as Figure 1C. Inset in upper left shows reach trajectories,

1455 colored the same as their corresponding neural traces. **B**. Another unit with complex

1456 condition-specific responses, recorded from the other monkey (unit NAD-165). C.

1457 Unit with responses that were strongly condition-correlated (unit JAD1-70). D. Unit

1458 where the initial response was condition-correlated: a decline across all conditions.

1459Later activity is more condition-specific (unit JAD1-114).

1460

1461	Figure 3. Performance of demixing on the empirical data. A. Bars show the relative
1462	variance captured by each dPCA component for dataset JAD1. Each bar's horizontal
1463	extent indicates the total variance captured by that component. The red portion
1464	indicates condition-invariant variance, while the blue portion indicates condition-
1465	specific variance. Components are grouped according to whether they were overall
1466	condition-invariant (<i>top group</i> , >50% condition-invariant variance) or condition-
1467	specific (<i>bottom group</i> , >50% condition-specific variance). Traces show the
1468	projection onto the first dimension found by dPCA (CIS_1) versus time. Each trace
1469	corresponds to one condition. <i>Target</i> , target onset; <i>Move</i> , movement onset. Scale bar
1470	indicates 200 ms. B-F . Same as A, for the remaining datasets.
1471	
1471 1472	Figure 4 . Same as Figure 3, but for the recurrent neural network models.
	Figure 4 . Same as Figure 3, but for the recurrent neural network models.
1472	Figure 4. Same as Figure 3, but for the recurrent neural network models. Figure 5. Demixing performance for one empirical dataset and two surrogate
1472 1473	
1472 1473 1474	Figure 5. Demixing performance for one empirical dataset and two surrogate
1472 1473 1474 1475	Figure 5 . Demixing performance for one empirical dataset and two surrogate control datasets. A . PSTHs of three example units from dataset JAD1. Scale bars
1472 1473 1474 1475 1476	Figure 5 . Demixing performance for one empirical dataset and two surrogate control datasets. A . PSTHs of three example units from dataset JAD1. Scale bars indicate 200 ms and 10 spikes/s. B . PSTHs for a surrogate dataset where we
1472 1473 1474 1475 1476 1477	Figure 5 . Demixing performance for one empirical dataset and two surrogate control datasets. A . PSTHs of three example units from dataset JAD1. Scale bars indicate 200 ms and 10 spikes/s. B . PSTHs for a surrogate dataset where we projected onto the condition-specific dimensions, then rectified so that all firing

1481	PSTHs for a surrogate dataset where we added condition-correlated components.
1482	The condition-correlated components had the same temporal profile as the
1483	projections onto the condition-invariant dimensions found by dPCA but had a
1484	different amplitude for each condition (Methods). This surrogate dataset explores
1485	whether condition-correlated structure at the single-neuron level is sufficient to
1486	yield condition-invariant components at the population level. The three PSTHs
1487	correspond to the same units shown in A, after modification. D-F . Quantification of
1488	the CIS as in Figure 3. Panels correspond to examples above. Panel D is reproduced
1489	from Figure 3A for comparison.
1490	

1491 Figure 6. Comparison of the CIS and hand speed. Hand speed (blue) and the first 1492 component of the CIS (red) are shown for four reach conditions. For hand speed, 1493 light traces show all trials, heavy trace shows mean over trials. CIS₁ is the mean over 1494 trials. Insets show the maze for that condition and a prototypical reach path. A. A 1495 straight reach with a fast speed profile. Maze ID25. B. A straight reach with a slow 1496 speed profile. Maze ID7. C. A curved reach with a long speed profile. Maze ID5. D. A 1497 curved reach with an unusual speed profile. Maze ID14. The CIS was similar across 1498 all four examples, despite differences in the speed profile. Dataset NAD. 1499 1500 Figure 7. Comparison of dPCA applied to neural and muscle populations. A-B. 1501 Demixing performance (bars) and the projection onto the first dimension found by 1502 dPCA (CIS₁) for neural datasets JAD1 and NAD. Each trace corresponds to one

1503 condition. These panels are reproduced from Figure 3A-B for comparison with the

1504	corresponding analysis of EMG. Dots indicate target onset and movement onset. The
1505	scale bar indicates 200 ms. C-D . Similar analysis as in A and B, but for the muscle
1506	populations recorded for monkeys J and N. Muscle activity was recorded for the
1507	same sets of conditions as for the neural data in A and B. E. To compare the
1508	prevalence of condition-invariant structure in the neural and muscle populations,
1509	we focused on nominally 'condition-invariant' components with >50% condition-
1510	invariant variance. There were many such components for the neural populations
1511	(green) and 1-2 such components for each of the muscle populations (purple). For
1512	each such component two measurements were taken: the fraction of the
1513	component's variance that was condition-invariant (vertical axis) and the total
1514	variance captured. The latter was expressed in normalized terms: the variance
1515	captured by the k^{th} nominally "condition-invariant" component divided by the total
1516	variance captured by the k^{th} "condition-specific" component (<i>horizontal axis</i>). Only
1517	the neural datasets contained components that were both strongly condition-
1518	invariant (high on the vertical axis) and that captured relatively large amounts of
1519	variance (to the <i>right</i> on the horizontal axis). Heaviest symbols correspond to the
1520	first dimension found by dPCA for each dataset; higher-numbered dimensions are
1521	plotted as progressively lighter symbols. Dashed gray line highlights variance ratio
1522	of unity. <i>Circles</i> , monkey J datasets; <i>squares</i> , monkey N datasets.
1523	
1524	Figure 8. Predicting reaction time (RT) using projections of the data for dataset

1525JAD1. A. Each trace plots neural activity over time on a single zero-delay trial. Fifty

1526 trials selected randomly at intervals throughout the day are shown. Projections are

1527	$\mbox{CIS}_1.$ Black trace plots the median across all trials. B . Same as in A but for trials with
1528	a 500 ms delay period ("long delay"). The criterion value (<i>gray line</i>) was chosen
1529	using long-delay trials. The same value was used for zero-delay trials (A). C-G .
1530	Correlation of behavioral RT with the time when the neural criterion value was
1531	crossed. For each panel, data are shown for both long-delay trials (blue) and zero-
1532	delay trials (<i>red</i>). Lines show linear regressions; dashed lines show 95% confidence
1533	bounds of the fit. Each panel in C-G gives the correlation for a different linear
1534	projection of the population response: CIS_1 (C), the projection onto the first PC (D),
1535	the mean over all neurons (E), the projection onto the dimension that best
1536	reconstructed speed according to a linear regression (F), and the projection onto the
1537	axis found by a logistic regression classifier (G). Trials where the neural data did not
1538	cross the criterion value were excluded. H . Coefficient influence for the classifier.
1539	Coefficients for condition-invariant dimensions shown in red, condition-specific
1540	dimensions in <i>black</i> .
1541	
1542	Figure 9. Predicting reaction time using projections of the data for dataset NAD.
1543	Same format as Figure 8. Regarding panel H, note that for this dataset there were
1544	four CIS components.
1545	
1546	Figure 10. Various projections that capture CIS_1 and rotations of the neural state
1547	during movement. Data were first projected onto three dimensions: the dimension

- $1548 \qquad \text{that yielded CIS}_1 \text{ and two condition-specific dimensions that captured strong}$
- 1549 rotational structure (*Methods*). Each panel plots a different view of the data

1550	projected onto those three dimensions. A . Four different views of the 3D projection
1551	for dataset JAD1. "Baseline" activity (before target onset) plotted in gray,
1552	preparatory activity plotted in blue, and activity after the Go cue plotted in green
1553	and red (colors chosen arbitrarily for each condition). B . Same for the neural
1554	network model trained to produce EMG recorded from monkey J. C. Same for
1555	dataset NAD. D . Same for the neural network model trained to produce EMG
1556	recorded from monkey N.
1557	
1558	Figure 11. Comparison of the temporal profile of the trajectory of the CIS and the
1559	temporal profile of the condition-specific rotational patterns. The vertical axis plots
1560	'neural speed': the rate of change of the neural state in the condition-invariant
1561	dimensions (<i>red</i>) and in the first jPCA plane (<i>blue</i>), which captures the strongest

1562 rotations. The rate of change was computed separately for each condition, then

averaged across conditions. For each dataset that average was normalized by its

1564 maximum. For statistical power, results for the neural data were averaged across

1565 the three datasets for each monkey. Move, movement onset. Note that because the

1566 data have been smoothed and differentiated, the first moment when the state begins

1567 to change is shifted leftwards: the CIS appears to begin changing >200 ms before

1568 movement onset, when ~150 is a more accurate estimate (see Figure 3). Since both

1569 the condition-invariant dimensions and the jPC dimensions are processed in the

1570 same way, however, their relative timing can be compared.

1571

Manuscript	
Accepted	
eNeuro	

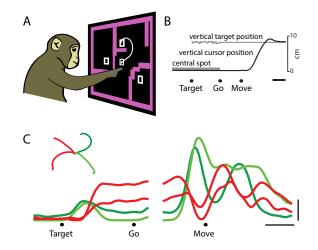
1572 Movie legends

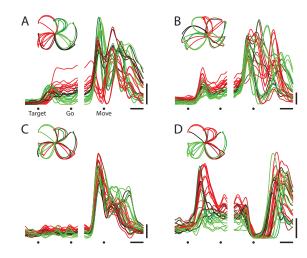
1573

1574	Movie 1. Three-dimensional view of Figure 10A (dataset JAD1), rotating to display
1575	structure.
1576	
1577	Movie 2. Three-dimensional view of Figure 10C (dataset NAD), rotating to display
1578	structure.
1579	

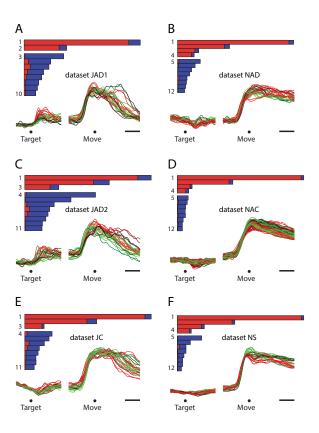
- **Movie 3**. Three-dimensional view of Figure 10A bottom panel (dataset JAD1), with
- events unfolding over time. Video starts 300 ms before target onset, and ends 400
- 1582 ms after movement onset.
- 1583
- 1584 Movie 4. Three-dimensional view of Figure 10C bottom panel (dataset NAD), with
- 1585 events unfolding over time. Video starts 300 ms before target onset, and ends 600
- 1586 ms after movement onset.

eNeuro Accepted Manuscript





eNeuro Accepted Manuscript



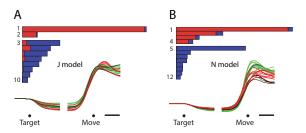
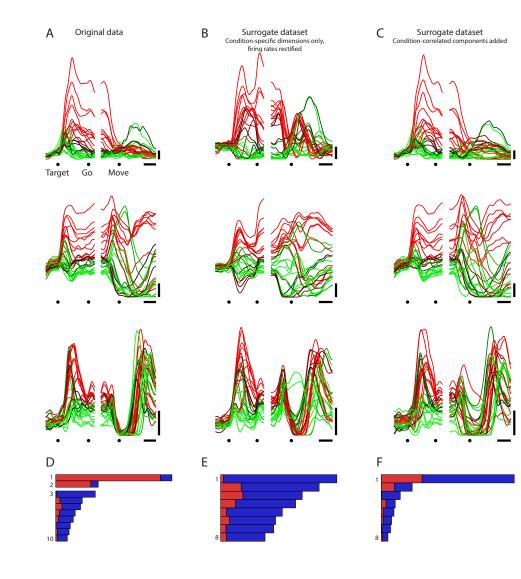


Figure 5



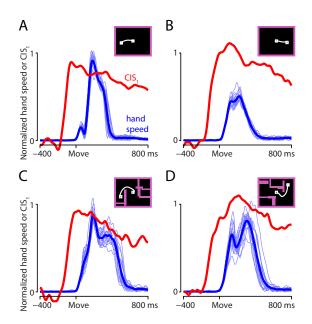
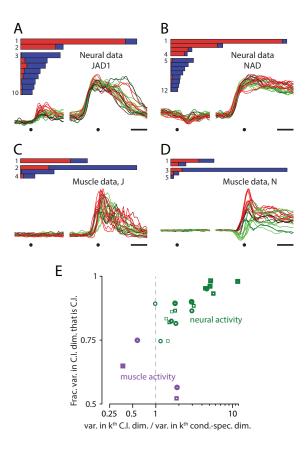


Figure 6

eNeuro Accepted Manuscript



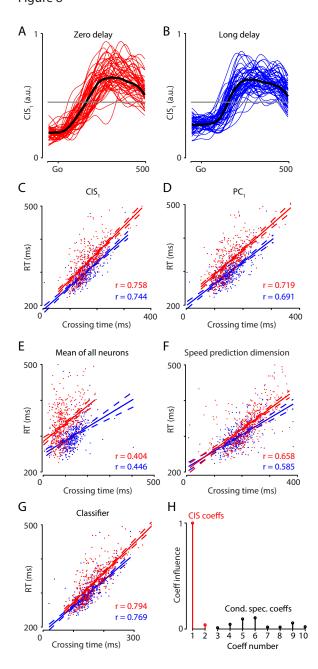
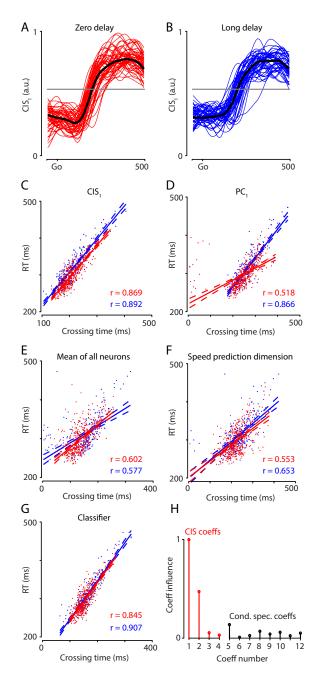


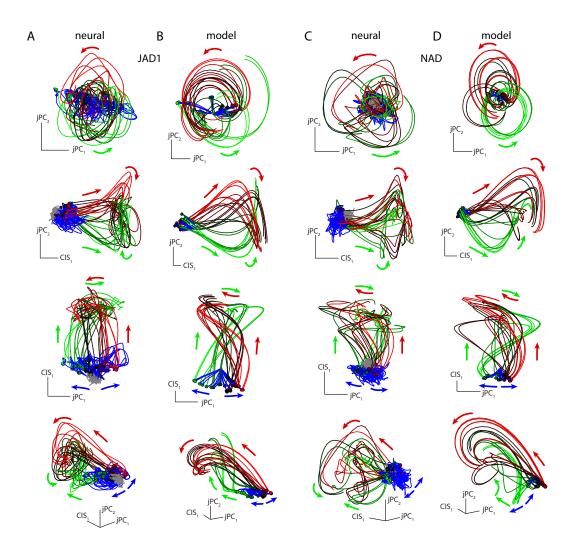
Figure 8

eNeuro Accepted Manuscript



eNeuro Accepted Manuscript

Figure 10



eNeuro Accepted Manuscript



