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ABSTRACT 25 
Brain imaging studies have found distinct spatial and temporal patterns of response to 26 
different object categories across the brain.  However, the extent to which these 27 
categorical patterns of response reflect higher-level semantic or lower-level visual 28 
properties of the stimulus remains unclear.  To address this question, we measured 29 
patterns of EEG response to intact and scrambled images in the human brain.  Our 30 
rationale for using scrambled images is that they have many of the visual properties found 31 
in intact images, but do not convey any semantic information.  Images from different 32 
object categories (bottle, face, house) were briefly presented (400 msec) in an event-33 
related design.  A multivariate pattern analysis (MVPA) revealed categorical patterns of 34 
response to intact images emerged ~80-100 msec after stimulus onset and were still 35 
evident when the stimulus was no longer present (~800 msec).  Next, we measured 36 
patterns of response to scrambled images.  Categorical patterns of response to scrambled 37 
images also emerged ~80-100 msec after stimulus onset.  However, in contrast to the 38 
intact images, distinct patterns of response to scrambled images were mostly evident 39 
while the stimulus was present (~400 msec).  Moreover, scrambled images were only able 40 
to account for all the variance in the intact images at early stages of processing.  This 41 
direct manipulation of visual and semantic content provides new insights into the 42 
temporal dynamics of object perception and the extent to which different stages of 43 
processing are dependent on lower-level or higher-level properties of the image. 44 
  45 
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Significance Statement 46 
Previous studies have shown distinct spatial and temporal patterns of response to different 47 
object categories. However, the extent to which these patterns are based on lower-level 48 
visual properties compared to high-level semantic information remains unclear. To address 49 
this question, we used scrambled objects that preserve visual properties, but do not convey 50 
any semantic information. We found distinct patterns of response to intact images from 51 
different object categories. Patterns of response to scrambled images from different 52 
categories emerge in a similar way to intact images but do not persist for the same duration. 53 
These findings demonstrate the relative importance of both lower-level visual and higher-54 
level semantic properties in the neural response to objects. 55 
 56   57 
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INTRODUCTION 58 
A variety of evidence has shown that spatially distinct regions of the ventral occipito-59 
temporal cortex are selective for different categories of objects (Kanwisher, 2010). Lesions 60 
to this region often result in difficulties in recognizing and naming specific object categories 61 
(Farah, 1990; McNeil and Warrington, 1993; Moscovitch et al., 1997).  The notion that 62 
discrete areas of the temporal lobe are specialized for different categories of objects 63 
receives support from functional imaging studies that show that some regions in the 64 
temporal lobe are more responsive to faces than to other categories (Allison et al., 1994; 65 
Kanwisher et al., 1997). Other imaging studies have found similar category-specific 66 
responses for inanimate objects (Malach et al., 1995), scenes (Epstein and Kanwisher, 1998) 67 
and human body parts (Downing et al., 2001). Although specialized regions have only been 68 
reported for a limited number of objects, the spatial pattern of response across the entire 69 
ventral stream can distinguish a wider range of categories (Haxby et al., 2001; Kriegeskorte 70 
et al., 2008; Connolly et al., 2012; Clarke and Tyler, 2014; Rice et al., 2014). 71 

A full understanding of object perception requires the ability to discriminate object-72 
specific brain states with both spatial and temporal resolution.  Recently, reliable patterns 73 
of neural response to images from different object categories have been shown with MEG 74 
and EEG (Carlson et al., 2011, 2013; Cichy et al., 2014; Cauchoix et al., 2014; Clarke et al., 75 
2015).  These techniques complement previous MRI studies by providing temporal 76 
information about when these categorical patterns of response emerge and how long they 77 
are sustained. Temporal properties are important, as they place constraints on models of 78 
object recognition (Mur and Kriegeskorte, 2014).  Such models suggest a dynamic process in 79 
which there is a transformation from a visual representation (based on the statistics of the 80 
image) to a semantic representation (reflecting the meaning of the object; Clarke and Tyler, 81 
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2015).  It is thought that the initial component of the response reflects fast feed-forward 82 
processing that is related to visual properties, whereas later patterns reflect recurrent 83 
processing that might be related to semantic properties of the stimulus (Lamme and 84 
Roelfsema, 2000; Hochstein and Ahissar, 2002; Bar et al., 2006; DiCarlo and Cox, 2007).  85 

The aim of this study was to investigate the relative importance of visual and 86 
semantic properties of objects in the emergence of categorical patterns of neural response.  87 
However, a fundamental problem in this endeavour is that the visual and semantic 88 
properties of objects often covary, making it difficult to resolve the relative contribution of 89 
these sources of information to patterns of neural response. So, it is not clear from many 90 
previous studies whether the distinct patterns of response to different object categories 91 
reflect visual or semantic properties (Carlson et al., 2011, 2013; Cichy et al., 2014; Cauchoix 92 
et al., 2014).  In a recent MEG study, Clarke and colleagues (2015) addressed this issue by 93 
showing that the categorization of objects based on the neural response could be predicted 94 
by the visual properties of the image.  However, they also found that accuracy could 95 
enhanced by including semantic properties, particularly at later stages of processing.  96 
Although this suggests that visual and semantic properties are both important for the neural 97 
representation of objects, this approach does not able to show a causal link. 98 

To address this issue, we measured patterns of EEG response to intact images from 99 
different object categories, as well as versions of these images that had been phase-100 
scrambled on a global or local basis.  Our rationale for using scrambled images is that they 101 
have many of the visual properties found in intact images, but they do not convey any 102 
semantic information (Coggan et al., 2016).  This allows us to determine the extent to which 103 
the preserved visual properties contribute to the neural representation of objects in the 104 
absence of any semantic content.  The comparison between the locally-scrambled and 105 
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globally-scrambled images also allows us to explore the importance of spatial image 106 
properties, which are preserved in the locally-scrambled condition.  In a recent fMRI study, 107 
we found similar spatial patterns of response to intact and scrambled images across the 108 
ventral visual pathway (Coggan et al., 2016).  This study demonstrated the importance of 109 
low-level visual properties in the patterns of response in the ventral visual pathway.  By 110 
comparing the similarity of the responses to intact and scrambled images using EEG, we aim 111 
to determine the relative contribution of visual properties to categorical patterns of 112 
response at different time-points. 113 
  114 
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MATERIALS AND METHODS 115 
Stimuli 116 
105 images of three object categories (face, bottle, house) were taken from an object image 117 
stimulus set (Rice et al., 2014).  All images were gray-scale, superimposed on a mid-gray 118 
background, and had a resolution of 400x400 pixels (Figure 1).  For each of these original 119 
images, two different phase-scrambled versions were generated.  A global-scrambling 120 
method involved a typical Fourier-scramble, i.e. keeping the global power of each two-121 
dimensional frequency component constant while randomizing the phase of the 122 
components.  A local-scrambling method involved windowing the original image into an 8x8 123 
grid and applying the phase-scramble to each 50x50 pixel window independently.  In a 124 
previous study, we showed that these scrambling effectively removes any semantic or 125 
categorical content in the images (Coggan et al., 2016).  Stimuli were presented using a 126 
gamma corrected VIEWPixx display (VPixx Technologies Inc., Quebec, Canada) with a 127 
resolution of 1920x1200 pixels and a refresh rate of 120Hz.  Images were viewed at a 128 
distance of approximately 57cm and subtended a retinal angle of 8°.  129 
 130 
Participants 131 
Twenty participants (3 males, mean age = 20.6, SD = 2.6 years) with normal or corrected-to-132 
normal vision took part in the experiment.  Participants gave written, informed consent.  133 
The study was approved by the University of York Department of Psychology Ethics 134 
Committee.  The data for one participant (female) was removed from the analysis due to 135 
partial data loss.  136 
 137 
 138 
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Design and Procedure 139 
The experiment involved 3 runs:  The first run contained globally scrambled images, the 140 
second run contained locally scrambled images and the third run contained intact images.  141 
Therefore, participants were unaware of the object categories in our stimulus set prior to 142 
viewing the scrambled images. Each run contained 35 blocks.  There were 10 trials in each 143 
block.  In each trial, an image from one of the three object categories was presented for 144 
400ms.  There was a jittered inter-trial interval that had a mean duration of 1 second and a 145 
standard deviation of 200ms.  The duration of the inter-block interval was 3 seconds.  146 
Participants fixated a cross in the center of the screen between trials.  To maintain attention, 147 
participants were instructed to click a mouse whenever a red dot appeared on an image.  148 
One image in each block contained a red dot.  Self-timed rests were taken between runs.   149 
 150 
EEG Recording 151 
EEG waveforms were recorded from 64 scalp locations laid out according to the 10/20 152 
system in a WaveGuard cap (ANT Neuro, Netherlands).  Data from each electrode was 153 
referenced against a whole-head average.  We also monitored blinks through bipolar 154 
electrooculogram electrodes placed above and below the left eye.  Signals were amplified 155 
and digitised at 1000Hz and recorded using the ANT Neuroscan software (ANT Neuro, 156 
Netherlands).  Stimulus-contingent triggers were sent from the VIEWPixx device to the EEG 157 
amplifier using a 25-pin parallel port with microsecond-accurate synchronisation to the 158 
display refresh sequence.  The PsychToolbox routines (Brainard, 1997; Pelli, 1997) running in 159 
Matlab were used to control the display hardware and send triggers. 160 
 161 
EEG Pre-processing 162 
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The EEG traces from each run were concatenated and band-pass filtered between 0.01-163 
30Hz prior to epoching.  Blink artefacts were corrected using independent components 164 
analysis (ICA).  This involved running ICA across data from all electrodes including the vEOG, 165 
and manually selecting the component(s) that captured blink artefacts.  These components 166 
were then subtracted from the EEG trace at each electrode site according to their weighting.  167 
This approach meant that no trials were rejected. The EEG trace was then divided into 168 
epochs ranging from 200ms before stimulus onset to 800ms after stimulus onset.  All trials 169 
containing a red dot were removed prior to further analysis. 170 
 171 
EEG MVPA Analysis 172 
All data processing was performed in Matlab using custom scripts.  To measure the spatial 173 
patterns of EEG response for each participant, trials were collapsed into mean ERPs for odd 174 
and even trials for each condition and at each electrode site.  These condition-averaged 175 
ERPs were then baselined by subtracting the mean amplitude during the 200ms prior to 176 
stimulus onset (across both odd and even trials) from the response at each time-point.  177 
From these ERPs, a 64-value vector representing the spatial pattern of response across all 178 
electrodes was extracted for odd and even trials for each object category at each time-point. 179 

Pattern vectors were normalized within each participant using the following method.  180 
First, vectors were selected from one time-point and one image type.  This gave a total of 6 181 
patterns (odd/even x face/bottle/house).  For each electrode site, the mean amplitude 182 
across all 6 patterns was subtracted from its amplitude in each pattern.  This process was 183 
repeated for each image type at each time-point. 184 

To see whether different object categories evoke distinct patterns of EEG response, 185 
we ran a correlation-based MVPA separately for each image type and time-point (Figure 2A).  186 
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This involved measuring the correlation between pattern vectors within and between the 187 
three object categories.  For within-category correlations (e.g. face vs face), we measured 188 
the correlation between odd and even trials.  For between-category correlations (e.g. bottle 189 
vs house), we used the mean correlation between odd trials of the first category and even 190 
trials of the second, and between even trials of the first category and odd trials of the 191 
second.  The distinctiveness of the patterns of EEG response was then measured by 192 
subtracting between-category correlations from within-category correlations.  95% 193 
confidence intervals for this difference were then obtained by bootstrapping across 194 
participants.  Points at which different object categories evoked significantly distinct 195 
patterns of EEG response were defined by the lower confidence interval being above zero. 196 

To measure the similarity between responses to intact and scrambled images from 197 
the same object category, we first collapsed patterns across odd and even trials to create 198 
one pattern per condition per time-point.  We then correlated the patterns of response at 199 
each time-point separately for the intact-locally scrambled and intact-globally scrambled 200 
contrasts for each category.   A group mean was calculated across categories and 95% 201 
confidence intervals were obtained by bootstrapping across participants. 202 

To determine whether the response to intact images could be explained by the 203 
response to scrambled images, we calculated a noise ceiling.  This estimates that maximum 204 
correlation that could be expected. The noise ceiling was calculated by measuring the 205 
correlation between the responses at odd and even trials within each category in the intact 206 
condition.  At the individual level, we take a mean of the within-category correlations (face-207 
face, bottle-bottle, house-house) for each timepoint.  We then average across subjects to 208 
obtain one noise ceiling estimate at each timepoint.  Timepoints at which this value fell 209 
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within the 95% CI for the correlation between intact and scrambled images demonstrate 210 
when all the variance in the intact images was explained by the scrambled images. 211 

The correlation-based method was complemented with a classification-based 212 
approach involving a support vector machine, producing similar results.  To see whether 213 
different object categories evoked distinct patterns of response, classification was 214 
performed separately for each participant, image type and time-point (Figure 6).  First, 215 
patterns of EEG response were extracted for each trial of each category.  Two ‘training’ 216 
patterns and one ‘testing’ pattern for each category were generated by randomly dividing 217 
the 105 trials into three equal sets and taking an average.  A support vector machine was 218 
then trained on the six training patterns, and tested on the three testing patterns.  This 219 
procedure was repeated 100 times, with different subsets of trials used for training and test 220 
in each iteration.  To see whether similar patterns of response were evoked by intact and 221 
scrambled images from the same category, the classifier was altered so that test patterns 222 
were substituted with those from another image type.  This was performed for each 223 
pairwise contrast between image types, and accuracy was averaged across both directions 224 
(e.g. train on intact, test on locally scrambled; and train on locally scrambled, test on intact).  225 

Finally, to examine transient and persistent neural activity in response to each 226 
condition, we conducted a temporal cross-correlation.  This involved measuring the 227 
correlation between response patterns for odd and even trials for the same condition, 228 
iterating over each possible pair of time-points.  Correlations were represented in a 1000 x 229 
1000 similarity matrix and data were averaged across the positive diagonal.  Matrices were 230 
then collapsed across categories to give one matrix per image type. 231 
 232 
RESULTS 233 
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First, we asked whether different intact object categories produced distinct spatial patterns 234 
of EEG response (Figure 2).  To address this question, we compared the similarity of patterns 235 
of response to images from the same category (e.g. face vs face) with the similarity of 236 
patterns to images of different categories (e.g. face vs house).  Categorical patterns of 237 
response were demonstrated when the within-category correlations were significantly 238 
greater than the between-category correlations.  Categorical patterns of response to intact 239 
images emerged 80 msec after stimulus onset.  The patterns were maximally distinct at 240 
about 150 msec and persisted until at least 800 msec (Figure 2B).  A classification-based 241 
approach was then used to complement the correlation-based method.  In this analysis, a 242 
classifier was trained on a subset of the data and tested on the remaining data.  This 243 
showed a similar pattern to the correlation-based analysis.  Above chance accuracy 244 
emerged 80 msec after stimulus onset, peaked at about 150 msec and persisted until 800 245 
msec (Figure 3A). 246 

To measure the extent to which these category-specific patterns of response were 247 
based on lower-level visual properties, we first asked whether locally scrambled and globally 248 
scrambled images also produced distinct category-specific patterns of EEG response using 249 
both the correlation-based (Figure 2C-D) and classification (Figure 3B-C) analyses.  Distinct 250 
category-specific patterns of response for locally scrambled images emerged after about 80 251 
msec after stimulus onset.  They were maximally distinct at about 110 msec and persisted 252 
until about 400-500 msec.  Distinct category-specific patterns of response for globally 253 
scrambled images, emerged at about 100 msec after stimulus onset.  They were maximally 254 
distinct at about 190 msec and persisted until about 300 msec. 255 

Although distinct patterns of response were evident to scrambled images from 256 
different categories (i.e. within-category > between-category correlations), it is not clear 257 
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whether the patterns were similar to those elicited from the intact images.  To address this 258 
question, we correlated patterns of response to the same object category across different 259 
levels of scrambling at different time points.   Figure 4A (blue horizontal bar) shows that the 260 
correlation between intact and locally-scrambled images became significant at about 80 261 
msec after stimulus onset, peaked at about 110 msec and 190 msec. The percentage 262 
duration that the locally-scrambled patterns were correlated with the intact patterns was 263 
greater during the stimulus period (0-400 msec: 27%) compared to the post-stimulus period 264 
(400-800 msec: 10%).  A similar pattern of results was evident when we trained a classifier 265 
on intact or locally-scrambled images and then tested on locally-scrambled or intact images, 266 
respectively (Fig. 5A).  The duration of above chance accuracy with the locally-scrambled 267 
and intact conditions was similar during the stimulus period (0-400 msec: 40%) and the 268 
post-stimulus period (400-800 msec: 49%). 269 

Next, we explored the similarity between the intact and globally-scrambled images 270 
(Fig. 4B, 5B).  The correlation between responses to intact and globally scrambled images 271 
became significant (blue horizontal bar) about 90 msec after stimulus onset, peaked at 272 
about 110 msec and persisted until around 120 msec. The percentage duration that the 273 
locally-scrambled patterns were correlated with the intact patterns was greater during the 274 
stimulus period (0-400 msec: 4%) compared to the post-stimulus period (400-800 msec: 0%).  275 
A similar pattern of results was evident when we trained a classifier on intact or locally-276 
scrambled images and then tested on locally-scrambled or intact images, respectively (Fig. 277 
5A).  The duration of above chance accuracy with the locally-scrambled and intact 278 
conditions was greater during the stimulus period (0-400 msec: 4%) compared to the post-279 
stimulus period (400-800 msec: 0%). 280 
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To directly compare similarity between intact images and either locally-scrambled or 281 
globally-scrambled images, the average correlation (Fig. 4) or accuracy (Fig. 5) was 282 
compared across individuals.  The average correlation between intact and locally scrambled 283 
images was significantly higher than the correlation between intact and globally scrambled 284 
images (t(18) = 3.29, p <.005).  Similarly, the average accuracy (see Fig. 5) with intact and 285 
locally-scrambled images was significantly higher than with intact and globally-scrambled 286 
images (t(18) = 5.34, p < .0001). 287 

We then asked whether the explainable variance in intact responses was fully 288 
accounted for by the responses to scrambled images, given the level of noise in the data.  289 
This was achieved by calculating a noise ceiling (Nili et al., 2014).  This involved measuring 290 
the correlation to intact images from the same category across odd and even trials of the 291 
same category.  The noise ceiling was not fixed, but varied across time.  We then 292 
determined whether the correlation between intact and scrambled images was not 293 
significantly different to the noise ceiling for each time-point.  For locally-scrambled images, 294 
the 95% confidence intervals of the correlations overlapped until approximately 120 msec 295 
after stimulus onset (Fig. 4A).  The percentage duration that the locally-scrambled patterns 296 
were not significantly different from the noise ceiling was similar during the stimulus (0-400 297 
msec: 9%) and post-stimulus period (400-800 msec: 9%). For globally scrambled images the 298 
confidence intervals overlapped until about 100 msec after stimulus onset (Fig 4B). The 299 
percentage duration that the globally-scrambled patterns were not significantly different 300 
from the noise ceiling was greater during the stimulus period (0-400 msec: 1%) compared to 301 
the post-stimulus period (400-800 msec: 0%). 302 

Finally, we investigated the stability of the category-specific patterns of response for 303 
each image manipulation (Cichy et al., 2014).  This involved measuring the correlation 304 
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between patterns of EEG response within each condition across different time-points.  The 305 
results were then averaged across categories for each image type and represented in time-306 
time similarity matrices (Figure 6).  Here, the diagonal for intact images corresponds to the 307 
noise-ceiling estimate used in Figure 4.  For intact images, the pattern of response from 100-308 
150 msec was positively correlated with patterns found from ~250-600 msec.  The 309 
continuation of this neural activity far beyond stimulus offset suggests that this does not 310 
reflect prolonged visual input during image presentation.  The locally scrambled matrix 311 
shows no evidence of persistent neural activity as seen in the intact matrix, but does exhibit 312 
transient neural activity between ~100-250ms after stimulus onset.  Interestingly, time-313 
point combinations of ~150ms and ~200ms show negative correlations, suggesting a 314 
polarity reversal in the potentials between these latencies.  The globally scrambled matrix 315 
shows weak correlations across all combinations of time-points. 316 

 317 
  318 



 

16  

DISCUSSION 319 
The aim of this study was to determine the contribution of lower-level visual and higher-320 
level semantic properties to the emergence of categorical patterns of neural response.  To 321 
address this question, we compared patterns of EEG response to intact and scrambled 322 
images from different object categories.  Scrambled images were used, because they 323 
contain similar visual properties to intact images but do not convey any semantic 324 
information (Coggan et al., 2016).  Our results show similar category-specific patterns of 325 
response at early stages of processing.  However, these patterns were sustained for a longer 326 
time with intact images compared to scrambled images. These results show the importance 327 
of visual properties in the emergence of categorical patterns of response, but also show the 328 
importance of semantic properties in the recurrent processing that sustains these patterns. 329 

The emergence of category-specific patterns of EEG response to intact images is 330 
comparable to previous studies using MEG that found categorical distinctions can be 331 
decoded prior to 100ms after stimulus onset and become maximally distinct at about 140 332 
msec (Carlson et al., 2013; Cichy et al., 2014; Cauchoix et al., 2014).  However, most 333 
previous studies have not directly determined whether these patterns of response reflect 334 
lower-level visual properties or higher-level semantic properties of the image.  Recently, 335 
Clarke and colleagues (2015) addressed this issue with MEG showing that visual properties 336 
can explain patterns of response to different categories of objects. However, they also 337 
showed that the semantic properties of objects were able to explain additional variance in 338 
the pattern of response particularly at later stages of the response. In our study, we were 339 
also able to show that the patterns of response to images from different object categories 340 
are driven predominantly by the lower-level visual properties at early stages of visual 341 



 

17  

processing (up to 150 msec).  Visual properties were also able to partially account for the 342 
variance in the response to intact images at later stages of processing.   343 

Patterns of response to intact images were correlated more strongly and for longer 344 
with responses to locally scrambled images than with globally scrambled images.  One key 345 
difference between these two conditions is that the spatial properties, such as the shape (or 346 
spatial envelope) of the image, are somewhat preserved in the locally scrambled images, 347 
but not in the globally scrambled images.  In a recent fMRI study, we showed that the 348 
spatial pattern of response in the ventral stream to different categories of intact objects was 349 
more similar to the pattern elicited by locally scrambled objects compared to globally 350 
scrambled objects. The greater similarity between responses to intact locally scrambled 351 
images is consistent with previous studies that have shown a modulatory effect of spatial 352 
properties on patterns of response in the ventral visual pathway (Levy et al., 2001; Golomb 353 
and Kanwisher, 2012; Bracci and Op de Beeck, 2015; Silson et al., 2015; Watson et al., 2016). 354 

Although lower-level image properties account for the majority of the variance in 355 
responses to intact images at early stages, there remains a significant amount of variance to 356 
be explained at later stages of processing.  For example, although category-specific patterns 357 
of response to intact images persisted well beyond the duration of the stimulus, patterns of 358 
response to scrambled images were only evident when the stimulus was present.  The 359 
persistence of these neural responses to intact images suggests an important role for 360 
recurrent processing of the image, which is likely to be driven by top-down semantic 361 
representations (Lamme and Roelfsema, 2000; DiCarlo and Cox, 2007; Kriegeskorte et al., 362 
2008; Naselaris et al., 2009; Connolly et al., 2012; Mur and Kriegeskorte, 2014).  Indeed, 363 
Clarke and colleagues (2015) showed that accuracy in categorization using MEG data was 364 
enhanced by combining visual and semantic models.  365 
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It is also possible that differences in the patterns of response between intact and 366 
scrambled images reflect sensitivity to image properties that are disrupted by either 367 
scrambling process.  An important property of natural images is that they contain strong 368 
statistical dependencies, such as location-specific combinations of orientation and spatial 369 
frequency corresponding to image features such as edges (Marr and Hildreth, 1980).  Indeed, 370 
the character and extent of these statistical dependencies is likely to be diagnostic for 371 
different classes of images (O’Toole et al., 2005; Rice et al., 2014).  The scrambling 372 
procedure disrupts many of the statistical relationships between the elements.  So, it is 373 
possible that image manipulations that can preserve these higher-level visual properties 374 
(Freeman and Simoncelli, 2011) might generate responses that are more similar to the 375 
intact images.  Indeed, it is possible that neural representations underlying higher-level 376 
visual properties and the corresponding semantic properties that they convey may be the 377 
same. 378 

In conclusion, we have found that distinct category-specific patterns of neural 379 
response emerge at about 80 msec after stimulus onset and can persist for at least 800 380 
msec.  Using scrambled images, we show that early stages of these category-specific 381 
patterns can be explained by lower-level image properties.  However, the differences in the 382 
neural responses to intact and scrambled images at later stages of processing also reveal 383 
the importance of higher-level semantic properties.  384 
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Figure Legends: 469 
 470 
Figure 1   Exemplars of intact, locally scrambled and globally scrambled images from the 471 
different object categories. 472 
 473 
Figure 2   Category-specific patterns of EEG response to intact and scrambled images. (A) 474 
For each time-point, normalized patterns of response to odd and even trials of each 475 
category were compared across 64 electrodes. The correlation coefficients were then 476 
represented in a similarity matrix for that time-point. Distinct category-specific patterns of 477 
response were defined by higher within-category (e.g. face-face) compared to between-478 
category (e.g. face-bottle) correlations. Correlation time-courses are shown for the (B) intact, 479 
(C) locally-scrambled and (D) globally-scrambled image types.  Shaded region represents 480 
95% confidence intervals obtained by bootstrapping across participants.  Group mean 481 
correlation matrices at 100ms intervals are shown above the plot.  Grey box at the base of 482 
the plot represents the time-points at which the stimulus was present.  Blue bar at the base 483 
of the plot represents time-points at which the lower bound of the confidence interval is 484 
above zero, indicating significantly higher within- than between-category correlations. 485 

 486 
Figure 3   Classifier accuracy for between-category discrimination (blue line) with (A) intact, 487 
(B) locally-scrambled and (C) globally-scrambled images (chance = 33%, grey line).  Blue 488 
shaded regions represent 95% confidence intervals obtained through bootstrapping across 489 
participants.   The blue bar at the top of the plot represents time-points at which the lower 490 
bound of the confidence interval is above chance.  Grey box on the axes of the plot 491 
represents the stimulus duration. 492 

 493 
Figure 4   Similarity between patterns of EEG response to intact images and locally-494 
scrambled (A) or globally-scrambled (B) images from the same object category.  Blue shaded 495 
regions represent 95% confidence intervals across participants.  Blue bar at the top of the 496 
plot indicates time-points at which the correlation is significantly above zero.  Orange bar 497 
indicates time-points at which the correlation is not significantly different from the noise 498 
ceiling.  Grey box represents the stimulus duration. 499 500 
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Figure 5   Classifier performance across different image types.  (A) Accuracy in classifying 501 
responses to either intact or locally-scrambled images when trained on locally-scrambled or 502 
intact images, respectively. (B) Accuracy in classifying responses to either intact or globally-503 
scrambled images when trained on globally-scrambled or intact images, respectively.    Blue 504 
line indicates classifier accuracy across time, with shaded regions representing 95% 505 
confidence intervals obtained through bootstrapping across participants.  Blue bar at the 506 
top of the plot represents time-points at which the lower bound of the confidence interval is 507 
above chance.  Grey box shows stimulus duration. 508 
 509 
Figure 6   Temporal cross-correlation matrices for each image type.  Responses to trials of 510 
the same condition were correlated over each combination of time-points.  Correlations 511 
were collapsed across categories to give one matrix per image type (A - intact, B - locally 512 
scrambled, C - globally scrambled).  Colourbar represents Pearson’s correlation coefficient.  513 
Matrices were thresholded by obtaining 95% confidence intervals at each coordinate by 514 
bootstrapping across participants.  Coordinates at which these intervals overlapped with 515 
zero are shown in white.  Grey box represents the stimulus duration. 516 














