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The human brain develops with a non-linear contraction of gray matter across late childhood and adolescence, and a 41 
concomitant increase in white matter volume. Across the adult population, properties of cortical gray matter co-vary 42 
within networks that may represent organizational units for development and degeneration. Although gray matter 43 
covariance may be strongest within structurally connected networks, the relationship to volume changes in white 44 
matter remains poorly characterized. In the present study we examined age-related trends in white and gray matter 45 
volume using T1-weighted MR images from 360 human participants from the NIH MRI study of Normal Brain 46 
Development. Images were processed through a voxel-based morphometry pipeline. Linear effects of age on white and 47 
gray matter volume were modeled within four age bins, spanning 4-18 years, each including 90 participants (45 male). 48 
White and gray matter age-slope maps were separately entered into k-means clustering, to identify regions with similar 49 
age-related variability across the four age bins. Four white matter clusters were identified, each with a dominant 50 
direction of underlying fibers: anterior-posterior, left-right, and two clusters with superior-inferior directions. 51 
Corresponding, spatially proximal, gray matter clusters encompassed largely cerebellar, fronto-insular, posterior and 52 
sensorimotor regions, respectively. Pairs of gray and white matter clusters followed parallel slope trajectories, with 53 
white matter changes generally positive from 8 years onward (indicating volume increases) and gray matter negative 54 
(decreases). As developmental disorders likely target networks rather than individual regions, characterizing typical 55 
coordination of white and gray matter development can provide a normative benchmark for understanding atypical 56 
development. 57 

  58 
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Significance statement  59 

The structure of the brain changes across late childhood and adolescence: gray matter volume decreases and white 60 
matter volume increases. Gray matter changes occur within networks that may be targets for neurodegenerative, 61 
developmental and psychiatric disorders. This study demonstrates that changes in white matter volume are also 62 
coordinated across regions, and that changes in these clusters parallel corresponding gray matter clusters. While gray 63 
matter clusters show a posterior to anterior organization, we observe here that white matter volume groups into 64 
regions with similar fiber orientation. This work adds to our understanding of typical gray and white matter 65 
development, which ultimately can help to understand how the brain may be developing abnormally in 66 
neurodevelopmental disorders.   67 
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Introduction 68 

As the brain develops across late childhood and adolescence, a pattern of white matter expansion (Giedd et al., 1999; 69 
Paus et al., 1999; Sowell et al., 2002; Taki et al., 2013) and gray matter contraction (Gogtay et al., 2004a; Shaw et al., 70 
2008; Sowell et al., 2003; 2004) has been observed. These co-occurring phenomena are widely considered to be the 71 
product of developmental exuberance (Innocenti and Price, 2005), through which an overproduction of connections is 72 
followed by a selection process. White matter volume expansion is thought to reflect both an increase in myelination 73 
and axonal diameter (Benes, 1989; Benes et al., 1994; Paus, 2010; Rademacher et al., 1999; Yakovlev and Lecours, 1967). 74 
Observed patterns of gray matter thinning may reflect synaptic pruning (Huttenlocher, 1979), changes in size and 75 
number of glia or size of neurons (Cotter et al., 2002; Drevets et al., 1998; Elgeti et al., 1976), vasculature (Vaidya et al., 76 
2007), or changes in myelination of superficial white matter (Shaw et al., 2008; Sowell et al., 2004) (though see (Wu et 77 
al., 2014)). 78 

Distributed cortical regions show correlated anatomical features across the population (Alexander-Bloch et al., 2013; 79 
Chen et al., 2008; Evans, 2013; Lerch et al., 2006; Mechelli et al., 2005; Tijms et al., 2012) in networks similar to those 80 
defined by resting state functional connectivity (Alexander-Bloch et al., 2013; Segall et al., 2012) and white matter 81 
tractography (Gong et al., 2012). These findings have been extended to describe coordinated cortical development 82 
across childhood and adolescence (Alexander-Bloch et al., 2013; Alexander-Bloch et al., 2014; Khundrakpam et al., 2013; 83 
Raznahan et al., 2011; Zielinski et al., 2010). The importance of these findings is underscored by the suggestion that 84 
neurodegenerative, psychiatric and neurodevelopmental disorders may target cortical networks rather than specific 85 
regions (Alexander-Bloch et al., 2014; Raznahan et al., 2010; Reid et al., 2010; Seeley et al., 2009; Zielinski et al., 2012). 86 

White matter tracts also show developmental changes in structural properties (Barnea-Goraly et al., 2005; Ben Bashat et 87 
al., 2005; Giorgio et al., 2008; Lebel and Beaulieu, 2011). Fractional anisotropy (FA), a measure of coherent fiber 88 
orientation linked to myelination and axon packing (Beaulieu, 2002), increases in most tracts (Barnea-Goraly et al., 2005; 89 
Lebel et al., 2008) and peaks in early adulthood before declining (Lebel et al., 2012). Mean diffusivity (MD), a measure 90 
reflecting water content and density, shows an opposite pattern, declining across adolescence and increasing in 91 
adulthood (Lebel and Beaulieu, 2011). The volume of white matter tracts also typically increases across childhood, 92 
though the relationship between tract-volume and microstructural parameters is complex (Lebel and Beaulieu, 2011).  93 

Although gray matter developmental networks are increasingly well characterized, the relationship between white 94 
matter structural changes and network-level gray matter development remains unclear. In the present study, we tested 95 
the hypothesis that clusters of white matter regions would show coordinated volume development, in parallel to gray 96 
matter clusters. That is, clusters of white matter regions showing coordinated variability with age (e.g. volume 97 
expansion) would be inversely associated with changes in gray matter volume (e.g. contraction), in related regions, 98 
across childhood and adolescence.  99 

Materials and Methods 100 

Participants and neuroimaging data 101 

Neuroimaging data were obtained from the US National Institutes of Health (NIH) MRI study of Normal Brain 102 
Development's Pediatric MRI Data Repository (Evans and Brain Development Cooperative Group, 2006). The cohort 103 
includes 433 typically developing participants, male and female, aged 4:6 to 18:3 years. All subjects are purported to be 104 
normal and healthy, e.g., no history of brain disease or trauma, and IQ>70. Analyses reported here used T1-weighted 105 
images collected on 1.5T MRI scanners (GE or Siemens) at 6 sites (Boston Children's Hospital, Cincinnati Children's 106 
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Hospital Medical Center, University of Texas Houston Medical School, Neuropsychiatric Institute and Hospital, UCLA, 107 
Children's Hospital of Philadelphia and Washington University, St. Louis). Parameters for whole-brain T1-weighted 108 
acquisitions were standardized across sites: 3D RF-spoiled gradient echo, TR=22-25ms, TE=10-11ms, sagittal acquisition, 109 
FoV=AP 256 LR 160-180. Resolution was typically 1mm3, however on GE scanners on which thickness was increased up 110 
to 1.5mm and in some participants resolution was decreased to 3mm3 to enable more rapid imaging. For our sample we 111 
generated four evenly sized groups of participants (90) with an equal number of males and females (45), for a total 112 
sample including 360 high-quality scans. Age groups were 4-8, 8-10.5, 10.5-13.5 and 13.5-18.5 years; detailed 113 
information about participants is provided in Table 1.   114 

VBM processing 115 

T1-weighted MRI scans were processed through a voxel-based morphometry (VBM) pipeline in SPM12b. Steps included 116 
segmentation and normalization using a custom template generated with the DARTEL Toolbox (Ashburner, 2007).  117 
Normalized gray and white matter segmented images were modulated to 'preserve amounts' and smoothed using an 118 
8mm Gaussian kernel. All segmentations were visually inspected prior to analysis. VBM tools were also used to identify 119 
potential outliers by calculating the squared distance to sample mean in each age bin; no outliers were identified in this 120 
step. 121 

Linear age models 122 

As developmental changes in gray matter volume across childhood and adolescence are known to be non-linear (Gogtay 123 
et al., 2004b; Raznahan et al., 2011; Shaw et al., 2008), our sample was divided into four age bins similar to Zielinski et 124 
al. (2010) and Khundrakpam et al. (2013). Two general linear models were estimated in each age group, modeling a 125 
linear effect of mean-centered age on gray and white matter volume separately. Models included effects of gender, site 126 
(one regressor per site), and a linear effect of image resolution. Explicit masks were used to spatially constrain the 127 
analyses; gray and white matter masks were created using the Masking Toolbox in SPM12b (Ridgway et al., 2009), and 128 
constrained to probabilities > 0.4 to ensure that there was no overlap in gray and white matter masks. Neither 129 
proportional scaling nor total brain volume regression were used in the main models reported here. However, both 130 
methods were tested in additional analyses, as described below.  131 

Clustering based on gray and white matter age-slope 132 

For each tissue type (white and gray matter), parameter estimates for the effect of age in each of the four age bins were 133 
obtained for each voxel. All parameter estimates (β values) were entered into a pair of matrices, one gray and one white 134 
matter, in which each row corresponded to a voxel and each column corresponded to an age-bin. Analyses were 135 
performed on all voxels independent of the significance of age effects, that is, voxel-level significance of age-effects was 136 
not assessed as part of this study. Matrices were entered into k-means clustering in MATLAB to identify clusters of 137 
voxels with similar age-slopes across these developmental stages. Clustering was seeded with random centers and 138 
repeated 10 times; 2-10 cluster solutions were tested, and peak silhouette values (Kaufman and Rousseeuw, 1990) were 139 
used to identify the optimal clustering solution for each tissue class.  140 

Directional bias in white matter clusters 141 

Visual inspection of white matter clusters indicated a potential directional bias. To test this, white matter clusters were 142 
compared against directional maps from the ICBM-DTI-81 Atlas (Mori et al., 2008) to determine the primary direction of 143 
white matter fibers in each cluster. This atlas includes estimated eigenvalues for eigenvectors corresponding to three 144 
principal directions (x:right-left, y:anterior-posterior, z:superior-inferior). To determine whether voxels assigned to each 145 
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white matter cluster had a preferred direction, the three eigenvalue maps were masked by each white matter cluster. 146 
For each cluster the subset of voxels with a dominant orientation along one of these principal directions was obtained 147 
by thresholding to include only voxels for which at least one eigenvalue ≥ 0.4. We then calculated the proportion of 148 
voxels for which the maximum eigenvalue was in each principal direction.  149 

Effects of site and resolution on VBM segmentation 150 

As previous studies have shown that VBM segmentations may be affected by data collection site and acquisition 151 
parameters (Focke et al., 2011; Pardoe et al., 2008; Pereira et al., 2008; Takao et al., 2013), additional analyses were run 152 
to investigate effects of data collection site and image resolution. We note that participant age did not significantly vary 153 
by site (F(1, 360)=0.02, p=0.88). Resolution did show a significant negative trend with age as the youngest participants 154 
were more likely to have larger voxel size (F(1, 360)=12.6, p<0.001). However, resolution did not significantly vary with 155 
age in individual age bins, though a trend remained in the youngest bin (p=0.051, p=0.73, p=0.60, p-0.22). To determine 156 
which regions may be affected by these parameters, models were run for gray and white matter volume separately 157 
including all 360 participants; effects of age, resolution, gender and site were modeled (one column per site). F-contrasts 158 
were used to identify regions showing linear effects of resolution on gray and white matter volume, and non-linear 159 
effects of site. We then compared clustering results for models that included these covariates to a set of models that did 160 
not include site and resolution covariates, to assess effects of these parameters on clustering results. 161 

Effects of modeling total gray and white matter volume 162 

Many VBM studies model effects of total tissue volume in VBM, enabling the identification of regions that discriminate 163 
between groups after differences in total volume are accounted for (Peelle et al., 2012). Significance of regional effects 164 
of age are sensitive to the choice of model (Peelle et al., 2012). For the main analysis here, we chose not to account for 165 
total gray and white matter volume, as our goal was simply to model age trends and not to identify regions where age 166 
effects were greater than the mean. However, to investigate differences in our results when accounting for total 167 
volume, two additional models were run, using proportional scaling by total tissue volume and including total tissue 168 
volume as a nuisance covariate. 169 

Effects of age on image contrast 170 

T1-image contrast is known to increase over the first few years of childhood (Paus et al., 2001; Shi et al., 2010). Although 171 
the population assessed here was older (i.e. the youngest participant was 4.8y), systematic effects of image contrast 172 
may nonetheless contribute to variable quality of gray/white segmentation, and these effects may vary between brain 173 
regions. To assess effects of image contrast as a function of age, bilateral masks covering frontal, temporal, parietal and 174 
occipital gray and white matter regions were generated using the Wake Forest Pick Atlas tool (Maldjian et al., 2003) and 175 
the TD-ICBM-152 atlas (Mazziotta et al., 2001). These masks were warped into each participant's native space and used 176 
to extract regional gray and white matter values. Contrast was calculated in each subject and each region as: C= (White 177 
matter intensity - Gray matter intensity)/ Gray matter intensity. We then assessed effects of age and site on contrast 178 
across the sample and within each age bin. 179 

Results  180 

White matter clusters a showed a peak silhouette value at the four-cluster solution and gray matter clusters b at the two-181 
cluster solution (this solution divided cerebral cortex from cerebellum). As the goal of this study was to identify clusters 182 
of white matter regions with coordinated developmental patterns, in relation to gray matter clusters, both gray and 183 
white matter were divided into four clusters, which were subsequently paired based on adjacency of regions (Figures 1-184 
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4). Gray and white matter structures were identified through visual inspection and comparison to gray and white matter 185 
atlases (Oishi et al., 2011; Tzourio-Mazoyer et al., 2002). 186 

Superior corona radiata white matter / Precuneus and intraparietal sulcus (posterior) gray matter 187 

One white matter cluster included the superior longitudinal fasciculus, superior corona radiata and body of the corpus 188 
callosum (Figure 1acd), as well as a region along the posterior thalamic radiation (Figure 1c). White matter voxels were 189 
predominantly (68%; Figure 5) superior-inferior in orientation (Figure 5). The most spatially similar gray matter cluster 190 
included primarily posterior cortical regions (Figure 1a-d) such as the precuneus (Figure 1b) and bilateral intraparietal 191 
sulcus (Figure 1c). This cluster also included anterior temporal cortex (Figure 1a) and smaller bilateral regions of 192 
posterior middle frontal gyrus (Figure 1d). The gray matter cluster was characterized by a steep negative slope in the 8-193 
10.5y age bin and more positive slopes in other age groups; white matter age-slopes followed a similar trend, though 194 
slopes were generally positive(indicating increasing volume with age; Figure 1e-f). 195 

Medial corpus callosum white matter / Anterior cingulate, prefrontal cortex and insula (anterior) gray matter 196 

A second white matter cluster (Figure 2) included medial corpus callosum (Figure 2a), anterior internal capsule (Figure 197 
2d), superior parietal lobule white matter (Figure 2c), posterior thalamic radiation and retrolenticular portion of the 198 
internal capsule (Figure 2d), and inferior frontal gyrus white matter (Figure 2b). White matter voxels were mostly left-199 
right oriented (70%; Figure 5). The corresponding gray matter cluster included anterior cingulate and medial prefrontal 200 
cortex (Figure 2abc), as well as insular (Figure 2bd) and temporal regions (Figure 2b). Gray matter age-slopes (Figure 2e-201 
f) indicated the greatest volume decreases in the 8-10.5y age bin, though slopes in all age bins were more moderate 202 
than in the posterior cluster (Figure 1e-f). White matter slopes paralleled gray matter, but were generally positive, 203 
except for slight volume decreases in the 8-10.5y age bin (Figure 2e-f). 204 

Occipital, parietal and prefrontal white matter / Visual and motor gray matter 205 

A third white matter cluster (Figure 3) included superior cerebellar peduncle (Figure 3a), occipital and superior parietal 206 
white matter (Figure 3b), superior frontal gyrus white matter (Figure 3cd), posterior internal capsule (Figure 3c), 207 
posterior thalamic radiation (Figure 3bc) and precentral gyrus white matter (Figure 3d). This white matter cluster 208 
showed a strong superior-inferior orientation (74%; Figure 5). The corresponding gray matter cluster involved cuneus 209 
(Figure 3abc), motor (Figure 3d), superior parietal (Figure 3b) and lateral prefrontal (Figure 3c) regions.  Among the 210 
identified gray matter clusters, this set of regions showed the most moderate slopes - slightly positive in the youngest 211 
age bin and relatively stable across the 8-18.5y age range (Figure 3e-f). White matter slope trajectories, again, followed a 212 
similar trend to gray matter, with a moderate but consistently positive slope from ages 8-18.5y (Figure 3e-f).  213 

Cerebellar peduncles / Cerebellum 214 

A fourth pair of gray and white matter clusters captured the cerebellum and cerebellar peduncles (Figure 4). The white 215 
matter cluster included bilateral cerebellar peduncles (Figure 4a), and portions of the superior longitudinal fasciculus 216 
(Figure 4c); voxels were mainly anterior-posterior oriented (58%; Figure 5). The gray matter cluster included bilateral 217 
cerebellum (Figure 4a), but also caudate (Figure 4b) and dorsomedial prefrontal cortex (Figure 4d).  For both gray and 218 
white matter, the slopes for this cluster were generally positive; white matter slope was slightly negative in the 8-10.5y 219 
age bin and gray matter slopes became slightly negative in the 14-18.5y age bin (Figure 4e-f).  220 

Effects of data collection site and resolution 221 
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Previous studies have noted that VBM estimates of gray and white matter volume are sensitive to differences in MR 222 
scanner and image resolution (Focke et al., 2011; Pardoe et al., 2008; Pereira et al., 2008; Takao et al., 2013). As the 223 
present study made use of a multi-site dataset, additional analyses were run to estimate potential impact of these 224 
factors on our results. A general linear model was estimated using the entire sample of 360 participants, including a 225 
linear effect of resolution and separate regressors modeling effects of each site. F-contrasts were used to identify 226 
regions sensitive to these effects. Results of F-contrasts for site are shown in Figure 6ab, thresholded at p<0.001 227 
uncorrected, for gray and white matter, respectively. We observe significant effects of site around the posterior 228 
putamen, orbitofrontal, inferior temporal and peripheral gray matter in Figure 6a. Significant effects on white matter 229 
volume were most prominent around the internal capsule (Figure 6b). Results of F-contrasts for resolution are shown in 230 
Figure 6cd, thresholded at p<0.001 uncorrected, for gray and white matter, respectively.  Affected gray matter regions 231 
were similarly concentrated around the posterior putamen and insula, occipital and dorsal prefrontal regions (Figure 6c). 232 
For white matter, similar to effects of site, effects of resolution were largely concentrated around the internal capsule 233 
(Figure 6d). We next compared clustering results for age β-values from models that did and did not include effects of site 234 
and resolution. These results are shown in Figure 6ef. We note that clustering results were largely similar between these 235 
two models. Figure 6gh show gray and white matter clusters obtained from these two models overlaid, regions of 236 
overlap are shown in purple. The only regions where cluster assignment substantially differed was around the putamen 237 
and internal capsule. Overall these results suggest that effects of site and resolution may have a fairly localized effect in 238 
sub-cortical regions, and we note that reliability of cluster assignment in these regions is a limitation of the present 239 
work. 240 

Effects of modeling total gray and white matter volume 241 

Two additional analyses were run using proportional scaling by total tissue volume and including total tissue volume as a 242 
covariate (ANCOVA). The resulting parameter estimates for age were entered into a similar cluster analysis as that 243 
described above. These analyses identified very similar clusters (Figure 7), however with some differences specifically in 244 
white matter clustering in the midbrain for the ANCOVA model. 245 

Effects of image contrast 246 

White/gray matter contrast values for each lobe (frontal, temporal, parietal, occipital) were entered into ANOVAs 247 
modeling effect of site with age as a covariate. Models were run across the entire sample, as well as within each age bin. 248 
This analysis showed a significant effect of site in the temporal (F(1,357)=16.6, p<0.001) lobe, and a trend level effect in 249 
the frontal lobe (F(1,357)=4.3, p=0.04 uncorrected for multiple comparisons). Over the entire sample there was a trend-250 
level, negative, association with age in the parietal cortex (F(1,357)=3.9, p=0.048 uncorrected). However, age was not a 251 
significant predictor of contrast within any of the age bins, for any of the lobes. From these results we conclude that 252 
image contrast is unlikely to have biased age-slopes in this analysis. 253 

Statistical table 254 

 Data structure Type of test Power 
a White matter volume 

(normally distributed) 
K-means clustering, 
Silhouette Values 

n/a 

b Gray matter volume 
(normally distributed) 

K-means clustering, 
Silhouette Values 

n/a 

 255 

Discussion 256 
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In this study, white and gray matter volumes were divided into clusters based on the similarity of age-related volume 257 
changes from 4-18 years. The four identified white matter clusters each showed a dominant orientation of fibers 258 
(anterior-to-posterior, left-to-right, and two clusters with superior-to-inferior), and could be uniquely matched to a 259 
spatially proximal gray matter volume cluster. Gray matter clusters corresponded to cerebellar, medial/anterior, and 260 
sensorimotor clusters, respectively. Within gray and white matter network pairs, slopes followed similar trajectories 261 
across ages.  262 

To our knowledge, this study is the first to investigate the organization of age-related structural variability in white 263 
matter volumes. Our results suggest that data-driven clustering of age-related variability in white matter volume can, to 264 
some extent, recover anterior-to-posterior, left-to-right and superior-to-inferior directional components. While previous 265 
work has shown region- and tract-specific white matter volume changes with age (Lebel and Beaulieu, 2011; Tamnes et 266 
al., 2010), our results suggest a relationship between age-related variability in white matter volume and fiber direction. 267 
We also note that the identified clusters generally did not segregate deep from superficial white matter. Together these 268 
findings add to our understanding of properties of white matter volume development. 269 

Further, our results demonstrate a spatial and temporal relationship between patterns of age variability in white and 270 
gray matter volume. Previous work had shown that in individuals aged 8-30 years, (Tamnes et al., 2010) there are 271 
negative correlations between cortical thickness and volumes of corresponding gyral white matter. Wu et al. (2014) 272 
found that the association between superficial white matter FA and cortical thickness was positive in unimodal sensory 273 
areas, but negative in polymodal regions. In adolescents, a negative correlation between gray matter density and FA in 274 
the right superior corona radiata has been described (Giorgio et al., 2008). Together, these studies show that the general 275 
pattern of maturational contraction of gray matter is coupled with changes in white matter properties, including 276 
increased FA and volume. The present study builds on these findings by showing that there is a network organization in 277 
patterns of age-related variability in both gray and white matter volumes, and that these clusters are coupled based on 278 
both spatial proximity and similarity in age-slopes.  279 

White matter development across childhood and adolescence is characterized by increased FA and volume, and reduced 280 
MD (Barnea-Goraly et al., 2005; Ben Bashat et al., 2005; Giorgio et al., 2008; Lebel and Beaulieu, 2011). These processes 281 
occur asynchronously across white matter regions (Lebel et al., 2008), and are believed to reflect changes in myelination  282 
and axonal packing (Beaulieu, 2002; Yakovlev and Lecours, 1967). White matter properties such as FA appear to be 283 
influenced by both genetic (Kochunov et al., 2015) and environmental (Hofstetter et al., 2013) factors. We speculate 284 
that genes expressed within regions or networks may contribute to coordinated patterns of volume development 285 
observed here. Though often considered separately, gray and white matter development may reflect processes 286 
occurring in the same cells (though changes in gray matter may also reflect changes in glial cells or vasculature (Zatorre 287 
et al., 2012)). We further speculate that coordinated white matter expansion and gray matter contraction may reflect a 288 
synergistic process of increased myelination and decreased synaptic or dendritic density that occurs as networks 289 
mature. We note however that MRI studies are quite limited in resolution and thus have limited ability to test these 290 
hypotheses directly. 291 

Different distributed networks have been identified in functional MRI connectivity studies, including default-mode or 292 
task-negative, fronto-parietal  / dorsal attention / task positive, ventral attention, salience, visual, motor and sub-cortical 293 
networks (Fox et al., 2005; Power et al., 2011). A previous, seed-based, study showed that longitudinal change in cortical 294 
thickness in core regions of the task-positive and task-negative networks are correlated (Raznahan et al., 2011). We note 295 
that using a data-driven approach, the gray matter clusters identified here did not specifically resemble either of these 296 
two networks. Instead, we found a posterior cluster that included both precuneus and bilateral intraparietal sulcus, 297 
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regions associated with both the task positive and negative networks. An anterior cluster included both medial 298 
prefrontal task negative regions, as well as cingulate and dorsal prefrontal regions associated with task positive and 299 
salience networks. A recent study using a qualitatively similar approach to that described here also identified one 300 
primarily parietal network and several networks that bisected the prefrontal cortex into superior and inferior regions 301 
(Alexander-Bloch et al., 2014). Although similarities in network properties of maturational and functional networks have 302 
been shown (Alexander-Bloch et al., 2013), recent results (Alexander-Bloch et al., 2014), together with those reported 303 
here, suggest that the spatial distribution of maturational structural covariance networks may not map directly onto 304 
canonical functional networks. Further work is required to carefully characterize the relationship between 305 
developmental gray matter networks and brain systems defined based on functional connectivity.  306 

Our results suggest a period of particular cortical thinning in late childhood in the anterior and posterior gray matter 307 
clusters that consist of more cognitive frontal, parietal, insular and temporal regions. This has also been noted as a 308 
period of non-linear change in cortical thickness networks, when local efficiency is reduced but global efficiency 309 
increases (Khundrakpam et al., 2013). In terms of cognitive development, late childhood corresponds to a period of 310 
rapid maturation of attention and executive functions (Hommel et al., 2004; Pennington and Groisser, 1991; Zhan et al., 311 
2011). Our data suggest that cortical thinning most prominently in parietal regions, but also in the more anterior cortical 312 
network, may play a role in this process. A goal for future longitudinal studies will be to consider the maturational 313 
trajectories of gray and white matter networks in relation to cognitive maturation.  314 

There are several limitations associated with this study. We used single time-point rather than longitudinal 315 
measurements to identify age-slopes. Male and female participants were included in our analysis in similar numbers, 316 
though previous studies have shown evidence for sexually dimorphic trajectories in gray and white matter development 317 
(Giedd et al., 1997; Lenroot et al., 2007; Raznahan et al., 2011). Voxel-based morphometry analyses do not allow for 318 
separation of volume into thickness and surface area components, which make distinct contributions to volume 319 
development (Raznahan et al., 2011). The age windows used here were defined to correspond with recent reports 320 
(Khundrakpam et al., 2013; Zielinski et al., 2010), however these are somewhat arbitrary divisions and may not reflect 321 
optimal boundaries for transitions in age-slope. The ‘optimal’ number of clusters as defined using silhouette values did 322 
not match for gray and white matter clusters; the gray matter solution peaked at two clusters, separating cortical from 323 
cerebellar regions, while the white matter solution peaked at four clusters. We chose to model gray matter using a four-324 
cluster solution, to match the white optimal white matter solution, and therefore note that gray matter clusters in the 325 
cortex may reflect gradations of a largely similar age-related volume pattern rather than substantially distinct clusters. 326 
Significant effects of data acquisition site and resolution were most prominent around the internal capsule, putamen 327 
and posterior insula; clustering results in these areas may therefore be less reliable. Finally, we note that our analysis 328 
identified a set of gray and white matter clusters that covered regions which are very different in terms of cellular 329 
composition. As such, this analysis did not perform well at identifying regions with particular properties. 330 

In summary, this work describes a correspondence between clusters of white and gray matter regions, defined in terms 331 
of age-related variability in volume across childhood and adolescence. We found that white matter voxels clustered 332 
together based largely on fiber direction, and gray matter regions divided into anterior, posterior, sensorimotor and 333 
cerebellar clusters. These gray and white matter clusters could nonetheless be uniquely matched on the basis of spatial 334 
proximity, and showed parallel trajectories in age-related variability. This study identifies a previously unreported 335 
property of directional selectivity in white matter volume development, and demonstrates that white and gray matter 336 
volume clusters are linked across childhood and adolescence. There is a growing interest in understanding the role of 337 
anatomical networks in neurodevelopmental (Zielinski et al., 2012), neuropsychiatric (Alexander-Bloch et al., 2014) and 338 
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neurodegenerative (Douaud et al., 2014) disorders; these results lay a foundation for studying network-level 339 
abnormalities in white matter volume, and their relationship to gray matter covariance networks.  340 
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Figure captions 341 

Figure 1. Superior corona radiata / posterior gray matter clusters. This white matter cluster included deep white matter 342 
of the superior longitudinal fasciculus, superior corona radiata and body of the corpus callosum (acd) and included 343 
mostly (68% of voxels) superior-inferior oriented voxels. The corresponding gray matter cluster included primarily 344 
posterior cortical regions (a-d), including precuneus (b) and bilateral intraparietal sulcus (c). Mean gray and white matter 345 
slopes for the cluster with standard deviations (e) and a graphical illustration of volume trajectories (f) are shown for all 346 
four age bins.  347 

Figure 2. Medial callosal white matter / anterior gray matter clusters. This white matter cluster included medial corpus 348 
callosum (a), anterior internal capsule (d) and superior parietal lobule white matter (c) and was primarily ordered left-349 
right (70%). The corresponding gray matter cluster included anterior cingulate and medial prefrontal cortex (abc), as well 350 
as insular (bd) and temporal regions (b). Mean gray and white matter slopes for the cluster with standard deviations (e) 351 
and a graphical illustration of volume trajectories (f) are shown for all four age bins. 352 

Figure 3. Frontal and occipital white matter / visuo-motor gray matter. This white matter cluster included mostly 353 
superior-inferior oriented voxels (74%) in superior cerebellar peduncle (a), occipital and superior parietal (b) and 354 
superior frontal gyrus white matter (cd), posterior thalamic radiation (bc) and precentral gyrus white matter (d). The 355 
corresponding gray matter cluster recruited cuneus (abc), motor (d), superior parietal (b) and lateral prefrontal (c) 356 
regions. Mean gray and white matter slopes for the cluster with standard deviations (e) and a graphical illustration of 357 
volume trajectories (f) are shown for all four age bins. 358 

Figure 4. Cerebellar white and gray matter clusters. This white matter cluster included the cerebellum and cerebellar 359 
peduncles (a), including white matter in portions of the superior longitudinal fasciculus (c); voxels in this cluster were 360 
predominantly oriented anterior-posterior (58%). The corresponding gray matter cluster included the bilateral 361 
cerebellum (a), caudate (b) and dorsomedial prefrontal cortex (d). Mean gray and white matter slopes for the cluster 362 
with standard deviations (e) and a graphical illustration of volume trajectories (f) are shown for all four age bins. 363 

Figure 5. Preferred white matter direction in each cluster. For this analysis, the voxels within each cluster were 364 
thresholded to only those voxels with an eigenvalue >=0.4 in one of the three canonical directions. Panel (a) shows the 365 
proportion of voxels for with the maximum value in each direction. Panel (b) illustrates eigenvalues for all three 366 
directions across all voxels with at least one eigenvalue >=0.4, sorted by maximum value in each row (i.e. each row is 367 
one voxel; heat map indicates the eigenvalue at that voxel for each canonical direction). SCR=superior corona radiata, 368 
CC=corpus callosum, FO=Fronto-occipital. AP=anterior-posterior, LR=left-right, SI=superior-inferior. 369 

Figure 6. Effects of site and resolution on regional volume and clustering results. Panels (a) and (b) show the results of 370 
an F-contrast for effects of site, thresholded at p<0.001 uncorrected, on gray and white matter volume respectively. Site 371 
effects were identified around the putamen and internal capsule, as well as medial orbital and peripheral gray matter. 372 
Panels (c) and (d) show the results of an F-contrast for effects of resolution, thresholded at p<0.001 uncorrected, on gray 373 
and white matter volume respectively. Effects were again concentrated around the internal capsule, with gray matter 374 
effects in dorsal prefrontal, occipital cortices and cerebellum. Panels (e) and (f) illustrate clustering results for age-β 375 
estimates from gray (e) and white (f) matter models that included effects of site and resolution (left and superior panels) 376 
and from models that did not include these effects (right and inferior panels). We note that these are largely similar. 377 
Panels (g) and (h) illustrate regions of overlap (purple) and difference (red and blue) in cluster assignment for gray (g) 378 
and white (h) matter clusters when site and resolution are taken into account. The only substantial differences in 379 
clustering results were in posterior putamen and near the internal capsule.  380 
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Figure 7. Gray and white matter clusters derived from models accounting for total tissue volume. Panels a) and b) 381 
show gray matter clusters for models using proportional scaling (a) and ANCOVA (b). Panels c) and d) show white matter 382 
clusters for models using proportional scaling (c) and ANCOVA (d) models. Clusters are similar to Figure 6e and 6f, with a 383 
notable difference in the white matter cluster in the midbrain for the ANCOVA model (panel d).  384 
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 385 

Tables 386 

Table 1. Participant demographics. Mean, standard deviation (SD), and range were calculated for age and IQ in each 387 
group. Handedness reflects right (R) versus left (L) hand preference. Mean adjusted income is measured in thousands of 388 
dollars. 389 

390 
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