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Abstract

Place code representation is ubiquitous in circuits that encode spatial parameters. For visually guided eye
movements, neurons in many brain regions emit spikes when a stimulus is presented in their receptive fields
and/or when a movement is directed into their movement fields. Crucially, individual neurons respond for a
broad range of directions or eccentricities away from the optimal vector, making it difficult to decode the stim-
ulus location or the saccade vector from each cell’s activity. We investigated whether it is possible to decode
the spatial parameter with a population-level analysis, even when the optimal vectors are similar across neu-
rons. Spiking activity and local field potentials (LFPs) in the superior colliculus (SC) were recorded with a lami-
nar probe as monkeys performed a delayed saccade task to one of eight targets radially equidistant in
direction. A classifier was applied offline to decode the spatial configuration as the trial progresses from sen-
sation to action. For spiking activity, decoding performance across all eight directions was highest during the
visual and motor epochs and lower but well above chance during the delay period. Classification performance
followed a similar pattern for LFP activity too, except the performance during the delay period was limited
mostly to the preferred direction. Increasing the number of neurons in the population consistently increased
classifier performance for both modalities. Overall, this study demonstrates the power of population activity for
decoding spatial information not possible from individual neurons.

Key words: brain-computer interface; decoding; eye movement; frontal eye field; oculomotor; sensorimotor
transformation

Significance Statement

We make countless goal-directed eye movements each day. Individual neurons that signal for the appear-
ance of a visual stimulus and/or the execution of a rapid eye movement often fire at comparable levels for
very different spatial parameters. We recorded both spiking activity and local field potential (LFP) signals
across many channels simultaneously and asked whether the spatial parameter of target or saccade direc-
tion can be decoded across a broad range of the visual field. Applying simple categorical classifiers to “pop-
ulations” of neurons, we found that both spiking and LFP activity were informative of direction early on,
starting at the initial visual response and continuing through movement initiation. This investigation demon-
strates the advantage of a population-level framework over traditional approaches.
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Introduction
We interact with our environment by redirecting our line

of sight to objects of interest. A large network of neural
structures is involved in this process of sensorimotor inte-
gration. The superior colliculus (SC), a topographically or-
ganized laminar structure in the subcortex, is essential for
the control of visually guided eye movements known as
saccades (for review, see Gandhi and Katnani, 2011;
Basso and May, 2017). Neurons in the superficial layers
are primarily sensory, producing a burst of spikes when a
stimulus is presented in their receptive fields. Neurons in
the deep layers are predominantly motoric, emitting a vol-
ley of spikes before the generation of a saccade in their
movement field. Neurons in the intermediate layers exhibit
both sensory and motor bursts. In reality, the extent of vis-
ual and motor bursts varies inversely as a continuum
along the dorsoventral axis (Mohler and Wurtz, 1976; Ikeda
et al., 2015; Massot et al., 2019; Jagadisan and Gandhi,
2022). Within a layer, neurons vary in their preferred vector
along the mediolateral and rostral-caudal axes, respec-
tively. An individual neuron at a particular position on the
SC map will exhibit maximal activity for its optimal vector
(in sensory and/or motor domains) and gradually less for
vectors away from it (Goldberg and Wurtz, 1972; Wurtz
and Goldberg, 1972; Sparks, 1975; Sparks et al., 1976).
Take, for example, a hypothetical deep layer neuron re-
corded at the location on the SC map shown in Figure 1A
as a green dot. If the executed saccade is horizontal and
rightward with a 20° amplitude (Fig. 1A, right panel), this
neuron will be located at the “hot spot” of activity produced
in the SC. The farther neurons are from this hot spot, the
less active they will be, as the spread of activity is thought
to decay in a Gaussian-like manner. Now suppose the
amplitude of the executed saccade is held constant but
the direction is at an angle 45° counterclockwise (Fig. 1B).
In this case, the neuron will no longer be located at the hot
spot on the SC map and thus will have much less activity.
One can imagine a case in which the recorded neuron has
similar activity levels for yet other saccade vectors (e.g., Fig.
1C). In such conditions, the activity elicited at the recorded
location is similar, so it follows that discriminating the direc-
tion of saccade vectors far away from the preferred direc-
tion of a single neuron is challenging.
Experimenters most often approach the SC with probes

inserted orthogonally to the SC surface. The typical ap-
proach for isolating one neuron and recording its activity
during behavioral tasks is represented in the left panel of

Figure 1D. However, with recent technological advances,
researchers can record from small “populations” of neu-
rons via a laminar probe, with electrode contacts span-
ning the dorsoventral axis of the SC (Fig. 1D, right panel).
Neurons along this axis systematically vary in the degree
to which they signal for sensory and motor parameters
across depth (Ikeda et al., 2015; Massot et al., 2019;
Mohler and Wurtz, 1976) but are thought to encode
roughly the same intended stimulus location/saccade
vector, thus yielding a highly homogenous population. In
contrast, placing multicontact electrodes into cortical
oculomotor structures such as the frontal eye fields (FEF)
yields a heterogenous population; each neuron in the re-
corded population will signal maximally for a very different
amplitude and direction of the intended eye movement
(Bruce et al., 1985; Sommer and Wurtz, 2000). In such
structures, it is easier to appreciate how recording from
populations of neurons would provide an advantage in
discriminating spatial parameters of the stimulus or sac-
cade vector (see, for example, the classic idea of popula-
tion vector averaging in Georgopoulos et al., 1983; also
see Graf and Andersen, 2014; Jia et al., 2017). Given that
the topography of the SC does not provide the same spa-
tial variability when using the standard electrode ap-
proach, it is not as intuitive that population activity could
improve discriminability of spatial parameters across a
broad range of the visual field over that of single units.
We challenged this notion by testing whether informa-

tion about a broad range of visual stimulus locations and/
or saccade directions can be obtained from activities of
small populations of simultaneously recorded SC neurons
within a specific location on the SC topographic map, and
if so, at what time(s) during the sensorimotor integration
process this spatial information is present. Accordingly,
we investigated the time course of direction discriminabil-
ity present in the spiking activity of SC neural populations
and compared the neurons’ encoding properties with a
second signal modality, the local field potential (LFP),
which at a given recording site reflects the aggregate ac-
tivity of nearby neurons through a measure of their extrac-
ellular voltage (Buzsáki et al., 2012). We recorded both
signals simultaneously across layers of the SC while rhesus
monkeys (Macaca mulatta) performed delayed saccades to
one of eight targets radially equidistant in direction. We then
trained a simple linear classifier to output the most likely di-
rection to which small windows of spiking or LFP activity be-
longed. The performance of the classifier across time and
directions gives a comprehensive indication of the spatial
encoding properties of SC activity during sensorimotor in-
tegration. We found that both spiking activity and LFPs
from a small number of neurons can decode among the
categories, including for the opposite hemifield, as early as
the visual response.

Materials and Methods
Animal preparation
Two adult male rhesus monkeys (M. mulatta; BL and

SU) were used in this study. All experimental procedures
were approved by the University of Pittsburgh Institutional
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Animal Care and Use Committee. A sterile surgery was
performed on each animal to implant a stainless-steel
recording chamber (Narishige) angled 40° posterior
with respect to vertical. Electrode penetrations through
this chamber approach the SC orthogonal to its surface
and traverse its dorsoventral axis along a track where
neurons have similar response fields. Both animals
were fitted with a thermoplastic mask to achieve fixa-
tion of the head during experimental sessions (Drucker
et al., 2015).

Data collection
Comprehensive details about neurophysiology and mi-

crostimulation are provided in Massot et al. (2019). In
brief, a 16-channel (monkey BL) or 24-channel (SU) lami-
nar microelectrode (Alpha Omega or Plexon, respectively)
was inserted acutely into the SC to record neural activity
across different layers. We stopped driving the electrode
when characteristic SC spiking activity (typically visual
and motor bursts) was qualitatively observed across
many of the central-most recording channels. Then, some

individual channels were stimulated (400Hz, 20–40 mA,
100-200 ms; biphasic pulses, 200 ms pulse duration, 17 ms
inter-pulse duration) to qualitatively determine an average
evoked saccade vector, which was used as the preferred
location for that session’s neural population. The raw activ-
ity recorded on each channel was separated into spike
times (high pass filtered at 250Hz and discretized using a
standard threshold) and LFP (low pass filtered at 250Hz).
The majority of channels with task-related spiking activity
were visuomotor neurons that exhibited large transient
bursts both in response to a visual stimulus and before/
during saccade. Only channels with peak spiking activity
.20 spikes/s above baseline during either the visual or
motor epochs were counted as functional channels and in-
cluded in analyses (with total channels, U, ranging from 6
to 17 across sessions). For visualization only, spike counts
were converted into firing rates by convolving each chan-
nel’s spike train with a Gaussian kernel of 10-ms width (as
in Fig. 2A) and LFPs were bandpass filtered between 0.5
and 250Hz with a notch filter at 60Hz (as in Fig. 2B). Data
from 15 sessions frommonkey SU and three sessions from
monkey BL were collected (N ¼ 18 total sessions).

Figure 1. Schematic of spiking properties of recorded SC neurons. A, A widely accepted model of the left SC topographic map
and the corresponding right visual hemifield. When a visual stimulus is presented in a particular location and/or a saccade is made
to that location, neurons are active across the SC map. The hot spot of activity for the example recorded location is at the green dot
when the amplitude and direction of the stimulus/saccade are 20° and 0°, respectively; activity spreads spatially across the SC in a
Gaussian-like manner. B, C, SC activity elicited for vectors 45° (B) and �45° (C) away from the preferred direction of the recorded
neuron. These hypothetical cases highlight how two very different direction vectors can elicit similar activity levels at the recorded
location. Figure panels A through C adapted from Gandhi and Katnani (2011). The same conceptual quandary remains even if the
topographic map is updated to reflect unequal representations of upper and lower hemifields (Hafed and Chen, 2016). D, Traditional
single electrode approach into the SC (left) compared with an advanced recording technique with a multichannel laminar probe
(right). In both cases, the insertion angle is orthogonal to the SC surface, yielding neuron(s) at only one location on the SC map
(e.g., the location of the green dot in the previous panels). Figure panel adapted from Jagadisan and Gandhi (2022).
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Behavioral paradigm
Each monkey was trained to sit in a primate chair and per-

form a standard eye movement task in a dimly lit room. Eye
position was tracked with an infrared eye tracker (EyeLink
1000, SR Research; see Massot et al., 2019 for additional
details). During each recording session, animals performed
many trials of a center-out delayed saccade task to one
of eight possible targets evenly spaced in 45° increments
around the fixation point. The delay period length was
randomized from trial to trial, spanning 600–1200ms (monkey
BL) or 700–1500ms (monkey SU). Each target had an equal
likelihood of presentation, and “Target 1”was either placed at
the spatial location corresponding to the estimated preferred
saccade vector (for the majority of sessions) or at the position
(10°, 0°) in polar coordinates. In the latter case, preferred tar-
get direction was re-defined as Target 1 following examina-
tion of the average spiking activity profiles for that session (as
in Fig. 2). For sessions in which the target position was ro-
tated and scaled, the circular mean direction of Target 1 was
131.6°, with mean amplitude of 14.6° (N ¼ 12 sessions). The
animal was given a liquid reward after executing a saccade to
a location within 2° of the target position, and only these suc-
cessful trials were included in analyses (typically yielding over
1000 total trials across all target directions per session).

Classification methods
Custom MATLAB code (MathWorks) was used for all

analyses unless otherwise specified. Target location was

decoded offline from population activity on each session
individually. Summed spike count or average LFP voltage
on each channel in 100-ms time windows, sliding in 10-
ms increments across the duration of each individual trial,
was labeled as belonging to Target 1 through Target 8 de-
pending on the target location presented on that trial. For
each individual 100-ms time bin, a separate linear discrimi-
nant classifier was trained on these summed spike counts
or average LFP voltage values from a randomly selected
70% of total trials (pooled across all targets), and its per-
formance was tested on the remaining 30%. Classifier per-
formance was measured through the F1 score, a common
metric for multiclass classifiers that takes into account
both sensitivity and precision of the model for each target
while countering any overfitting/underfitting to activity
belonging to a particular target (Zhi et al., 2018). This
process of randomly selecting 70% and 30% as training
and test trials, respectively, was repeated for a total of
10 times for each window and each session to obtain an av-
erage classifier performance across iterations. Importantly,
each classifier was trained and tested only on activity be-
longing to a particular time range and had no information
about future or past windows that would influence perform-
ance within a given window. To determine an experimental
chance level, target labels were randomly shuffled and
the classification process described above was repeated.
The actual chance level tended to closely match theoreti-
cal chance level performance of one out of eight targets,
or 12.5% (results not shown). Before averaging across

Figure 2. Peri-event values of spiking activity and LFPs simultaneously recorded across channels. A, The across-trials mean firing
rates for all 15 functional channels recorded during an example session are plotted aligned to target onset (left) and saccade onset
(right) to eight radially equidistant targets. Each colored trace represents the spiking activity on one channel averaged across all tri-
als to a particular target. Subplots are rotated so that the preferred target direction of this population is displayed horizontal and
rightward with respect to center. B, The across-trials mean LFP voltage values for all 15 channels are plotted using the same con-
ventions as the spiking activity data.
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sessions, the classifier performance values of true and
shuffled data in each window for each target were sub-
tracted by the mean performance value for that target
during the first 200ms of the baseline period (i.e., 400–
200ms before target onset). This was done to normalize
all sessions’ performance values as a change in perform-
ance relative to baseline. In all visualizations of classifier
performance across time (Figs. 3, 5, and 6), values are
plotted in a causal manner; for example, performance for
the set of observations in the time window 100–200ms
after target onset is plotted at the 200-ms mark to repre-
sent that only historical activity was used to create and
test a model of spatial location information.
A linear discriminant analysis (LDA) classifier is a su-

pervised, geometric model that finds a hyperplane that
maximally separates the input features between two cat-
egories, or “classes,” during the training phase. In this
paradigm, there are U input features that correspond to
the spiking or LFP activity on all functional channels (as
described above, see Data collection), and there are 8
classes that correspond to the eight targets presented.
Since an LDA model is by definition a binary classifier, we
implemented a common technique called error-correcting

output codes (ECOC) that fits a series of binary LDA classi-
fiers in a one-versus-one manner to convert the model into
a multiclass classifier, allowing for simultaneous classifica-
tion into more than two categories (Derya Ûbeyli, 2008).
During the testing phase, new data are shown to the
model, and the class (i.e., target to which the activity corre-
sponds) is determined by the position relative to the hyper-
planes that were found during the training phase. To note,
a pseudolinear discriminant classifier was implemented for
spiking activity to combat the low or absent spike counts
on some channels in certain time windows, which often
leads to zero variance across observations and disrupts
model fitting. To ensure that our results were robust to the
type of classifier used, we also repeated all analyses using
a ECOC support vector machine (SVM) algorithm and
found classifier performance dynamics for both spiking
and LFP activity to be quite similar to those found via
ECOC LDA classification.
For analysis of the effect of window length on classifier

performance, spike counts were summed and LFP vol-
tages were averaged across each window of length [20,
50, 100, 200, 300] ms, which again were calculated in
sliding increments of 10ms (Fig. 5). Separately, the total

Figure 3. Linear discriminant classification of spiking and LFP activity. Sliding 100-ms windows of summed spike counts or average
LFP voltage on each channel were used to train a linear discriminant analysis (LDA) model and test its ability to decode target direc-
tion. Mean (6SEM) across-session classifier performances for the spike count (black traces) and LFP classifiers (green traces) are
plotted separately for each of eight target directions and aligned to target onset (left panels) or saccade onset (right panels). Chance
level classifier performance was obtained by using shuffled class labels during the training phase. Performance values were
grouped across sessions by aligning to each session’s preferred target direction (visualized here as the right middle panels), and
the performance for each session and each target was baseline-subtracted before averaging. Values for each window are plotted
aligned to the end of that window (e.g., performance of the classifier trained and tested on the 0- to 100-ms window following target
onset is plotted at 100ms on the x-axis).
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number of functional channels recorded in a given ses-
sion (see above, Data collection, for description of U, the
total number of channels with task-related activity) were
randomly shuffled and a subset was selected to be in-
cluded as the input features to the spike count classi-
fiers. This process was repeated for population sizes
starting at 1 (equivalent to a single channel) and ending
at U (Fig. 6A). The same randomly selected channels
were used for the LFP classifiers (Fig. 6B).
To represent the spatial tuning properties of our neural

populations during the many epochs of this behavioral
task, we defined a range of times for each of five epochs
(baseline, visual, early delay, late delay, and motor) during
which we pulled out a single across-session classifier per-
formance value for each target direction. Baseline per-
formance was taken as the mean value in the range of
400–200ms before target onset. Visual performance was
taken as the maximum value around the time of the visual
burst, typically occurring within the 100- to 200-ms range
after target onset. Early delay performance was taken as
the mean value in the range of 250–450ms after target
onset. Late delay performance was taken as the mean
value in the range of 300–100ms before saccade onset.
Motor performance was taken as the maximum value
around the time of the motor burst, typically occurring
near saccade onset.
All statistical comparisons of classifier performance

between signal modalities or epochs (in Figs. 8, 9) were
performed using a paired two-tailed t test with p , 0.05
indicating a significant difference between the two distri-
butions included in the comparison.

Results
We set out to determine whether and at what times dur-

ing a behavioral task do neural populations in a single col-
umn of the SC encode information about the spatial
configuration of the trial. We employed a simple offline de-
coding algorithm (linear discriminant classifier) as a proxy
for discriminability of spatial location (i.e., to which out of
eight possible targets will an animal make a saccade on a
given trial) during independent sliding windows of time
throughout a behavioral task. This decoding algorithm
was applied separately to the spiking activity of simulta-
neously recorded neurons and to the local field potential
(LFP) recorded at the same locations across the dorso-
ventral axis of the nonhuman primate SC. Importantly, we
remain agnostic with respect to whether the population
encodes sensory and/or motor information at any given
time. Instead, we will use any combination of terms “tar-
get/saccade location/direction” throughout the text and
do not make any attempts to distinguish whether the spa-
tial information being encoded is related to sensory (i.e.,
visual stimulus angle relative to eye position at fixation) or
motor (i.e., intended saccade direction relative to starting
eye position) representations.
In Figure 2A, the trial-averaged firing rates across all

functional channels of an example session are plotted as
colored traces aligned to target onset (left panels) and
saccade onset (right panels). In general, the firing rates of
these neurons are highest in the preferred direction (i.e.,

Target 1) and are less vigorous as the angular direction of
the target/saccade moves away. In the opposite hemifield
(i.e., Targets 4–6), activity across all channels is minimal.
Figure 2B shows the trial-averaged voltage values of the
LFPs across the same functional channels of the example
session. Only minimal deflections from baseline levels are
present for all target locations away from the preferred di-
rection. Despite similar firing rate properties and LFP volt-
age deflection characteristics across all channels, can a
method that utilizes the activity pattern across the popula-
tion aid us in understanding how the SC encodes the spatial
parameter of direction? To do this, we trained and tested
simple linear classifiers to output the category (one of eight
directions) to which either spiking or LFP activity belongs.
Figure 3, black traces, shows the across-session

mean performance in decoding target location from
small windows of summed spike counts for each tar-
get. Here, Target 1 (middle right) has been rotated for
each session to represent the target location most pre-
ferred by the neural population recorded on that day
(as determined by microstimulation; see Materials and
Methods). By aligning all sessions according to their
preferred target location, we can better appreciate any
change in decoding target location as a function of the
proximity of a target to the preferred target. In other
words, Targets 2 and 8 are approximately equidistant
from the preferred target, while Target 5 represents the
target diametrically opposite to the preferred target,
one that is in the opposite hemifield.

Figure 4. Spread of spatial direction discrimination across
broad visual space. Summary polar plots of mean across-ses-
sion classifier performance distribution across target directions
during each epoch as defined in Materials and Methods for
spiking (A) and LFP (B) activity. Spatial tuning of spiking activity
is broader in the motor epoch than any other epoch. For LFPs,
decoding performance is lower during the delay period but is
comparable between the visual and motor epochs.
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The first, and perhaps most obvious, observation to
note is that spatial information is best decoded during
the neural populations’ visual and motor bursts, peaking
roughly 150ms after target onset and again around sac-
cade onset, respectively. This aligns well with the popula-
tion-averaged response during these two epochs (Fig.
2A). Next, and perhaps just as intuitive, is the observation
that the decoding performance is best for the target in
the preferred location. Equivalently, the spiking activ-
ity pattern is most distinct from other target locations
when the target is presented in the preferred location
(i.e., the target that evokes a maximal firing rate in re-
sponse to its appearance).
Equally importantly, note that spatial information can

still be decoded from targets far away from the preferred
location (e.g., Targets 4–6). Despite the low firing rate
modulation for these targets, the spiking activity is in fact
still distinct across targets presented in this region; other-
wise, the performance would remain at baseline level
(here, at 0 on the y-axis) throughout the trial. Instead, the
classification performance is well above chance level for
these directions, including for the location diametrically
opposite the preferred direction. This result can likely be
attributed to the activity seen in individual channels when
targets in this region are presented, although the direction
of modulation (i.e., elevation or suppression of activity) for

saccade targets in this hemifield is unique to each individ-
ual neuron and population (see example session in Fig.
2A). The last main observation in Figure 3, black traces, is
that the decoding performance remains elevated through-
out the delay period, in the time between the transient
visual burst and the much-later motor burst, especially
for targets in and near the preferred location. This result
suggests that target location is one form of information
still present during the delay period, which can be at-
tributed to the sustained tonic activity exhibited by
many SC neurons following the end of the transient vis-
ual response.
Next, we applied a classification algorithm to the LFPs

recorded simultaneously across many channels. Figure 3,
green traces, shows the across-session mean perform-
ance when decoding target location from small windows
of averaged LFP voltage signals. A decoding performance
comparable to the spike count-based classifier was found
during the visual epoch. However, in contrast to the spiking
activity-based classification, the ability to decode spatial
location from LFPs during the delay period is much more
constrained to the preferred target direction. This tuning
once again becomes broader during the motor epoch,
although the extent of spatial information does not expand
past that observed during the visual epoch as it does in
the spike-based classifier. A summary of the spread of

Figure 5. Linear discriminant classification of spiking and LFP activity: systematic variation of bin width. A, Classifiers were trained
and tested on summed spike counts during windows of lengths ranging from 20 to 300ms. Average performance values over 50
bootstrapping iterations for each target direction and each window length condition is plotted using the same conventions as Figure 3
for one example session. Again, values are plotted aligned to the end of each window; therefore, each condition peaks in classification
performance at different times, but this is not the comparison of interest. Spike count-based classification is largely robust to window
size during the transient visual and motor epochs (as indicated by the dark blue and light green arrows at Target 1) but performance in-
creases with increasing window sizes during the delay period. B, As in A but for average LFP voltage on each channel during windows
of varying lengths. A decrease in performance with increasing window lengths can be seen during the motor epoch (indicated by dark
blue and light green arrows at Target 1), but the opposite effect can be seen during the delay period.
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performance for the spike count and LFP classifiers during
five key epochs—baseline, visual, early delay, late delay,
and motor—is presented in Figure 4.
We next determined whether these observations were

robust to the size of the window used to classify the target
location. Therefore, we systematically varied the bin width
of summed spike counts used to train and test the classi-
fier from very small (20ms) to very large (300ms), and the
across-session mean performance for each bin width is
shown in Figure 5A for one example session. Indeed,
varying the bin width did not qualitatively change the con-
clusions drawn above. Instead, the spatial location de-
coding performance gradually increased as bin width
increased, plateauing around the 100-ms window length.
In other words, using summed spiking activity from time
ranges longer than 100ms did not improve the classifier
performance, from which we infer that information about
spatial location is encoded maximally in short-to-medium-
length periods of spiking. In contrast, when the LFP signal
is averaged across windows ranging from 20 to 300ms in
length, as shown in Figure 5B, we see that the maximum
performance is reached when the window length is the
shortest during the visual and motor epochs (see dark blue
and light green arrows for Target 1). This short optimal win-
dow length suggests that spatial information is encoded
maximally in short periods of time during these transient
epochs, unlike that observed in the spike-based classifier.
However, just as with spiking activity, spatial information

seems to be maximally encoded on a longer time scale
during the delay period.
Perhaps most importantly, we asked whether the

same level decoding performance could be achieved
by only selecting a random channel as if using a tradi-
tional single electrode or a subset of channels to artifi-
cially decrease population size. Figure 6 shows the
result of this systematic variation in population size
from one channel up to U channels, which is equivalent
to the number of functional channels recorded in a
given session. For both spike count and LFP classifiers,
average across-session performance increases nearly
monotonically as population size increases. A break-
down of this trend during four key epochs (visual, early
delay, late delay, and motor) can be seen in Figure 7.
Hence, it is effective to decode the spatial parameter of
direction from seemingly homogenous neural popula-
tions in the SC.
We also repeated the classification process after divid-

ing each session’s channels into three subpopulations
based on each channel’s relative firing rate in the visual
and motor epochs (through a standard visuomotor index).
As expected, the subpopulations with the highest firing
rates during the visual epoch (presumably located in the
more superficial SC layers) yielded the highest classifier
performance of all subpopulations during the visual
epoch (observations not shown). In a similar fashion, the
more motoric populations (likely located in the deeper SC

Figure 6. Linear discriminant classification of spiking and LFP activity: systematic variation of population size. A, Classifiers were
trained and tested on summed spike counts during 100-ms windows with randomly selected population sizes ranging from 1 to 17
channels. Average performance over 50 bootstrapping iterations for each target direction and each population size condition are
plotted using the same conventions as Figure 3 for one example session. As population size increases, classification performance
increases in a corresponding fashion. B, As in A but for classifiers based on average LFP voltage across a varied number of in-
cluded channels (matched to the channels included in the spike count classifiers). LFP-based classifier performance also increases
systematically as a function of population size.
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layers) led to the highest performance during the motor
epoch (observations not shown). However, we did not aim
to isolate purely visual or purely motor neurons when col-
lecting data and consequently could not fully tease apart
the relationship between neuron subtype and temporal
dynamics of classifier performance.
Last, we quantitatively compared the spatial encoding

properties across epochs and signal modalities—first for
each individual target direction and then integrated across
all eight target directions. Figure 8 breaks down the classi-
fication performance during the visual epoch versus the
motor epoch independently for each target and signal
modality. Each point corresponds to the peak decoding
performance during the visual and motor epochs for a
single session and target direction. We tested whether
for each target and modality the performance was sig-
nificantly different between the two epochs through a
paired t test, which is shown in the inset of Figure 8. The
spike-based classifier produced consistently higher
performance in the motor epoch than in the visual
epoch for nearly all target directions regardless of the
angular distance from the preferred location. On the
contrary, the LFP-based classifier only displayed signif-
icantly different performance between the visual and
motor epochs for target directions far from the preferred
direction.

To summarize both the amount and the spatial extent,
or breadth, of information across all targets, we computed
an area under the curve (AUC) of decoding performance
separately for each epoch and signal modality. Figure 9A
shows the decoding performance across targets during
four key epochs (see Materials and Methods for defini-
tions) for the spike-based classifier in black and the LFP-
based classifier in green. The session-averaged traces
are comparable to data shown in the polar plots of Figure
4. To quantify the total amount of information across all
targets, we first computed in each epoch independently
the trapezoidal area under the session-averaged decod-
ing performance trace. The pairwise difference in AUC be-
tween the two signal modalities is plotted in Figure 9B.
Beginning in the visual epoch, the amount of spatial infor-
mation is significantly different between spikes and LFPs
(paired t test), and this separation persists throughout
the time course of the trial. Then, to obtain a measure of the
spatial extent of classification performance—that is, the nar-
rowness or breadth of ability to characterize neural activity
across the full range of target directions—we shifted each
population’s decoding values such that the decoding per-
formance was 1 for the target in the preferred direction (i.e.,
Target 1) before taking the area under the tuning curve. This
provides a means of normalization across epochs so that
any uniform shifts in decoding performance across all

Figure 7. Classification performance as a function of population size during four key epochs. The performance of spike count (black
traces) and LFP (green traces) classifiers was evaluated through a systematic variation of population size (Fig. 6). Here, the across-
session average peak classification performance for each target during the visual (blue panels), early delay (light purple), late delay
(dark purple), and motor (orange panels) epochs is plotted as a function of the number of channels included (from 1 to U; see
Materials and Methods). During both the visual and motor epochs, increasing population size leads to a corresponding increase in
direction discriminability, even for targets in the hemifield opposite the preferred direction. For spike count-based classifiers, per-
formance in the delay period follows the same trend, whereas less consistency is observed in the performance of LFP-based classi-
fiers during these epochs.
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targets from one epoch to another do not impact this
measure. The normalized AUC for each signal modality
for each epoch is shown in Figure 9C. Statistical testing
(Fig. 9D) revealed that, for the spike-based classifier,
the normalized AUC is only significantly different be-
tween the visual and motor epochs and between the
late delay and motor epochs. For the LFP-based classi-
fier, the tuning width is significantly different across all
epochs, indicating a dynamic shift in spatial encoding
across epochs.

Discussion
In this study, we investigated the spatial discrimination

properties of spiking activity and LFP signals in the SC, an
oculomotor structure critical for the transformation of sen-
sory input into motor commands. The combination of the
anatomic organization of the SC and the typical electro-
physiological approach lends itself to recording neural ac-
tivity within a narrow column along the dorsoventral axis.
Neurons within this track have largely similar preferred
saccade directions as well as largely similar preferred
visual target eccentricities (Gandhi and Katnani, 2011).
We showed that despite this homogeneity, classification

algorithms operating on the active populations can dif-
ferentiate among a wide range of directions. This popula-
tion-level viewpoint provides insights into the spatial
extent of direction tuning that can be decoded from neu-
rons along the dorsoventral axis of the SC that through
single unit studies was thought to be essentially nonexis-
tent for all visual angles except those close to the pre-
ferred direction.
For each short sliding window along the timeline of a

delayed saccade task, a simple linear classifier was
trained offline to categorize either spiking or LFP activity
as belonging to one of eight directions. By evaluating the
amount of change in classification performance above
baseline, we obtained a singular measure of spatial infor-
mation across the channels on which task-related activity
was recorded. Such offline decoding algorithms have
been used to characterize the spatial encoding properties
of spiking activity (Ohmae et al., 2015; Boulay et al., 2016;
Khanna et al., 2020) and LFP signals (Tremblay et al.,
2015) in cortical oculomotor areas. Implementing classi-
fiers to link neural activity to a behavioral phenomenon is
beneficial because they provide a quantitative, compre-
hensive measurement of information encoding in neural
populations (Glaser et al., 2020). Of note, we do not claim

Figure 8. Comparison of direction encoding during the visual and motor epochs for each target. Peak decoding performance in the
visual (x-axis) versus motor (y-axis) epoch as defined in Materials and Methods for each target. Spike-based classifiers are indicated
in black and LFP-based classifiers are indicated in green. Each session (N=18) contributes two points to each of the eight target
subplots: one for spiking activity and another for LFP activity. Inset, Significant (paired t test) differences in performance level during
the visual and motor epochs for each target are represented, with p, 0.05 indicated by a single asterisk, p, 0.01 by double aster-
isks, and p, 0.001 by triple asterisks. For spike-based classifiers, the performance is significantly different between epochs for all
targets but one. For LFP-based classifiers, only targets far from the preferred direction have significantly different encoding across
epochs.
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that the encoded information at any time represents a
particular feature such as sensation, motor preparation,
or motor initiation. Instead, we simply characterize the
amount of information about direction present in the pop-
ulation throughout the timeline of sensorimotor integra-
tion. The end position of the saccade had to be within 2°
of the target position to count as a correct trial, which is a
negligible displacement compared with the 45° angular
distance between each pair of the eight targets used as
the categories for classification. Thus, we have referred to
the encoded target direction and saccade direction syn-
onymously. However, a fine-scale characterization of the
time points at which SC neurons encode spatial parame-
ters in target-centered and gaze-centered coordinates
has been reported previously (Lee and Groh, 2012; Sadeh
et al., 2020; Sajad et al., 2020).
Prior studies have compared the visual receptive fields

of oculomotor neurons to their movement fields (equiva-
lently, their spatial tuning properties during the respective
visual and movement epochs). In cortical areas such
as the FEF, the preferred target direction of individual

neurons tends to be consistent between the visual and
motor epochs (Khanna et al., 2020). The visual receptive
fields of SC neurons have also been shown to largely
overlap with their movement fields (Wurtz and Goldberg,
1972; Anderson et al., 1998), but also see Wurtz and
Goldberg (1972) and Marino et al. (2008) for exceptions.
Our results conform with these previous findings. When
comparing the visual and motor epochs within the spiking
modality, we observed that the width of discriminability
across all target directions is significantly broader in the
motor epoch than in the visual epoch (see Fig. 9D).
Of much recent interest in the neuroscience community

are the questions of what and how much information
about various behavioral phenomena is contained in LFP
signals—questions that have elicited studies on reach ki-
nematic encoding by LFPs in primary motor cortex (Perel
et al., 2015), attention in visual cortex (Prakash et al.,
2021), route selection in hippocampus (Cheng et al.,
2021), and grasping postures in anterior intraparietal cor-
tex (Lehmann and Scherberger, 2015), among others.
When comparing spatial encoding properties across the

Figure 9. Comparison of spatial encoding properties of spiking and LFP activity across epochs. A, Baseline-shifted classification
performance on spiking (black) and LFP (green) activity during each of the four main epochs (as defined in Materials and Methods)
for each target aligned to the preferred direction of the population. Mean across sessions (bold lines) as well as each session’s indi-
vidual tuning curve (N=18, thin lines) are shown. Session-averaged traces are the same as the data shown in Figure 4. B,
Differences in the amount of spatial information encoded between two signal modalities. Trapezoidal area under each observed tun-
ing curve (AUC) shown in A was computed, and the LFP classifiers’ AUCs were subtracted from the spike count classifiers’ AUCs in
a pairwise fashion for each session and epoch. The across-session mean difference in AUC between the two modalities (bold line)
and individual session values (gray points) are plotted. Significant differences between spiking and LFP classifier distributions are
shown with asterisks at the a = 0.05 significance level (paired t test; p, 0.05 is indicated by a single, p, 0.01 double, and
p, 0.001 triple asterisk). From the visual epoch, the encoding of spatial information is significantly different between spiking and
LFP signals. C, The AUC during each epoch for each session (thin lines) along with the across-session mean AUC (bold lines) were
computed after shifting each population’s decoding values such that the decoding performance was 1 for the target in the preferred
direction (i.e., Target 1). This measure allows for a fair comparison of breadth of information across epochs. D, Grid of statistical dif-
ferences (paired t test) in tuning width across pairs of epochs computed separately for each signal modality. For spiking activity, the
tuning width is only significantly different between the visual and motor epochs and between the late delay and motor epochs. For
LFPs, the tuning width is significantly different across all epochs.
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two simultaneously recorded signal modalities in this
study, we found that the amount of spatial information
present in spiking activity and LFPs diverged beginning in
the visual epoch, with the spike-based classifier consis-
tently better at decoding target location (see Fig. 9B).
Both signal modalities displayed similar breadth of spatial
discrimination during the visual and motor epochs; in
other words, the spatial extent of decoding performance
across the eight targets was comparable between spike-
based and LFP-based classifiers during the visual re-
sponse period and motor initiation period (considered in-
dependently, see Fig. 9D). During the intervening delay
period, the spike-based classifier performance remained
high, but LFP-based performance dropped to near base-
line levels for all targets except the target closest to the
neural population’s preferred direction. Thus, the encod-
ing of direction is dynamic across epochs and signal mo-
dalities in the SC. Why might there be less information
about target direction contained in LFP signals? For one,
we did not arrange the presented targets according to the
direction that elicited the maximum LFP deflection but
rather according to the direction of the saccade elicited
by microstimulation. Future experiments could elucidate
the maximum amount of information encoded in LFP sig-
nals by rotating target placement to best align with the
LFP preferred direction.
It is possible that the radially equidistant target angles

we presented did not elicit comparable firing rate condi-
tions as schematized in Figure 1. For instance, if we enter-
tain the notion that the SC map should be updated to
include an overrepresentation of the upper visual field
(Hafed and Chen, 2016), two equidistant target directions
may yield imbalanced activity at the recorded location
and consequently lead to a higher level of spatial discrimi-
nability. However, it is impossible to create a paradigm in
which two target conditions elicit near-identical activity at
the recorded location on the SC map, especially when re-
cording from many neurons that all have slightly different
preferred directions. Still, the trial-to-trial variability in fir-
ing rates and/or voltage values should obscure direction
discriminability as long as these values are somewhat
comparable between equidistant target directions (e.g.,
645°,690°, and6135° as is the case in our experimental
setup). This obfuscation should be most apparent for tar-
get directions in the opposite hemifield of the preferred di-
rection, where activity across all channels is minimal. We
see this lack of discriminability for single neurons, but this
disappears as the population size is increased (Fig. 7).
The above-chance direction discriminability for targets in
the hemifield opposite the preferred direction is intriguing;
perhaps there is even more cross-SC interaction during
sensorimotor integration than previously understood.
We suggest that the SC is a suitable candidate for

brain-computer interface (BCI) applications, especially in
BCIs implemented to address fundamental neuroscience
questions (Sadtler et al., 2014). Although the vast majority
of prior work that implements closed loop control of a
computer cursor or robot arm has decoded neural activity
from skeletomotor structures, a few groups have ven-
tured into the oculomotor domain and demonstrated that

volitional control of neural activity is possible in these
areas (Schafer and Moore, 2011; Graf and Andersen,
2014; Jia et al., 2017) as well as in wholly nonmotor
areas (e.g., primary visual cortex; Neely et al., 2018). We
foresee two possible limitations to using SC neurons or
LFPs to decode intended saccade direction. First, the
SC is a deep brain structure, which imposes a constraint
on the number of recordable electrode sites. Cortical ar-
rays fit electrode sites on the scale of hundreds, while
laminar probes suitable for deep brain recording only
allow for contacts on the order of tens. This is the likely
reason that prior implementations of oculomotor BCIs
have targeted cortical regions such as the lateral intraparie-
tal area (LIP), frontal eye fields (FEF), and supplementary
eye fields (SEF). However, advances in technology (e.g.,
Neuropixels) may soon negate this limitation. Second, the
organization of neurons within a column along the dorso-
ventral axis results in neural populations with largely the
same tuning properties (Gandhi and Katnani, 2011). This
homogeneity theoretically reduces the spatial extent of
decoding capability to targets far from the preferred tar-
get location, although we surprisingly observed that this
is not the case; in fact, even targets in the diametrically
opposite location of the preferred direction have above-
chance decoding performance during the putatively pre-
paratory delay period when the classifier is based on spik-
ing activity (Fig. 3, black traces). Nonetheless, a neural
population with more varied preferred directions would
maximize the spatial extent of high decoding perform-
ance. Recording from the FEF, a cortical oculomotor
area, yields much more heterogeneity in directional tuning
across electrode depth (Bruce et al., 1985), although be-
cause of its position in the bank of the arcuate sulcus the
first limitation would still apply. Therefore, we are eager for
the field to recognize the potential the SC has for brain-
computer interface applications.
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