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Abstract

The oral cavity is exposed to a remarkable range of noxious and innocuous conditions, including temperature
fluctuations, mechanical forces, inflammation, and environmental and endogenous chemicals. How such
changes in the oral environment are sensed is not completely understood. Transient receptor potential (TRP)
ion channels are a diverse family of molecular receptors that are activated by chemicals, temperature changes,
and tissue damage. In non-neuronal cells, TRP channels play roles in inflammation, tissue development, and
maintenance. In somatosensory neurons, TRP channels mediate nociception, thermosensation, and chemo-
sensation. To assess whether TRP channels might be involved in environmental sensing in the human oral
cavity, we investigated their distribution in human tongue and hard palate biopsies. TRPV3 and TRPV4 were
expressed in epithelial cells with inverse expression patterns where they likely contribute to epithelial develop-
ment and integrity. TRPA1 immunoreactivity was present in fibroblasts, immune cells, and neuronal afferents,
consistent with known roles of TRPA1 in sensory transduction and response to damage and inflammation.
TRPM8 immunoreactivity was found in lamina propria and neuronal subpopulations including within the end
bulbs of Krause, consistent with a role in thermal sensation. TRPV1 immunoreactivity was identified in intraepi-
thelial nerve fibers and end bulbs of Krause, consistent with roles in nociception and thermosensation. TRPM8
and TRPV1 immunoreactivity in end bulbs of Krause suggest that these structures contain a variety of neuronal
afferents, including those that mediate nociception, thermosensation, and mechanotransduction. Collectively,
these studies support the role of TRP channels in oral environmental surveillance and response.
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Significance Statement

Oral mucosa experiences a myriad of environmental fluctuations during feeding, speech, and daily life
which they respond to ensure normal functions. These environmental stimuli are transduced by molecular
receptors, including those of the transient receptor potential (TRP) family of cation channels that reside in
the membranes of mucosal cells and somatosensory neurons. The distribution of TRP channels that trans-
duce chemical, biological, and thermal stimuli in oral mucosa is not well defined. This manuscript identifies
the histologic distribution of TRP channels in healthy oral tissues and develops hypotheses about how local-
\ization lends to their essential roles in oral functions and maintenance of homeostasis. /
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Introduction

Oral mucosa is poised to transduce chemosensory and
somatosensory stimuli during feeding, speech, and pro-
tection against biological and chemical agents. Sensory
transduction occurs through the activation of receptor
molecules that detect mechanical, chemical, or thermal
stimulation of tissues. The transient receptor potential
(TRP) family of cation channels include molecular receptors
that encode chemical, thermal, and mechanical aspects of
environmental stimuli, and are important transducers of
chemesthetic signals (Roper, 2014; Startek et al., 2019;
Aroke et al., 2020; Luo et al., 2021; Kashio and Tominaga,
2022; Reeh and Fischer, 2022). TRPV1 is a heat-activated
receptor that is also the molecular target of capsaicin, the
pungent component of spicy chilies (Caterina et al., 1997;
Sasase et al., 2022). TRPV3 and TRPV4 are activated by
warm temperatures, chemical stimuli, and osmotic swelling
(Peier et al., 2002b; Chung et al., 2004a; Vriens et al., 2004;
Vogt-Eisele et al., 2007). TRPM8 is activated by cooling,
menthol, and other chemicals that produce a cooling sen-
sation (McKemy et al., 2002; Peier et al., 2002a; Yin and
Lee, 2020). TRPA1, the “wasabi receptor,” is a promiscu-
ous damage sensing receptor that is activated by noxious
pungent compounds in radishes, mustard, and garlic, as
well as reactive oxygen species produced during tissue
stress (Bautista et al., 2005; Takahashi et al., 2008;
Manolache et al., 2021; Kashio and Tominaga, 2022;
Landini et al., 2022). In rodents, these TRP channels are
expressed in somatosensory neurons; however, several
are also reported to be expressed in epithelial cells, includ-
ing the oral epithelium (Wang et al., 2011; Vandewauw et
al., 2013).

With regard to oral functions, several TRP channels are
important in flavor perception and pathophysiology.
TRPM5 and TRPM4 are expressed in rodent and human
Type |l taste cells and are essential components of the
sighaling pathways downstream of sweet, bitter, and
umami stimuli (Pérez et al., 2002; Liu and Liman, 20083;
Prawitt et al., 2003; Zhang et al., 2003; Dutta Banik et al.,
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2018; Aroke et al., 2020). Similarly, in rodents TRP chan-
nels PKD1L3 and PKD2L1 are expressed in Type Il taste
cells, although their contribution to taste-cell physiology is
still debated (Ishimaru et al., 2006; Horio et al., 2011; Ye et
al., 2016). TRPV4 has been found to regulate Type Il taste-
cell differentiation in mice, loss of which results in reduced
sensitivity to sour compounds (Matsumoto et al., 2019). In
addition to roles in gustation, TRP channels are essential
contributors to oral temperature transduction, chemesthe-
sis, and response to injury. For example, TRPM8, TRPA1,
and TRPV1 mediate sensory transduction of pungent
chemicals in numerous flavor-enhancing spices, including
mint, radishes, chiles, black pepper, and cinnamon (Roper,
2014). These TRP channels are also important for thermal
transduction in the oral cavity (Lemon, 2021). Furthermore,
TRP channel expression and activation has been linked to
oral cancer cell proliferation and pain in rodents and
humans (Okamoto et al., 2012; Ruparel et al., 2015; Fujii
et al., 2020).

Despite the importance of TRP channels for oral func-
tions, the localization of these channels in healthy tissues
from the human oral cavity is not clear. In this study, we
present an immunohistochemical analysis of TRP chan-
nels in human hard palates and tongue biopsies from
healthy tissues.

Materials and Methods

Study enrollment criteria

Human studies were approved by the Institutional
Review Board of Columbia University. Oral biopsies
were collected from adult volunteers (27-45 years old,
n=13; Table 1). Exclusion criteria: infection, pain, oral
injury, cutaneous abnormality that could interfere with
safety or data interpretation, anticoagulants (e.g., aspi-
rin, coumadin, NSAIDs), bleeding disorder, keloidal or
hypertrophic scarring history, oral cancer, neurologic
disease, epithelial innervation abnormality in biopsy
site, a known or suspected medical or psychological
condition that may affect ability to consent or to follow
instructions for wound care, and an active medical con-
dition that may affect risk of infection or healing after
biopsy.

Informed consent

Written informed consent was obtained by study person-
nel before any protocol-specific procedures. The study
was conducted in accordance with the Food and Drug
Administration (FDA)-approved revision of the Declaration
of Helsinki, current FDA regulations, and International
Conference on Harmonization guidelines.

Tissue collection

Biopsies of either front of tongue or palate rugae were
collected from each participant. Biopsy site was anesthe-
tized (2% lidocaine with epinephrine; 1:100,000). A 4-mm
punch biopsy oriented perpendicular to the specimen and
punch was taken down to the submucosal layer. College
pliers were used to remove the core and reveal the sub-
mucosal layer and scissors were used to free the biopsy if
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Table 1: Collected biopsies

Site of Biopsy Age Sex
Palate 27 M
Palate 28 M
Palate 30 F
Palate 35 M
Palate 40 F
Palate 43 F
Tongue 45 F
Tongue 27 F
Tongue 28 F
Tongue 28 M
Tongue 33 F
Tongue 38 F
Tongue 43 F

needed. The specimen was removed and placed in phos-
phate buffered saline (PBS) and pressure applied to the
biopsy site. The biopsy was sutured closed if necessary
and additional gauze applied. Compensation was
given after biopsies were collected. Discarded human
foreskin tissue was used to establish antibody concen-
trations and for peptide blocking experiments.

Immunohistochemistry

Tissues were embedded (TissueTech OCT), flash fro-
zen, and 25-um sections were made on gelatinized
slides. Slides were incubated for 30 min at 37°C, fixed
with 4% paraformaldehyde (0-15min) followed by five
washes in PBS. Slides were blocked in PBS with 0.1%
Triton X-100 (PBST) and 5% normal goat serum. Sections
were incubated overnight with primary antibodies (Table 2)
mixed in blocking buffer at 4°C. Slides were washed 3x in
PBST and incubated with secondary antibody in blocking
solution for 1-2 h, then washed 5x in PBS and mounted
in Fluoromount-G with DAPI. Specimens were imaged
with a laser scanning confocal microscope equipped with
40x (NA 1.3) and 20x (NA 0.8) lenses with a Z-step size
of 1 um through the entire depth of each section (25 um).
Antibody concentrations and staining parameters were
optimized on foreskin tissue. In antigen blocking experi-
ments, primary antibody cocktail was preincubated with
5x protein antigen concentration relative to antibody
concentration 30 min at room temperature before incu-
bation with sections. Results of antigen retrieval experi-
ments performed on discarded foreskin tissue are
shown in Figure 1. For each biomarker, 2-4 independent

Table 2: Antibodies used in this study
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samples from front of tongue and hard palate rugae were
tested.

Quantification of immunohistochemistry

All quantification was performed in Imaged (version
2.3.0/1.53f). Efficiency of TRPV1 antigen blocking was
quantified by calculating the number of TRPV1 + intra-
epithelial nerve fibers (IENF; defined as TRPV1+ nerve
endings crossing the basement membrane of the epi-
thelium) divided by the length of basement membrane
in each image. Three images were taken from each of
three samples of foreskin and averaged per sample.
Efficiency of antigen blocking for TRPV3, TRPV4, TRPMS,
and TRPA1 was analyzed by calculating the average
mean gray value of three regions of epithelium (TRPV3,
TRPV4, TRPM8) or lamina propria (TRPA1) from each
of three images per foreskin sample.

To calculate percent of epithelial depth occupied by
TRPV3 and TRPV4, thick lines (50 um) were applied to
each image from the outside of the epithelium through the
epithelium and past the basement membrane. Profiles
were plotted to extract the mean gray value for each point
along the line and used to determine the start and ends of
DAPI staining or immunoreactivity. Start of staining or
DAPI was defined as 50% of the first peak and end of
staining or DAPI was defined as 50% drop from the last
peak. Epithelial depth was calculated from the first inci-
dence of DAPI staining on the outer edge of the cornified
layer of epithelium until the drop-off in DAPI staining at
the basement membrane border. Percent of epithelium
with TRPV3 and TRPV4 immunoreactivity was calculated
as the percent of epithelial depth occupied with 0 being
the edge of the cornified layer of epithelium and 100 being
the drop off point at the basement membrane border.

To calculate the density of TRPA1 immunoreactivity,
six to seven images of palate or tongue were thresh-
olded using default settings in Imaged. The epithelial
and lamina propria compartments were traced and the
area fraction of TRPA1 immunoreactivity extracted. The
proportion of CD45+ cells with TRPA1 immunoreactiv-
ity were manually counted in Imaged.

Statistical analysis

Statistics were performed using Prism 9 (GraphPad version
9.4.1). All data were tested for normality and statistical tests
chosen accordingly. Data were tested for normality and either
paired t test were Wilcoxon test applied.

Antibody Supplier Catalog # Lot Dilution RRID

Mouse anti-Keratin 20 Abcam Ab854 GR157163-5 1:100 AB_2133708
Chicken anti-Neurofilament-Heavy Abcam Ab4680 GR310109-11 1:5000 AB_304560
Mouse anti- 811l tubulin (Tuj1) Neuromics MO15013 402154 and 402360 1:100 AB_2737114
Moue anti-CD45 Abcam Ab781 GR3233952-8 1:100 AB_306098
Rabbit anti-TRPA1 Alomone Labs ACC-037 ACCO37AN17 1:500 AB_2040232
Rabbit anti-TRPV1 Abcam Ab3487 GR3219961-4 1:500 AB_2209009
Rabbit anti-TRPM8 Alomone Labs ACC-049 ACCO049AN15 1:100 AB_2040254
Rabbit anti-TRPV4 Lifespan Bio LS-A8583 61861 1:100 AB_592927
Rabbit anti-TRPV3 Alomone Labs ACC-033 ACCO033AN02 1:100 AB_2040261
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Figure 1. Antigen blocking shows specificity of TRP antibodies. A, TRPV3 immunoreactivity was identified in the foreskin epithe-
lium. Antigen pretreatment blocked TRPV3 immunoreactivity (N =3 foreskins, paired t test p=0.022). B, TRPV4 immunoreactivity
was identified in the foreskin epithelium and was diminished with antigen pretreatment (N=7 foreskins, Wilcoxon matched pairs
signed-rank test p =0.016). Note, removal of outlier data point results in p=0.02. C, TRPA1 immunoreactivity was identified primar-
ily in the dermal compartment of foreskin tissue and was completely ablated with antigen pretreatment (N =4 foreskins or tongues,
paired t test, p=0.0016). D, TRPM8 immunoreactivity was localized primarily to the foreskin epithelium and portions of the dermal
compartment. Antigen blocking greatly diminished immunoreactivity (N =3 foreskins, paired t test, N=0.04). E, TRPV1 immunoreac-
tivity was found primarily in intraepithelial nerve fibers of the foreskin. Antigen pretreatment completely abolished TRPV1 nerve fiber
immunoreactivity but not the diffuse TRPV1 immunoreactivity of epithelial cells (N =3 foreskins, paired t test, N=0.0004). All graphs
show mean * standard deviation.
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Figure 2. TRPV3 is expressed in basal layers of oral epithelium. Left column, Tuj1 anti- g1l tubulin (all afferent neurons). Second col-
umn, Anti-NFH antibody (myelinated neurons). Third column, Anti-TRPV3 antibody. Right column, Merge with TRP immunoreactivity
in yellow, Bl immunoreactivity in cyan, NFH immunoreactivity in magenta. Dashed line indicates epithelia-lamina propria border. A,
TRPV3 expression was found in basal epithelial layers of the hard palate as well as in the lamina propria. White arrows denote areas
where Merkel cells typically concentrate (Moayedi et al., 2021). Note that Merkel cell afferents are visible with gl tubulin staining in
cyan. B, TRPV3 immunoreactivity was dispersed throughout fungiform epithelium. C, TRPV3 expression was found in basal epithe-
lium of filiform papilla. A TRPV3 negative end bulb of Krause (arrow) is found within the lamina propria of the filiform papilla visual-

ized with expression of gllIl tubulin and NFH.

Results

To directly compare immunoreactivity of a panel of TRP
channels in human oral cavity, biopsies of hard palate
rugae or tongue papillae were collected from healthy
adult volunteers. Antibodies against TRP channel targets
were first optimized on human foreskin tissue, and then
tested on at least two independent samples of both
tongue and hard palate rugae for each probe. Antigen
blocking experiments were performed to test the spec-
ificity of each antibody for its antigen (Fig. 1). Antigen
specificity was tested for each antibody in at least
three independent replicates.

Expression of TRPV3 and TRPV4, two channels that
show high expression in epithelial cells, was examined. In
oral tissue, TRPV3 immunoreactivity was found primarily
in the basal epithelial layers of both hard palate and
tongue mucosa (Fig. 2). In the hard palate, TRPV3 local-
ization in the basal epithelium overlapped with regions
where Merkel cells are typically found (Fig. 2A; Moayedi et
al., 2021). In the hard palate, TRPV3 immunoreactivity ex-
tended from 70.87 = 11.32% t0 99.74 = 3.38% of epithe-
lial thickness (mean = SD, N=3 images). In the tongue,
TRPV3 immunoreactivity extended from 67.72 = 23.98%

November/December 2022, 9(6) ENEURO.0328-21.2022

to 101.92 = 6.76% of epithelial thickness (mean = SD,
N =4 images; Fig. 2B,C). TRPV3 immunoreactivity was
undetectable in oral neurons in this study.

TRPV4 antibodies showed strong immunoreactivity
in both tongue and hard palate (Fig. 3). In hard palate,
immunoreactivity was localized in outer epithelium of
hard palate mucosa and did not overlap with Merkel
cells (Fig. 3A). TRPV4 immunoreactivity in the hard pal-
ate extended from 4.65 *= 2.86% to 86.11 = 5.07% of
epithelial thickness (mean = SD, N=5 images). In the
tongue, TRPV4 immunoreactivity was also identified in
outer epithelial layers (Fig. 3B,C); however, it was spe-
cifically excluded from taste buds (Fig. 3B). In lingual
epithelium, TRPV4 immunoreactivity was present be-
tween 7.84 += 1.21% to 78.57 += 7.62% of epithelial
thickness (mean = SD, N=4 images). Neuronal end-
ings innervating epithelial mucosa surrounding the
taste buds, including NFH+ and NFH- afferents, were
frequently observed extending into TRPV4+ epithelial
layers (4/4 taste buds from two biopsies). In filiform pa-
pilla, intraepithelial nerve fibers were identified extend-
ing into TRPV4+ lamina (2/2 filiform papillae from two
biopsies; Fig. 3C).

eNeuro.org
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Figure 3. TRPV4 is expressed in apical keratinocytes. Left column, Anti-K20 (Merkel cells) or Tuj1 anti-81Il tubulin (all afferent neu-
rons). Second column, Anti-NFH antibody (myelinated neurons). Third column, Anti-TRPV4 antibody. Right column, Merge with TRP
immunoreactivity in yellow, Il or K20 immunoreactivity in cyan, NFH immunoreactivity in magenta. Dashed line indicates epithelia-
lamina propria border. Dotted line indicates location of taste bud. A, Expression of TRPV4 was found in the upper layers of the hard
palate epithelium. TRPV4 does not appear to be expressed in Merkel cells (white arrows). B, TRPV4 was expressed in apical kerati-
nocytes in fungiform papillae epithelium, but excluded from taste bud (white dotted line). Several nearby NFH+ and gllI+ neuronal
afferents extended into TRPV4-expressing epithelial layers (white arrows). C, TRPV4 was expressed in apical epithelial cells of fili-
form papillae. An intraepithelial NFH+ fiber (white arrow) in close association with TRPV4+ epithelial cells is shown.

TRPA1 antibodies showed robust immunolocalization
in the hard palate and tongue, with the highest density in
lamina propria cells (Fig. 4A-F). Densities of TRPA1 im-
munoreactivity was compared between epithelial and
lamina propria compartments, and found to be signifi-
cantly lower in the epithelium in both tongue and hard pal-
ate samples (Fig. 4G). Sparse TRPA1+ epithelial cells
were also found with dendritic morphologies consistent
with immune cells (Fig. 4A,C, white arrows). Co-staining
with an antibody against CD45, a marker for immune
cells, revealed that many TRPA1+ lamina propria and epi-
thelial cells were CD45+ (Extended Data Fig. 4-1). TRPA1
immunoreactivity overlapped with 54 = 9.1% of CD45+
cells (N=5 images from two biopsies). To test whether
neuronal processes were also TRPA1+, we analyzed
single optical planes for co-labeling of TRPA1 and
BllI-tubulin, a cytoskeletal marker labeling all periph-
eral somatosensory neurons. This method identified
neuronal afferents that were TRPA1+ in the lamina
propria of hard palate (Fig. 4B, white arrows). In the
fungiform papillae, we found TRPA1+ nerve fibers in
the plexus below the taste bud (Fig. 4D, white arrows).
Interestingly, neurons innervating the taste bud were

November/December 2022, 9(6) ENEURO.0328-21.2022

not clearly labeled with TRPA1 antibody (Fig. 4D, red
arrows; Extended Data Fig. 4-2). TRPA1 immunoreac-
tive fibrous structures were identified in the taste buds,
but these did not clearly co-localize with neuronal
markers, indicating that they are non-neuronal and po-
tentially processes of immune cells or other resident-epi-
thelial cells (Extended Data Fig. 4-2). We next analyzed
end bulbs of Krause in the lamina propria of filiform pap-
illae (Fig. 4E,F, white arrow). TRPA1 immunoreactivity
was present in some NFH- fibers of the end bulb of
Krause (Fig. 4F, white arrow). Large neuronal fibers that
were not immunoreactive to TRPA1 antibodies also con-
tributed to the end bulb of Krause (Fig. 4F, red arrow).
Collectively, these data show that TRPA1 immunoreac-
tivity is present in oral lamina propria cells, immune cells,
and subsets of neurons.

TRPM8 immunoreactivity was next analyzed (Fig. 5).
This antibody showed broad, low-level immunoreactivity
throughout epithelial and lamina propria cells with higher
signal in some neuronal afferents and lamina propria cells.
In the hard palate, TRPM8 immunoreactivity was wide-
spread in lamina propria cells (Fig. 5A). Within palate
rugae, we identified TRPM8+ (Fig. 5A, white arrows)

eNeuro.org
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Figure 4. TRPA1 immunoreactivity is found in lamina propria, epithelium, and neuronal afferents. Left column, Tuj1 anti-B1lI tubulin
(all afferent neurons). Second column, Anti-NFH antibody (myelinated neurons). Third column, Anti-TRPA1 antibody. Right column,
Merge with TRP immunoreactivity in yellow, gllIl immunoreactivity in cyan, NFH immunoreactivity in magenta. Dashed line indicates
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continued

epithelia-lamina propria border. Dotted line indicates location of taste buds. Dashed box indicates area of detailed, single focal
plane images (B, D, F). A, TRPA1 was broadly expressed throughout lamina propria cells of the hard palate as well as sparsely in
the epithelium (white arrows). Co-expression of TRPA1 and the immune cell marker CD45 is shown in Extended Data Figure 4-1. A
bundle of NFH+ and NFH- neuronal fibers was identified in this peg (white dashed box). White dashed box shows region in B. B, A
higher magnification, single optical plane (1 um) of the neuronal fibers in A showed TRPA1 expression overlapping with neuronal fibers
(white arrows). C, TRPA1 was broadly expressed throughout lamina propria cells in fungiform papillae as well as in some epithelial cells
near taste buds (white arrow). White dashed box shows region in D. Expanded views of taste buds are shown in Extended Data Figure
4-2. D, A single optical plane (1 um) from C is shown. TRPA1 expressing fibers overlapped with BlIl + neuronal fibers (white arrows).
Bl + neuronal endings that extended into epithelium did not express TRPA1 (red arrow). E, TRPA1 was broadly expressed throughout
lamina propria cells in filiform papillae and in an end bulb of Krause (white arrow). White dashed box shows region in F. F, Single optical
plane (1 um) from E shows neuronal afferents expressing TRPA1 (white arrows). Larger afferents appeared to be negative for TRPA1
(red arrow). G, TRPA1 immunoreactivity in the lamina propria (LP) and epithelium (Epi) of tongue (N=7 images from 3 biopsies) and
hard palate (N =6 images from 2 biopsies) was quantified. Lamina propria has significantly higher TRPA1 immunoreactivity compared

with epithelium (Brown-Forsythe ANOVA p < 0.0001, Dunnett’s T3 multiple comparisons test). Line indicates median.

as well as TRPM8- neuronal fibers (Fig. 5A, yellow ar-
rows). In fungiform papillae (Fig. 5B), diffuse TRPM8
immunoreactivity in the mucosa and cells of the lamina
propria was found. TRPM8 immunoreactivity concen-
trated in the taste bud region, near the taste pore (Fig.
5B, magenta arrow, 2/2 total taste buds observed). An
expanded view of the taste bud (Fig. 5C) shows immu-
noreactivity near the taste pore. Note that there is not
complete overlap between glll-tubulin and TRPM8 im-
munoreactivity. This could indicate that TRPM8 is not
expressed in neuronal fibers in this region, or it could be
because of membranous TRPM8 localization that does
not overlap with cytoskeletal proteins in neuronal end-
ings. Within the lamina propria of fungiform papillae,
neuronal bundles were identified with TRPM8 immuno-
reactivity (Fig. 5B, white arrow), as well as TRPM8- neu-
ronal fibers (Fig. 5B, yellow arrow). TRPM8 antibody
showed similar localization in tongue filiform papillae,
with broad immunoreactivity in the epithelium and lami-
na propria, as well as in some neuronal bundles (Fig.
5D). Within all end bulbs of Krause observed in this
study (Fig. 5D, magenta arrows, five total), TRPM8 im-
munoreactivity overlapped with neuronal markers, con-
sistent with speculation that end bulbs might be cold
receptors (Ham, 1950). We also identified TRPM8-im-
munoreactive neuronal fibers within the lamina propria
(Fig. 5D, white arrows).

Lastly, we analyzed immunoreactivity of TRPV1 (Fig. 6).
In the hard palate, TRPV1+ neuronal fibers extended into
the lamina propria pits of epithelial pegs (Fig. 6A, white ar-
rows). NFH+, TRPV1- afferents were found nearby (Fig.
6A, yellow arrows). TRPV1 immunoreactivity was often
observed in epithelial cells (Fig. 6B-E); however, this fluo-
rescence reflects nonspecific staining, as it remained in
antigen blocking controls (Fig. 1E). In fungiform papillae,
TRPV1 expression was identified in intragemmal fibers of
the taste bud, but not in nearby extragemmal fibers (Fig.
6B,C, white and yellow arrows, respectively, 2/2 taste
buds observed). In filiform papillae, TRPV1+ intraepider-
mal nerve fibers were found (Fig. 6D, white arrows).
Nearby, NFH+, TRPV1- neurons were also present (Fig.
6D, yellow arrow). Within the lamina propria of filiform
papillae TRPV1+ fibers were frequently present (Fig. 6E,
magenta arrows). Most end bulbs of Krause in filiform pa-
pilla had high densities of NFH+ neuronal endings; these

November/December 2022, 9(6) ENEURO.0328-21.2022

were largely absent of TRPV1+ labeling (Fig. 6E, yellow
arrows). Interestingly, a subset of end bulbs had TRPV1+
neuronal immunoreactivity but with comparatively few
NFH+ fibers (Fig. 6E, white arrows, 3/11 total end bulbs
of Krause). These data demonstrate that there is hetero-
geneity in neuronal composition of end bulbs of Krause.

Discussion

TRP channels are widely expressed in the oral cavity
and subserve a variety of functions including flavor trans-
duction, somatosensation, and stress responses. Despite
this, expression of TRP channels in human oral mucosa is
not well defined. In this work, we describe expression of
somatosensory TRP channels in tongue and hard palate
of healthy human donors (Fig. 7). We identified varied pat-
terns of expression in epithelium, lamina propria, and neu-
ronal afferents.

Oral epithelial cells display rapid turnover and fast
wound healing rates because of intrinsic differences in
oral stem cells and keratinocytes (Andl et al., 2016;
Iglesias-Bartolome et al., 2018). During homeostatic
turnover and wound healing, epithelial barrier integrity
must be maintained to prevent infection from oral bac-
terium; thus, molecules involved in barrier integrity and
epithelial maintenance are particularly important in
oral epithelium. TRPV3 and TRPV4 are warm activated
channels expressed in keratinocytes and have essen-
tial roles in epidermal development and homeostasis
(Chung et al., 2004b). TRPV3 has been shown to be im-
portant for keratinocyte development and hair mor-
phogenesis while TRPV4 is essential for skin barrier
formation in mice and humans (Denda et al., 2007;
Cheng et al., 2010; Sokabe et al., 2010; Kida et al.,
2012; Lin et al., 2012; Akazawa et al., 2013; Blaydon
and Kelsell, 2014). In the oral cavity, TRPV3 and
TRPV4 were expressed primarily in epithelium with in-
verse distributions. TRPV3 immunoreactivity was ob-
served throughout basal layers of epithelium in both
the tongue and hard palate, similar to previous findings
in mice and humans (Xu et al.,, 2006). In contrast,
TRPV4 immunoreactivity was found in apical layers of
oral cavity epithelium, and was excluded from taste
cells and Merkel cells. This expression pattern in outer
keratinocyte layers in oral tissues is consistent with
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(o) Fungiform Hard Palate

Fungiform

w)

Filiform

Figure 5. TRPM8 immunoreactivity is found throughout lamina propria, epithelium, and in neurons in oral epithelia. Left column,
Tuj1 anti-BlIl tubulin (all afferent neurons). Second column, Anti-NFH antibody (myelinated neurons). Third column, Anti-TRPM8
antibody. Right column, Merge with TRP immunoreactivity in yellow, BllIl immunoreactivity in cyan, NFH immunoreactivity in ma-
genta. Dashed line indicates epithelia-lamina propria border. Dotted line indicates location of taste bud. A, In hard palate epithelium,
TRPM8 immunoreactivity was found in lamina propria cells and some neuronal afferents. White arrow denotes TRPM8 expression in
neuronal fibers. Yellow arrow denotes TRPM8 negative fibers. B, In tongue mucosa, TRPM8 immunoreactivity was found in epithe-
lium and lamina propria cells. Within taste bud, a higher concentration of TRPM8 was found near the taste pore (magenta arrow).
Some neuronal afferents expressed TRPM8 (white arrow), while others were TRPM8 negative (yellow arrow). Dashed box indicates
region in C. C, Expanded view of B. Magenta arrow indicates TRPM8 immunoreactivity near the taste pore. D, In filiform papillae,
TRPM8 was expressed in epithelium and lamina propria cells. Magenta arrows indicate end bulbs of Krause with expression of
TRPMB8 in some neuronal fibers within bulbs. White arrows denote TRPM8+ neuronal afferent leading into end bulb of Krause.

expression in palmar keratinocytes (Blaydon and (2-APB; Wang et al., 2011). Based on expression pat-

Kelsell, 2014). The expression of TRPV3 and TRPV4
was consistent with previous studies in rats showing
that oral epithelia respond to TRPV3 and TRPV4 ago-
nists including camphor, 4a-phorbol-12,13 dideca-
noate (4a-PDD), and 2-aminoethoxydiphenyl borate
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terns and known functions of TRP channels, we can
build hypotheses on the roles in oral tissues. TRPV3
likely plays an important role in oral epithelial growth
and renewal, particularly after damage (Aijima et al.,
2015). TRPV4 is likely playing a role in oral barrier

eNeuro.org



Research Article: New Research 10 of 14

>

TRPV1} | ! Merge
- .
\

/
1
1 /

I ¢ oo

1 ]
LY <

1 | g
\

|

!

\

Hard Palate

Fungiform

()

=
—
L |
(<)
=
=
I

Filiform

Filiform

Figure 6. TRPV1 immunoreactivity is present in neuronal subsets of oral mucosa. Left column, Tuj1 anti- 311l tubulin (all afferent neu-
rons). Second column, Anti-NFH antibody (myelinated neurons). Third column, Anti-TRPV1 antibody. Right column, Merge with TRP
immunoreactivity in yellow, BlII immunoreactivity in cyan, NFH immunoreactivity in magenta. Dashed line indicates epithelia-lamina
propria border. Dotted line indicates location of taste bud. A, TRPV1 immunoreactivity was found in some neuronal afferents in the
hard palate (white arrows). Nearby NFH+ TRPV1- neuronal fibers (yellow arrows) were also found. B, TRPV1 was identified in
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continued

intragemmal fibers in fungiform papillae (white arrows). Nearby extragemmal fibers were negative for TRPV1 immunoreactivity (yel-
low arrow). C, Expanded view of B. D, TRPV1 was found in intraepidermal nerve fibers in apical tips of filiform papillae (white ar-
rows), as well as a bundle of TRPV1 fibers in the lamina propria (magenta arrow). Nearby NFH+ TRPV1- fibers were also found
(yellow arrow). E, End bulbs of Krause were found in lamina propria of filiform papilla. TRPV1+ fibers were found throughout lamina
propria (magenta arrows). One end bulb of Krause in this bundle had a low density of NFH+ fibers and a high density of TRPV1+
fibers (white arrow). Two additional end bulbs of Krause had a high density of NFH+ fibers and a low density of TRPV1+ fibers (yel-

low arrows).

formation and may mediate inflammatory signaling
and pain after tissue damage (Sokabe et al., 2010;
Moore et al., 2013; Rajasekhar et al.,, 2017).
Furthermore, as TRPV4 responds to shear stress, it
may also function in cell signaling in response to epi-
thelial stretch (Rajasekhar et al., 2017).

TRPAT1 is a key damage sensor in many organs and tis-
sues (Talavera et al., 2020; Naert et al., 2021). Consistent
with this, TRPA1 immunoreactivity was identified predom-
inantly in cell types that are poised to report tissue injury
including cells in the lamina propria and immune cells.
The widespread expression of TRPA1 in the lamina prop-
ria of hard palate and tongue suggests that it is
expressed broadly in oral fibroblasts. TRPA1 is func-
tionally expressed in human dental fibroblasts, sug-
gesting that this is a conserved TRPA1 pattern of
expression in the oral cavity (El Karim et al., 2011).
TRPA1 expression within oral lamina propria provides

Fungiform Papillae Filiform Papillae

Neuronal Innervation

TRPV1 & TRPM8 TRPV3 & TRPV4

TRPA1

an optimal localization to play a role in remodeling be-
cause of tissue damage. Subpopulations of TRPA1+
cells in lamina propria and epithelium colocalized with
CD45, a well-established marker of immune cells, indi-
cating that TRPA1+ is expressed in subsets of immune
cells of oral mucosa. The widespread expression of
TRPA1 is consistent with a role of TRPA1 in inflamma-
tion in oral cavity. Expression in immune cells and fi-
broblast positions this channel to signal the presence
of noxious compounds or tissue damage.

In addition to roles in responding to cellular damage,
TRPAT1 is activated by pungent compounds, like wasabi
and allicin, and plays a role in chemesthesis during flavor
construction (Talavera et al., 2020). TRPA1 immunore-
activity was observed in afferents innervating both the
tongue and hard palate, largely excluding large diame-
ter neuronal endings. Expression in neuronal afferents
confers these neuronal endings with the ability to detect

Hard Palate Rugae

O Taste Bud
@ End Bulb of Krause

@ Merkel Cell
| NFH+ Neuron
( NFH- Neuron

| |TrRPV3
| |TRPV4

[ TRPV1+ Neuron
TRPM8+ Neuron
TRPM8+ Cell

TRPA1+, CD45+ Cells
%4 TRPA1+ Cells
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Figure 7. Summary of TRP channel expression in oral tissues. Distribution of TRP immunoreactivity in human tongue and hard pal-

ate is shown.
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pungent compounds in the mouth, or to take part in
pain, itch, and thermal signal transduction.

Temperature sensation in oral tissues is an important
aspect of flavor construction. TRPMS8 is a cold and men-
thol-activated receptor that is essential for cold and warm
sensations (Moore et al., 2018; Paricio-Montesinos et al.,
2020). Neuronal immunoreactivity to TRPM8 was identi-
fied in hard palate and tongue mucosa. In the filiform pap-
illae of the tongue, TRPM8+ neuronal fibers were also
found within end bulbs of Krause, indicating that these
structures may include cold sensitive afferents as initially
theorized (Ham, 1950). TRPM8 immunoreactivity was also
found to concentrate around the taste bud in fungiform
papillae of the tongue, similar to previous findings in ro-
dents (Abe et al., 2005; Dhaka et al., 2008). Expression
around fungiform papilla taste buds is likely to contribute
to chemesthesis of flavors of compounds like menthol
and eucalyptol as well as transduction of cold sensations.
In addition to neuronal localization, we identified TRPM8
immunoreactivity in oral fibroblasts, consistent with previ-
ous findings in human oral tissues (El Karim et al., 2011).
Here, TRPM8 may take part in remodeling in response to
chemical or thermal activation.

TRPV1 is expressed in nociceptive afferents and epi-
thelial cells and is responsive to capsaicin, heat, pH, and
histamine, among other compounds (Moore et al., 2018).
TRPV1 activating compounds are particularly important in
regards to oral function as they mediate flavor construc-
tion, oral homeostasis, and response to pathogens and
injury. Epithelial expression of TRPV1 has been shown
previously in skin, where it plays a role in keratinocyte mi-
gration, and epidermal barrier integrity (Denda et al.,
2001; Blaydon and Kelsell, 2014). Oral epithelia respond
to capsaicin, suggesting that TRPV1 expression is func-
tional in oral keratinocytes (Wang et al., 2011). We found
light immunoreactivity for the TRPV1 antibody in the epi-
thelium of tongue and hard palate; however, this labeling
persisted despite antigen blocking and thus we could not
confirm these findings. Neuronal TRPV1 immunoreactivity
was widespread in the oral cavity and specific to the anti-
gen. We identified TRPV1+ free nerve endings in the
tongue and hard palate, including intraepithelial nerve fi-
bers. These neurons would be suspected to take part in
nociception, temperature sensation, and chemesthesis.
In fungiform taste buds, we identified TRPV1 immunore-
activity in intragemmal fibers of the taste bud, but not in
extragemmal fibers, consistent with findings in rats (Ishida
et al., 2002). These intragemmal fibers are ideally posi-
tioned to take part in flavor construction by transducing
temperature and spiciness of foods. Within filiform papil-
lae of the tongue, TRPV1 immunoreactivity was surpris-
ingly identified in neuronal fibers associated with end
bulbs of Krause. These findings suggest a previously un-
appreciated diversity in the population of neurons within
end bulbs of Krause, having both myelinated, likely me-
chanosensory neurons intermingled with unmyelinated
TRPV1+ and TRPM8+ populations that may take part in
thermosensation. We also noted diversity in end bulbs of
Krause compositions within a single filiform papilla, with
some having dense NFH+ myelinated afferents while
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others having fewer myelinated afferents and higher un-
myelinated, TRPV1+ afferents. The finding of independ-
ent neuronal afferent subtypes within a single corpuscle
are reminiscent of findings in Meissner’s corpuscles,
where two distinct populations of mechanoreceptors
have been found in mice, and where both myelinated
and unmyelinated neurons have been identified in hu-
mans (Cauna, 1956; Neubarth et al., 2020). Future stud-
ies are required to parse out differences in end bulbs of
Krause populations and to better understand the func-
tions of these structures in somatosensation.

TRPV1 expressing neurons play important roles in
nociception, inflammatory pain, and neuropathic pain
(Moore et al., 2018). Patients with burning mouth syn-
drome (BMS) have an increase in both the presence of
TRPV1+ nerve fibers and in epithelial TRPV1 expres-
sion (Yilmaz et al., 2007; Borsani et al., 2014). This sug-
gests that expression of TRPV1 could be linked to the
pathogenesis of BMS. Future studies should be performed
investigating whether TRPV1 expression is upregulated in
particular ending types, such as intraepidermal nerve fibers
or end bulbs of Krause, in BMS patients.

There are important limitations to consider when inter-
preting findings from this study. Antibody immunoreactiv-
ity might not recapitulate the protein expression pattern
because of cross-reactivity with other epitopes. Future
studies should compare results with antibodies against
other protein epitopes, analyze RNA expression, and test
functional expression of TRP channels in oral tissues. A
second limitation is that tissue donors for tongue biopsies
were primarily female. Future studies should analyze sex
differences in TRP channel expression.

In summary, we describe the immunohistochemical lo-
calization of TRP channels throughout healthy human
oral epithelium. Oral TRP channels are poised to take
part in a myriad of functions including epithelial integrity,
epithelial development, response to injury, thermocep-
tion, nociception, and flavor construction. Future studies
are needed to parse out roles for TRP channels in oral
pathologies.
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