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Abstract

Human brains are capable of modulating innate activities to adapt to novel environments and tasks; for senso-
rimotor neural system this means acquisition of a rich repertoire of activity patterns that improve behavioral
performance. To directly map the process of acquiring the neural repertoire during tasks onto performance im-
provement, we analyzed net neural populational activity during the learning of its voluntary modulation by
brain-computer interface (BCI) operation in female and male humans. The recorded whole-head high-density
scalp electroencephalograms (EEGs) were subjected to dimensionality reduction algorithm to capture changes
in cortical activity patterns represented by the synchronization of neuronal oscillations during adaptation.
Although the preserved variance of targeted features in the reduced dimensions was 20%, we found system-
atic interactions between the activity patterns and BCI classifiers that detected motor attempt; the neural
manifold derived in the embedded space was stretched along with motor-related features of EEG by model-
based fixed classifiers but not with adaptive classifiers that were constantly recalibrated to user activity.
Moreover, the manifold was deformed to be orthogonal to the boundary by de novo classifiers with a fixed de-
cision boundary based on biologically unnatural features. Collectively, the flexibility of human cortical signaling
patterns (i.e., neural plasticity) is only induced by operation of a BCl whose classifier required fixed activities,
and the adaptation could be induced even the requirement is not consistent with biologically natural re-
sponses. These principles of neural adaptation at a macroscopic level may underlie the ability of humans to
learn wide-ranging behavioral repertoires and adapt to novel environments.

Key words: brain-computer interface; de novo learning; neural plasticity; nonlinear dimensionality reduction; sen-
sorimotor activity
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We investigated adaption of macroscopic neural activities during brain-computer interface (BCI) operation
to directly map the process of acquiring the neural repertoire for performance improvement. When the clas-
sifier incorporated in BCI was fixed and based on the desynchronization of neural oscillations, the distribu-
tion of activity patterns (neural manifold) showed the improved separability along with the motor-related
component of electroencephalograms (EEGs) to improve BCI controllability. Meanwhile the adaptive classi-
fier constantly fitted to current user activity did not elicit such adaptation of neural activity patterns.
Moreover, even the classifiers based on biologically unnatural model induced the adaptation, captured by
deformation of neural manifold. Neural adaptation processes at a macroscopic level may underlie the ability
\of humans to learn wide-ranging behavioral repertoires. /
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Introduction

Human beings can sophisticate motor plans and subse-
quent actions to dynamically interact with the external envi-
ronment (Burdet et al., 2001; Todorov and Jordan, 2002;
Scott, 2004). One surprising demonstration is an adaptation
to changes in the properties of physical interfaces such as
the use of novel tools or loss and augmentation of body
parts by tuning distributed sensorimotor circuitries to
achieve smooth interaction with surroundings (Imamizu et
al.,, 2000; Quallo et al., 2009; Penaloza and Nishio, 2018;
Mehring et al., 2019; Choi et al., 2020; Kieliba et al., 2021;
Rossi et al., 2021).

The internal representation of sensorimotor adaptation
has been sought by electrophysiology and neuroimaging
techniques (Karni et al., 1995; Nudo et al., 1996; Kleim et
al., 2004; Diedrichsen et al., 2005; Berlot et al., 2020). In
particular, the primary motor cortex (M1) exhibits covari-
ance patterns of multiple neural units, namely, the neural
manifold which reliably represents ongoing behavior and
its correction (Gallego et al., 2018, 2020; Perich et al.,
2018; Shenoy and Kao, 2021). Moreover, direct mapping
of behavior and single neuron activity patterns achieved
with brain-computer interfaces (BCls) revealed monkeys
are capable of endogenous modulation of the patterns in-
side the manifold, but not those outside (Sadtler et al.,
2014). Although the conception of the neural manifold de-
scribes cell-neuron level principles of learning within a sin-
gle local region (Golub et al., 2018; Chaudhuri et al., 2019;
Oby et al., 2019), little is known about the constraints on
the adaptation of the macroscopic sensorimotor system,
that is shaped by the synchronization and desynchroniza-
tion of net populational neural activities across multiple
brain regions (Wander et al., 2013; Fries, 2015). Because
the summation of activity of locally interconnected —10”
neurons cancels out the property of a single neuron and
only maintains their synchronized activities which mediate
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information processing in the human cortical system, the
principles governing the cortical adaptation processes at
the macroscopic scale are putatively distinct from the
local unit activities in a single region (Kelso, 2012; Tognoli
and Kelso, 2014).

To investigate human adaptability at the sensorimotor
network level, we used BCI operation tasks based on scalp
electroencephalograms (EEG) with a variety of incorporated
classifiers (Fig. 1A). Since users attempted to move a virtual
object by exploring mental actions that effectively modu-
lates EEG signals to control BCI, this experimental paradigm
allows us to examine the relationship between BCI properties
and process in the cortical adaptation (i.e., changes in neural
activity patterns to fit the rule of BCI classifier). As shown in
Figure 1B, we specifically hypothesized two distinct adapta-
tion processes induced to improve BCI operation perform-
ance: (1) separation: rescaling of cortical activity patterns that
increases geometric distances between two brain states and
(2) rotation: deforming of the configuration of two brain states
induced by changes in the whole-brain activity patterns. The
former represents changes in the separability along with the
targeted EEG feature and the latter represents rotational
changes in the activity patterns toward perpendicular to the
BCI classifier, respectively. The geometric analysis in the di-
mensionality-reduced space offers the opportunities to cap-
ture the reorganization of whole-brain neural dynamics.

To test whether the cortical adaptation process is influ-
enced by BCI configurations, we employed three types of
BCls whose classifiers were based on different rules: model-
based, de novo and adaptive classifiers. The model-based
and de novo classifiers were based on fixed scalp EEG fea-
ture to induce adaptation of neural activity patterns. The
model-based classifier was based on hand-area motor corti-
cal activities and users were informed a mental strategy to
successfully control BCls, meanwhile, the de novo classifier
was based on temporo-parietal activities and users were en-
couraged to explore the suitable strategy (Shibata et al.,
2011). The adaptive classifier was designed to adapt to the
current brain activity patterns using the whole-head EEG sig-
nals as input, facilitating the classifier-side adaptation by a
block-by block calibration. We hypothesized the fixed type
BCls require reorganization of whole-brain activity patterns
while the adaptive BCls rather induce the classifier-side ad-
aptation by intermittent calibration. Difference in the adapta-
tion process would be characterized by geometric changes
in the low-dimensional representation of neural activity pat-
terns; BCI operation with fixed types of classifiers would lead
the progress in the separation and rotation because of en-
hanced discriminability of brain states along with the EEG
feature for classifier input. Meanwhile, the adaptive BCI
would not induce those changes since the classifier-side
constant calibration can optimize the classifier to fit the cur-
rent brain state without changing user-side activities.

Materials and Methods

Participants

Twenty-one neurologically healthy adults (9 females, 12
males, mean age: 22.6 = 3.23) naive to BCI operation par-
ticipated in this experiment. The appropriate sample size
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Figure 1. Conceptual illustration of neural adaptation process induced by brain-computer interfacing. A, Setup of a brain-computer
interface. Online acquired scalp electroencephalograms were fed into a classifier to detect the presence/absence of attempted
movement. Predicted brain state was shown to participants as movement of visual object on display. B, Conceptual visualization of
cortical adaptation. Scaling adaptation reflects improvement in voluntary regulation of a specific component. If the centers of gravity
determined from datapoints in two conditions are separated after brain-computer interfacing, it suggests the separability of two
conditions is enhanced by adaptation. Deforming adaptation suggests that activity patterns are allocated to a specific brain state to
adapt to the classifier. If the geometric relationships between two conditions are deformed with respect to a specific axis, it sug-

gests the adaptation process progressed such that the two conditions are separated along the axis.

for this study was determined by an a priori power analy-
sis (@ = 0.05, 1-B = 0.8, two-sided Wilcoxon signed-rank
tests) focusing on the deforming effect induced by de
novo BCI. The statistical package G*Power 3 (Faul et al.,
2007) was used to estimate the sample size that shows
large Cohen’s d=0.90 reported in the previous EEG-
based neurofeedback literatures (Soekadar et al., 2015;
Hayashi et al., 2020).

All participants had normal or corrected-to-normal vision
and were asked to provide written informed consent before
participating in the experiment. This study was conducted
according to the ethics of the Declaration of Helsinki. The
experimental protocol was approved by the ethical commit-
tee of the affiliated organization (Approval number 2020-36).

Experimental setup
Participants were seated on a comfortable chair in a
quiet room. A display was placed about one meter in front

Model-based
De novo B
@ Adaptive
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of the chair to provide task instructions and visual feed-
back from BCls. EEG signals during the experiment were
acquired with a 128-channel HydroCel Geodesic Sensor
Net (HCGSN, EGI). The layout of channels followed the in-
ternational 10-10 electrode positions shown in Figure 2A
(Luu and Ferree, 2005). The reference channel was set to
Cz. The impedance of all channels was maintained below
50 k() throughout the experiment. The EEG data were col-
lected with a sampling rate of 1000 Hz.

Experimental procedure

Participants underwent 16 BCI operation blocks com-
prised of 20 trials. All experimental procedures were con-
ducted within 2 h to guarantee the reversibility of any
potential effect of induced unnatural neural plasticity and
investigate the initial phase of learning to operate the
BClIs (Marins et al., 2019; Mehler et al., 2019; Hayashi et
al., 2020). After every two blocks, participants were given

Rest Imagine  Blank JERVAVREIS } x16 blocks
—’

0 5 8s

Break

Score : 22

Break

Score : 26

Figure 2. Experiment setup and protocol. A, Electrode locations. The three classifiers used in the study had different channels of in-
terest. The model-based classifier used only channel C3 indicated in blue around the left sensorimotor cortex. The adaptive classi-
fier used whole-head EEG channels (purple) to construct a common spatial pattern. The de novo classifier used only the Cz
channel, shown here in green. B, Experimental protocol and time course of a trial. C, Visual feedback object. For the model-based
or adaptive classifiers, an illustration of a hand was shown that matched the attempted movements of the users while an illustration
of a tail was used in the de novo task to encourage users to acquire novel mental actions that enhanced controllability of the BCI.
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a break of up to 5min. Participants were randomly allo-
cated to one of the three classifiers without informing the
configuration of BCI, the existence of multiple types of
classifiers and the allocated type of classifier was used
throughout experiment (also, see below, Online process-
ing of EEG signals).

A trial began with a 5-s “Rest” period and a 5-s “Imagine”
and a 3-s “Break” period followed (Fig. 2B). During the
“Rest” period, participants were instructed to relax without
having any specific thoughts and with opened eyes. In the
“Imagine” period, participants were instructed to perform
motor imagery tasks based on the allocated classifiers.
Participants with the model-based and adaptive classifiers
imagined extending the right-hand while those with the de
novo classifier tried moving a tail to match the attempted
movement with the object on display (Fig. 2C). Since tail
moving is not intuitive for human beings, at the beginning of
the experiment, participants were encouraged to explore
strategies that enables better controllability of the BCI. The
strategy adopted in each block was freely determined by
each participant, but they were instructed to try to use the
same strategy throughout one block to acquire sufficient
data and report the adopted strategy at the end of each
block. Since the visual feedback for participants of the
model-based and adaptive BCls were configured to in-
crease grasp aperture when classifier detect the motor at-
tempt (Fig. 2C, left panel), they tried to keep the virtual hand
opened during “Imagine” period and closed “Rest” period.
Likewise, those of de novo BCls were configured to move
the tail toward left (Fig. 2C, right panel), participants tried to
keep the virtual tail left side of the display during “Imagine”
period and right side “Rest” period. Participants were
asked not to exert overt movement during the feedback
period and its compliance was visually inspected by the
experimenters.

The performance of each trial was quantified by scores
provided by BCI and participants were encouraged to max-
imize the culminative sum of score within a block. Scores
were determined by the predicted presence/absence of
motor attempt by classifiers. The absence of motor at-
tempt during “Rest” periods and the presence during
“Imagine” periods increased scores (reward), while the
opposite prediction decreased (punishment). The chang-
ing rates of these scores were pertinent to the metrics
used for feedback by each classifier and were regulated
linearly to fit the score range from —100 to 100. For the
adaptive classifier, the common spatial pattern (CSP)-
support vector machine (SVM) model was trained with
data from the previous block and the trained model was
used in the next block. Note that the first block of users
allocated to the adaptive classifier was identical to that
of the model-based, to collect a dataset for the adaptive
classifier training.

Online processing of EEG signals

To test the initial adaptation process during BCI use, we
prepared three types of binary EEG classifier that detects
presence of human motor attempt from based on different
EEG features. The following processing was conducted
using MATLAB R2019a (The MathWorks, Inc.) and Unity
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(version 2019.2.4f1, Unity Technologies). Online acquired
EEG signals were processed with a 1651-point, mini-
mum-phase, FIR 8- to 30-Hz bandpass temporal filter and
then processed with one of the three types of BCI classi-
fiers. Online processed EEG signals were used to detect
the presence of motor attempt with one of the three
types of classifiers: model-based, adaptive, or de novo.
Each classifier was designed with different rules, and
electrodes of interest were defined as shown in Figure
2A. During experiment, users were instructed to use one
of three BCIs at the time course defined as Figure 2B
(also, see above, Experimental procedure).

The model-based classifier was constructed based on
those used in sensorimotor rhythm (SMR) BCls (Buch et
al., 2008; Kraus et al., 2016). Because accumulated evi-
dence suggests that event-related desynchronization of
SMR (SMR-ERD) contralateral to the hand that attempted
to move reflects the excitability of SM1 (Hummel et al.,
2002; Takemi et al., 2013; Naros et al., 2020), EEG signals
around the left SM1 (i.e., channel C3) were only used to
detect the attempted movement. In online processing,
a large Laplacian filter was applied to EEG signals from
channel C3 to extract sensorimotor activity (McFarland
et al., 1997; Tsuchimoto et al., 2021). Subsequently, the
band power of SMR (SMR-power; 8-13Hz) was ex-
tracted by Fourier transform with a 1-s window and
Hamming window function. The magnitude of SMR-
ERD (dB) was computed from the obtained SMR-power
with the following formula:

ERD(t) = —10log;o(P(t) /Prer),

where P(t) denotes the signal power of EEG signal at the
channel and frequency of interest, here the SMR-power,
at time point t, and Pges denotes the reference power
(Pfurtscheller and Lopes Da Silva, 1999). The reference
power Prer was calculated from the middle 3-s period of
“Rest” time from the previous trial. Note that the ERD val-
ues were determined independent from classifier parame-
ters. During BCI operation based on the model-based
classifier, movements of the illustrated hand in the display
and performance scores were defined to be linearly re-
lated to the SMR-ERD value in the range of 0-10dB (Fig.
2C, left panel). The range grasp aperture was discretized
to 100 steps (0 dB: fully closed, 10dB: fully opened) and
scores were calculated by the integral of SMR-ERD. One
may point out the necessity of user-specific model cali-
bration to identify responsive frequency or channels of in-
terest. However, we used the identical classifier across
participants to avoid the potential confound that the ef-
fectiveness of calibration interacts with learning efficacy.
The de novo classifier had a fixed classifier plane as
did the model-based classifier, however, its characteris-
tics were biologically unnatural; the de novo classifier
was based on EEG signals around the temporo-parietal
region (i.e., channel Cz) that are associated with not only
sensorimotor, but also attentional features (Benedek
et al., 2014; Misselhorn et al., 2019). Actively exploring
suitable mental strategies, users attempted to move their
body or a visual object on the display during the BCI task.
However, the motor imagery of corresponding body parts at
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the region (i.e., foot) and increased attention do not contribute
to the spectral power attenuation in the « band (8-13 Hz) re-
quired by the classifier. Specifically, since the « band power
was increased by the motor attempt of moving the feet or by
internal attention at the targeted channel (Pfurtscheller et al.,
2006; Benedek et al., 2014), such intrinsic responses did not
contribute to the BCI operation, Online computed ERD mag-
nitude with the procedure identical to that from channel C3 in
the model-based classifier was exploited to decode the ab-
sence/presence of attempted movement and index for neu-
rofeedback. The angle of tail was discretized to 100 steps
(0 dB: right limit, 10 dB: left limit). Note that the rules for object
movement were identical to those of the model-based
classifier.

Lastly, the adaptive classifier was constructed using
whole-head scalp EEG signals based on a common spa-
tial pattern (CSP) algorithm and a support vector machine
(SVM; Pfurtscheller et al., 2006; Blankertz et al., 2007). To
adapt to the current activity patterns of users, CSP com-
ponents that maximize the separability of the two con-
ditions “Rest” and “Imagine” were trained at the end of
each block. SVM classifiers were constructed to perform
a binary classification of the two conditions based on 6
CSP components. Although the CSP-based feature ex-
traction did not employ time-frequency transformation for
spectral power calculation used in the model-based and
de novo, users of adaptive BCls were also required to per-
form kinesthetic motor imagery which modulates spectral
power of scalp EEG. The posterior probability for a data
point classified as presence of motor attempt was used
as an index for neurofeedback; the index for the adaptive
classifier was defined to be linearly related to the posterior
probability in the range of 50% to 100%. Note that the
rules for object movement and for obtaining scores were
identical to those in the other two types of classifiers.

Evaluation of BCI performance

For each participant, online-calculated scores were in-
dividually subjected to linear regression analysis to summa-
rize whether performance of participant improved over
blocks for each classifier (Gruzelier, 2014; Kober et al.,
2018; Witte et al., 2018). The score obtained during a given
block was used as a dependent variable and block number
was used as a predictor valuable. If scores increased during
the experiment, the regression coefficient for the predictor
valuable was positive. After the regression coefficients were
derived from scores of each participant, they were sub-
jected to a group-by-group Wilcoxon rank-sum test with a
false discovery rate correction to test whether the obtained
regression coefficients were significantly different from zero
(Benjamini-Hochberg method; Benjamini and Hochberg,
1995). If significant positive shift of the slopes were ob-
served, the result indicated systematic progress of controll-
ability improvement for the BCI. However, note that the
comparison of the learning rate across groups are not appli-
cable because of the difference in score calculation proce-
dure. Moreover, to capture the difference in performance at
the beginning and end of experiment, acquired scores were
compared with Wilcoxon signed-rank test for first and last
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four blocks of each BCI operation (early and late period,
respectively).

Offline EEG preprocess

The recorded EEG signals were first preprocessed with
EEGLAB (Delorme and Makeig, 2004) to reject artifacts
and enhance the computational efficiency with downsam-
pling (Bigdely-Shamlo et al., 2015) The raw EEG data
were filtered with a zero-phase 1-45 Hz FIR bandpass fil-
ter, downsampled to 100 Hz and bad channels identified
by clean raw data plugin were removed from further anal-
ysis. The removed channels were interpolated spherically
to minimize a potential bias when re-referencing the electro-
des to a common average reference. Subsequently, large-
amplitude artifacts caused by blinking or head displacement
were removed with artifact subspace reconstruction algo-
rithm (Kothe and Makeig, 2013). The electrodes were then
re-referenced to the common average reference to extract
activity specific to the electrodes (McFarland et al., 1997).

The continuous EEG data were then segmented into tri-
als to evaluate the middle 8-s periods of the online BCI
training trials (i.e., the last 4 s of the “Rest” period and the
first 4 s of the “Imagine” period). To obtain the independent
EEG components of the segmented dataset, we used
adaptive mixture independent component analysis (AMICA;
Palmer et al., 2011). Finally, an automatic artifact rejection
was applied using ICLabel that distinguished genuine EEG
components from artifacts induced by eye, muscle, heart,
line noise, and channel noises (Pion-Tonachini et al., 2019).

To investigate cortical adaptation processes during brain-
computer interfacing, the band-power features were used
as a raw-vector that represents instantaneous overall brain
state. Computed band-power from each EEG channel was
subdivided into five functionally distinct frequency bands (6:
1-4Hz, 0: 4-8Hz, a: 8-13Hz, B: 13-31Hz, y: 31-45Hz;
Hayashi et al., 2020). The averaged band-power was log-
transformed and normalized to the z score in a trial-by-
trial manner to cancel baseline drifting. Thereby, the
original number of dimensions of the feature vector D
was D =129 x 5 = 645. Note that the feature targeted
by the model-based and de novo classifiers were in-
cluded in D.

Feature extraction of EEG-dataset using t-distributed
stochastic neighbor embedding (t-SNE) algorithm

The preprocessed EEG dataset (645 x 11,520 matrix)
was subjected to a subject-by-subject t-SNE analysis,
which converted the pairwise distances between data
points in the original feature space to conditional proba-
bilities (Van Der Maaten and Hinton, 2008). The t-SNE
algorithm minimized the Kullback-Leibler divergence rep-
resenting the distance between the conditional probability
in the original and embedded space, where conditional
probability that the data points x; and x; are neighbors
was calculated from the pairwise distances of input data.
In this study, the number of dimensions of EEG features
was reduced to three with a Barnes-Hut variation of t-
SNE (Van Der Maaten et al., 2014) to speed up the com-
putation. Perplexity, that is a hyperparameter of the t-SNE

eNeuro.org



Research Article: New Research 6 of 14

eMeuro

A Session 1-2 Session 15-16

Session 8-9

Classifier plane

Rest

B C
—_— 15
1 Classifier normal vector

[s2]
2 75 _
: z
2 (Y
£ x
[o]
© T 5u|.|
o - TR Classifier plane
O/)),Oi

o,,s s -15

x Component 1

Figure 3. Low dimensional visualization of EEG data by t-SNE. A, Changes in geometric relationships between dataset and classifier
plane. As training progressed, the geometric relationship of points from two brain states changed with respect to the classifier plane
(black plane). The large points indicate the centers of gravity of points from each brain state. The black line orthogonal to the classi-
fier plane is the classifier normal vector (see also Figure 3C). B, An example of t-SNE-based data visualization in embedded space
(Model-based classifier user). Each datapoint is colored with its SMR-ERD value derived from the C3 electrode around the left sen-
sorimotor cortex. The black plane represents the classifier plane (see also Classifier plane and geometric assessment of EEG data
for mathematical details). The large points indicate the centers of gravity of points from each brain state. The black line orthogonal
to the classifier plane is the classifier normal vector (see also Figure 3C). C, The t-SNE-based quantification of the adaptation pro-
cess with respect to the classifier plane. tNorm,, is defined as a component of tVec with respect to the classifier vector, while 6, is

defined as a subtended angle between tVec and the classifier vector.

algorithm, was set to 20 determined empirically with a
parameter search of past EEG data for best separation
between the “Rest” and “Imagine” periods. The hyper-
parameter was fixed across participants throughout the
study after the determination. After applying t-SNE, the
dimensionality-reduced datasets were subjected to visu-
alization and a similarity analysis, but classification labels
(i.e., “Rest” or “Imagine”) were determined from the origi-
nal dataset (Fig. 3A).

The t-SNE-based dimensionality reduction and
quantitative analysis in embedded space

Feature extraction using dimensionality reduction is
popularly conducted for high-dimensional neural data
across modalities (Cunningham and Yu, 2014; Lord et al.,
2019). The t-SNE algorithm we employed for dimensional-
ity reduction is advantageous for geometric evaluation as
it preserves original distances in the embedded space.
Because t-SNE unfolds the nonlinear structure of a given
dataset, the linear distance in the embedded space can
be interpreted as an approximation of geometric distance
in the original space. It illustrates how different one brain
activity pattern is from another; however, it should be
noted that to properly interpret the results, (1) distance
scales in the embedded space were rearranged and were
variable across iterations of t-SNE, (2) distance scales
in different clusters might have differed, and (3) direct
comparisons of distances between clusters were not
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acceptable because distances within two clusters were
arbitrary. To deal with the above concerns, two ap-
proaches were adopted: (1) data points were bridged to
prevent the formation of multiple clusters, and (2) sta-
tistical distances, namely, Hotelling’s t-squared statis-
tical values, were used instead of Euclidean metrics.
Because distances between nearby points are well pre-
served in embedded space, the distance scale of dis-
tant points were kept similar for enough data points,
which acts as a bridge and prevents the formation of
sparse multiple clusters. We also adopted the concept
of “short-circuiting” (Lee and Verleysen, 2005) by con-
structing the feature vectors with overlapped time-win-
dows so that points were smoothly connected, and all
data acquired from single participants were subjected
to t-SNE algorithm at once. Thus, distances from point to
point shared the same scale across all points (i.e., only
one cluster was generated in embedded space as shown
in Fig. 3B).

Hotelling’s t-squared statistic was adopted as the distance
metrics between two group of points (Hotelling, 1992).
Assume x and y are two groups of points lying in a p-di-
mensional space, ny and n, are the numbers of points,x
and y are the sample means, and ﬁx and ﬁy are the re-
spective sample covariance matrices. The Hotelling’s
t-squared statistic was calculated as:

-1 _

n.n
2= X —¥)

- X-y)3
nX+ny(X _V)
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Hotelling’s t-squared statistic is suitable for measure-
ments of statistical distance in the t-SNE-embedded
space, as they were invariant to the distance scale. The
distribution of 2 follows an F-distribution:

. p(nx+ny_2)

F, 1-p-
no+n,—p—1 PP

To normalize the distribution, the square root of 2 was
defined as tNorm and was used as the distance measure-
ment in subsequent analyses:

tNorm = V2.

The vector representing the directional relationship be-
tween two classes was defined as a 3D vector tVec:

tVec = tNorm -

ASIA

X —

Data points were divided into two classes: “Rest” and
“Imagine” according to their relative times in the trials.
tNorm and tVec were calculated for these two conditions.

Classifier plane and geometric assessment of EEG
data

To investigate the influence of BCI classifiers on the
cortical adaptation in the t-SNE-embedded space, the
classifier plane and classifier normal vector were linearly
projected into the embedded space (see Fig. 3C). A 3D
classifier normal vector V = [v1,v5,v3)" was calculated as
follows, where T denotes a matrix transpose:

1 b »
X=[:Y ,<‘7):(XTX) X'P

j
V =i/

Then, the equation of the classifier plane is given as
follows:

ViX +Voy +Vvez+b =0,

assuming Y € RV*3 are the points in the 3D embedded
space (three dimensions were represented as x,y,z, re-
spectively), P ¢ RN*1) are the original features referred to
by the classifier (model-based: «-ERD at C3, de novo:
a-ERD at Cz, adaptive: classifier score), where N is the
number of points (11,520), b is the intercept correspond-
ing to the decision boundary of the classifiers. The classi-
fier normal vector was derived using the ordinary least
squares by minimizing the error between the value of the
feature and those estimated from the coordination in the
low-dimensional space. As is shown in Figure 3C, tVec
were projected to the classifier normal vector to evaluate
its geometric relationship against the classifier. The lengths
of projection on the classifier vector (fNormp) and the
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angles between tVec and the classifier vector (6,,) were cal-
culated across classifiers as follows:

tNorm, = tVec - V

tVec -V

6, = arccos ———.
P tVec

Because tNorm, reflects the size of component in tVec
aligned with the classifier normal vector, the increase in
the tNorm, indicates how two brain states are separated
by the classifier. Meanwhile, 6, indicates how the relative
position of the two states is aligned with the classifier nor-
mal vector.

Geometry-based analysis in the embedded space

The geometry-based analysis was conducted in the em-
bedded space, as geometric relationships of the points re-
flected the similarities in the original space. The transition
process from one brain condition to another (i.e., absence to
presence of attempted movement) was assessed by the
spatial arrangement and separability of points from the
“Rest” and “Imagine” periods in the t-SNE dimension (Fig.
1). Emergence of the two temporal phenomena were de-
fined as follows:

® Separation: The separability of the two conditions
(Rest and Imagine) increases with respect to a fixed
axis. Separation is interpreted as the enhancement of
specific cortical activity patterns.

® Rotation: The relationship of positions in the two con-
ditions changes direction. Deforming is interpreted
as an alteration of a cortical activity pattern that is
adopted as the rotational changes towards perpendic-
ular to the classifier plane indicates the reconfiguration
of activity patterns contributing to BCI performance
improvement.

To quantify the two distinct adaptation process, the fol-
lowing metrics were defined. Scaling and deforming be-
tween the ith and jth blocks were, respectively, quantified
by the difference of tNorm, and 6.

If adaptation progresses toward the targeted neural activ-
ity patterns required to control BCls, the tNorm, values
should be larger while those of 6, should be smaller. Thus,
the calculated values were subjected to the Wilcoxon
signed-rank test to compare the differences between the
early and late periods. For adaptive classifiers, as the classi-
fier plane was obtained from the second block, we defined
early period as two to five blocks for the classifier and the
classifier normal vector was approximated by the mean of
vectors derived from trained with the previous blocks. We
then corrected the a-level with a Bonferroni correction.

Cortical source estimation

To localize the source of neural signaling during BCI op-
eration, EEG signals were subjected to sSLORETA analysis
for cortical source estimation (Pascual-Marqui, 2002).
Because the motivation for conducting the source analy-
sis was to test whether the targeted region of the classifier

eNeuro.org



eMeuro

was successfully activated during the late period of BCI
training, averaged data from early and late periods were
subjected to a nonparametric permutation test (Nichols
and Holmes, 2002).

Results

Participants learnt BCl operation based on the mental
actions

Twenty-one participants operated BCls with one of three
randomly allocated classifiers that provided scores contin-
gent on BCI. Since culminated sum of scores in a block
represents the overall performance of BCI operation, we
tested whether the performance improvement was sys-
tematically observed in participants of each BCI (Fig. 4A).
While BCI performance scores from the model-based and
adaptive classifier generally increased over blocks, those
for the de novo classifier did not. Regression coefficients of
linear regression analysis were computed based on ac-
quired scores from each participant, using the block num-
bers as the explanatory variable and the acquired scores
as response variables. Statistical tests to test for computed
regression coefficients revealed significant differences
from zero for BCls based on the model-based and adapt-
ive classifiers (model-based: p =0.0078, d = 1.86, adaptive:
p=0.023, d=0.97, de novo: p=0.055, d=0.74, Wilcoxon
rank-sum test, FDR corrected). The comparison of ac-
quired scores at early and late period indicate significant
difference across groups (Wilcoxon signed-rank test, all
p < 0.05; Fig. 4B), indicating even de novo BCI elicits ad-
aptation of participants through training. Note that direct
comparison of the coefficients among classifiers is not
possible because scores from each classifier were com-
puted based on different EEG features (Figs. 4C, 5). As
shown in Figure 4C, the time-frequency representations of
scalp EEG signals derived from channels of interest for the
fixed classifiers (i.e., C3 channel for model-based and Cz
for de novo), qualitatively exhibited the changes in the
SMR-ERD magnitude during motor imagery (from 0 to 4 s)
from early to late period of BCI operation training. For the
fixed classifiers using a predefined feature for the motor at-
tempt detection, the spatial representation was visualized
by the cortical source estimation (Fig. 5). The correspond-
ing features exhibited sensorimotor activity corresponding
to the feature on interest (i.e., model-based classifier: activ-
ity around contralateral SM1, de novo classifier: activity
around temporo-parietal region).

Geometric quantification of cortical adaptation
process revealed distinct adaptation processes to
classifier’s separating plane

BCl training requires users to control the voluntary con-
trol of targeted activity which classifiers use for motor at-
tempt detection. However, not only the targeted features,
those derived from regions interconnected with the target
would also reorganize through learning (Wander et al.,
2013; Corsi et al., 2020). To examine differences in cortical
adaptation processes, we investigated changes in whole-
head EEG signals for the early and late period (first and
last four blocks of BCI operation, respectively). An example
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of data from the model-based classifier BCIl is shown in
Figure 3A. As the participant performed the BCI operation,
data during attempted movement (blue points) moved
across the classifier plane, where the sign of relative SMR
power flips (Fig. 3B). In this case, the defined metrics
tNorm, and 6, (Fig. 3C), respectively, increased and de-
creased. The classifier normal vector used to calculate
those metrics exhibited statistical significance across
blocks and indicated comparable R? values across BCI
types (Model-based: R? = 0.23 = 0.1, de novo: R? = 0.26 +
0.2, Adaptive: R? =0.21 + 0.2).

Figure 6 indicates changes in the norm of tVec(|tVec|)
between early and late period. Because |tVec| is deter-
mined by the distance between the averaged points
of two brain states, it change reflects the overall activity
changes including the modulation of EEG component irrel-
evant to BCI control. For participants trained with model-
based classifier |tVec| significantly decreased (p=0.016,
d=1.02, two-tailed Wilcoxon signed-rank test), while no
systematic changes were observed for other two types (de
novo: p=0.22, adaptive: p=0.81), suggesting the whole-
brain activation patterns did not exhibit increased separa-
bility in any of three BCls. However, despite the decrease
in the overall norm of tVec, tNorm,, values, the component
of tVec relevant to the EEG component used for the motor
attempt detection by the classifier (i.e., ERD in « band at
contralateral SM1) significantly increased in the partici-
pants of the model-based BCI (Fig. 7A, p=0.016, d=0.71).
At the same time, 6, values decreased significantly for par-
ticipants trained with both the model-based (p=0.016,
d=0.77), indicating the reorganization of whole-brain activ-
ity patterns toward perpendicular to the classifier plane.
Note that the negative values of tNorm,, observed in some
participants of model-based and de novo BCls are be-
cause of the use of fixed classifier normal vectors derived
from whole-experiment data including unsuccessful BCI
control.

The identical evaluation was conducted for the de novo
classifiers. Figure 7B depicts changes in tNorm, and 6,
against the de novo classifier. While no significant differences
were confirmed for tNorm,, values over blocks (p =0.078), 6,
values significantly decreased (p =0.016, d =1.3), suggesting
the partial adaptation to the classifier plane requiring biologi-
cally unnatural EEG responses through exploration (i.e., ERD
in « band at temporo-parietal region).

As the classifier planes changed from one block to the
next for the adaptive classifiers trained with the data from
the previous blocks, each metric was calculated against
the classifier plane determined with the dataset from the
previous block. No significant differences in tNorm,, or 6,
were confirmed for comparison between the early and late
period for the adaptive classifiers (Fig. 7C, p=0.47, p=
0.82, respectively). Since the analysis on predetermined
sample size detects statistically significant changes if five
out of seven participants exhibit systematic changes, the
result suggests no evidence in the adaptation of neural ac-
tivity patterns was found for the adaptive classifier recali-
brated at the end of each block.

In summary, short-term BCI operation training elicited
different cortical adaptation processes depending on the
BCl types; the model-based and adaptive classifier
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Figure 4. Changes in BCI operation performance and time-frequency representations of scalp electroencephalogram signals. A,
Group results of performance scores from users of model-based, de novo and adaptive classifiers. Solid lines indicate mean values
while shaded areas represent 1 SE across participants. B, Changes in the acquired scores during BCI operation. Asterisks indicate
statistical significance (p < 0.05). C, Changes in time-frequency representations of scalp electroencephalogram signals from repre-
sentative channels.
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Figure 5. Spatial activity patterns during brain-computer interfacing. Results of source estimation analysis from representative par-
ticipants. The colored regions indicate voxels where activities were significantly different during Rest and Imagine periods (p < 0.05
unc.). Areas colored with blue and green indicate those for model-based and de novo classifiers, respectively. While significant vox-
els were localized around the contralateral hemisphere of the imagined hand for the model-based classifier, those for the de novo
classifier were located bilaterally, including in the pre/postcentral gyrus and supplementary motor area (peak voxel was in the post-
central gyrus; MNI coordinates: —40, —25, 45). Note that a representative source estimation for the adaptive classifier is not shown
because of variable activity patterns among participants. sLoreta analyses of statistical nonparametric mapping for estimated corti-
cal sources of band power in the a band (8-13Hz). Areas colored with blue and green indicate those from model-based and de
novo classifiers, respectively. Masks superimposed on a standard brain template were visualized by MRIcroGL (https://www.

mccauslandcenter.sc.edu/mricrogl/home).

elicited group-level systematic learning while de novo did
not. Meanwhile the two fixed classifiers induced adapta-
tion of neural activity patterns to improve BCI operation
performance by reorganizing the whole-brain cortical ac-
tivity patterns evaluated in the t-SNE space. Further, the
performance improvement elicited by the adaptive classi-
fier was mainly driven by the classifier-side adaptation
rather than the cortical adaptation as suggested by the no
evidence of changes in any of metrics of neural activity
patterns.

Discussion

In the present study, participants performed BCI opera-
tions with one of three classifiers: model-based, adaptive,
or de novo. Because BCI paradigm allows experimenters to
set an arbitrary relationship between the BCl model and
users (Sadtler et al., 2014), changes in acquired scores are
fully attributed to changes in the targeted feature. Although
learning curve of acquired scores indicated model-based and
adaptive classifiers exhibited significant improvement for BCI
control, the adaptation processes were likely distinct. Each
classifier elicited a different cortical adaptation process
consistent with their characteristics; for the model-based
classifier the t-SNE analyses in embedded space revealed

decrease in [tVec| and increases in tNorm, that is the
metric for separation of the neural manifold with respect
to the axes orthogonal to the fixed decision boundary.
Meanwhile, for the adaptive classifiers, changes in popu-
lational activities were not induced. Lastly, decrease in
0p, that is the metric for deforming effect reflecting re-
configuration of neural manifold orthogonal to its classi-
fier plane, was induced by the de novo classifier based
on biologically unnatural features. Because the present
study focused on the difference in the performance im-
provement of BCI control at the initial stage, binary classi-
fiers employed in the three types of BCls were putatively
suitable for the naive BCI users to learn its control within
short-term period. The findings would also contribute to
the adaptation process to the BCI with multivariate classi-
fiers whose performance is improved through gradual
increase in degree-of-freedom (Benabid et al., 2019;
Edelman et al., 2019).

Users of model-based BCIl demonstrated overall im-
provement of acquired scores and the increase in tNormp,.
Because tNorm,, indicates increase in the separability of
the two states to improve performance of BCI operation,
its increase suggests scaling effect along the axis orthog-
onal to the decision boundary. The systematic increase
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Figure 6. Overall changes in distance between brain states. Changes over time in the norm of tVec for participants operating under the
model-based classifier (A), the de novo classifier (B), and the adaptive classifier (C). Asterisks indicate statistical significance (p < 0.05).
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Figure 7. Quantitative comparison of cortical adaptation proc-
esses in embedded. Changes over time in tNorm, and 6, for
participants operating under the model-based classifier (A), the
de novo classifier (B), and the adaptive classifier (C). Asterisks
indicate statistical significance (p < 0.05).

in separability was only observed for the model-based
classifiers that required the attenuation of SMR derived
from contralateral hemisphere to imagined hand while the
model-based BCI induced decrease in the absolute length
of tVec. The contradictory changes, that decrease in over-
all norm and increase in norm of the projection to decoder
normal vector, would be explained by the suppression of
signaling changes not beneficial for BCl operation since
the model-based BCI determines the presence of motor
attempt only based on the electrode from targeted region
(i.e., contralateral SM1). Such selective modulation of spe-
cific component is consistent with motor skill acquisition
(Bassett et al., 2015) as well as previous reports of adapta-
tion of neural activity patterns during BCI operation (Corsi
et al., 2020; Hennig et al., 2021). Collectively, the scaling
effect evaluated by tNorm, would be mainly driven by the
selection of activity patterns rather than the emergence
of new patterns which elongates the manifold. The finding
about reorganization process of whole-brain activation
patterns, that is concurrent improvement of modulating
task-relevant and suppressing task- irreverent activities
in the early phase of BCI training, is consistent with
those observed for motor learning (Dal’Bello and Izawa,
2021), suggesting utility of the geometric assessment to
evaluate adaptation process. Because the t-SNE analysis
employed in the present study focused on the adaptation
along with the axis perpendicular to the classifier plane, the
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process of the autonomation of cortical activities was not
fully investigated in the present study. The more specialized
investigation based on the present finding would be
warranted using a large cohort of populations experi-
encing BCI operation with the combination of custom-
ization of BCI classifier to fit user-specific SM1 activities
(e.g., frequency and channel selection based on calibration
data).

Another fixed classifier, namely, de novo classifier did not
elicit the systematic changes in the tNorm,. Although the
EEG feature the de novo classifier used was derived from
the temporo-parietal « activity, participants did not exhibit
systematic adaptation observed in those of the model-
based classifier. This difference might have stemmed
from not only the classifier configuration, but also in-
struction about the task. Since exploration behavior
was encouraged during de novo classifier operation,
the instruction may lead association of the specific
patterns with better control of BCl and acquisition of
covert mental strategies in an implicit manner through
neurofeedback (Shibata et al., 2011). As motor tasks
adapted through such an exploratory strategy might
require more extensive training than recalibrating the
existing control configuration (Radhakrishnan et al.,
2008; Telgen et al., 2014; Choi et al., 2020), multiday
training of the de novo BCI operation would induce the
sophistication of BCIl operation by adopting explora-
tion strategy (Fujisawa et al., 2019).

Rotational effect was quantified by another metric for
geometric evaluation, 6, that indicates the angle between
classifier normal vector and tVec. While the increase in
tNorm,, indicated two brain states became more separa-
ble with respect to the features used in classifiers, the de-
crease in the 6, indicated the changes in cortical activity
patterns during the BCI operation. Significant changes in
6, were observed for not only for model-based classifiers
but also de novo. Although the absence of increase in
tNorm, was concomitant with that of obtained scores de-
pendent on the targeted EEG feature, the cortical adapta-
tion that partly contributed to the de novo BCI operation
was probed by 6, changes. As the 6, is the nonlinearly
related to tVec (the overall distance between the two brain
states), the metric is more sensitive to changes in the geo-
metric configuration than tNorm, which is linear function
of tVec (see Materials and Methods, Classifier plane and
geometric assessment of EEG data).

One potential limitation of the t-SNE analysis employed
in the present study is that the variance of features ex-
plained by the classifier vector becomes relatively low be-
cause of the nature of dimensionality reduction algorithms.
Since the high-dimensional brain activity patterns (645 di-
mensions) were compressed into 3D spaces, the explained
variance of features by classifier normal vectors became
overall 20%. Nevertheless, because we observed con-
sistent statistical significance of linear regression models
across participants and the preserved variance was suf-
ficient to detect the reorganization process along with
the features targeted by BCls in keeping with the univari-
ate analyses on acquired scores during BCI operation,
the estimated classifier normal vectors were statistically
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reliable representation of features targeted by BCls.
Given that t-SNE algorithm preserves relative distances
of each data point in the original space, we believe the
t-SNE analysis would be beneficial as a complementary
analysis for univariate analyses to evaluate the adapta-
tion process at the whole-brain level.

The present study demonstrated neuroplastic changes
in the whole-brain macroscopic activity patterns induced
by brain-computer interfacing in the first 2 h. Although the
primary focus of the present study was to detect the dif-
ferential interaction of human brain and classifiers at
the early period, the difference elicited by long-term use
is not mentioned in the study. While previous BCI stud-
ies have demonstrated the long-term co-adaptation is
one successful strategy for efficient training (Perdikis et
al., 2018; Silversmith et al., 2021), however, the limited
amount of training period in the study did not elicit the
adaptation of neural activity patterns by the adaptive
classifier use. Such differences in the adaptation pro-
cess depending on time scale are warranted in the fur-
ther investigation.

Although the flexibility of the human brain enabled adapta-
tion to model-based classifiers and partly to the de novo, the
adaptive classifier did not elicit adaptation of neural activity
patterns, manifested by the absence of any changes in geo-
metric assessment at least the early stage of BCI operation
training. It would be because the adaptive BCI enhanced its
performance by classifier-side adaptation, that maximized
the separability of two brain states for the current data by
classifier reconfiguration. In contrast to the previous studies
demonstrating co-adaptation of brain and classifiers using
the trial-by-trial classifier adaptation (Wolpaw and McFarland,
2004; Orsborn et al., 2014), the block-by-block calibration
procedure waived the previously optimized parameters and
reconstructed an entirely new model, the classifier-side adap-
tation could have been dominant. As the user did not receive
neurofeedback based on the constant rule (i.e., parameters
of the classifier) putatively because of the abrupt changes in
the classifier parameters as well as the CSP features, it could
have achieved the high separability of two brain states with-
out engaging cortical adaptation process yet interfered the
user’s attempt to adapt to the classifier. In summary, fixation
of the classifier plane is an essential element for inducing neu-
ral plasticity via a brain-computer interaction based on mac-
roscopic neural populational activities, and adaptation to a
BCI based on unnaturalistic features without the instruction
of suitable strategies for control is partly possible in the initial
stage of BCI operation training. This demonstration may in
part explain human adaptability to external environment that
continuously changes over time, underlying the flexibility of
our motor performance.
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