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It is well known that hippocampal place cells have spatiotemporal properties, namely, that they generally re-
spond to a single spatial location of a small environment, and they also display the temporal response prop-
erty of theta phase precession, namely, that the phase of spiking relative to the theta wave shifts from the late
phase to early phase as the animal crosses the place field. Grid cells in Layer Il of the medial entorhinal cortex
(MEC) also have spatiotemporal properties similar to hippocampal place cells, except that grid cells respond
to multiple spatial locations that form a hexagonal pattern. Because the EC is the upstream area that projects

(s )

In the navigational system of the brain, place cells in the hippocampus and grid cells in the medial entorhinal
cortex (MEC) have functionally important spatiotemporal properties. However, little is known about the link
between the temporal properties of grid cells and place cells. Recent experimental studies have suggested
that temporal properties of hippocampal place cells may be inherited from the MEC. However, a learning
model explaining how their relationship can be learnt via synaptic plasticity is still lacking. Here, we build a
learning model based on the principle of sparse coding and demonstrate how input from the EC leads to the
\spatiotemporal properties of hippocampal place cells via synaptic learning. /
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strongly to the hippocampus, a number of EC-hippocampus learning models have been proposed to explain
how the spatial receptive field properties of place cells emerge via synaptic plasticity. However, the question
of how the phase precession properties of place cells and grid cells are related has remained unclear. This
study shows how theta phase precession in hippocampal place cells can emerge from MEC input as a result
of synaptic plasticity, demonstrating that a learning model based on non-negative sparse coding can account
for both the spatial and temporal properties of hippocampal place cells. Although both MEC grid cells and
other EC spatial cells contribute to the spatial properties of hippocampal place cells, it is the MEC grid cells
that predominantly determine the temporal response properties of hippocampal place cells displayed here.

Key words: entorhinal cortex; hippocampus; learning; spatiotemporal properties; sparse coding; theta phase

precession

Introduction

In early electrophysiological experiments involving freely
behaving rats (O’Keefe and Dostrovsky, 1971; O’Keefe,
1976; Hill, 1978; O’Keefe and Conway, 1978), neuroscient-
ists discovered place cells, the principal cells in the hippo-
campus. Place cells, as suggested by their name, have the
spatial property of responding selectively to places in the
external environment, namely, they generally respond to a
particular location (called the place field) of the spatial envi-
ronment, although they may respond to multiple locations
in a large environment (Park et al., 2011). In addition to the
spatial properties of place cells, their temporal response
property, namely, theta phase precession, was observed
by O’Keefe and Recce (1993): the place cell fires spikes at
progressively earlier phases of the local field potential theta
rhythm (7-12 Hz) while the animal moves across the place
field. Normally, the firing of spike starts at the late phase of
the theta rhythm when the animal enters the place field and
ends at the early phase when the animal exits the place
field (O’Keefe and Recce, 1993; Skaggs et al., 1996).

Three decades after hippocampal place cells were dis-
covered, Hafting et al. (2005) reported another type of spa-
tial cells, the grid cells, in the medial entorhinal cortex
(MEC) that is an adjacent area to the hippocampus. Similar
to the spatial properties of place cells in the hippocampus,
MEC grid cells are also selective to spatial locations of the
environment, but each MEC grid cell responds to multiple
spatial locations (each location is called a grid field) forming
a hexagonal grid that tiles the entire environment (Hafting
et al., 2005). Moreover, there is a diversity resulting from
multiple hexagonal grids of different MEC grid cells that
have different orientations, spacings, and offsets (Stensola
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et al., 2012). Subsequently, MEC grid cells were also ob-
served to have the temporal response property of theta
precession: the firing of MEC grid cells begins at the late
phase of the theta rhythm when the animal enters the grid
field, the phase of firing shifts in a systematic way during
the traversal of the grid field, and ends at the early phase
when the animal exits the grid field (Hafting et al., 2008).
Although the spatial properties of place cells and MEC grid
cells were discovered in an open environment (O’Keefe
and Dostrovsky, 1971; Hafting et al., 2005), early studies
primarily investigated theta precession on linear tracks
(O’Keefe and Recce, 1993; Hafting et al., 2008). The phase
precession of place cells and MEC grid cells in the open
environment was investigated in later studies by Huxter et
al. (2008), Climer et al. (2013), and Jeewajee et al. (2014).

Apart from grid cells in MEC, there are also many nongrid
spatial cells in the MEC (Diehl et al., 2017; Hardcastle et al.,
2017). In the lateral EC (LEC), many cells also contain spatial
information (Hargreaves et al., 2005; Yoganarasimha et al.,
2011). In this paper, we refer to these cells in the EC that
contain spatial information but display no spatial structure
like grid cells as EC weakly spatial cells.

Hippocampal place cells and MEC grid cells are funda-
mental units of the navigational system of the brain and
there is a close relationship between these two types of
cells. Experimental studies indicate that input from the EC
is the principal input to the hippocampus (Steward and
Scoville, 1976; Tamamaki and Nojyo, 1993; Leutgeb et
al., 2007; Zhang et al., 2013). Consequently, MEC grid
cells along with other cells in the EC are thought to pro-
vide spatial input for hippocampal place cells, so that they
can have a specific place tuning. This has led to numerous
feedforward EC-hippocampus models in which single
place fields are generated from EC input, such as MEC
grid cells or EC weakly spatial cells (Rolls et al., 2006;
Solstad et al., 2006; Franzius et al., 2007a,b; de Almeida
et al., 2009; Hasselmo, 2009; Savelli and Knierim, 2010;
Neher et al., 2017; Lian and Burkitt, 2021). Furthermore,
Fiete et al. (2008) showed that this MEC grid cell structure
represents an encoding scheme for position that is analo-
gous to the residue number system (Soderstrand et al.,
1986), which is a highly efficient and accurate method for
place representation (Sreenivasan and Fiete, 2011). On
the other hand, place cells in CA1 of the hippocampus
project back directly or indirectly to the EC (Naber et al.,
2001; Kloosterman et al., 2003; Slomianka et al., 2011)
and the inactivation of place cells leads to the degradation
of receptive field structure of MEC grid cells (Bonnevie et
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al., 2013), supporting a loop-like EC-hippocampus net-
work structure. This loop-like structure has been adopted
in some modeling studies to explain other spatial proper-
ties of place and MEC grid cells such as global and rate
remapping of place cells, and multisensory integration in
MEC grid cells (Renné-Costa and Tort, 2017; Li et al,,
2020). Compared with the feedforward EC-hippocampus
models, the loop-like models can also incorporate the ef-
fects on the spatial firing of MEC grid cells because of the
feedback introduced in such models.

Separate from the link between the spatial properties of
place cells and MEC grid cells, some experimental studies
also infer a link between the temporal properties of place
cells and MEC grid cells. Hafting et al. (2008) discovered
that MEC grid cells have hippocampus-independent
phase precession and suggested that phase precession
of hippocampal place cells could be inherited from the EC.
Yamaguchi et al. (2007) proposed a entorhinal-hippocampal
network that hypothesizes that theta phase precession origi-
nates at EC superficial layers and is transmitted to the hip-
pocampus along the hippocampal trisynaptic circuit. In a
review paper, Bush et al. (2014) proposed that theta phase
precession of place cells is likely inherited from MEC grid
cell input. In a later study by Schlesiger et al. (2015), the
MEC was found to be necessary for the temporal properties
of hippocampal neuronal activity, even when place cells
maintain stable spatial firing. Jaramillo et al. (2014) built a
computational model that demonstrates that theta phase
precession in the EC can propagate to the downstream
such as CA1 in the hippocampus. However, unlike many
EC-hippocampus models that explain how spatial proper-
ties of hippocampal place cells can be learnt using EC input,
there are no existing EC-hippocampus learning models that
explicitly show how the temporal properties of hippocampal
place cells can be inherited from MEC grid cells through
some form of Hebbian learning. We propose here a learning
model in which the spatiotemporal properties of hippocam-
pal place cells emerge through synaptic plasticity during
navigation of a virtual rat in a 2D environment.

The learning model presented here is built on our previ-
ous work that shows that the model based on non-negative
sparse coding can learn an efficient hippocampal place map
using EC input such as MEC grid cells and EC weakly spa-
tial cells (Lian and Burkitt, 2021). In this paper, building on
the work of Jeewajee et al. (2014) and McClain et al. (2019),
we construct a mathematical model of MEC spatiotemporal
grid cells of a 2D environment. These MEC spatiotemporal
grid cells, along with EC weakly spatial cells, form the input
to modelled hippocampal cells, and the connection between
EC input cells (MEC grid cells and EC weakly spatial cells)
and modelled hippocampal cells are learnt during navigation
of a virtual rat. After learning, the modelled hippocampal
cells display spatial and temporal properties that are similar
to experimental data of place cells. Furthermore, after the
learning process, these learnt hippocampal place cells still
maintain their spatial selectivity even when MEC spatiotem-
poral grid cells are inactivated, suggesting that the remain-
ing EC weakly spatial cells can maintain the place field
responsiveness of place cells. Combining our previous work
showing that either MEC grid cells or EC weakly spatial cells
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can give rise to the spatial tuning of hippocampal place cells
(Lian and Burkitt, 2021), we complete the picture of how EC
input contributes to the properties of hippocampal place
cells from the perspective of synaptic plasticity, namely, that
hippocampal place cells learn the spatial properties from
both MEC grid cells and EC weakly spatial cells, and learn
their temporal properties from MEC grid cells. The synaptic
plasticity underlying the learning model here is based on the
principle of sparse coding.

Materials and Methods

The environment and trajectory

The spatial environment used in this study isa 1m x 1m
square box where a virtual rat runs freely. Similar to the
study by D’Albis and Kempter (2017), the running trajec-
tory r; is generated from the stochastic process described
as

dr;

dt
where v; is the speed sampled from an Ornstein—
Uhlenbeck process with long-term mean v; = v, 6, is the
direction of movement, w; is a standard Wiener process,
and o is the parameter that controls the tortuosity of the
running trajectory.

When the virtual rat is running toward the wall and very
close to the wall (within 2 cm), the running direction of the
rat (6,) is set to the direction parallel to the wall. If the rat
location generated by Equation 1 falls outside of the envi-
ronment, the stochastic process keeps running until a
valid location is generated.

The running trajectory of the virtual rat is generated at
100 Hz, i.e., the position is updated every 10 ms accord-
ing to Equation 1. The long-term mean speed, v, is set to
30 cm/s. A summary of parameters and values used in the
simulation can be found in Table 1.

vi[cos(6y),sin(0:)] with 6; = oy wy, (1)

Model of MEC spatiotemporal grid cells

MEC grid cells are found to have spatial and temporal
properties, namely, they are selective to a hexagonal grid
of spatial locations (Hafting et al., 2005) and have diverse
grid parameters (Stensola et al., 2012), and their firing dis-
plays theta phase precession (Hafting et al., 2008). The
spatial receptive fields of MEC grid cells can be character-
ized by the sum of three sinusoidal gratings (Solstad et
al., 2006) or the sum of circular fields at different locations
in the environment. In order to investigate the question of
whether the spatial and temporal properties of hippocam-
pal place cells can be inherited from MEC grid cells via
learning, we first need a mathematical model that can
characterize both spatial and temporal properties of MEC
grid cells.

Burgess (2008) designed a model of grid cells based on
the oscillatory interference model (O’Keefe and Burgess,
2005; Burgess et al., 2007). This model of grid cells con-
sists of multiple membrane potential oscillators whose
frequencies linearly depend on the speed and can capture
the spatial and temporal properties of the grid cells.
However, a recent experimental study challenged the
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Table 1: Model symbols and parameters

Description (value) Symbol
Tortuosity of the running trajectory (1 radian) Ty
Spatial location/running speed/running direction and at time t ri/vi 0
Long-term mean of the speed (30 cm/s) v

Time step of the running trajectory (10 ms)

Duration of the training/testing running trajectory (3600/1200 s)

Spatial location in the environment r
Spatiotemporal response at spatial location r at time t f(r,t)
Spatial receptive field fs(r)
Amplitude/center/radius of the spatial receptive field as/re/R
Phase modulation at spatial location r at time ¢ fo(r,t)
Level of phase modulation (uniformly sample from [0.8 1.2]) K
Frequency of the theta rhythm (10 Hz) F

Firing phase at location r o (r)
Entry phase of phase precession (uniformly sampled from [300° 340°]) bo
Phase change of phase precession (uniformly sampled from [300° 340°]) A¢
Projected center/radius of the spatial receptive field onto running direction r'/R’
Fitted spatial receptive fields of modelled hippocampal cells fs(r)
Amplitude/center/radius of the fitted spatial receptive field ac/fe/R
Fitted level of phase modulation Ky
Fitted frequency of theta rhythm F
Fitted phase of the temporal response ¢
Membrane time constant of modelled hippocampal cells (10 ms) T
Membrane potentials of modelled hippocampal cells u

Firing rates of modelled hippocampal cells s

Firing rates of EC input cells 1
Excitatory connection: EC input cells to modelled hippocampal cells A
Firing threshold of modelled hippocampal cells (0.3) B
Learning rate (0.01) n

Time step of computing modelled hippocampal cells by Equation 7 (0.2 ms)

Number of modelled hippocampal cells in scenarios 1, 2, and 3 (100)

Number of MEC spatiotemporal grid cells in scenarios 1, 2, and 3 (900)

Number of EC weakly spatial cells in scenarios 2 and 3 (400)

classical view that the oscillation frequency linearly de- f(r,t) =fs(r) - f,(r,t). 2)

pends on the running speed (Kropff et al., 2021). Instead,
the frequency of the theta rhythm is controlled by the ac-
celeration (Kropff et al., 2021). In this study we build a
mathematical model of spatiotemporal grid cells from a
different perspective, inspired by the work of Chadwick et
al. (2015) and McClain et al. (2019), in which the spatio-
temporal responses of grid cells are modelled as the
product of spatial and temporal responses as described
below.

Chadwick et al. (2015) and McClain et al. (2019) build
a mathematical model for 1D place cells that have spatial
and temporal properties, and Jeewajee et al. (2014) showed
that theta phase precession of grid cells and place cells
strongly depends on the projected distance on the current
running direction (pdcd) in a 2D environment. Analogous to
their work, we construct a mathematical model of MEC spa-
tiotemporal grid cells based on 2D spatiotemporal place
cells. The fundamental idea is that the receptive field of each
MEC spatiotemporal grid cell is seen as the combination of
multiple grid fields located in the hexagonal grid where each
grid field has spatiotemporal properties similar to a 2D spa-
tiotemporal place cell.

Within the region of any receptive field, the firing rate at
location r and time t is modelled as the product of a spa-
tial receptive field and a phase modulation (McClain et al.,
2019):

July/August 2022, 9(4) ENEURO.0519-21.2022

The spatial receptive field, fs(r), is described as a 2D
function:

r—re 2

folr) = ace " H ®
where r. is the center of the receptive field, o, is the am-
plitude at the center, and R determines the radius of the
spatial receptive field. Similar to our previous work (Lian
and Burkitt, 2021), the spatial receptive field of each MEC
spatiotemporal grid cell is determined by randomly sam-
pling the grid spacing, orientation and offset from some
distributions. Stensola et al. (2012) showed that MEC grid
cells are discretized into modules based on their grid
spacings. Following the model of Neher et al. (2017), we
take four discrete grid modules whose mean grid spac-
ings are 38.8, 48.4, 65, and 98.4 cm, and mean grid orien-
tations are 15°, 30°, 45°, and 0°, respectively. Similar to
the distribution of grid spacings in discrete grid modules
(Stensola et al., 2012), these four discrete grid modules
account for 43.5%, 43.5%, 6.5%, and 6.5% of grid cells
in the model, respectively. For any MEC grid cell in its
module, the grid spacing is sampled from a normal distri-
bution with mean spacing and standard deviation of 8cm,
the grid orientation is sampled from a normal distribution
with mean orientation and standard deviation of 3°, and
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Figure 1. lllustration of the mathematical model of a MEC spatiotemporal grid cell. For this cell, parameters that characterize the cell
are:ky =1, ¢pg = 320", A¢ =300, R=0.16 m and F=10Hz. A, The spatial receptive field (rate map), fs (r), in Equation 3, of a MEC grid
cell. B, Phase modulation, f, (r,t), in Equation 4, for three different values of k. ¢ (r) is set to 180°. The response is more phase locked
for larger values of k. C, Curves in different colors represent responses, f(r, t), of one prebuilt spatiotemporal grid cell over 0.5 s at dif-
ferent locations (coordinates found in plot D with the same color coding) when the virtual rat moves from left to right of the place field
along the trajectory in plot A. D, Firing phase, ¢ (r), versus position. Only x varies because the animal moves straight from left to right.

the grid offset is sampled from a uniform distribution be-
tween 0 and the grid spacing. Because Ismakov et al.
(2017) observed the variability in individual grid fields of a
MEC grid cell, the amplitude («a. in Eq. 3) of each grid field
for a MEC grid cell is sampled from a normal distribution
with mean 1 and standard deviation 0.1 (Neher et al.,
2017; Lian and Burkitt, 2021). The radius, R in Equation 3,
of the receptive field is determined by R=0.32A, where A
is the grid spacing of MEC grid cell. The spatial receptive
field (rate map) of one example MEC grid cell is displayed
in Figure 1A.

The phase modulation, f, (r,t), describes the temporal
response (i.e., the probability of the timing of the individu-
al action potentials) and is given by

f¢ (’.7 t) — ek(,,(cos(27-rFt—</)(r))—‘l)7 (4)

where k, is the parameter that controls the level of phase
modulation and hence the extent of the resulting phase
precession, F is the frequency of theta rhythm and set to
10 Hz throughout the paper. The choice of F=10Hz help
with visualizing the results as every 0.1 s is a full period
(see examples in Fig. 1B,C) and other choices of F will not
change the results, apart from the frequency of the theta
rhythm. ¢ (r) is a function that returns the firing phase at
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location r. Figure 1B shows the dependence of phase
modulation on k. ¢(r) is set to 180° when plotting the
curve. The larger k, is, the stronger the phase modulation
is. When k, is O, there is no phase modulation and the re-
sponse of MEC grid cells only depends on the spatial lo-
cation of the animal.

In a 1D linear track, Chadwick et al. (2015) and McClain
et al. (2019) model ¢ (r) as a linear function of the location,
r:

r—r.+R
¢ (r) - ¢0 A¢ 2R )
where ¢ is the entry phase at location r. — R, A¢ is the
phase change across the receptive field, and thus the exit
phase at locationr, + Ris ¢o— A¢. Note that in 1D r and
r. become scalars instead of vectors. An example of the
linear relationship between ¢(r) and r described in
Equation 5 is shown in Figure 1D.

However, determining ¢ (r) is more complicated in a 2D
environment because the animal can enter and exit the re-
ceptive field from any location with any running direction,
and the running trajectory does not always pass through
the center of the receptive field. Jeewajee et al. (2014)
show that the best correlate of phase precession in a 2D

©)
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open environment is the projected distance onto the ani-
mal’s current running direction (pdcd). Therefore, we
model ¢ (r) in a 2D environment by a projected version of
¢ (r) in Equation 5, described by:

r—r:+R'
2R! )

where r{ is the projected center and R’ is the projected ra-
dius onto the running direction. In any location within the
receptive field, the firing phase ¢ (r) depends on both
the spatial location and running direction. Firing phases at
the same location of different trajectories could have dif-
ferent values because of different running directions.

Above all, the spatiotemporal responses of a MEC grid
cells in a 2D environment are simply modelled as multiple
grid fields at all the vertices of the hexagonal grid in which
each grid field is characterized by the spatiotemporal
model described above (Egs. 2-4, 6).

From Equation 4, we can see that the spatiotemporal
response is periodical with frequency F when the virtual
rat stays at a fixed location within the receptive field.
Therefore, supposing the virtual rat remains stationary at r
for 1 s, the spatiotemporal response over this 1 s will
oscillate at frequency F with phase determined by ¢ (r)
and the magnitude of the oscillating response is deter-
mined by fs(r). In other words, from the spatiotemporal
response over 1 s at a fixed location, we can infer the fir-
ing phase and firing frequency of the temporal coding at
the location. Although theta waves are generally absent in
stationary animals (Bland, 1986), the spatiotemporal firing
response over 1 s at a fixed location is used in this paper
to visualize, estimate and analyze the temporal properties
at different locations within the receptive field. However,
this does not imply that the virtual rat stays at any location
for 1 s when freely exploring the environment. When the
model is in the learning stage, the virtual rat is continually
moving in a spatial environment along a trajectory gener-
ated by Equation 1. After the learning stage, the spatio-
temporal response over 1 s at different locations is
used to recover the learnt temporal properties of hip-
pocampal place cells (details found below, Fitting the
spatiotemporal response of learnt hippocampal place
cells, and Measuring the temporal properties of learnt
hippocampal place cells).

The response of one example MEC spatiotemporal grid
cell is illustrated in Figure 1. The spatial receptive field
(rate map) of this grid cell is displayed in Figure 1A. For
this cell, k, =1, ¢o =320, A¢ =300, and R=0.16 m.
Figure 1A, red arrow, indicates the straight trajectory the
virtual rat runs through a grid field from left to right. Figure
1C shows the response over 0.5 s when the virtual rat is at
different locations of the running trajectory (Fig. 1A, red
arrow) in which the coordinates of locations are given in
Figure 1D with the same color coding. At each location,
the response over 0.5 s is intentionally plotted to visualize
the spatial and temporal properties. As the virtual rat runs
from the left to the right of the grid field, the spatial re-
sponse (fs(r) in Eq. 3), describing the amplitude of the
periodic curve, increases, peaks at the center, and then
decreases. However, the phases of these periodic curves

B(r) = ¢o—Ad ©)
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(Fig. 1C) start with a value close to 360° and then keep de-
creasing along the trajectory, mimicking theta phase pre-
cession. Theta phase precession can also be observed
from Figure 1D, which shows that the curve of firing
phase versus position (10) has a correlation coefficient
—1. Note that theta phase precession is incorporated into
the model through the temporal way in which the firing
phase varies linearly with the pdcd within the receptive
field (Egs. 4, 6). In this way, Figure 1 illustrates that our
mathematical model of MEC spatiotemporal grid cells
shows both spatial and temporal dependence, and the
theta phase precession introduced here is perfect with a
correlation coefficient —1. Naturally, the theta phase pre-
cession is unlikely to be so perfect in experimental stud-
ies. However, our aim here is to investigate from a
modeling perspective how well the modelled hippocam-
pal place cells preserve the theta phase precession of
MEC spatiotemporal grid cells after learning.

EC weakly spatial cells

Although MEC grid cells have a clear spatial structure,
they account for only ~20% of the MEC cell population
(Diehl et al., 2017). Furthermore, Diehl et al. (2017) found
that about two-thirds of MEC cells (i.e., the nongrid spatial
cells) have less specialized but consistent spatial firing pat-
terns. Hardcastle et al. (2017) discovered that many nongrid
cells in the MEC have firing patterns that contain spatial in-
formation. In addition, cells in LEC, that also contain spatial
information (Hargreaves et al., 2005; Yoganarasimha et al.,
2011), can likewise contribute to the formation of hippocam-
pal place cells. In our previous work, we have shown that a
model based on sparse coding can effectively retrieve
place information from EC weakly spatial cells that have
no structured spatial selectivity to form an efficient hip-
pocampal place map (Lian and Burkitt, 2021). In this
paper, we incorporated EC weakly spatial cells and
treated them as potential upstream input to the hippo-
campus to investigate how EC weakly spatial cells and
MEC spatiotemporal grid cells altogether contribute to
the spatial and temporal properties of modelled hippo-
campal place cells. In this model, the firing field of EC
weakly spatial cells is generated by first sampling from a
uniform distribution between 0 and 1 for each location,
then smoothing the map with a Gaussian kernel with a
standard deviation of 6 cm, and normalizing the map to
give values between 0 and 0.1.

Non-negative sparse coding

Similar to our previous work (Lian and Burkitt, 2021),
we build here the learning model of spatiotemporal place
cells based on non-negative sparse coding (Hoyer,
2003). Sparse coding, originally proposed by Olshausen
and Field (1996, 1997), finds an efficient representation
of the input using a linear combination of some basis
vectors. Non-negative sparse coding constrains the re-
sponses and basis vectors to be non-negative. We im-
plement the model via a locally competitive algorithm
(Rozell et al., 2008) that efficiently solves sparse coding
as follows:
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i =—u+A’l - Ws
s = max(u— 3,0)

and
AA = n(l— As)sT withA > 0, (8)

where | is the input, s represents the response (firing rate)
of the model units, u can be interpreted as the membrane
potential, A is the matrix containing basis vectors and can
be interpreted as the connection weights between the
input and model units, W =A’A — 1 and can be inter-
preted as the recurrent connection between model
units, 1 is the identity matrix, 7 is the time constant, g is
the positive sparsity constant that controls the threshold
of firing, and 7 is the learning rate. Each column of A is
normalized to have length 1. The non-negative constraints
are incorporated into the system, as seen from the non-
negativity of both s and A in Equations 7 and 8. The pa-
rameters of implementing Equations 7 and 8 are given
below (see below, Training). Additional details about the
implementation of non-negative sparse coding can be
found in Lian and Burkitt (2021).

Structure of the model

In this paper, the EC provides upstream input for the
hippocampus and the EC-hippocampus pathway is mod-
elled in three scenarios. Modelled hippocampal cells
undergoes a learning process described by Equations 7
and 8. A modelled hippocampal cell is referred to as
“learnt hippocampal place cell” if it meets the criteria of a
place cell after learning (see below, Selecting place cells).
The diagram of the model structure is displayed in Figure
2. A summary of all symbols defined in this paper is
shown in Table 1.

Scenario 1

Modelled hippocampal cells only receive input from
MEC spatiotemporal grid cells, as described above,
which have both spatial and temporal response proper-
ties (see above, Model of MEC spatiotemporal grid cells).
The EC-hippocampus connection undergoes a learning
process while the virtual rat is exploring the environment.
This scenario is designed to investigate the contribution
of MEC spatiotemporal grid cells to the spatial and tem-
poral properties of learnt hippocampal place cells.

Scenario 2

Modelled hippocampal cells receive input from MEC
spatiotemporal grid cells together with EC weakly spatial
cells. Similar to scenario 1, the EC-hippocampus connec-
tion is learnt. This scenario aims to validate and extend
the results of scenario 1 to the situation in which other
spatial cells in the EC also contribute to the firing of learnt
hippocampal place cells.

Scenario 3

After the learning process of scenario 2, MEC spatio-
temporal grid cells are inactivated and there is no learning
in this scenario. This scenario is used to replicate the ex-
perimental setup of the study by Schlesiger et al. (2015),
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Figure 2. Model structure in three scenarios. MEC spatiotem-
poral grid cells or EC weakly spatial cells serve as the upstream
input to the hippocampus. Given a spatial location r from a vir-
tual rat running trajectory and time t, EC provides input for the
hippocampus. The response of modelled hippocampal cells
and the connection weights A are updated as described by
Equations 7 and 8. A, Scenario 1. Only MEC spatiotemporal
gird cells serve as the EC input. B, Scenario 2, Both MEC spa-
tiotemporal grid cells and EC weakly spatial cells serve as the
EC input. C, Scenario 3. MEC spatiotemporal grid cells were in-
activated after the learning process of scenario 2.

in which rats received NMDA lesions of the MEC.
Schlesiger et al. (2015) found that theta phase precession
of hippocampal place cells was greatly disrupted by MEC
lesions but hippocampal spatial firing still remained. This
scenario is also similar to another experimental study that
showed the retention of hippocampal place fields during
medial septum inactivation (Brandon et al., 2014), which is
presumed to shut off grid cell input because of the loss of
excitatory drive (Brandon et al., 2011; Koenig et al., 2011).
In this scenario, the spatial firing of learnt hippocampal
place cells will be investigated after the inactivation of MEC
spatiotemporal grid cells to compare the simulation results
of our model with the results of these experimental studies.

Training
The values of training parameters and definition of sym-
bols can be found in Table 1. As the virtual rat moves in

eNeuro.org



eMeuro

the environment, each MEC spatiotemporal grid cell gen-
erates a firing rate that is determined by the spatial loca-
tion r and time t according to Equations 2-4 and 6, while
each of the EC weakly spatial cells generates a firing rate
determined only by the spatial location. The response of
modelled hippocampal cells is computed iteratively using
the model dynamics (Eqg. 7). The connection, A, between
EC cells and modelled hippocampal cells is updated ac-
cording to the learning rule described in Equation 8. There
are 100 modelled hippocampal cells in the model and the
three different scenarios above are implemented.

Scenario 1

Only MEC spatiotemporal grid cells provide input to the
modelled hippocampal cells, there are 900 MEC spatio-
temporal grid cells, i.e., A is a 900 x 100 matrix. A running
trajectory of 3600 s is used to train the model and the con-
nection weight matrix, A, is learnt during this training
process.

Scenario 2

Both MEC spatiotemporal grid cells and EC weakly spa-
tial cells provide input to the hippocampus. In addition to
the 900 MEC spatiotemporal grid cells, there are also 400
EC weakly spatial cells, i.e., Ais a 1300 x 100 matrix where
the top 400 rows of A represent the connection weights
from EC weakly spatial cells to modelled hippocampal
cells and the bottom 900 rows represent the connection
weights from MEC grid cells to modelled hippocampal
cells. The same running trajectory of 3600 s, as used in
scenario 1, is used to train the model.

Scenario 3

After the learning process in scenario 2, MEC spatio-
temporal grid cells were inactivated to investigate how
this affects the spatial firing of learnt hippocampal place
cells after spatiotemporal input from MEC grid cells is
lost. MEC grid cells are inactivated by setting the bottom
900 rows of A (the connection weights from MEC spatio-
temporal grid cells to modelled hippocampal cells) to zero
and then normalizing each column of A to have length 1.
In this scenario, there is no learning.

The connection weight matrix A is initialized according
to a uniform distribution between 0 and 1 and then nor-
malized to have length 1 for each column. For both sce-
narios 1 and 2, a running trajectory of 3600 s is used to
train the model and the connection weight matrix, A, is
learnt during this training process. After learning, another
running trajectory of 1200 s is used to recover the spatial
receptive fields of these 100 modelled hippocampal cells
for all three scenarios.

The parameters in Equations 4 and 6 that control the
temporal properties of MEC grid cells are chosen as fol-
lows: kg is chosen randomly from a uniform distribution
between 0.8 and 1.2; ¢o and A¢ are both chosen ran-
domly from a uniform distribution between 300° and 340°;
and Fis 10 Hz.

For the parameters in the model dynamics and learning
rule (Egs. 7, 8), 7is 10ms, B is 0.3, and the time step for
simulating the modelled hippocampal cells by Equation 7
is taken to be 0.2 ms. Because the trajectory is updated

July/August 2022, 9(4) ENEURO.0519-21.2022

Research Article: New Research 8 of 17
after every 10 ms, there are 50 iterations of computing the
response of modelled hippocampal cells using Equation
7. The connection weight matrix, A, is updated using
Equation 8 after 50 iterations and the learning rate 7 is
0.01.

Recovering the spatial receptive fields of modelled
hippocampal cells

After training, another running trajectory of the virtual
rat with a duration of 1200 s was used to recover the spa-
tial receptive fields (rate maps) of modelled hippocampal
cells. The 1m x 1m environment is discretized into a
40 x 40 lattice and the receptive field is recovered as the
averaged response across all locations along the running
trajectory of 1200 s.

Fitting the spatial receptive fields

In order to quantitatively characterize the spatial recep-
tive fields of learnt hippocampal cells, the recovered re-
ceptive fields using the approach above is fitted by the
following function:

_nslr=rel?
. In5=—3

?s(r) = ace R ©

where & is the amplitude, 7 is the center and R deter-
mines the radius of the receptive field. The fitting routine
is performed using the built-in MATLAB (version R2020a)
function Isqgcurvefit, and the fitting error is defined as the
ratio between the summed square of the fitting residual
and the summed square of the recovered receptive field.

Selecting place cells

The criteria for categorizing a modelled hippocampal
cell as a place cell are: (1) the center, r, is inside the spa-
tial environment; (2) the radius, R, is larger than 5cm; and
(3) the fitting error is smaller than 40%, where the fitting
error is defined as the square of the ratio between the fit-
ting residual and spatial field. The receptive field of a
place cell is called the place field. These last two criteria
are designed to preserve learnt hippocampal place cells
that have a reasonabile size of the place field and only one
dominant place field. A modelled hippocampal cell that
meets the criteria is referred to as “learnt hippocampal
place cell.”

Fitting the spatiotemporal response of learnt
hippocampal place cells

The MEC spatiotemporal grid cells in the model have
built-in spatial and temporal properties as described in
Equations 2-4 and 6, so their response at a fixed position
over 1 s displays the periodic pattern illustrated in Figure
1. However, modelled hippocampal cells have neither
built-in spatial nor temporal properties. After learning, the
response of modelled hippocampal cells is determined by
the model dynamics (Eq. 7) where the connection weight
matrix A is learnt during the virtual rat navigation. To in-
vestigate the temporal properties of learnt hippocampal
place cells after learning, the response of learnt hippo-
campal place cells over 1 s at a given location is fitted to
the following function:
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where f denotes the fitted response, & is the fitted ampli-
tude that represents the spatial firing rate at this location,
k4 is the estimated parameter that controls the level of
dependence on phase precession, F is the estimated fre-
quency of the response, and ¢ is the estimated phase of
the response. The fitting routine is performed using the
built-in MATLAB (version R2020a) function Isqgcurvefit.
The fitting error is defined as the square of the ratio be-
tween the fitting residual and original response.

Measuring the temporal properties of learnt
hippocampal place cells

In order to quantitatively investigate the temporal prop-
erties of theta phase precession of learnt hippocampal
place cells after learning, the following approach was
used. First, for the learnt hippocampal place cells that
meet the criteria of a place cell described earlier (see
above, Selecting place cells), only cells whose entire
place fields lie in the spatial environment are considered.
Second, for each learnt hippocampal place cell, a virtual
rat starts from the left side of the place field with an initial
running rightwards direction and then a curved trajectory
is generated according to Equation 1. Third, the response
over 1 s at each position along the trajectory is generated
by the model and then fitted using Equation 10. Finally,
the entry phase, exit phase, and correlation coefficient be-
tween firing phases and normalized pdcd are obtained.
For a learnt hippocampal place cell with theta phase pre-
cession, entry phase should be large and close to 360°,
exit phase should be small and close to 0°, and the corre-
lation coefficient between firing phases and normalized
pdcd should be negative and close to —1.

Code availability

The code of implementing the model and analyzing re-
sults was written in MATLAB (R2020a), and is available
at https://github.com/yanbolian/Learning-Spatiotemporal-
Properties-of-Hippocampal-Place-Cells.

Results

Scenario 1: the spatiotemporal properties of
hippocampal place cells can be inherited from MEC
grid cells via plasticity

The results presented here are those from scenario 1,
namely, the simulation in which only MEC spatiotemporal
grid cells provide input for the modelled hippocampal
cells. The MEC spatiotemporal grid cell to hippocampal
cell connectivity was learnt using non-negative sparse
coding over 3600 s of virtual rat navigation over the 1m x
1m environment, as described in Materials and Methods,
Training. Through this learning, the learnt hippocampal
place cells learn to pool different MEC spatiotemporal
grid cells in such a way that they become selective to spe-
cific locations in the spatial environment. The receptive
fields of the 94 out of 100 modelled hippocampal cells
that meet the criteria for place cells described in Materials
and Methods, Selecting place cells, are plotted in Figure
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Max

Figure 3. Scenario 1. Learnt hippocampal place cells display
spatial properties. A, Place fields of 94 (out of 100) learnt hippo-
campal place cells that satisfied the three criteria for a place
cell. Each block represents the spatial receptive field (rate map)
of a cell in a Tm x 1m environment. B, Centers of these 94
learnt hippocampal place cells plotted together in the 1m x 1m
environment. Values of parameters used in the simulation are
given in Table 1.

3A. These learnt hippocampal place cells have a domi-
nant firing location and their firing locations differ from
each other. The centers of each of these 94 place fields
are displayed in Figure 3B, which are estimated using
Equation 9. This figure shows that the population of 94
learnt hippocampal place cells tile the entire spatial envi-
ronment in a fairly uniform fashion. Compared with our
previous work (Lian and Burkitt, 2021, see their Fig. 3), the
tiling of hippocampal place cells here is less uniform be-
cause of the lack of uniformity in the input spatial loca-
tions: the spatial locations in Lian and Burkitt (2021) are
randomly sampled from a uniform distribution while the
spatial locations in this paper are generated by a rat run-
ning trajectory described in Equation 1.

Furthermore, these learnt hippocampal place cells also
display the temporal property of theta phase precession.
This is illustrated in the response of a learnt hippocampal
place cell over 0.5 s shown in Figure 4.

Figure 4B shows the response of one learnt hippocampal
place cell over 0.5 s at position (0.65, 0.75), which is the cen-
ter of the place field shown in Figure 4A. The solid line in
Figure 4B represents the response of this example place cell
over 0.5 s and displays a periodic pattern. After fitting the re-
sponse of the learnt place cell to the spatiotemporal function
described by Equation 10, the fitted response is plotted in the
dashed line. The response of this learnt place cell is well fitted
by Equation 10 and the fitting error is small (0.35%). The fitted
parameters are & =2.68, kg =0.69, F =10.00 Hz and
¢ =177.77".

The response of the same example place cells over 0.5
s as the animals runs from left to right of the place field
(through the field center) along the straight trajectory 1 in
Figure 4A is shown in Figure 4C. As the virtual rat is at po-
sition (0.5, 0.75), the amplitude of the response curve is
below 1 and the firing phase (indicated by the peak loca-
tion) is close to the end of each cycle (i.e., late phase). As
the virtual rat continues running to the right, the amplitude
of the response curve increases and then decreases,
while the firing phase continues to shift forward to the be-
ginning of each cycle. After fitting the response curve by
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Figure 4. Scenario 1. One example of learnt hippocampal place cell’'s temporal response properties. A, Rate map of an example of
learnt place cells whose center is at (0.65, 0.75). B, The response (solid line) over 0.5 s at the center of the place field and the fitted
response (dashed line) by Equation 10. C, The curves in different colors represent responses of this learnt hippocampal place cell
over 0.5 s at different locations (coordinates found in plot D with the same color coding) along the straight trajectory 1 in plot A. D,
Estimated firing phase, qS versus position. Only x varies because the virtual rat moves from left to right. E, The curves in different
colors represent responses of this learnt hippocampal place cell over 0.5 s at different locations (normalized pdcd found in plot F
with the same color coding) along the curved trajectory 2 in plot A. F, Estimated firing phase, ¢, versus normalized pdcd. Values of

parameters used in the simulation can be found in Table 1.

Equation 10, the relationship between firing phase and
position is shown in Figure 4D, which shows a clear re-
verse correlation, namely, that the firing phase moves
from late phase to early phase as the virtual rat crosses
the place field. The entry phase and exit phase are
303.9° and 28.7°, respectively. The correlation coeffi-
cient between firing phases and positions is —0.998.
Therefore, as the virtual rat runs from the left to the
right of the place field, this place cell response dis-
plays theta phase precession. In other words, after
learning, the resulting hippocampal place cells not
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only display spatial place fields in their responses but
also display phase precession.

The learnt place cell also displays theta phase preces-
sion when the virtual rat crosses the place field along the
curved trajectory 2 in Figure 4A, as illustrated in Figure
4E,F. Since in this case both x and y values of the position
change, we plot the firing phase relative to the normalized
pdcd (similar to Jeewajee et al., 2014) instead of posi-
tions. The amplitude of the response curve is small when
the virtual rat enters the place field, increases to the peak,
and then decreases as the virtual rat leaves the place
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Figure 5. Scenario 1. The population of learnt hippocampal place cells displays temporal properties. Histograms of (A) the entry
phases, (B) the exit phase, and (C) the correlation coefficient show that learnt hippocampal place cells have strong theta phase pre-
cession. D, Scatter plot of firing phase, ¢, versus pdcd, clearly showing theta phase precession of learnt hippocampal population
of cells. Values of parameters used in the simulation are given in Table 1.

field. The firing phase is observed to shift from late phase
to early phase, i.e., displaying theta phase precession,
similar to the straight trajectory but with a somewhat nar-
row range of phases. The entry phase is 268.8°, exit
phase is 102.3°, and the correlation coefficient between
firing phases and normalized pdcd is —0.998.

Consequently, the example place cell in Figure 4 learns
both spatial and temporal properties after training. These
spatiotemporal properties for the learnt hippocampal
place cells are not inherent properties of the place cells,
but arise entirely because of the way in which the model
learns a place-specific tuning and theta phase precession
from the spatiotemporal information provided by MEC
grid cells.

Among the 94 (out of 100) learnt hippocampal place
cells, 58 place cells have their entire place fields inside
the spatial environment. For each place cell, a random
curved trajectory is generated that crosses the place field
and the neuronal response is computed at different loca-
tions along the trajectory (see Materials and Methods,
Measuring the temporal properties of learnt hippocampal
place cells). The population statistics of the temporal
properties are shown in Figure 5. Figure 5A,B show that
the firing phase of these cells is at a late phase when the
virtual rat enters the place field and at an early phase
when the virtual rat leaves the place field. The histogram
of correlation coefficients between firing phase and nor-
malized pdcd (Fig. 4C) and scatter plot of firing phase and
normalized pdcd (Fig. 4D) demonstrate strong theta
phase precession. Recall that MEC grid cells are con-
structed here to have this built-in phase precession
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property (characterized by Egs. 4, 6). For each grid field of
MEC grid cell, the firing phase and normalized pdcd along
any trajectory are constructed to have a correlation coeffi-
cient of —1 because of the linear relationship between the
firing phase and pdcd (Eq. 6). Both the spatial and tempo-
ral response properties of hippocampal place cells are en-
tirely learnt from pooling the input they receive from MEC
grid cells. Furthermore, the fact that the correlation coeffi-
cients in Figure 5 are very close to —1 indicates that theta
phase precession is well preserved in the learnt hippo-
campal place cells.

Scenario 2: the spatiotemporal properties of
hippocampal place cells can be learnt when both MEC
grid cells and EC weakly spatial cells serve as the EC
input to the hippocampus

In this section, we show the results of training with sce-
nario 2, namely, where both MEC spatiotemporal grid
cells and EC weakly spatial cells provide input to the mod-
elled hippocampal cells. The results show that both MEC
grid cells and EC weakly spatial cells provide spatial infor-
mation for the hippocampus, so that a spatial hippocam-
pal map can be retrieved from upstream input, while MEC
grid cells provide temporal information that results in
theta phase precession also being inherited from the up-
stream neural population.

A demonstration of how EC weakly spatial cells and
MEC grid cells contribute to the spatial and temporal
properties of hippocampal place cells is given in Figure 6.
After learning, the recovered rate maps show place-field
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Figure 6. Scenario 2. Learnt hippocampal place cells display
spatiotemporal properties. A, Spatial properties of learnt hippo-
campal place cells. Left, The place fields of learnt hippocampal
place cells. Right, Place field centers plotted in the same envi-
ronment. B, Firing phase, ¢, versus normalized pdcd along a
curved trajectory that crosses the place field, which illustrates
theta phase precession for one learnt hippocampal place cell
highlighted in plot A. C, The scatter plot of firing phase, ¢, ver-
sus pdcd, clearly showing theta phase precession of learnt hip-
pocampal population. D, The population of learnt hippocampal
place cells displays temporal properties. Histograms of entry
phase (left), exit phase (middle), and correlation coefficient
(right) indicate a strong phase precession for the population of
learnt hippocampal place cells. Values of parameters used in
the simulation are given in Table 1.

like receptive fields. As seen from Figure 6A, different hip-
pocampal place cells learn different place fields and the
hippocampal population tiles the entire environment, sim-
ilar to scenario 1 in which only MEC grid cells provide
input to the hippocampus (Fig. 3). An example of the tem-
poral response properties of a place cell can be seen from
the relationship between firing phase and normalized
pdcd within the place field in Figure 6B, which displays
characteristic theta phase precession: as the virtual rat
moves along a random generated curved trajectory (see
Materials and Methods, Measuring the temporal proper-
ties of learnt hippocampal place cells), the firing phase
shifts smoothly from a late phase to an early phase.
Figure 6C,D displays the population statistics for this
phase precession, similar to Figure 5, indicating that
learnt hippocampal place cells display strong phase
precession.
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Figure 7. Scenario 3. Learnt hippocampal place cells maintain
spatial firing after MEC inactivation. A, The place fields of 87
hippocampal place cells (left) and their centers plotted in the
same environment (right). B, Histogram of radius change of
place fields after MEC inactivation. The radius of most place
fields increases after MEC inactivation. The mean radii before
and after MEC inactivation are 8.94 and 10.34cm, respec-
tively. C, Scatter plot of the place field center shift after MEC
inactivation.

Scenario 3: spatial properties of hippocampal place
cells are maintained after the inactivation of MEC grid
cells

After the learning process in scenario 2, MEC spatio-
temporal grid cells in the model were inactivated, i.e., only
the remaining EC weakly spatial cells provide spatial infor-
mation for hippocampal place cells and there is no input
(temporal or spatiotemporal) from MEC grid cells. Recall
that there is no learning in scenario 3, so the spatial tuning
of hippocampal place cells depends on the connectivity
between EC weakly spatial cells and hippocampal place
cells that was learnt in scenario 2.

However, the learnt connection between EC weakly
spatial cells and place cells is sufficient to maintain the
place field of hippocampal place cells after MEC inactiva-
tion. After recovering the receptive fields of modelled hip-
pocampal cells (see Materials and Methods, Recovering
the spatial receptive fields of modelled hippocampal
cells), 87 out of 100 modelled hippocampal cells were
found to meet the criteria of a place cell. The place fields,
together with their field centers, are plotted in Figure 7A.
Comparison with Figure 6A shows that the place fields
still maintain their firing locations and the population still
tiles the entire spatial environment. This indicates that the
learnt connection from EC weakly spatial cells to place
cells during free running provides sufficient spatial infor-
mation, such that stable place fields will not be lost
although MEC grid cells are inactivated in this scenario.

There are 94 place cells before inactivating MEC grid
cells (Fig. 6A, scenario 2) and 87 place cells after the
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inactivation (Fig. 7A, scenario 3). We find that all these 87
place cells that pass the criteria for place cells after MEC
inactivation (scenario 3) come from the population of 94
place cells before MEC inactivation (scenario 2). After inac-
tivating MEC grid cells, Figure 7B shows that, in general,
the size of the place fields increases. The mean radii before
and after MEC inactivation are 8.94 cm and 10.34cm, re-
spectively. The increase of place field size after MEC acti-
vation is consistent with experimental results (Schlesiger et
al., 2015). Furthermore, although most place cells maintain
stable place fields after the inactivation, their field centers
shift randomly within a small range, as seen in Figure 7C.
These results also suggest that the place coding of the hip-
pocampus becomes somewhat less accurate after MEC
inactivation.

This result is consistent with the experimental study by
Schlesiger et al. (2015) who found that after MEC lesions
in rats, theta phase precession of hippocampal CA1 cells
was significantly disrupted, although stable spatial firing
was maintained. Although the loss of excitatory drive from
MEC grid cells has reduced the spatial accuracy of the
place cells, spatial properties can nevertheless be some-
what maintained by the excitatory drive from other cells
such as weakly spatial cells in the MEC. This reduced
spatial accuracy because of the loss of the MEC excita-
tory drive has been interpreted by some authors as an im-
paired information flow to the hippocampus, because of
the role of neuronal oscillations in the coding of spatial in-
formation (Brandon et al., 2014). Therefore, during the
navigation of the virtual rat in scenario 2, the plasticity of
the model allows hippocampal place cells to pool the
input from upstream neurons, namely, the EC weakly spa-
tial cells or MEC grid cells, enabling both spatial and tem-
poral properties to be learnt.

Combining results in this paper and our previous work
(Lian and Burkitt, 2021), the contribution of the EC to the
firing of hippocampal place cells can be described as fol-
lows: both EC weakly spatial cells and cells with a clear
structure (such as MEC grid cells) provide spatial informa-
tion for the hippocampus to learn an efficient hippocam-
pal place map, while the temporal response properties
involving theta phase precession of hippocampal place
cells are inherited from MEC grid cells via learning during
navigation.

Discussion

Summary

In this study, a model based on sparse coding is built
that demonstrates that the spatial and temporal proper-
ties of hippocampal place cells can be learnt simultane-
ously via plasticity as the virtual rat freely explores an
open environment. In the training phase, a virtual rat runs
for 3600 s and the connectivity weight matrix, A, is learnt
during this exploration period. After learning, A is kept
fixed and another running trajectory of 1200 s is used to
recover the place fields of learnt place cells. In addition,
responses over 1 s at different positions across the place
field are used to investigate the firing phases when the vir-
tual rat traverses the place field. Similar to the study of
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Jeewajee et al. (2014), pdcd is used as the measurement
of position when the rat is running along a curved trajec-
tory. Our results show that the learnt hippocampal place
cells are selective to a single firing location and display
theta phase precession, although the learnt hippocampal
place cells have no prebuilt spatial and temporal proper-
ties. Furthermore, the model shows that the loss of MEC
grid cells causes the loss of the temporal response prop-
erties of hippocampal place cells, but the spatial proper-
ties of hippocampal place cells are maintained by other
upstream cells, such as EC weakly spatial cells, that pro-
vide spatial information for the hippocampus. This model
demonstrates how the spatiotemporal properties of hip-
pocampal place cells can be learnt via synaptic plasticity.

Comparison with other models of temporal properties
of place cells

Our model demonstrates that the temporal properties
of hippocampal place cells can be inherited from MEC
grid cells via synaptic learning. However, there are also
other models that describe the temporal properties of
place cells from other perspectives.

O’Keefe and Recce (1993) proposed that the temporal
properties of place cell can be modelled by single neuron
properties and may originate from the interference be-
tween two intrinsic oscillators of slightly different frequen-
cies: a slower baseline oscillation that generates the local
field potential of hippocampal theta rhythm and a rela-
tively faster oscillation of place cells when the animal
moves in the place field. Supposing that the slower os-
cillation and faster oscillation are synchronized at the
beginning, then over time the peak of the faster oscilla-
tion will shift forward compared with the baseline os-
cillation. When the place cell fires at the peak of the
faster oscillation, then the firing phase relative to the
slower baseline oscillation will shift to an earlier phase,
which is the well-known theta phase precession.
Additionally, the difference between the frequencies of
the slower and faster oscillations is proportional to
running speed, so the firing phase will reflect the dis-
tance traveled through the place field. This model has
led to numerous related models with similar dynamics
(Kamondi et al., 1998; Bose et al., 2000; Harris et al.,
2002; Mehta et al., 2002; Lengyel et al., 2003).

The intrinsic oscillator mechanism explains how phase
precession operates on the basis of single neurons, but
hippocampal phase precession can also be explained by
a network mechanism in which the interaction between
neurons in the network plays a crucial role. Tsodyks et al.
(1996) built a spiking network of hippocampal place cells
that receives intrinsic input from neurons in the network
and an extrinsic theta rhythm from the medial septum.
The synaptic interaction between neurons in this model
network is asymmetric, namely, the synaptic strengths
aligned with the motion direction are stronger than those
aligned in the direction opposite to the motion. This asym-
metric connectivity brings some degree of direction tun-
ing of the model place cells in the network, so the firing of
place cells becomes successively earlier relative to the
theta rhythm, thereby causing theta phase precession.
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Although the asymmetric connectivity in the study by
Tsodyks et al. (1996) was manually set, this model is sup-
ported by experimental evidence that shows that hippo-
campal place fields are experience-dependent and can
become asymmetric during route following (Mehta et al.,
1997). In addition, this asymmetry can be generated by
Hebbian plasticity, as supported by modeling studies that
demonstrate how such asymmetric connectivity can be
learnt via long-term potentiation/long-term depression
(Mehta et al., 2000) or spike-timing-dependent plasticity
(Burkitt and Hogendoorn, 2021) in an environment where
the motion in the same direction is repeated many
times. Apart from Hebbian plasticity, the asymmetric
connectivity of the network may also arise from other
sources: (1) it may arise during the developmental pro-
cess, as supported by experimental studies which
demonstrate that hippocampal place cells fire in se-
quences even before the exploration of a novel envi-
ronment (Dragoi and Tonegawa, 2011); (2) it may be
preconfigured as suggested by Mizuseki and Buzsaki
(2013).

Both the intrinsic oscillator mechanism and network
mechanism require a baseline theta rhythm as the input,
but the two mechanisms differ in how the firing phase
shifts relative to the baseline oscillation: one is caused by
the faster oscillation of single place cell and the other is
caused by the interaction between place cells in the net-
work. However, this does not imply that these two mecha-
nisms are completely contradictory. Instead, they can be
unified within a perspective that hippocampal place cells
require both external input (extrinsic) and local interaction
(intrinsic) to achieve spatial-temporal properties, as sup-
ported by a recent experimental study (Zutshi et al.,
2022).

Experimental studies indicate that phase precession
may not originate in the hippocampus, but rather it is in-
herited from the upstream processing (Burgess et al.,
1994; Skaggs et al., 1996; Zugaro et al., 2005; Schlesiger
et al., 2015). In addition, Zutshi et al. (2022) demonstrate
that the MEC is the main current generator of hippocam-
pal theta oscillations.

The work presented in this paper models temporal
properties of hippocampal place cells as being inher-
ited from upstream processing, as proposed by earlier
studies (Skaggs et al., 1996; Hafting et al., 2008; Bush
et al., 2014; Schlesiger et al., 2015). Although there are
other models of hippocampal phase precession based
on the inheritance of upstream (Yamaguchi et al.,
2007; Jaramillo et al., 2014), our modeling work show
that this inheritance of temporal properties comes to-
gether with the observed spatial properties via a form
of synaptic plasticity.

Our model is also related to the intrinsic oscillator
mechanism and the extrinsic oscillator mechanism be-
cause it requires oscillatory input and local interactions
between cells in the network: the oscillatory input comes
from the MEC grid cells that have temporal response
properties and the local interactions between cells intro-
duce competition (sparsity) into the network such that
cells learn different representations. Experimental studies
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suggest that the projections from medial septal areas also
control hippocampal oscillations (Bender et al., 2015;
Dannenberg et al., 2015; Zutshi et al., 2018; Quirk et al.,
2021), but our current model does not take direct oscilla-
tory input from medial septum. In addition, although our
model utilized local computation within the network, it
cannot account for the self-organized dynamics of hippo-
campal networks in its current form.

Essentially, our model provides a learning framework in
which spatial-temporal properties of hippocampal place
cells can be inherited from MEC via synaptic learning.
This framework may interact with other mechanisms to
help us better understand the hippocampus.

The entorhinal-hippocampal loop

Early computational models of place cells were mostly
based on a feedforward structure, where cells in the EC
provide spatial input to the hippocampus (Solstad et al.,
2006; Franzius et al., 2007a,b; de Almeida et al., 2009).
Some more recent studies have adopted a loop network
structure in which cells in the EC project to the hippocam-
pus and also receive feedback from it (Renno-Costa and
Tort, 2017; Agmon and Burak, 2020; Li et al., 2020).
Models incorporating this loop network structure can ex-
plain additional experiment observations, especially con-
cerning how hippocampal place cells affect the firing of
MEC grid cells. Since the hippocampus receives informa-
tion from different brain areas via the EC, place cells in the
hippocampus can still maintain some properties even
when MEC grid cells are inactivated. On the other hand,
hippocampal place cells also affect the grid pattern of
MEC grid cells (Bonnevie et al., 2013; Almog et al., 2019).
Therefore, the feedback from the hippocampus to the
EC can modify some properties of EC cells, which can
only be investigated using the loop network structure.
However, the results presented here do not rule out
the possibility of implementing the model in a loop net-
work structure because sparse coding can be imple-
mented in a feedforward-feedback loop (Lian et al.,
2019).

Evidence against feedforward grid-to-place models

Recent research has provided experimental evidence
that place fields emerge earlier in development than MEC
grid cells (Langston et al., 2010; Wills et al., 2010). There
is also experimental evidence for the maintenance of sta-
ble place fields after the inactivation of MEC grid cells
(Brandon et al., 2014; Hales et al., 2014; Schlesiger et al.,
2015). These results put into question the feedforward na-
ture of grid-to-place cell models. However, unlike typical
grid-to-place cell models, our model takes input from dif-
ferent types of cells in the EC. The results presented in
this paper, together with our previous work (Lian and
Burkitt, 2021), provides a unifying framework that is able
to explain this experimental evidence while supporting a
hierarchical structure of connectivity from the EC to the
hippocampus in which theta phase precession of hippo-
campal place cells is essentially inherited from MEC gird
cells via learning.
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Bonnevie et al. (2013) showed that the inactivation of
place cells will cause the loss of MEC grid cells. However,
Almog et al. (2019) re-analyzed the same data and found
that grid cells maintain synchrony although grid tuning is
lost. In addition, a large number of grid cells actually main-
tain spatial tuning after the reactivation of place cells
(Almog et al., 2019, see their Fig. 1D). Therefore, although
hippocampal place cells affect the spatial firing of some
MEC grid cells, this does negate the importance of the
feedforward connection from the EC to the hippocampus.
A future model that can capture the contribution of the EC
to the hippocampus as well as the effect that the hippo-
campus has on the EC is needed.

Future work

While this study offers a picture of how the EC contrib-
utes to the spatial and temporal properties of hippocam-
pal place cell, there remain a number of interesting
outstanding questions to be addressed. First, the ques-
tion of how the feedback from the hippocampus to the EC
affects properties of EC cells remains unclear. Second,
the model proposed here demonstrates how sparse cod-
ing can learn spatiotemporal properties of hippocampal
place cells, but whether the principle of sparse coding
can be used to explain other aspects of hippocampal
function, such as those involving memory consolidation,
remains unclear. In addition, the spatiotemporal model of
MEC grid cells is assumed here, and the question of how
this MEC spatiotemporal grid cell structure originates is
an active topic of ongoing research. Moreover, the model
presented here uses rate-based neurons, and a spiking
implementation together with spike-timing dependent
plasticity of this model is left for future research.
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