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Significance Statement

Many studies of decision-making rely on tasks where a pure strategy exists, in which there is always an opti-
mal action for a certain task condition. However, in real-world competitive situations when multiple decision
makers are involved, a mixed strategy involving probabilistic actions may be superior. In this study, we in-
vestigated whether head-fixed mice can play a competitive game known as “matching pennies” against a
computer opponent. We analyzed the choice behavior using reinforcement learning algorithms, revealed
distinct strategies, and characterized pupil dynamics. The results provide convincing evidence that mice
can engage in a competitive game and link the pupil-related arousal to the process of value updating during
play.
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In a competitive game involving an animal and an opponent, the outcome is contingent on the choices of both
players. To succeed, the animal must continually adapt to competitive pressure, or else risk being exploited
and lose out on rewards. In this study, we demonstrate that head-fixed male mice can be trained to play the
iterative competitive game “matching pennies” against a virtual computer opponent. We find that the animals’
performance is well described by a hybrid computational model that includes Q-learning and choice kernels.
Comparing between matching pennies and a non-competitive two-armed bandit task, we show that the tasks
encourage animals to operate at different regimes of reinforcement learning. To understand the involvement of
neuromodulatory mechanisms, we measure fluctuations in pupil size and use multiple linear regression to re-
late the trial-by-trial transient pupil responses to decision-related variables. The analysis reveals that pupil re-
sponses are modulated by observable variables, including choice and outcome, as well as latent variables for
value updating, but not action selection. Collectively, these results establish a paradigm for studying competi-
tive decision-making in head-fixed mice and provide insights into the role of arousal-linked neuromodulation in
the decision process.
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Introduction
Animals learn from the outcomes of their past actions.

The decision-making process can be cast in the frame-
work of reinforcement learning (Sutton and Barto, 1998),
which provides a quantitative approach to characterize
how animals choose among multiple options based on
prior experience. This approach, when applied to rodents
and combined with powerful molecular, genetic, electro-
physiological, and imaging methods, has yielded novel in-
sights into the neural circuits involved in reward-based
learning (Ito and Doya, 2009; Sul et al., 2010, 2011; Tai et
al., 2012; Bari et al., 2019; Groman et al., 2019; Hattori et
al., 2019). To date, most studies in rodents relied on tasks
involving a pure strategy, where there is always a particu-
lar action that is optimal in a given situation. However,
pure strategies are not always available. For instance, in a
two-player game (e.g., rock-paper-scissors) where the
outcome depends on both the animal’s and an oppo-
nent’s choices, pure strategies are inadequate because
an opponent can predict tendencies and exploit to win.
Instead, the animal should adopt a mixed strategy, in
which two or more pure strategies are chosen

probabilistically. Analyses of behavior under competitive
pressure fall into the purview of game theory (Camerer,
2003), and provide a unique window into the social and
adaptive aspects of decision-making (Lee, 2008).
Research in humans and non-human primates has

identified numerous brain regions contributing to deci-
sion-making during two-player games. For example, a
functional imaging study in humans showed widespread
representation of reward signals in the brain during multi-
ple types of games against computerized opponents
(Vickery et al., 2011). Signals related to choices and
the mentalization of an opponent’s actions were local-
ized to several brain regions including the prefrontal
cortex (Hampton et al., 2008; Vickery et al., 2011).
Electrophysiological recordings in macaque monkeys
demonstrated spiking activity patterns that suggest
neural representations of various decision variables in
prefrontal cortical regions, lateral intraparietal cortex,
and amygdala (Barraclough et al., 2004; Seo et al.,
2007, 2009; Chang et al., 2013; Haroush and Williams,
2015; Dal Monte et al., 2020). However, there have
only been a few reports of rodents engaging in two-
player games (Tervo et al., 2014; Wood et al., 2016),
and the associated neural correlates are less clear.
The neuromodulator norepinephrine (NE) may have

an important role for performance during two-player
games. Prior literature has linked central noradrenergic
tone to behavioral flexibility (Aston-Jones and Cohen,
2005; Bouret and Sara, 2005). In one pioneering study,
Tervo and colleagues taught rats to play a matching
pennies game with a computer opponent (Tervo et al.,
2014). By manipulating neural activity in locus coeru-
leus (LC), they showed that elevating central NE tone
can suppress firing in the anterior cingulate cortex,
which in turn reduces the influence of reinforcement
history and promotes stochastic behavior. A different
way to study neuromodulatory tone is to measure pupil
size, which is often treated as a readout of NE levels in
the neocortex (Gilzenrat et al., 2010; Joshi et al., 2016;
Reimer et al., 2016). Studies of pupillary dynamics dur-
ing tasks further support the idea that NE is important
for flexible decisions. For instance, the baseline pupil
size is shown to correlate with biases in the explore-ex-
ploit trade-off and attentional set shifting (Jepma
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and Nieuwenhuis, 2011; Pajkossy et al., 2017). The
trial-by-trial transient change in pupil size is reported to
associate with many task-relevant variables including
upcoming choice, expected outcome, values of the
choices, and uncertainties (Hess and Polt, 1960;
Qiyuan et al., 1985; de Gee et al., 2014; Van Slooten et
al., 2018). Given these prior results, it seems likely that
pupil fluctuations can be leveraged to study the neuro-
modulatory mechanisms underlying adaptive action se-
lection during competitive two-player games.
We have two goals for the current study. First, we

want to know whether head-fixed mice can compete
proficiently in a two-player game. Second, we want to
characterize pupil fluctuations to gain insights into the
role of neuromodulation in decision-making under com-
petitive pressure. To this end, we designed a behavioral
paradigm for a head-fixed mouse to play iterative
matching pennies against a computer-controlled virtual
opponent. We found that mice can perform at a level
close to the optimal reward rate by exhibiting choice
behavior consistent with a mix of reinforcement learning
and choice perseveration. We underscored the unique
choice behavior during matching pennies, by compar-
ing with performance in the more widely used two-
armed bandit task. Finally, we measured within-trial
changes in pupil size, and showed that the transient pu-
pillary responses are associated with the choice, out-
come, and latent variables for value updating.

Materials and Methods
Animals
All animal procedures were conducted in accordance

with procedures approved by the Institutional Animal
Care and Use Committee at Yale University. Adult male and
female C57BL/6J mice (postnatal day 56 or older; #000664,
The Jackson Laboratory) were used for all experiments.
Mice were housed in groups of three to five animals with
12/12 h light/dark cycle control (lights off at 7 P.M.).

Surgical procedures
Anesthesia was induced with 2% isoflurane in oxygen be-

fore the surgery. The isoflurane was lowered to 1–1.2% dur-
ing the surgical procedures. The mouse was placed on a
water-circulating heating pad (TP-700, Gaymar Stryker) in a
stereotaxic frame (David Kopf Instruments). After injecting
carprofen (5mg/kg, s.c.; #024751, Butler Animal Health) and
dexamethasone (3mg/kg, s.c.; Dexaject SP, #002459,
Henry Shein Animal Health), the scalp was removed to ex-
pose the skull. A custom-made stainless-steel head plate
(eMachineShop) was glued onto the skull with MetaBond
(C&B, Parkell). Carprofen (5mg/kg, s.c.) was injected each
day for the following 3 d. Mice were given 7d to recover
from the surgery before any behavioral training.

Behavioral setup
The training apparatus was based on a previous de-

sign from our prior studies (Siniscalchi et al., 2016,
2019). Detailed instruction to construct the apparatus is
available at https://github.com/Kwan-Lab/behavioral-rigs.

The mouse with a head plate implant was head-fixed to a
stainless-steel holder (eMachineShop). The animal sat inside
an acrylic tube (8486K433; McMaster-Carr), which limited
gross movements though allowed postural adjustments. A
lick port with two lick spouts was positioned in front of the
subject. The spouts were constructed with blunted 20-
gauge stainless-steel needles. Contact with the lick spout,
which was how the animal indicated its choices, was de-
tected through wires that were soldered onto the spout and
a battery-powered lick detection electronic circuit. Output
signals from the circuit were sent to a computer via a data
acquisition unit (USB-201, Measurement Computing) and
logged by the Presentation software (Neurobehavioral
Systems). Water delivery from the lick spouts was controlled
independently for each spout by two solenoid fluid valves
(MB202-V-A-3–0-L-204; Gems Sensors & Controls). The
amount of water was calibrated to ;4ml per pulse by ad-
justing the duration of the electrical pulse sent by the
Presentation software via a second data acquisition unit
(USB-201, Measurement Computing). Two speakers (S120,
Logitech) were placed in front of the mouse to play the
sound cue. The whole setup was placed inside an audiovi-
sual cart with walls lined with soundproof acoustic foams
(5692T49, McMaster-Carr). A monochrome camera (GigE
G3-GM11-M1920, Dalsa) with a 55-mm telecentric lens
(TEC-55, Computar) was aimed at the right eye. Video was
acquired at 20Hz. A dimmable, white light source (LT-T6,
Aukey) was used to provide ambient light, such that the
baseline pupil size was moderate and fluctuations around
the baseline was detectable. The computer running the
Presentation software would send TTL pulses to a computer
controlling the camera through a USB data acquisition de-
vice (USB-201; Measurement Computing). The camera-
connected computer would run a custom script written in
MATLAB 2019b (MathWorks) that logged the timing of the
TTL pulses so that the behavioral log files generated by the
Presentation software could be aligned to the video record-
ings. In a small subset of experiments, we captured videos
from both left and right eyes by mounting two identical cam-
era systems on both sides of the animal.

Behavioral training, matching pennies
All of the procedures for initial shaping as well as the final

matching pennies task were written using the scripting lan-
guage in the Presentation software. The animals were fluid-
restricted.Water was provided during the one behavioral ses-
sion daily. On the days when the animals were not trained
(typically 1d a week), a water bottle was placed in the home
cage for 5min of ad libitum consumption. All animals under-
went two shaping phases before training. For phase 1 (2d),
the animals were habituated to the apparatus. They may lick
either spout. A water reward would be delivered for every lick
in the corresponding spout, as long as a minimum of 1 s has
occurred since the last reward. The session would terminate
after the animals acquired 100 rewards. For phase 2 (approxi-
mately fourweeks), the animals were introduced to the trial
structure and learned to suppress impulsive licks. At the start
of each trial, a 5-kHz sound cue lasting for 0.2 s was played.
From the onset of the sound cue, the mouse had a window
of 2 s to make a response by licking either of the spouts. The
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2-s response window was chosen because naive animals
have yet to learn the trial timing and a more lenient re-
sponse window helps them acquire the task faster.
Moreover, we note that once the animal chooses with the
first tongue lick, then the trial progresses, so the duration
of the response window does not affect the trial timing as
long as the mouse chooses before the end of the re-
sponse window. If a lick was detected during the re-
sponse window, a water reward would be delivered in the
corresponding spout and there was a fixed 3-s period for
consumption following the lick. If no lick was detected,
the fixed 3-s consumption window would still be pre-
sented following the end of the response window. From
the end of the consumption window, an intertrial interval
(ITI) began. The duration of the ITI in seconds was drawn
from a truncated exponential distribution with l = 1/3 and
boundaries of 1 and 5. If the animal emitted one or more
licks during the ITI, then additional time drawn again from
the same distribution would be appended to the ITI. If the
mouse licked again during the appended time, yet anoth-
er additional time would be appended, up to a total of five
draws including the initial draw. When the ITI ended, a
new trial would begin. This trial timing was the same as
what would be used for matching pennies. Particularly,
the goal for the shaping was to habituate and introduce
lick suppression. Although the mouse could theoretically
get water from either spout, the animal tended to favor
heavily one spout during the shaping procedures. The ani-
mal would advance to playing the matching pennies
game when the average number of ITI draws per trial was
lower than 1.2 for three consecutive sessions.
For matching pennies, the mouse played against a vir-

tual opponent in the form of a computer agent. At the start
of each trial, the agent made a choice (left or right). If the
mouse selected the same choice as the computer, a
water reward would be delivered in the corresponding
spout. Otherwise, no reward was presented. Importantly,
the computer agent was designed to provide competitive
pressure by acting according to prediction of the animal’s
choices. Specifically, it was programmed to be the same
as “algorithm 2” (Barraclough et al., 2004; Lee et al.,
2004) or “competitor 1” (Tervo et al., 2014) in previous
studies. Briefly, the agent had a record of the mouse’s en-
tire choice and reward history within the current session.
The agent calculated the conditional probabilities that the
animal would choose left given sequences of the preced-
ing N choices (N=0–4) and sequences of preceding N
choice-outcome combinations (N=1–4). The binomial
test was used to test each of the nine conditional proba-
bilities against the null hypothesis that the mouse would
choose left with a probability of 0.5. If none of the null hy-
pothesis was rejected, the agent would randomly choose
either target with equal probabilities. If one or more hy-
potheses were rejected, the agent would generate the
counter choice with the statistically significant conditional
probability that was farther away from 0.5. A session
would terminate automatically when no response was
logged for 10 consecutive trials. When an animal reached
a 40% reward rate for three consecutive sessions (ap-
proximately fourweeks), then its performance was

considered stable and the subsequent sessions were in-
cluded in the following analysis.

Behavioral training, two-armed bandit
We used the same training apparatus and the same script-

ing language in the Presentation software to program the
two-armed bandit task, which had the same trial timing as
matching pennies. The shaping procedures relied on similar
tactics, but the details were different, involving three shaping
phases before training. For phase 0 (1d), the experimenter
manually delivered 50 water rewards through each port (for a
total of 100 rewards) and monitored for consistent licking. A
5-kHz sound cue lasting for 0.2 s was played at the same
time as water delivery. If the animal was not licking to con-
sume the water rewards, the experimenter used a blunted sy-
ringe to guide the animal to lick the spout. For phase 1 (1d),
the animal was introduced to the trial structure and learned to
suppress impulsive licks. At the start of each trial, A 5-kHz
sound cue lasting for 0.2 s was played. From the onset of the
sound cue, the mouse had a window of 5 s to make a re-
sponse by licking either of the spouts. If a lick was detected
during the response window, a water reward would be deliv-
ered from the corresponding spout and there was a fixed 3-s
period for consumption following the lick. If no lick was de-
tected, no reward was given during the consumption period.
Next, an ITI began. The duration of the ITI in seconds was
drawn from a truncated exponential distribution with l = 1/3
and boundaries of 1 and 5. If the animal emitted one or more
licks during the ITI, then additional time drawn again from the
same truncated exponential distribution would be appended
to the ITI. If the mouse licked again during the appended
time, yet another additional time would be appended, up to a
total of five draws including the initial draw. When the ITI
ended, a new trial would begin. The session ends after the
animal accumulates 100 rewards. In particular, the goal for
phase 1 was to habituate and introduce lick suppression. For
phase 2, the animal continued to lick following the cue for a
water reward in a similar fashion to phase 1. However, the re-
sponse window was shortened to 2 s, meaning the animal
had only 2 s to lick following the cue to receive reward. The
trial timing with shortened response window was the same
as what would be used for the two-armed bandit task.
Moreover, the animal must alternate sides (choose left if the
last reward came from a right lick, and vice versa). They
would not be rewarded for choosing the same spout repeat-
edly to discourage the development of a side bias. The ani-
mal could proceed to the final task if they achieved 200
rewards in a single session.
For the two-armed bandit task, the two options (left and

right) were associated with different reward probabilities.
In each trial, when an animal chose an option, a reward
was delivered stochastically based on the assigned re-
ward probability. In our implementation, there were two
sets of reward probabilities: 0.7:0.1 and 0.1:0.7. A set of
reward probabilities was maintained across a block of tri-
als. Within a block, once the mouse had chosen the op-
tion with high reward probability (hit trials) for 10 times,
then on any given trial there was a probability of 1/11 that
the reward probabilities would change. Thus, the number
of trials in a block after ten hits followed a geometric
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distribution with m= 11. There were no explicit cues to in-
dicate a block switch, therefore the animal had to infer the
current situation through experience. A session would ter-
minate automatically when no response was logged
for 20 consecutive trials. Animals are considered profi-
cient when they chose the spout with higher reward
probability on at least 50% of trials on three consecu-
tive sessions.

Preprocessing of behavioral data
A total of 115 sessions from 13 mice were included in the

study. For matching pennies, data came from 81 sessions
from five mice (five males). For two-armed bandit, data came
from 34 sessions from eight mice, including 26 sessions from
four mice (three males, one female) with single-pupil record-
ing and 8 sessions from the other four mice (four males) with
double-pupil recording. All of the sessions contained both be-
havioral and pupillometry data. For matching pennies, we
used all 81 sessions for behavioral analysis, and 67 sessions
for pupil-related analysis, because 14 sessions were ex-
cluded later because of inaccurate pupil labeling (see
Materials and Methods, preprocessing of pupillometry data).
For behavior, the log file saved by the Presentation software
contained timestamps for all events that occurred during a
session. Analyses of the behavioral data were done in
MATLAB. For matching pennies, toward the end of each ses-
sion, the animals tended to select the same option for around
30 trials before ceasing to respond. To avoid these repetitive
trials in the analyses, for each session, the running three-
choice entropy (see below) of a 30-trial window was calcu-
lated, and the MATLAB function ischangewas used to fit with
a piecewise linear function. The trial when the fitted function
fell below a value of 1 was identified as the “last trial,” and all
subsequent trials were discarded for the analysis. In cases if
the performance recovered after the detected last trial to a
value.1, or if the fitted function did not fall below a value of 1
and no “last trial” was detected, the entire session was used
for analysis.

Analysis of behavioral data, entropy
To quantify the randomness in the animals’ choices, the

three-choice entropy of the choice sequence is calculated
by the following:

Entropy ¼ �
X

k
pk log2pk ; (1)

where pk is the frequency of occurrence of a three-choice
pattern in a session. Because there were two options to
choose from, there were 23 = 8 potential patterns possi-
ble. The maximum value for entropy is 3 bits.

Analysis of behavioral data, computational models
To quantify the choice behavior, we considered five

computational models. The primary model used in the
paper is a Q-learning with forgetting model plus choice
kernels (FQ_RPE_CK; Katahira, 2015; Wilson and Collins,
2019). On trial n, for a choice cn that leads to an outcome
rn, the action value Qi

n associated with an action i is up-
dated by the following:

Qi
n11 ¼ Qi

n 1aðrn �Qi
nÞ if cn ¼ i

1� að ÞQi
n if cn 6¼ i

;

�
(2)

where a is the learning rate, and the forgetting rate for
the unchosen action. In our task, there are two op-
tions, so i 2 L;Rf g. For the outcome, rn = 1 for reward,
0 for no reward. Moreover, to capture the animal’s
tendency to make decisions based purely on previous
choices, there are choice kernels Ki

n updated by the
following:

Ki
n11 ¼ Ki

n 1aK 1� Ki
n

� �
if cn ¼ i

1� aKð ÞKi
n if cn 6¼ i

;

�
(3)

where aK is the learning rate of the choice kernel. For ac-
tion selection, the probability to choose action i on trial n
is given by a softmax function:

Pðcn ¼ iÞ ¼ exp bQi
n 1 b KK

i
n

� �X
j
exp bQj

n1b KK
j
n

� � ; (4)

where b and b K are the inverse temperature parameters
for action values and choice kernels, respectively.
We compared the FQ_RPE_CK model against four

other models. For the win-stay-lose-switch model
(WSLS), the probability to choose action i on trial n is
given by the following:

Pðcn ¼ iÞ ¼ p if rn�1 ¼ 1
1� p if rn�1 ¼ 0

;

�
(5)

where p is the probability that the animal followed the
WSLS strategy.
For the Q-learning model (Q_RPE), the action value is

updated by the following:

Qi
n11 ¼ Qi

n1aðrn �Qi
nÞ if cn ¼ i

Qi
n if cn 6¼ i

;

�
(6)

and the probability to choose action i at trial n is then
given by the following:

Pðcn ¼ iÞ ¼ exp bQi
n

� �X
j
exp bQj

n

� � : (7)

For the forgetting Q-learning model (FQ_RPE),
the action values are updated by Equation 2, and the
probability to choose action i on trial n is given by
Equation 7.
For the differential Q-learning model (DQ_RPE; Cazé

and van der Meer, 2013; Katahira, 2018), the action value
is updated by the following:

Qi
n11 ¼

Qi
n 1aR 1�Qi

n

� �
if cn ¼ i; rn ¼ 1

Qi
n 1aU 1�Qi

n

� �
if cn ¼ i; rn ¼ 0

Qi
n if cn 6¼ i

;

8<
: (8)

where aR and aU are the learning rates for rewarded and
unrewarded trials, respectively. The probability to choose
action i on trial n is given by Equation 7.
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Analysis of behavioral data, model fitting and
comparison
To fit the computational models to the behavioral data, for

each subject, the sequence of choices and outcomes were
concatenated across sessions. Each model was fitted to the
data using a maximum-likelihood algorithm implemented
with the fmincon function in MATLAB, with the con-
straints 0 � a;aK;aR;aU � 1, 0,b ; b K, and 0 � p � 1.
These fits also yielded latent decision variables such as action
values and choice kernels that would be used for the subse-
quentmultiple linear regression analyses. Formodel compari-
son, we calculated the Bayesian information criterion (BIC) for
each of themodel fits.

Preprocessing of pupillometry data
To extract the coordinates of the pupil from the video re-

cordings, we used DeepLabCut (DLC) 2.0 (Mathis et al.,
2018; Nath et al., 2019), ran on Jupyter Notebook on
Google’s cloud server with 1 vCPU and 3.75 GB RAM, under
Ubuntu 16.04. A small subset of the video frames was man-
ually analyzed, with the experimenter annotating five labels,
including the central, uppermost, leftmost, lowermost, and
rightmost points of the pupil. The annotated frames were fed
to DLC to train a deep neural network, which analyzed the re-
mainder of the video to produce the five labels. From the la-
bels, the pupil diameter was computed by taking the
distance between the leftmost and rightmost labels. We did
not use the other labels, because the estimates of the lower-
most points were unstable, sometimes jumping in consecu-
tive frames because of interference from the lower eyelid.
Some sessions were excluded (14 out of 81 sessions in
matching pennies), because of inaccurate detection of labels
by DLC based on quality check via visual inspection. The in-
accurate detection arose sometimes because of interference
fromwhisker, eyelid, or poor video quality.
The pupil diameter signal was further processed

through a 4-Hz lowpass filter with the MATLAB function
lowpass. Then any frames with outliers that were .3
scaled median absolute deviation (MAD) from the median
were deleted using the MATLAB function isoutlier. Using
a 10-min moving window to account for drift over a ses-
sion, the signal was converted to z score. Finally, we cal-
culated the pupil response for each trial by subtracting
the instantaneous z score from �1 to 5 s relative to cue
onset by the baseline z score, which was defined as the
mean z score from�2 to�1 s relative to cue onset.

Analysis of pupil data, multiple linear regression
To determine how pupil responses may relate to choices

and outcomes, we usedmultiple linear regression:

z tð Þ ¼ b0 1b1cn11 1b2rn11 1b3cn11rn11

1b4cn 1b5rn 1b6cnrn 1b7cn�1 1b8rn�1 1b9cn�1rn�1

1b10cn�2 1b11rn�2 1b12cn�2rn�2 1b13rMA
n 1b14rCum:

n 1 «ðtÞ
;

(9)

where z tð Þ is the z-scored pupil response at time t in trial
n, cn11; cn; cn�1; cn�2 are the choices made on the next
trial, the current trial, the previous trial, and the trial before

the previous trial, respectively, rn11; rn; rn�1; rn�2 are the
outcomes for the next trial, the current trial, the previous
trial, and the trial before the previous trial, respectively,
b0,..., b14 are the regression coefficients, and «ðtÞ is the
error term. Choices were dummy-coded as 0 for left re-
sponses and 1 for right responses. Outcomes were
dummy-coded as 0 for no-reward and 1 for reward. For
the last two predictors in Equation 9, rMA

n is the average
reward over the previous 20 trials, given by the following
equation:

rMA
n ¼

X19

i¼0
rn�i

20
: (10)

The term rCum:
n indicates the normalized cumulative re-

ward during the session, calculated by the following:

rCum:
n ¼

Xn

i¼1
riXN

i¼1
ri

; (11)

where n denotes the current trial number and N is the total
number of trials in the session.
To determine how pupil responses may relate to latent

decision variables for action selection, we used multiple
linear regression:

z tð Þ ¼ b0 1b1cn 1b2rn 1b3cnrn
1b4cn�1 1b5rn�1 1b6cn�1rn�1 1b7ðQL

n �QR
n Þ1b8Qchosen

n

1b9ðKL
n � KR

n Þ1b10Kchosen
n 1b11rMA

n 1b12rCum:
n 1 «ðtÞ

;

(12)

where QL
n and QR

n denote the action values of the left and
right choices in trial n, respectively, Qchosen

n is the value of
the action chosen in trial n, KL

n and KR
n are the choice ker-

nels of the left and right choices in trial n, respectively,
Kchosen
n is the choice kernel of the action chosen in trial n.
To determine how pupil responses may relate to latent

decision variables for value updating, we used multiple
linear regression, adapting the equation from Sul et al.
(2010):

z tð Þ ¼ b0 1b1cn 1b2cn�1 1b3rn�1

1b4ðQL
n �QR

n Þ1b5ðrn �Qchosen
n Þ

1b6ðKL
n � KR

n Þ1b7ð1� Kchosen
n Þ1b8rMA

n 1b9rCum:
n 1 «ðtÞ

;

(13)

where rn �Qchosen
n is the reward prediction error (RPE),

and 1� Kchosen
n is the error term used to update the choice

kernels, or choice kernel error (CKE).
For each session, the regression coefficients were de-

termined by fitting the equations to data using the
MATLAB function fitlm. The fit was done in 100-ms time
bins that span from �3 to 5 s relative to cue onset, using
mean pupil response within the time bins. To summarize
the results, for each predictor, we calculated the propor-
tion of sessions in which the regression coefficient was
different from zero (p, 0.01). To determine whether the
proportion was significantly different from chance, we
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performed a x2 test against the null hypothesis that there
was a 1% probability that a given predictor was mischar-
acterized as significant by chance in a single session. The
analysis was performed with a personal computer (Intel
i7-6700K CPU, 16 GB RAM). It was run under Windows
10 Education.

Code accessibility
The data and code described in the paper is freely avail-

able online at https://github.com/Kwan-Lab/wang2022.

Results
Mice played matching pennies against a computer
opponent
We trained head-fixed mice to play matching pen-

nies against a computer opponent (Fig. 1A). In this iter-
ative version of matching pennies, each trial the mouse
and the computer would choose left or right. The
mouse received a water reward only if the actions
matched. The corresponding payoff matrix is shown in
Figure 1B. This game was challenging for the mouse

because the computer opponent had access to the
complete history of choices and rewards over the ses-
sion, and was programmed to predict the mouse’s
next choice to make the counter action [see Materials
and Methods; same as “algorithm 2” in Lee et al.
(2004) and “competitor 1” in Tervo et al. (2014)]. Figure
1C shows the trial structure. A 0.2-s, 5-kHz sound cue
indicated the start of the trial. Within a 2-s response
window, the mouse could make a directional tongue
lick to the left or right spout to indicate its choice.
Based on the animal’s and computer’s choices and the
payoff matrix, the animal might receive a water reward
after the response. To minimize precue licks, the ITI
was drawn from a truncated exponential distribution
and would extend if the mouse could not suppress
licking (see Materials and Methods). Mice were trained
daily and, on average, took approximately four weeks
to follow the trial timing to suppress precue licking,
and then another four weeks playing matching pennies
to achieve a performance threshold of 40% reward
rate for three consecutive sessions. All the data and
analyses presented in the paper came from sessions
after the threshold was attained.
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Figure 1. Performance of head-fixed mice in a matching pennies game. A, A schematic illustration of the competitive game. Head-
fixed mouse makes a left or right choice by licking the spouts. A computer monitors the mouse’s past choices and outcomes, gen-
erating its own left or right choice every trial. B, The payoff matrix of the game. The mouse receives a water reward if it chooses the
same choice as the computer does in the same trial. C, Trial timing: the mouse waits for a go cue, licks a spout to indicate its re-
sponse, and the outcome is delivered immediately. A random ITI follows the outcome. D, An example session. The reward rate for
this session was 52.1%. Top, The mouse’s choices and outcomes. Bottom, The computer’s choices. Blue and red bars indicate
right (R) and left choices (L), respectively. Black bars indicate rewards. E, Cumulative number of different three-choice patterns de-
tected as the mouse progressed in the session shown in D. F, Summary from 81 sessions. Left, The average trials performed each
session is 5136 13. Middle, The average entropy of the three-choice sequences is 2.8760.02. Right, The average reward rate is
44.0 6 0.5%. G, The histogram of the ITI durations for all trials. ITI would range from 4 to 8 s long if the mouse did not lick to trigger
additions to the ITI. H, The response times for trials in which the mouse chose left (left) or right (right).
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The dataset for matching pennies included 81 behav-
ioral sessions with concurrent pupil measurements (n=5
mice). For matching pennies, the Nash equilibrium indi-
cates that rational players should choose left and right
with equal probabilities, which would yield a long-run re-
ward rate of 50%. In an example session, plotting the
choices and rewards for a mouse and the choices for the
computer showed that the animal indeed exhibited a
great degree of stochasticity in its choice pattern (Fig.
1D). This could be seen more clearly by looking at the cu-
mulative occurrences of various plausible three-choice
sequences (Fig. 1E). Although there was sometimes a
slight preference for certain patterns, such as for right-
right-right early in this example session, throughout this
session the animal continually employed different choice
sequences. On average, animals performed 5136 13 tri-
als per session (mean 6 SEM; Fig. 1F). The entropy for
three-choice sequences, a measure of the stochasticity in
choices, was 2.876 0.02bits, close to the theoretical
upper bound of 3 bits. Consequently, the computer was
only mildly effective at predicting the mouse’s choices,
and mice earned an average reward rate of 44.06 0.5%.
We note that although the reward rate compared favor-
ably with the optimal reward rate of 50%, the difference
was statistically significant (p=1.4� 10�20, one-sample
one-tailed t test). For the ITI, 98.4% of the trials fell within
the truncated exponential distribution used to produce
the random durations, and only 1.6% of the trials forming
a small tail reflecting the extended duration triggered by a
precue impulsive lick (Fig. 1G). Response times were ster-
eotypical and similar for the left and right spouts (Fig. 1H).
These ITI and response time analyses demonstrate effec-
tive precue lick suppression and that the animal makes
the first physical indication of its choice after cue onset.
Altogether, the results show that head-fixed mice can
play matching pennies against a computer opponent.
Given that humans and macaques likewise play matching
pennies imperfectly and not at Nash equilibrium (Erev and
Roth, 1998; Lee et al., 2004), here we found that reward
rate was decent but also suboptimal for mice, suggesting
that the animals had certain residual tendencies that were
exploited by the computer opponent.

Animals’ behavior was captured by a hybrid model
with reinforcement learning and choice kernels
What is the strategy that characterizes the tendencies

in the animal’s behavior? Previous studies in macaque
monkeys found that reinforcement learning can account
in part for the animals’ behavior in matching pennies
(Lee et al., 2004; Seo et al., 2007). We therefore com-
pared between a range of strategies: WSLS, and rein-
forcement learning algorithms including Q-learning
(Q_RPE), differential Q-learning (DQ_RPE), and forget-
ting Q-learning (FQ_RPE; Ito and Doya, 2009; see
Materials and Methods). Fitting each model to the be-
havioral data, the BIC values indicated that FQ_RPE
was most consistent with the choice behavior of the
mice. To further improve the model, we noted that mice
exhibited serial choice dependence and sometimes fa-
vored picking the same choice in successive trials (e.g.,

Fig. 1E). To capture perseverative behavior, we added
choice kernels (Wilson and Collins, 2019) to create the
FQ_RPE_CK algorithm. Figure 2A illustrates graphically
the FQ_RPE_CK scheme (henceforth called the “hybrid
model”), with reinforcement learning through FQ_RPE
and perseveration through choice kernels. Note that
both the action values and choice kernels were updated
on a trial-by-trial basis, and each had its own learning
rate (a and aK) and inverse temperature parameters (b
and b K; see Materials and Methods). A comparison of
all five models indicated that the hybrid model provided
the most accurate fit to the behavioral data (Fig. 2B).
Figure 2C shows a representative session in which we
plotted the animal’s choices and outcomes along with
the latent variables, including action values and choice
kernels, estimated by the hybrid model. The model-esti-
mated probability of choosing left (Fig. 2C, black line)
tracked the actual choice pattern (Fig. 2C, gray line).
Specifically, the magnitude of the choice kernel indi-
cates the animal’s tendency to choose a previously se-
lected choice. In other words, the animal is more likely
to select the action associated with a higher choice ker-
nel value in a given trial, because of a pure choice effect
independent from reinforcement. Animals switched the
preference side frequently within sessions (34.76 1.9
times/session), indicating that although animals exhibit
preservative behavior, they are not simply biased for
one side, but instead switches their biases frequently
as part of a strategy to counter the computer opponent
during the matching pennies game. Taken together,
these analyses indicate that the mouse’s behavior dur-
ing matching pennies can be quantified using a hybrid
model including reinforcement learning and choice ker-
nels. For the remainder of the analyses, we will quantify
the animal’s strategy using the hybrid model.

Learning strategy in matching pennies in contrast to
two-armed bandit task
To gain further insights into how the mouse competes

against a computer opponent, we compared performance
between matching pennies and the two-armed bandit
task, which is a popular, non-competitive paradigm for
assaying reward-based learning in rodents. In our imple-
mentation of the two-armed bandit, trials were organized
into blocks, and each block was associated with one of
two sets of reward probabilities (Fig. 3A, top panel). The
block switched randomly (see Materials and Methods) so
that the mouse could not predict the switch with certainty
and must infer based on past choices and outcomes.
Moreover, the timing of each trial was design to be exactly
the same between matching pennies and two-armed ban-
dit (Fig. 1C). Figure 3A, bottom panel, presents an exam-
ple session of a mouse engaging in two-armed bandit,
showing that the mouse readily adapting its actions in re-
sponse to the reversing reward probabilities. The same
hybrid FQ_RPE_CK model could be used to quantify the
behavior, with the estimated choice probability tracking
the mouse’s choice pattern (Extended Data Fig. 3-1).
Overall, mice performed the task well, averaging 7026 26
trials per session with a 43.56 1.1% reward rate (n=26
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sessions from 4 mice; Fig. 3B). Model comparison based
on BIC indicated that the hybrid model outperformed
WSLS and other Q-learning-based algorithms (Fig. 3C).
A head-to-head comparison of the fitted learning parame-

ters highlights the distinct modes of operation employed by
the mice for matching pennies versus two-armed bandit (Fig.
3D–I). In matching pennies, the choice kernel was weighed
more strongly than reinforcement learning during action se-
lection [b K/(b 1 b K)=0.7660.04; Fig. 3D], although the
sum of inverse temperatures is relatively low, indicating high
level of exploration (b 1 b K = 2.1560.07). The ratio of learn-
ing rates suggests that the choice kernels were updated
slower than the action values (aK/a = 0.226 0.04),
which is illustrated by the example in Figure 2C, where
the action values fluctuate more rapidly than the choice
kernels. In two-armed bandit, the fitted learning param-
eters were significantly different. Namely, choice ker-
nels had less weight [b K/(b 1 b K) = 0.296 0.03; Fig.
3G, p = 0.02, two-sided Wilcoxon rank-sum test] and

inverse temperature was higher (b 1 b K = 4.5060.40;
p= 0.02), indicating that the animals relied more on rein-
forcement feedback to guide decisions and had a lower
tendency to explore.
These disparate sets of fitted model parameters for the

two tasks led to learning in different regimes, which could
be visualized by looking at the weighted sum of action-
value and choice-kernel differences, the crucial parameter
for the softmax function for action selection each trial.
Here, on most matching pennies trials, animals decided
with a weighted sum close to zero, i.e., with near equal
probabilities of choosing left and right, making it difficult
for the computer opponent to predict their choice (Fig.
3E). By contrast, performance during two-armed bandit
involved weighted sums lying at more extreme values
(Fig. 3H). This difference is consistent with the animal
spending considerable number of trials exploiting the
high-reward-probability side in a block, and only needed
to adapt around a block switch. In both cases, the
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observed choice probability (dots) fitted well to the soft-
max function used for action selection (Fig. 3E,H, dashed
line).
Finally, to determine how varying the balance between

reinforcement learning and choice kernel would affect
performance, we simulated choice behavior in the two
tasks using a computer agent, varying b K/(b 1 b K) while
fixing aK/a and b 1 b K. For matching pennies, the simu-
lations revealed that the reward rate was relatively stable
if the computer agent used mostly reinforcement learning
or a hybrid strategy (Fig. 3F). However, if the computer
agent based its actions exclusively on choice kernels, the
performance declined precipitously. It was intriguingly to

see the b K/(b 1 b K) estimated from behavioral data lied
around the threshold between these two conditions, indi-
cating that the animals might have settled on a hybrid
strategy that balanced a trade-off between reward and ef-
fort. For two-armed bandit, reward rate is maximized if
the agent uses only reinforcement learning to guide deci-
sions. However, we find that the animals have residual
tendencies captured by choice kernel and therefore lie
away from optimal performance (Fig. 3I). Collectively, the
direct comparison across tasks illustrates the utility of
matching pennies for exploring a regime in reinforcement
learning that is distinct from the more widely used two-
armed bandit paradigm.
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The average reward rate is 43.5 6 1.1%. C, Model comparison using BIC. D, Learning parameters extracted from fitting the hybrid
model to the matching pennies data. Left, The relative weight of choice kernel, b K/(b 1 b K) = 0.756 0.04. Middle, Sum of inverse
temperature, b 1 b K = 2.156 0.07. Right, Relative learning rate of the choice kernel. aK/a = 0.226 0.04. E, Psychometric curve
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action values (DQ) and the difference of choice kernels (DK). Dashed purple line shows the predicted probability to choose left ac-
cording to the softmax equation used by the hybrid model; purple dots show the observed probability to choose left. F, The per-
formance of a computational agent playing the game, where b K/(b 1 b K) was varied, while the learning rates and (b 1 b K) were
fixed and set to be the median of the fitted values based on animal data. The solid and open dots indicate the median b K/(b 1 b K)
value fitted based on animal data. G–I, Same as D–F for the two-armed bandit task. See also Extended Data Figure 3-1.
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Figure 4. Effects of choices and outcomes on pupil responses during matching pennies. A, A schematic illustration of the pupillom-
etry set up. B, An example still frame from a video showing both human labeling (dot) and DLC labeling (cross) for five labels. Scale
bar: 50 pixels. C, The pupil response at any time during a trial (�1–5 s from the cue) is the z score at the corresponding time sub-
tracted by the baseline, which is the mean z score between �2 and �1 s before the cue onset. D, A schematic diagram of the multi-
ple linear regression model, i.e., Equation 9, that was fit to the pupil response in each 100-ms time bin. E, The fraction of sessions
with significant regression coefficient for choice in the next trial cn11, choice in the current trial cn, choice in the previous trial cn–1,
and choice in the trial before the previous trial cn–2. Red shading indicates the p-value from the x2 test, without correcting for multi-
ple comparison. F, Same as E for trial outcomes. G, Same as E for the interactions of choice and outcome. H, Same as E for recent
reward rate, calculated as a moving average over last 20 trials, and the cumulative reward from start of session to current trial. I,
The mean regression coefficients of several predictors: choice of the current trial (cn), reward of the current trial (rn). Shading indi-
cates the 95% confidence interval estimated by bootstrap. See also Extended Data Figure 4-1.
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The pupil response contained choice-related and
outcome-related signals during matching pennies
While the mouse played matching pennies, a camera

was positioned to capture a video of the right eye (Fig.
4A). We used the DeepLabCut toolbox (Mathis et al.,
2018; Nath et al., 2019) to extract pupil size from the vid-
eos (see Materials and Methods). Figure 4B shows an
example frame with manually selected and computer-
generated labels. To quantify the quality of the automatic
labeling, we calculated the deviations between the man-
ually selected and automatically estimated labels for the
uppermost, lowermost, leftmost, rightmost, and central
points of the mouse’s pupil (Extended Data Fig. 4-1A,B).
The mean values of the deviations were close to zero,
demonstrating that the estimates had little bias. To give
an intuition into the pupil size fluctuation observed, for
one session, we plotted the time course of the pupil

diameter after z score normalization (Extended Data Fig.
4-1C). When aligned to select trial types, there were ob-
vious task-related transients in the pupil size (Extended
Data Fig. 4-1D). In this study, we were interested in the re-
lation between pupil fluctuations and decision-related
variables on a trial-by-trial basis, therefore we calculated
the pupil response for each trial, which was defined as the
pupil size in z score minus the precue baseline z score
(Fig. 4C).
To characterize the factors that drive pupil responses

during matching pennies, we used multiple linear regres-
sion. For each session, we fitted a regression model to
determine the relation between the pupil responses and
the choices, outcomes, reinforcers (choice-outcome in-
teractions), the recent reward rate, and the cumulative re-
ward (Fig. 4D). Specifically, the choices, outcomes, and
interactions included terms for the next trial, the current
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trial, the last trial, and the trial before last to capture the
potential persistent effects of these variables on neural
correlates (Seo and Lee, 2007; Sul et al., 2010; Bari et al.,
2019; Siniscalchi et al., 2019). The analyses revealed that
pupil responses were modulated by choices, outcomes,
and reinforcers during matching pennies (Fig. 4E–G). For
a significant fraction of sessions, we detected a change in
pupil size signaling the upcoming choice well before the
trial would start (cn11; Fig. 4E). The early choice-related
signal suggested that the animal was planning and pre-
paring for the upcoming action before the cue. The

choice-related signal ceased abruptly at around the time of
the cue onset for the next trial (cn–1; Fig. 4E). Meanwhile,
outcome-related and reinforcer-related signals in the pupil
responses emerged after the potential reward would be de-
livered and persisted for the next two trials (rn–1, rn–2, cn–1 *
rn–1, cn–2 * rn–2; Fig. 4F,G). The pupil responses were also in-
fluenced by the cumulative reward (rCumn ; Fig. 4H), which re-
lated to the number of trials performed, and therefore might
reflect the motivational state of the animal. To examine
whether these factors dilate or constrict the pupil, we plotted
the average coefficients of the current choice and outcome.
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Figure 6. Effects of decision variables for value updating on pupil responses during matching pennies. A, A schematic diagram of
the multiple linear regression model, i.e., Equation 13. B, The fraction of sessions with significant regression coefficient for choice
in the current trial cn, choice in the previous trial cn–1, and outcome in the previous trial rn–1. Red shading indicates the p-value from
the x2 test, without correcting for multiple comparison. C, Same as B for difference in action values (QL

n �QR
n ), the RPE, and the dif-

ference in choice kernels (KL
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n ). D, Same as B for the choice kernel error (CKE), moving-average reward rate ð �rMA
n Þ, and cumula-

tive reward ðrCum:
n Þ. E, The mean regression coefficients for RPE (quantified separately for trials with positive or negative RPE) and

CKE. Shading indicates the 95% confidence interval estimated by bootstrap.
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Although choice consistently influenced the pupil re-
sponses, the mean amplitude of the effect was more muted
than outcome. Specifically, the presence of a reward led a
large phasic dilation of the pupil (rn; Fig. 4I).

Pupil response wasmodulated by latent variables
related to value updating, but not action selection
Previously we showed that the animals’ behavior can

be captured by the hybrid FQ_RPE_CK model, therefore
we next asked whether pupil responses may accompany
changes in select latent decision variables. To this end,
we built additional multiple linear regression models using
latent variables relevant for action selection or value up-
dating. For action selection, we considered action-value
difference, chosen value, choice-kernel difference, and
chosen choice kernel (Fig. 5A). Consistent with our prior
observation, we found significant choice-related and

outcome-related signals (Fig. 5B,C); however, there was
no reliable, sustained modulation of the pupil responses
by the latent variables used for action selection (QL

n �QR
n ,

KL
n � KR

n ; Fig. 5D,E). For value updating, we tested latent
variables including RPE and CKE in addition to action-
value difference and choice-kernel difference (Fig. 6A). In
a significant fraction of sessions, pupil responses were
modulated by the RPE, and to a lesser extent CKE and
choice-kernel difference (Fig. 6B–D). Note that the RPE is
calculated as the difference of current reward and action
value of the chosen choice, thus correlated with the cur-
rent outcome. To distinguish them, we grouped the trials
according to the sign of RPE, then run multiple linear re-
gressions on groups with positive or negative RPE values
separately. In this analysis, linear regression with outcome
is trivial, since positive RPE trials are always rewarded,
while negative RPE trials are always trials without reward.
Characteristically, mean coefficient was positive for both
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trials involving positive or negative RPE (Fig. 6E). In other
words, positive RPE led to phasic dilation of the pupil,
whereas negative RPE was associated with transient re-
duction in pupil size. Overall, these analyses show that
transient change in pupil diameter is modulated by latent
variables used in value updating, namely, the RPE.

Similar pupil correlates for decision-related variables
during two-armed bandit task
The results presented so far indicated that for mice

playing the matching pennies game, the transient pupil di-
lations were modulated by choice, outcome, and latent deci-
sion variables relevant for value updating. To determine
whether comparable pupil responses occur for two-armed
bandit, we made recordings during the task and applied the
same multiple linear regression analyses. We found that the
choice-dependent and outcome-dependent signals were
present in a significant fraction of sessions (Fig. 7A). The la-
tent variables for action selection were largely absent (Fig.
7B). The value updating variables, especially the RPE and
again to a lesser degree the CKE, were associated with tran-
sient pupil responses (Fig. 7C). Therefore, our results show
that factors that influenced pupil responses in matching pen-
nies, choice, outcome, and value updating variables were
also contributors to the pupil responses during the two-
armed bandit task.

Correlated fluctuations of left and right pupils during
the two-armed bandit task
One intriguing result is that pupil response was influ-

enced by choice, i.e., whether the animal was choosing left
or right. Is this a genuine choice-related signal? Some pre-
vious studies show that pupil dilations can predict the up-
coming choice of human subjects including the choice
timing and the selection of one out of five digits (Einhauser
et al., 2010), and the decision of a yes/no question (de Gee
et al., 2014). However, another possibility is that when the
animal made a choice, the tongue lick movement could be
associated with facial movements leading to spurious de-
tection of pupil size changes. To clarify the issue, we posi-
tioned two cameras to record both eyes simultaneously
during the two-armed bandit task (Fig. 8A). For each eye,
we applied multiple linear regression (Fig. 4D) to analyze
the influences of choices and outcomes on pupil re-
sponses. We reasoned that if the choice-related signal was
a movement artifact, then the aberrant signal should differ
across eyes and across animals, and therefore the coeffi-
cients extracted from left and right eye would be uncorre-
lated. By contrast, if the choice-related signal was related
to the animal’s internal decision, we would expect consist-
ent dilation responses in both eyes. We analyzed the coef-
ficients for the current choice between 3 and 5 s from cue
onset when the pupil responses were largest (Fig. 8B). The
choice-related signal for the left pupil were correlated with
that for the right pupil in every session (r=0.83, p=9�
10�43). The positive correlation coefficient indicated that
the pupil size changes are symmetric in the two pupils. As
a positive control, we plotted the coefficients of the current
outcome in the same time window, which was expected

not to be lateralized and indeed showed a positive correla-
tion coefficient (r=0.90, p=0; Fig. 8C). Taken together,
these results suggested that the effect of choice on tran-
sient pupil response could not be explained by simple
movement artifact.

Discussion
The present study has two main findings. First, we demon-

strated that head-fixed mice can play a two-player competi-
tive game against a computer opponent. Their tendencies in
the matching pennies game can be described by a computa-
tional model incorporating reinforcement learning and choice
kernels. Second, we showed that transient pupil responses
of the animals were associated with observable variables
such as choices and outcomes, as well as latent variables rel-
evant for value updating, but not action selection. We note
that majority of the mice used for this study were male (12
males, 1 female), therefore the results may not generalize to
female mice.

Performance in the matching pennies game
Iterative matching pennies is a classic competitive

game. Subjects playing the game tend to deviate from the
Nash equilibrium. For example, human players attempting
to generate random choices would switch too often
(Camerer, 2003). Macaque monkeys and chimpanzees
also showed deviation from the optimal strategy (Lee et
al., 2004; Soltani et al., 2006; Seo and Lee, 2009; Seo et
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Figure 8. Two-pupil recordings during the bandit task. A,
Schematics of the two-pupil recordings setup. Two cameras
were placed in front of the two pupils with the same angle while
the mouse was performing the task. B, Scatter plot of the linear
regression coefficients of the current choice within the 3–5 s
from the cue time. The linear regression is the same as shown
in Figure 4. x-axis: coefficients of the left pupil; y-axis: coeffi-
cients of the right pupil. Different colors represent different sub-
jects. Each dot represents a 0.1-s interval within the 3- to 5-s
period. The black line shows the diagonal when coefficients of
the left pupil equal to that of the right pupil. C, Same as B for
current outcome.
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al., 2009; Martin et al., 2014). Rats were shown to coun-
ter-predict the opponent’s choice first and switch to a
more random behavior when facing a strong competitor
(Tervo et al., 2014). Moreover, pigeons playing the match-
ing pennies game exhibit a similar divergence from the
optimal play as the humans do (Sanabria and Thrailkill,
2009). Here, we showed that head-fixed mouse can play
matching pennies at a high level, albeit unsurprisingly also
gaining rewards at below optimal rates. Demonstrating
that mice can be studied using competitive game para-
digms opens new avenues for studying neural circuitry for
reward learning in animal models of neuropsychiatric dis-
orders (Barthas et al., 2020; Liao and Kwan, 2021).
Although initial characterizations of the tendencies for

sub-optimal play have relied on standard learning algo-
rithms (Erev and Roth, 1998; Lee et al., 2004), recent stud-
ies have reported deviations from the predictions of
reinforcement learning (Hampton et al., 2008; Seo et al.,
2014; Tervo et al., 2014). In this study, we employed a hy-
brid model, which combines Q-learning with choice ker-
nels, also known as the choice-autocorrelation factor
(Katahira, 2015; Wilson and Collins, 2019). Specifically,
choice kernels were included to capture serial choice de-
pendency, which is commonly observed in humans and
animals performing various tasks (Akaishi et al., 2014;
Abrahamyan et al., 2016). The hybrid model indeed fit the
behavior better than variations of Q-learning algorithms
(Fig. 2B). We want to highlight the numerical simulations
where the reward rate was examined as a function of rela-
tive inverse temperature (Fig. 3F). The animal’s perform-
ance lied at a regime where further increase in reliance on
choice kernel would deteriorate sharply the reward rate.
The result hints at the possibility that the animal may be
maximizing a reward-effort trade-off, because repeating
the same choice is likely to be less effortful and indeed is
the strategy taken by the animal often near the end of a
session.
Many studies of flexible decision-making in rodents

have relied on two-armed bandit tasks with a block-
based design (Ito and Doya, 2009; Sul et al., 2010, 2011;
Tai et al., 2012; Bari et al., 2019; Groman et al., 2019;
Hattori et al., 2019). This paradigm has many merits, but
also a few shortcomings. First, the length of the blocks is
a key parameter that defines the volatility of the environ-
ment, but is typically manually set by the experimenter.
By contrast, matching pennies refers to a payoff matrix
for gameplay, but contain no other experimenter-defined
parameters. Second, within a block, it is advantageous
for the animals to continually exploit the high-reward-
probability option, therefore overtraining in the two-armed
bandit task may lead to strong serial choice dependen-
cies. To the contrary, in matching pennies, the computer
opponent is designed to detect such dependencies and
exert competitive pressure on the animal, therefore the
animal is encouraged to always diversify its choice pat-
terns during the session. Consequently, two-player
games such as matching pennies are elegant and simple
in design and allow for investigation of neural mecha-
nisms underlying flexible decision-making under a re-
gime that is quite different from multiarmed bandit tasks
(Fig. 3D–I).

Pupil responses and potential neuromodulatory
mechanisms
Pupil fluctuation is an indicator of the arousal state of

an animal, and likely associates with the levels of various
neuromodulators in the forebrain (McGinley et al., 2015).
The relationship between pupil size and NE is supported
by prior results, which showed reliable tracking of pupil
fluctuations to activity of noradrenergic axons in the neo-
cortex (Reimer et al., 2016). Furthermore, studies of the
LC, the main source of NE for the forebrain, demonstrated
a correlation between single unit firing in LC and pupil di-
ameter (Aston-Jones and Cohen, 2005; Yang et al., 2021),
and pupil dilation triggered by electrical microstimulation
of the LC (Joshi et al., 2016). Several studies have linked
pupil dynamics and activity in LC to choice behavior, such
as in the consolidation of the previous choices (Clayton et
al., 2004; Einhauser et al., 2010) or the shaping of upcom-
ing actions (de Gee et al., 2014). However, these studies
were based on visual perceptual tasks, which is different
from our task design where the cue is auditory and carries
no relevant information except for trial timing. Our results
hint at a potential role for noradrenergic signaling in post-
decisional value updating, because the pupil response
was correlated with the RPE and weakly associated with
CKE. This would agree with work that have showed the
importance for rewards in LC activity and pupil dilation in
various behavioral settings (Sara and Segal, 1991; Aston-
Jones et al., 1997; Varazzani et al., 2015). Furthermore,
there is strong evidence linking pupil changes to errors
and adaptations in decision tasks involving trial-based or
block-based inference (Nassar et al., 2012; Urai et al.,
2017), highlighting the role of pupil-linked systems to con-
trol the influence of incoming data to guide future
decisions.
Overall, the current study lays the groundwork for

studying reward-based learning in mice using competitive
games. The two-player matching pennies game, which
we showed the mouse can play against a computer oppo-
nent, may potentially be extended to a mouse competing
against another mouse in the future. The paradigm may
therefore provide a quantitative framework for evaluating
social decision-making in mice. The findings of significant
pupil correlates to the major decision-related variables
during matching pennies provide clues to the neuromodu-
latory mechanisms in mice. The current results open ave-
nues for future research into the role of neuromodulators
in mediating the adaptive and social aspects of decision-
making in mice.
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