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Abstract

The human sensorimotor system is sensitive to both limb-related prediction errors and task-related perform-
ance errors. Prediction error signals are believed to drive implicit refinements to motor plans. However, an
understanding of the mechanisms that performance errors stimulate has remained unclear largely because
their effects have not been probed in isolation from prediction errors. Diverging from past work, we induced
performance errors independent of prediction errors by shifting the location of a reach target but keeping the
intended and actual kinematic consequences of the motion matched. Our first two experiments revealed that
rather than implicit learning, motor adjustments in response to performance errors reflect the use of delibera-
tive, volitional strategies. Our third experiment revealed a potential dissociation of performance-error-driven
strategies based on error size. Specifically, behavioral changes following large errors were consistent with
goal-directed or model-based control, known to be supported by connections between prefrontal cortex and
associative striatum. In contrast, motor changes following smaller performance errors carried signatures of
model-free stimulus-response learning, of the kind underpinned by pathways between motor cortical areas
and sensorimotor striatum. Across all experiments, we also found remarkably faster re-learning, advocating
that such “savings” is associated with retrieval of previously learned strategic error compensation and may
not require a history of exposure to limb-related errors.

Key words: goal-directed control; motor learning; performance errors; stimulus-response learning; strategies

(s )

Humans adjust their actions if they do not produce desired limb-related sensory consequences or task-re-
lated outcomes. We probed whether task-related performance errors induce implicit changes to motor
plans at all, or simply trigger the deliberate selection of different actions. We induced performance errors in
isolation, and found that they were compensated entirely via intentional, strategic mechanisms consistent
with improved action selection. Strategies also appeared to be sensitive to error size, and transitioned from
stimulus-response associative behavior to goal-directed control as error magnitude increased. Across all
experiments, we also found faster re-learning or “savings,” substantiating the view that savings is associ-
ated with strategy-use, and does not depend on experience of limb-related prediction errors that bring
\about implicit adjustments to action plans. /
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Adaptation paradigms have typically employed different
visual (Scheidt et al., 2005; Morehead et al., 2017) or dy-
namic (Shadmehr and Mussa-Ivaldi, 1994; Sainburg et al.,
1999; Lefumat et al., 2015) perturbations that produce
discrepancies in the actual versus expected limb-related
sensory feedback. It is generally believed that such sen-
sory prediction errors (SPEs) are compensated by implic-
itly recalibrating motor plans (Mazzoni and Krakauer,
2006; Morehead et al., 2017; Oza et al., 2020). SPE-driven
changes in motor output are dependent on cerebellar
(Flament et al., 1996; Martin et al., 1996; Morehead et al.,
2017) and posterior parietal networks (Clower et al., 1996;
Della-Maggiore et al., 2004; Kumar et al., 2020); disrup-
tion in these regions, either naturally because of Stroke or
degeneration, or artificially using brain stimulation techni-
ques, produces clear deficits in SPE-based learning.

Perturbations applied to moving effectors produce not
just SPEs, but can also result in task performance errors
(TPEs). In goal-directed motion, TPEs could arise from a
failure to achieve the movement goal (missing a spatial
target, for instance), or when a target moves to a different
location while the action is being performed. Learning to
compensate TPEs plausibly requires intact cortico-striatal
circuits (Anguera et al., 2010; Taylor and Ivry, 2012),
although a measure of the TPE itself could come from the
simple spike discharge of cerebellar Purkinje neurons
(Popa et al., 2017). However, a clear understanding of the
computational and psychological mechanisms that drive
changes in motor behavior on exposure to recurring
TPEs, has remained elusive. While early work hinted that
TPEs may not induce an implicit adaptive response, it did
not elaborate on the algorithms employed (Diedrichsen et
al., 2005). Later studies suggested that TPEs could pro-
voke use of deliberative movement re-aiming strategies
(Taylor et al., 2014; McDougle and Taylor, 2019), but an
alternative proposition has been put forth in more recent
work. This latter set of studies, which have probed the in-
fluence of binary TPEs on learning, suggests that like
SPEs, TPEs can drive implicit learning, and net adaptation
reflects the sum of two implicit processes, one driven by
SPE and the other by TPE (Leow et al., 2018; Van der
Kooij et al., 2018; Kim et al., 2019). These two views thus
differ in terms of how TPEs contribute: one suggests that
they drive the formulation of an explicit strategy, while the
other invokes implicit recalibration.

This debate arises primarily because TPEs have rarely
been elicited independent of SPEs. When these errors co-
occur, it is likely that they interact, which, neuroanatomi-
cally, could be facilitated via connections between the
basal ganglia and the cerebellum (Bostan and Strick,
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2018). Furthermore, this interaction may be competitive,
with SPEs dominating the adaptative response (Wang et
al., 2019). This is supported by findings in healthy individu-
als who adapt to SPEs even if it amplifies TPEs (Mazzoni
and Krakauer, 2006), or who show SPE-driven learning
even though they cannot correct for TPEs because of task
constraints (Tseng et al., 2007). Likewise, Stroke patients
with lesions circumscribed to right inferior frontal cortex
show complete adaptation to SPEs despite failing to cor-
rect for TPEs (Mutha et al., 2011). Given this overwhelming
influence of SPEs when imposed concurrently with TPEs, it
is perhaps not surprising that mechanisms through which
TPEs alone are compensated have remained unclear.

Resolving the mechanisms underlying TPE-mediated
changes in motor behavior also has implications for under-
standing the formation of long-term motor memories. Such
latent memories enable faster learning on re-exposure to the
perturbation, a phenomenon termed “savings.” While there is
evidence that savings is promoted via strategic re-aiming
(Haith et al., 2015; Huberdeau et al., 2015; Morehead et al.,
2015), some studies have linked it to other processes includ-
ing implicit mechanisms (Coltman et al., 2019; Yin and Wei,
2020), action repetition (Huang et al., 2011), and a memory of
the experienced errors that in turn modulates error sensitivity
(Herzfeld et al., 2014). Based on these diverse results, one
cannot be certain whether it is improved action selection
(mediated by TPEs) or improved action execution (mediated
by SPEs) or a combination of the two that contributes to
long-term motor memory formation that facilitates savings.

Here, we examined how humans learn to compensate
consistent TPEs imposed in isolation from SPEs, and
whether they express as savings the acquired memory
when re-exposed to the learning environment. We also
probed whether and how the magnitude of the TPE influ-
ences the ensuing changes in motor output.

Materials and Methods

Subjects

We recruited 76 healthy, right-handed individuals be-
tween the age 18 and 30years across three different
experiments. Handedness was assessed using the
Edinburgh Handedness Inventory. All subjects were
naive to the expected outcomes of the experiment,
provided written informed consent before participat-
ing, and were paid for their time. The study was ap-
proved by the Institute Ethics Committee of the Indian
Institute of Technology Gandhinagar. One subject was
excluded (see below), resulting in a total of 75 subjects
(mean age=22.64 * 0.34years, 27 females) whose
data were analyzed.

Experimental setup

Subjects sat on a height-adjustable chair facing a large,
horizontally placed digitizing tablet and used a hand-held
stylus to make planar, targeted reaching movements on it
(Fig. 1A). All movements were made with the right hand.
Subjects received visual feedback of their hand (stylus)
position on a mirror that reflected a high-definition display
placed directly above it. The mirror was aligned parallel to
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Figure 1. Experimental setup and tasks. A, Subjects performed reaching movements on a digitizing tablet using a handheld stylus
while looking into a mirror placed between the tablet and a horizontally mounted display. Start positions, targets, and a feedback
cursor displayed on the screen were reflected in the mirror. B, Task protocol for experiments 1 and 3. The baseline block was fol-
lowed by learning trials on which the target-shift created a TPE. This was followed by washout and a final “savings” block on which
subjects re-experienced the target-shifts. In experiment 1, the target-shift was 45° (solid line), while in experiment 3, it was 15°, 30°,
or 60° (dotted lines) for different groups. In both experiments, three “no-shift” sub-blocks of four trials each were embedded during
learning and savings trials; their location is shown using black bars. Verbal instructions were given every time the target conditions
were about to change. C, Target locations and sample hand trajectories on early (solid) and late (dotted) learning trials. The original
target has been blurred, while the new, shifted target is shown in solid colors. D, In experiment 2, subjects again performed four
blocks of trials, but without the no-shift sub-blocks. Additionally, the original target was presented with a ring of numbers as shown
on the right. Before each trial, subjects reported the approximate number they would reach to. The original target location always
corresponded to number “0,” while the shifted target corresponded to “9.” The ring appeared with the original target and disap-

peared with the presentation of the new target.

the screen and the digitizing tablet, and prevented direct
view of the moving limb. Hand position was displayed as
a circular cursor (0.5 cm diameter) along with a circular
start position (1 cm diameter) and targets (1.5 cm diame-
ter) for the reach.

To begin a trial, subjects first brought the cursor into the
start circle. After a delay of 500 ms, a target appeared at
one of four locations (45°, 135°, 225°, or 315°) along with
an audio beep that indicated to subjects that they should
start moving. Across all experiments, the distance be-
tween the start position and the target was fixed at 10cm,
and subjects were encouraged to move as quickly as pos-
sible, but no specific constraints were imposed on either
reaction time (RT) or movement time. Further, cursor
feedback was provided during the entire reach and was
always veridical with the actual position of the hand.

Experimental blocks

In all three experiments of this study, subjects per-
formed four blocks of trials: baseline, learning, washout,
and savings. Baseline trials comprised of reaches to
fixed, stationary targets. This was followed by the learning
block in which the target location was shifted, or
“jumped,” counterclockwise on each trial. The shift was
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achieved by extinguishing the originally displayed target
(“original” target) and immediately displaying a new one
(“new” target). The magnitude of the target-shift was 45°
in experiments 1 and 2, while it was 15°, 30°, or 60° for
the different groups of experiment 3 (Fig. 1B,D; also see
below). The shift was initiated as soon as subjects
breached the start circle boundary (moved 3 mm from the
center of the start circle), and enabled us to impose a
TPE. The learning block, in which subjects learned to pre-
dictively account for the TPE (Fig. 1C), was followed by
washout trials that were similar to baseline in that there
was no target-shift, and the original target remained on
the screen for the entire trial. After washout, we probed
for “savings” by exposing subjects to target-shifts as in
the earlier learning block. Specific task instructions were
given before the onset of each block (see below).

To gain some familiarity with the setup and the task dis-
play, subjects first performed 10 no-shift trials and then
two target-shift trials; these 12 practice trials were not an-
alyzed. Before they attempted the practice no-shift trials,
subjects were explained what they would see on the
screen and told that they should reach from the start circle
to the target. Before the practice target-shift trials, they
were told that they might experience trials in the task
where the target would jump to a different location. They
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then performed two such trials as practice. Throughout
the experiment including practice trials, at the end of each
trial, subjects were given points (10, 5, 3, or none) de-
pending on the accuracy of their movement. Accuracy
was calculated relative to the original target on baseline
and washout trials, and the new target on the learning and
savings trials. Points were not analyzed.

Experiment 1

In our first experiment (n=30), subjects performed 56
baseline, 112 learning, 112 washout, and 112 savings
trials. As described earlier, baseline and washout trials
comprised of reaches to stationary targets, while the
target was shifted 45° counterclockwise during the
learning and savings blocks. Additionally, interspersed
within the learning and savings blocks were three sub-
blocks of four trials each on which the target was not
shifted; these trials were thus similar to baseline (Fig.
1B) and did not induce a TPE. Each of the no-shift sub-
blocks occurred after every 28 target-shift trials. In all,
subjects performed 416 trials in this first experiment.

Subjects were given verbal instructions before each of
the main experimental blocks and also before each no-
shift sub-block embedded within the learning and savings
blocks. Before the baseline block, subjects were told to
reach to the target that would be displayed on the screen,
and were also informed that its position would not
change. Following baseline and before the onset of the
learning block, subjects were told that the target would
now start “jumping,” and that they should reach to the
new target. Further, before each no-shift sub-block, they
were told that the target would now stop jumping and
they should move to the original target. Similarly, at the
end of each no-shift sub-block, subjects were informed
that the target would start jumping again and they should
go to the new target. Instructions before the washout
block were similar to those given before the no-shift sub-
blocks. Instructions provided before the savings block
were the same as those given before the learning block. In
sum, verbal instructions were given every time the target-
shift conditions were about to change.

Experiment 2

The design of our second experiment (n = 10) was moti-
vated by the work of Taylor et al. (2014), who used verbal
reports of subjects’ intended aiming direction to estimate
their use of cognitive strategies. The setup and general
task environment remained similar to that of experi-
ment 1. Subjects performed 40 baseline, 112 learning,
40 washout, and 112 savings trials. The reach target
remained stationary on the baseline and washout tri-
als, while 45° counterclockwise target shifts were in-
troduced on each trial of the learning and savings
blocks (Fig. 1D). Target presentation and timing of the
jump remained similar to experiment 1. The no-shift
sub-blocks were not employed in this experiment.

In addition to the start circle and the target, a ring of 72
numerical landmarks (numbered from 0 to 71, increasing
counterclockwise) placed at 5° intervals along the
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periphery of a virtual circle of 10 cm diameter (corre-
sponding to the target distance) was also presented on
each trial of all four blocks (Fig. 1D). Since the target
could appear at any one of four different locations, the
ring was rotated such that landmark “0” always coincided
with the location of the original target for that trial while
landmark “9” always corresponded to the location of the
new target displayed on learning and savings trials (45°
counterclockwise). The ring was presented simultaneous
with the original target and it disappeared once the sub-
jects crossed the edge of the start circle. Importantly, on
every trial, before they initiated their movement, subjects
were required to verbally report their aiming direction by
stating the approximate numerical landmark they in-
tended to move to. This number was recorded by the
experimenter.

As in experiment 1, subjects were also informed about
target behavior before each block. Briefly, before baseline
trials, subjects were told that they should move to the tar-
get that would be displayed on the screen, and that its lo-
cation would not change during the trial. Before the
learning block, subjects were informed that the target
would now start “jumping” during the trial and they should
reach to the new target. Before washout, they were again
informed that the target would stop jumping and they
should move to the original target. Finally, before the sav-
ings block, they were told that the target would start
jumping again and they should go to the new target.

Experiment 3

In experiment 3 (n =36, one subject was excluded from
the analysis, so final n=35), we aimed to understand the
influence of TPE magnitude on changes in motor behav-
ior. Subjects were assigned to three different groups, that
differed in terms of the magnitude of the target-shift expe-
rienced [15° (n=11), 30° (n=12), or 60° (n=12)]. All shifts
were counterclockwise as before, and all other aspects of
this experiment were identical to experiment 1 (Fig. 1B).
Thus, subjects performed four blocks: baseline (56 trials),
learning (112 trials), washout (112 trials), and savings (112
trials). Targets remained stationary during the baseline
and washout blocks, while they were shifted on learning
and savings trials. Three no-shift sub-blocks (four trials
each) were also embedded within the learning and sav-
ings blocks. Instructions to subjects and their schedule
remained the same as in experiment 1.

Data analysis
Variables

Data were analyzed using custom MATLAB scripts.
Hand X and Y position data were filtered using a low-pass
Butterworth filter with 10 Hz cutoff. Position data were differ-
entiated to obtain the speed profile. Movement onset was de-
fined as the point at which hand speed first crossed 5% of
maximum movement speed. Reaction Time (RT), a variable
of interest in experiments 1 and 3, was calculated as the dif-
ference between the time of movement onset and the time of
target presentation. Our other key measure was the deviation
in hand movement direction relative to the direction of the
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original target. This was calculated as the angle between two
lines: the line joining the center of the start circle and the origi-
nal target, and the line joining the center of the start circle and
the hand position at peak speed. On a few trials, more than
one peak could occur. For example, on the early learning tri-
als (Fig. 1C), subjects could make an initial outward
movement to the original target and then correct it on-
line to go to the new target, resulting in two peaks in
the speed profile. In such cases, hand position at the
first large (>15cm/s) peak, corresponding to the out-
ward movement to the original target, was chosen for
the calculation of hand deviation since this would
serve as a more appropriate indicator of the subjects’
initial movement plan. Counterclockwise and clock-
wise deviations relative to the original target were
treated as positive and negative, respectively.

Outlier removal

First, trials on which subjects did not move, or moved
but lifted the stylus off the digitizing tablet leading to data
loss, were marked as bad trials. Second, outliers were
identified based on the hand deviation data. For the base-
line and washout blocks, we first calculated the mean
hand deviation across all trials of that block, and then la-
beled as an outlier any trial on which the hand deviation
was more than =3 SDs from the corresponding mean. For
the learning and savings blocks, outliers were marked as
those trials on which the hand deviation was more than
+3 times the magnitude of the target-shift. Following this
procedure, one subject from the 15° jump group of ex-
periment 3 ended up with 136 bad/outlier trials (out of 416
trials performed); this subject was excluded entirely.
Across all the remaining 75 subjects, 1.34% of the trials
were labeled as bad trials or outliers and removed from
the analysis.

Further analyses and statistics

Following outlier removal, potential baseline biases in
reach direction were eliminated by subtracting the mean
baseline hand deviation from the hand deviation on each
trial; these baseline-subtracted values were used for fur-
ther analyses. Average hand deviation and RT on the last
twelve baseline trials were taken as an indicator of late
baseline behavior. We also computed the mean hand de-
viation and RT on the first and last unique reaches to each
target (four trials) of the learning, washout and savings
blocks. This provided a measure of early and late-stage
performance in each of these blocks. Performance on the
no-shift sub-blocks was assessed by averaging hand de-
viation and RT across all four trials of each sub-block.

We typically used parametric tests (ANOVA or t tests) to
compare across different stages or groups after checking
the underlying assumptions. Wilcoxon signed-rank tests
were used in place of t tests if the data were found to devi-
ate from normality (assessed via Shapiro-Wilk tests).
Levene’s test was used to assess homogeneity of var-
iance required for ANOVA. If this was violated, Welch’s
ANOVA was used. Sphericity violations in repeated meas-
ures ANOVAs were accounted for via Greenhouse-
Geisser corrections. Cohen’s d, matched ranked biserial
correlation and w? were used as measures of effect size
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for the t test, Wilcoxon signed-rank test and ANOVA, re-
spectively. The significance level was set at p =0.05 for all
tests. Further, given the known issues with RT distribu-
tions (Wagenmakers and Brown, 2007), RT comparisons
were also made using estimation statistics, which focus
on the effect size and its precision. Bayesian inference
methods were also used when warranted. Statistical anal-
yses were conducted using R (version 4.0.0) and JASP
(version 0.13.1).

Data Availability
The data for all 3 experiments is freely available at:
https://doi.org/10.6084/m9.figshare.19154378.v1.

Results

In experiment 1, subjects reached to 1 of four visual tar-
gets under veridical feedback provided by means of a cur-
sor representing hand position (Fig. 1A). On learning trials,
the target was “jumped” counterclockwise by 45°, thereby
inducing a TPE (Fig. 1B). Subjects were informed about the
occurrence of the target-shift and instructed to reach to the
new target. Interspersed within the learning block were
three no-shift sub-blocks of four trials each wherein the tar-
get location was not changed and the original target stayed
on the screen (no TPE). Before each of these sub-blocks,
subjects were so informed and were instructed to reach to
the original target. At the end of the sub-block, subjects
were once again told that the target would start “jumping”
and they should reach to the new target as before (Fig. 1C).

TPEs stimulated intentional changes in reach
direction

We first examined the change in hand angle relative to
the original target direction over the learning trials. These
changes were quite idiosyncratic, with some subjects
showing a rapid (within a few learning trials) shift of hand
direction toward the new target while others continuing to
aim toward the original target for a number of trials before
abruptly switching their aim toward the new target (Fig.
2A). Hardly any subject showed a gradual, progressive
change in hand direction. The steadier trial-by-trial change
in the group mean (Fig. 2B, blue), therefore, resulted from
averaging. Differences in subject performance during the ini-
tial learning phase were also evident as highly variable hand
deviations (Fig. 2C). Despite these early differences, all sub-
jects learned to aim directly toward the new target location
by the end of the learning block (Fig. 2C, mean hand devia-
tion during the late learning stage=44.65 = 1.13°). Thus,
subjects were able to account for the TPE and adjust their
reach direction accordingly.

Performance on the no-shift sub-blocks allowed us to
probe the process through which subjects learned to
cancel the TPE. On these trials, subjects aimed directly
toward the original target as instructed, and hand deviation
fell to near zero on each of the sub-blocks (first: 0.947 =+
0.633°, 99%Cl = [-0.797, 2.691], second: 0.945 = 0.576°,
99%CIl = [-0.643, 2.533], third: 1.711 = 1°, 99%Cl =
[—1.044, 4.466]; Fig. 2D). Postlearning aftereffects were also
absent with near zero hand deviation (mean = SE=1.022 =
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Figure 2. TPEs are compensated through intentional strategies. A, Hand deviation (relative to the original target) on the late baseline
and first 28 learning trials (each subject shown using a different color). The profile of two subjects is bolded to highlight the variabili-
ty across subjects. One of them changed movement direction quite early during learning while the other did so quite late. B, Group-
averaged hand deviation across trials. Shaded regions denote SEM. Learning (blue) and savings (pink) data are superimposed for
ease of comparison; trial 1 corresponds to the first learning trial (or the first savings trial). No-shift trials are highlighted using gray
bands. Hand deviation on late baseline, no-shift and early washout trials is shown using open circles. C, Mean hand deviation dur-
ing early and late learning. Dots represent individual subjects. Error bars are SEM. D, Mean hand deviation on the no-shift sub-
blocks and early washout trials. Dots are individual subjects. Error bars are SEM. E, Group-averaged RT across trials. Shaded
regions denote SEM. No-shift sub-blocks are highlighted in gray. RT on no-shift trials as well as late baseline and early washout tri-
als, is shown in open circles. F, Mean RT in the baseline and learning blocks. Dots represent individual subjects. Error bars are
SEM. G, Change in RT on the no-shift and early washout trials relative to the immediately prior learning trial. Dots represent individu-
al subjects. Error bars are SEM.

0.497°, 99%CI = [—0.349, 2.393)) on early washout trials (Fig.
2D). Statistically, there was no difference between the late
baseline trials, no-shift sub-blocks and early washout trials
(F.656,77.022 = 1.219, p = 0.307). This immediate unlearning in-
dicated that the change in hand angle on the target-shift trials
of the learning block was because of the use of an intentional
strategy that could be “turned off” on instruction.

We next predicted that if subjects were using a deliber-
ative strategy to aim toward the displaced target on the
learning trials, their RTs would be higher on those trials.
We observed (Fig. 2E,F) that while baseline RT was close
to 400ms (397 = 11 ms), it increased to ~550ms on the
target-shift trials (556 = 21 ms), a change that was clearly
statistically significant (Wilcoxon signed-rank test, W=0,
p <0.001, matched ranked biserial correlation = —1.000;
estimation statistics: 95%CI of paired mean difference =
[0.127, 0.203], p < 0.001 for two-sided permutation t test
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with 5000 bootstrap samples). Critically, on the no-shift sub-
blocks, when subjects were informed that the target would
not jump, their RT dropped considerably compared with the
immediately prior learning trials (Fig. 2E,G). Likewise, RT on
the early washout trials was smaller than the late learning tri-
als. There was no difference in the magnitude of RT reduc-
tion across the three no-shift sub-blocks and the early
washout trials (Fzs7=0.1314, p=0.941, w? = 0; Fig. 2G).
This pattern, an increase in RT when the target location
shifted but an immediate reduction when it did not, bol-
stered the view that the TPE-mediated learning on the tar-
get-shift trials was deliberate in nature.

Savings occurred on re-exposure to TPEs
We next probed for savings and posited that if savings
reflects the recall of learned strategies, it should occur
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Figure 3. Strategy-use results in savings. A, Mean hand angle during the early learning (blue) and early savings (pink) phase. Dots
represent individual subjects. Error bars are SEM. B, Mean hand angle on late washout and no-shift trials of the savings block. Dots
represent individual subjects. Error bars are SEM. C, Average RT on late washout and no-shift trials of the savings block. Dots are

individual subjects. Error bars are SEM.

when subjects are re-exposed to the TPEs. We found that
hand angle changes from the original to the new target di-
rection occurred over far fewer trials than initial learning,
suggesting savings from prior learning (Fig. 28, pink). Hand
deviation was much larger during the early phase of the sav-
ings block than the learning block (Wilcoxon signed-rank
test, W=9, p <0.001, matched ranked biserial correlation =
—0.961; Fig. 3A). Additionally, on the no-shift sub-blocks,
subjects again demonstrated rapid disengagement of learn-
ing. Hand deviation was now close to zero again (Fig. 3B),
and there were no significant differences relative to the late
washout trials (Fz g7)= 1.167, p =0.327, »” = 0.003). As was
the case during learning, RT increased on the target-shift tri-
als of the savings block, but also dropped to late washout
levels on the no-shift sub-blocks (Fig. 3C). Collectively, the
results of this first experiment indicated that in the absence
of SPEs, TPEs are compensated via intentional mechanisms
that are responsive to verbal instruction. The use of such
strategies also promotes savings, suggesting that exposure
to SPEs may not be necessary for this purpose.

TPE-mediated changes in movement direction were
verbalizable

In our second experiment (Fig. 1D), we sought to directly
analyze how subjects explicitly formulate their reaching
strategy while adapting to TPEs. Unlike experiment 1, which
used an indirect, exclusion method, here we asked subjects
to directly report their aiming angle on each trial with the
help of a ring of equiangular numerical landmarks concentric
to the start position (Taylor et al., 2014). Subjects performed
reaches to targets that “jumped” 45° counterclockwise on
learning trials; they were also informed about the occurrence
of the jumps and instructed to reach to the new target loca-
tion. On washout trials, they were again informed that the
targets would not jump and they should reach to the original
target.

Subjects started the learning block typically by reporting
landmark number “0,” which corresponded to the original
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target. All subjects eventually began reporting, and persisted
with, their reports of the angle corresponding to the new lo-
cation of the target, i.e., landmark number “9” (Fig. 4A,
yellow). These verbal reports appeared to show higher
variance during the early phase of learning, and low
variance toward the end, consistent prior observations
(Taylor et al., 2014). We further quantified this behavior
by calculating the probability of aim change across tri-
als of the learning block (Fig. 4B). This probability was
much greater during the early phase of learning (reach-
ing a peak value of ~70% on the sixth learning trial),
and dropped to ~0 by the end of the learning block.
This was also statistically confirmed as a significant
difference in the aim change probability values of the
early and late learning phases (Wilcoxon signed-rank
test, W=40.5, p=0.025, matched ranked biserial
correlation=0.8)

Critically, the actual hand angle closely mirrored the re-
ported aim. Subjects started aiming their hand (Fig. 4A,
blue) toward the new target early on and attained com-
plete compensation by the end of the learning block
(mean=46.194 = 0.913°); this change was statistically ro-
bust (fg = —12.116, p <0.001, Cohen’s d = —3.831).
More importantly however, there was no significant differ-
ence between the reported aiming angle and the actual
hand angle at the beginning (tg=0.723, p=0.488,
Cohen’s d=0.229) or at the end (fg)=1.541, p=0.158,
Cohen’s d=0.487) of the learning block, indicating that
subjects actually aimed in the direction that they reported
they would.

The difference between the reported aim and the actual
hand angle provides a marker for implicit learning. We
computed average implicit learning (Fig. 4A, green), and
found that it was near zero during the early (2.744 =
3.793°,99% Cl = [-9.581, 15.069]) as well as late (1.319
+ 0.856°, 99% CI = [-1.468, 4.101]) phases of the learn-
ing block. This indicated that subjects did not learn implic-
ity at all, and were using explicit strategies to
compensate for the error that the target-shift induced. To
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Figure 4. Directional changes in response to TPEs are verbalizable. A, Group-averaged hand deviation (blue), reported aiming direc-
tion (yellow), and the implicit component (green) across trials. Shaded regions denote SEM. B, Mean trial-wise probability of aim
change across learning trials. Shaded regions are SEM. C, Group-averaged hand deviation across trials. Shaded regions denote
SEM. Learning (blue, same as in A) and savings (pink) data are superimposed for ease of comparison; trial 1 corresponds to the first
learning trial (or first savings trial). Late baseline and early washout trials are shown using open circles. D, Mean hand deviation on
early learning and early savings trials. Dots represent individual subjects. Error bars are SEM.

confirm this, we also examined aftereffects in the washout
block (Fig. 4A). We again found that subjects were able to
immediately “unlearn” when informed that the target posi-
tion would not change. Subjects not only reported land-
mark number “0” (corresponding to the original target
location) right away, but their hand deviation on early
washout trials also dropped to near zero (2.023 *+ 0.858°,
99%CI = [-0.765, 4.811]). All in all, these results advo-
cated that subjects primarily relied on the use of con-
sciously accessible, volitional strategies to compensate
for the target-shift-induced TPE.

Finally, we observed clear savings when subjects were
re-exposed to the target shifts following washout.
Subjects reported the new target location and also moved
their hand toward it earlier (Fig. 4C, pink) than in the train-
ing block (Fig. 4C, blue). The variability in hand angle in
the savings block was also low, suggesting that all
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subjects were able to successfully employ the previous
strategy quite quickly. The change in the reported () =
—12.142, p < 0.001, Cohen’s d = —3.84) as well as actual
hand angles (g = —13.223, p <0.001, Cohen’s d =
—4.182) during the early phase of the savings block were
much larger compared with initial learning, indicating
clearly that savings was present (Fig. 4D). This result once
again indicated that savings does not require experience
of an SPE, and is likely driven by the recall of previously
employed re-aiming processes.

Changes in reach direction were sensitive to TPE
magnitude

Recent work suggests that while implicit learning is rel-
atively rigid and insensitive to perturbation size, strategy
use engenders greater flexibility (Bond and Taylor, 2015).
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We therefore hypothesized that the change in hand angle
would scale with the size of the TPE rather than simply
have a binary effect. We tested this idea in our third ex-
periment by adopting a design similar to experiment 1
(Fig. 1C) but assigning subjects to three groups that dif-
fered based on TPE size (15°, 30°, or 60°). Task instruc-
tions and their schedule remained identical to experiment
1. All three groups changed their reach direction to ac-
count for the shift in target location. While hand deviation
during early learning was not different between the groups
(Fi,32)=2.609, p=0.009, w? = 0.084), it was clearly so at
the end of learning (15° group: 12.032 = 2.076°, 30°
group: 29.458 * 1.426°, 60° group: 54.239 *= 2.261°,
Fo.32=117.274, p <0.001, w® = 0.869; compare asymp-
tote phase of Fig. 5A-C). This scaling indicated that the
adaptive response was indeed sensitive to the size of the
TPE.

Strategies for compensating small versus large TPEs
were dissociable

Interestingly, we observed that for the 15° group, the
average compensation was less complete than the other
groups. By the end of learning, this group had compen-
sated only ~80% of the TPE (mean=80.21 = 13.84%),
while the 30° and 60° groups had compensated >90%
(98.19 = 4.75% and 904 = 3.77% respectively).
Importantly, this was not because subjects in the 15°
group had achieved a “good enough” solution, i.e., they
were able to hit the shifted target without having to fully
compensate for the TPE. Considering that the target di-
ameter was 1.5cm, the cursor would hit the target if the
hand angle changed by 12.11° for a 15° shift. However,
we found that even at the end of learning, subjects did
not reach this threshold on >50% of the trials
(mean=52.27%). This indicated that compensation in-
deed remained incomplete in this group. We additionally
observed that the average variance in (normalized) hand
direction during the learning block was greater following
the 15° TPE (Fig. 5D). These patterns in the data moti-
vated a finer analysis, wherein we probed whether the
manner in which subjects responded to the small TPE
(15°) differed from the larger ones (30° and 60°).

We first focused on the RT data. While RT increased
on the learning trials for all groups relative to baseline, this
increase was not uniform (Fig. 5E). We observed a dichot-
omous response: a small increase for the 15° group
(ART=63 = 21 ms), but larger increases for the 30° (172
+ 38 ms) and 60° (163 = 14 ms) groups. This was statisti-
cally confirmed via a significant group difference in a
Welch’s ANOVA (F(2,19.1449=7.702, p=0.004, w® = 0.18).
Post hoc tests revealed not only that the RT increase was
much more for the 30° (p=0.022) and 60° (p=0.037)
groups relative to the 15° group, but also that these two
larger TPE groups did not differ from each other (p =0.97).
RT differences between the 15° and 30° groups were con-
firmed using estimation statistics (95%CI of unpaired
mean difference = [0.024, 0.188], p =0.026 for two-sided
permutation t test with 5000 bootstrap samples), as were
the differences between the 15° and 60° groups (95%Cl
of unpaired mean difference = [0.048, 0.144], p =0.001 for
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two-sided permutation t test with 5000 bootstrap sam-
ples). Likewise, a Bayesian independent samples t test,
which yielded a BF4q value of 0.38, provided support
to the hypothesis that RTs of the 30° and 60° groups
were not different from each other; the same was con-
firmed using estimation methods (95%CI of unpaired
mean difference = [-0.1, 0.061], p=0.663 for two-
sided permutation t test with 5000 bootstrap samples).
In sum, these patterns indicated that RT did not scale
uniformly with error size.

Another hint supporting a potential dissociation in strat-
egies for compensating small versus large TPEs came
from the hand angle data of the no-shift sub-blocks,
although, admittedly, this was less clear than the variabili-
ty, amount of learning and RT results reported above.
Consider the behavior of the 15° group first. For these
subjects, we observed that the mean hand deviation on
the first no-shift sub-block was close to zero (—0.222 *=
0.845°, 99%ClI = [-2.901, 2.456]). However, hand devia-
tion on the subsequent no-shift sub-blocks did not return
to these levels (Fig. 5F). Specifically, hand deviation on
the third no-shift sub-block was larger than that on the
first such sub-block (t1¢) = —2.6651, p=0.0237, Cohen’s
d = —0.8036). Furthermore, the deviation on the early
washout trials remained (marginally) elevated relative to
the first no-shift sub-block (paired t test, t1q = —2.2265,
p=0.0501, Cohen’s d = —0.6713), but was not different
from that on the last such sub-block (paired t test,
t10=1.3732, p=0.1997, Cohen’s d=0.414). This sug-
gested that there was some tendency for the learned be-
havior to persist even after the perturbation had been
removed. Notably, this was also the case when we used
baseline uncorrected data for our analyses, suggesting
that this result was not an artifact of baseline bias elimina-
tion. It is however possible that some of these results
were influenced by a potential outlier who showed a hand
deviation of approximately —7° on the first no-shift sub-
block. When this subject was excluded, the difference in
hand deviation on the first and last no-shift sub-block was
borderline significant with a medium-large effect size (t,
= —2.262, p =0.05, Cohen’s d = —0.7154). In the Bayesian
realm, the same comparison (without the outlier) yielded a
BF4o value of 1.7627 (error=0.0018%), which provided
anecdotal evidence in favor of the hypothesis that hand
deviation on the last no-shift sub-block was greater than
that on the first such sub-block in this group. This differ-
ence may therefore be interpreted with some caution.

In contrast, there was clearly no difference in hand devi-
ation between the first and last no-shift sub-blocks for the
30° (t11) = —1.8882, p =0.0856, Cohen’s d = —0.5451) or
60° (Fig. 5H, t41=0.1659, p=0.8713, Cohen’s d=
0.0479; Fig. 5G) groups. Likewise, we found no difference
between the early washout trials and the first no-shift sub-
block for the 30° group (t11) = —1.3371, p=0.2082,
Cohen’s d = —0.386). This was also the case for the 60°
group (f11)=1.2449, p =0.239, Cohen’s d=0.3594). This
suggested that these subjects immediately and consis-
tently returned to earlier performance levels across all no-
shift sub-blocks as well as the washout block. Collectively,
the distinct trends in variability, fraction of TPE
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Figure 5. Strategies employed to compensate small versus large TPEs are likely dissociable. Group-averaged baseline-corrected
hand deviation across trials for the (A) 15°, (B) 30°, and (C) 60° target-shift groups. Shaded regions denote SEM. Other details are
same as Figure 2A. D, Mean variance in normalized hand deviation for the three groups. No error bars are shown since this was cal-
culated for the entire group, not individual subjects. E, Mean RT on baseline and learning trials. Dots are individual subjects. Error
bars are SEM. F-H, Mean baseline-corrected hand angle on the no-shift sub-blocks of the learning block, early washout trials, and
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continued

no-shift sub-blocks of the savings block for the (F) 15°, (G) 30°, and (H) 60° target-shift groups. I, Mean hand deviation on the early
learning and early savings trials. Dots represent individual subjects. Error bars are SEM.

compensated, and RT and hand deviation data suggested
that smaller TPEs (15° in our case) might be compensated
differently relative to larger ones [30°, 45° (experiment 1),
and 60°].

Finally, we observed that when re-exposed to target-
shifts after washout, subjects in all groups exhibited
savings, as was the case in experiments 1 and 2.
Subjects compensated for the imposed TPE by direct-
ing their hand toward the new target faster than they
did in the training block. This expression of savings
was also reliably captured via our statistical compari-
sons: mean hand angle was clearly larger on the early
savings trials compared with the early learning trials
for each group (15° group: t(19) = —5.226, p <0.001,
Cohen’s d = -1.576; 30° group: ty) = —6.952,
p <0.001, Cohen’s d = —2.007; 60° group: tn1 =
—7.545,p <0.001, Cohen’s d = —2.178; Fig. 5/).

Taken together, our results indicate that: (1) in the ab-
sence of an SPE, adaptive responses to consistently pre-
sented TPEs occur in the form of volitional strategies; (2)
these strategies could be sensitive to the size of the TPE;
and (3) strategy use facilitates savings; a history of expo-
sure to SPEs is not needed for savings to occur.

Discussion

In a series of experiments, we probed how the motor
system responds to recurring TPEs. We demonstrate
that TPEs are compensated entirely via intentional, ex-
plicitly-accessible strategies, reflecting enhanced action
selection. A fundamental question is whether such com-
pensation constitutes “adaptive” behavior at all. Insofar
as adaptation is defined as a change in motor behavior
following exposure to a perturbing environment, the an-
swer is yes. However, if it is viewed more narrowly as a
performance change set in motion specifically by SPEs,
then perhaps no. We imposed no SPE, and the change in
motor output was potentiated by a TPE elicited via a tar-
get shift.

There are many reasons to believe that this change was
explicitly driven. In experiment 1, individual-level changes
in hand direction were quite idiosyncratic and the group-
level exponential trend emerged only as an artifact of
averaging. This is not observed with implicit learning,
wherein individual subjects also typically demonstrate ex-
ponential changes. Further, there was a substantial RT in-
crease on target-shift trials, suggesting the engagement
of time-consuming and deliberative mental processes
(Fernandez-Ruiz et al., 2011; Haith et al., 2015; McDougle
and Taylor, 2019). Subjects also disengaged from the
“learned” behavior immediately on instruction, with a con-
comitant drop in RT; such flexibility is a hallmark of explic-
it but not implicit learning (Bond and Taylor, 2015).
Relatedly, no aftereffects were evident on washout trials.
In experiment 2, subjects were able to precisely report the
aiming location and also reach there, without any implicit

March/April 2022, 9(2) ENEURO.0371-21.2022

change in their reach direction. Finally, experiment 3 re-
vealed that the asymptotic level of hand deviation was
sensitive to TPE magnitude, unlike what has been ob-
served with implicit learning (Wei and Kording, 2009;
Kasuga et al., 2013; Morehead et al., 2017). Collectively,
these observations reject the possibility that TPEs, at
least as imposed through shifts in target location, are
compensated implicitly. Rather, our results strongly indi-
cate that they set in motion explicitly accessible, inten-
tional aiming strategies.

Experiment 3 suggested the intriguing possibility that
strategies employed to compensate small versus large
TPEs could be distinct. Large target-shifts could be
compensated in two ways. First, subjects could men-
tally rotate reach plans for moving to the initially pre-
sented target (Fernandez-Ruiz et al., 2011; McDougle
and Taylor, 2019), underpinned by premotor and M1
circuits (Georgopoulos et al., 1989; Kosslyn et al.,
1998). A key prediction of this hypothesis however is
that RT should scale with perturbation magnitude,
which did not bear out in our data. Additionally, mental
rotation can lead to incomplete learning (McDougle and
Taylor, 2019) whereas we observed more complete
compensation for larger errors.

A compelling alternative then is that subjects learn to
re-aim by actually learning the task structure and using it
to deliberatively evaluate potential actions by mentally
simulating their consequences. Specifically, actions are
guided by representations of outcomes they produce
given the state of the environment and what these out-
comes are worth, as in model-based reinforcement learn-
ing (Dickinson and Balleine, 1994; Doya, 2000; Daw et al.,
2005; Doll et al., 2012). It is known that despite being
time-consuming, such goal-directed algorithms are highly
flexible and can be adjusted to account for changes in-
duced via outcome revaluation, and environment and
goal changes. The longer RTs on the shift trials and the
rapid, instruction-driven disengagement of the strategy
on the no-shift trials, are highly in line with this notion.

In contrast to model-based control, small TPEs likely
set in motion different mechanisms. When the target-
shifts were small, we observed greater variability during
early learning, a small undershoot during the asymptotic
phase, a smaller RT increase on shift trials, and persist-
ence of the learned behavior during the late no-shift trials
(though this last result was not as clear-cut as the others).
We suggest that this occurs because subjects might em-
ploy a “model-free” strategy (Kaelbling et al., 1996;
Sutton and Barto, 1998) to counter small TPEs. That is,
they explore the solution space for a movement that can-
cels the TPE and then repeat it as it leads to successful or
rewarding outcomes. Such a strategy engenders higher
variability initially, including a few trials on which subjects
move away from the direction of the shift (Fig. 2A, first few
learning trials). Furthermore, repetition yields robust stim-
ulus-response associations, leading to the execution of
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the successful action whenever a (small) target-shift oc-
curs. Such responses are computationally frugal, but they
are also inflexible, leading to a continued expression of
the learned, “habitual” behavior (Graybiel, 2008), a hint of
which was seen on the late no-shift and early washout tri-
als in the 15° shift group.

Could it rather be that adaptive responses to small TPEs
(15° in our case) are driven by some kind of implicit process,
like for SPEs? We posit that this is not the case. Diedrichsen
et al. (2005) examined changes in motor output following ex-
posure to a 12° error elicited either via a target-shift (TPE) or a
visuomotor rotation (SPE). They reported that unlike the SPE,
the TPE-mediated change did not carry signatures of implicit
learning. Additionally, recent work (Oza et al., 2020) has
shown that when explicitly instructed to ignore a consistently
occurring 10° shift in target location, subjects are able to do
so quite well. A similar sensitivity to instruction has been re-
ported for even smaller TPEs (Tsay et al., 2021). This would
not be expected from a system undergoing implicit recalibra-
tion (Mazzoni and Krakauer, 2006; Morehead et al., 2017).
Finally, it has been proposed that re-exposure to a perturbing
environment produces an attenuation in the implicit response,
and an enhancement of the strategic component that ulti-
mately produces savings (Avraham et al., 2021). Savings was
evident in our 15° target-shift group as well; since we did not
induce SPEs, this can be attributed only to a strategic pro-
cess. As such, we suggest that when TPEs are small, sub-
jects choose to aim to the new target location that gets
cached or memorized with practice.

Why might strategies differ for learning from small ver-
sus large TPEs? One reason could be that model-free
motor exploration can be very slow in terms of the number
of attempts needed to arrive at the solution, even when
the task structure is simple to learn. This strategy may
therefore be functionally quite limited. When the limits of
exploration are reached (i.e., when TPE magnitude is be-
yond tolerable levels), the sensorimotor system might
abandon this strategy in favor of a new one that involves
extracting as much information about the environment as
possible, and selecting actions that account for changes
in it. Notably, a dissociation for dealing with small versus
large TPEs has been shown in studies of the behavioral
(Day and Lyon, 2000; Desmurget et al., 2004; Mutha et al.,
2008) and neural (Day and Brown, 2001; Desmurget et al.,
2001) correlates of online, feedback-mediated motor cor-
rections. Our results suggest that a similar dichotomy
could hold for feedforward processes as well.

Our experiments also clearly brought forth savings
when subjects were re-exposed to the target-shift follow-
ing washout. Since we never imposed an SPE, this result
indicates that a history of exposure to SPEs is likely not
needed for a latent memory that facilitates faster re-learn-
ing to be expressed. This nicely converges with recent
work (Leow et al., 2020) demonstrating savings even
when subjects never adapt to an SPE, but are exposed to
a TPE before the SPE (and the solution to cancel both is
the same in hand space). Our experimental design al-
lowed us to isolate the TPE, and its disentanglement from
the SPE enabled greater certainty about the determinants
of latent memories in sensorimotor learning. We suggest,
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in conjunction with other results (Haith et al., 2015;
Huberdeau et al., 2015; Morehead et al., 2015), that SPE-
specific implicit mechanisms are not a significant contrib-
utor to savings.

How do strategic processes foster savings? First, stim-
ulus-response associations such as those formed for
smaller target-shifts, could get directly cached in memo-
ry and retrieved when appropriate. Such retrieval re-
quires less time and little cognitive effort (Logan, 1988).
It is not clear whether model-based simulations of action
outcomes employed to counter larger target-shifts are
also cached and later retrieved without any additional
planning. But, another way in which savings could
emerge from model-based control is that mental simula-
tions could be used to train a model-free process to re-
duce computational cost in the long run; the possibility
for such an interaction has been raised before (Daw et
al., 2011). This is essentially a practice-mediated transi-
tion from goal-directed to automatic, habitual behavior.
Such a deliberate-to-automatic change likely explains
why savings occurs even when preparation time is con-
strained but subjects are overtrained (Huberdeau et al.,
2019).

Model-based and model-free mechanisms set in mo-
tion by large and small TPEs, respectively, could be sup-
ported by distinct neural networks. Numerous rodent
studies have shown that model-free learning relies on dor-
solateral striatum (posterior putamen in primates). This re-
gion is richly irrigated by inputs from sensorimotor cortex,
and is essential for the formation and expression of stimu-
lus-response associations (Yin and Knowlton, 2006;
Graybiel, 2008; Devan et al., 2011). In contrast, goal-di-
rected, model-based actions require intact processing in
dorsomedial striatum (caudate and rostral putamen in pri-
mates), which receives abundant inputs from prefrontal
cortical areas (Yin et al., 2005; Redgrave et al., 2010). This
dissociation is evident in humans as well, with greater ac-
tivation in the anterior caudate for model-based control
(Tanaka et al., 2008), and caudal putamen for stimulus-
response mediated behavior (Tricomi et al., 2009).
Importantly, it has been shown that repeated practice
leading to a shift from goal-directed to more direct stimu-
lus-response control, is also associated with a transition
in activation in rostromedial (associative) to caudolateral
(sensorimotor) striatum (Jueptner et al., 1997; Lehéricy et
al., 2005). In our case, such a shift toward striatal circuits
supporting automaticity could occur when large TPEs are
repeatedly countered. This activity could support long-
term motor memories that eventually give rise to savings.
Strengthening this view is the finding that Parkinson’s dis-
ease patients, who show impaired stimulus-response
learning (Frank et al., 2004; Shohamy et al., 2006;
Rutledge et al.,, 2009), also show deficient savings
(Bédard and Sanes, 2011; Leow et al., 2013). When a TPE
is accompanied by a limb-related SPE, a parallel network
involving the cerebellum and parietal cortex is likely acti-
vated to recalibrate an internal model of the physics of the
limb. How these two neural systems cooperate (or com-
pete) to forge overall adaptive behavior should be an ex-
citing area for future investigation.
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