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Abstract

Information theoretic metrics have proven useful in quantifying the relationship between behaviorally relevant parame-
ters and neuronal activity with relatively few assumptions. However, these metrics are typically applied to action po-
tential (AP) recordings and were not designed for the slow timescales and variable amplitudes typical of functional
fluorescence recordings (e.g., calcium imaging). The lack of research guidelines on how to apply and interpret these
metrics with fluorescence traces means the neuroscience community has yet to realize the power of information the-
oretic metrics. Here, we used computational methods to create mock AP traces with known amounts of information.
From these, we generated fluorescence traces and examined the ability of different information metrics to recover
the known information values. We provide guidelines for how to use information metrics when applying them to func-
tional fluorescence and demonstrate their appropriate application to GCaMP6f population recordings from mouse
hippocampal neurons imaged during virtual navigation.
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Functional fluorescence imaging and information theoretic quantification could provide a powerful new combina-
tion of tools to study neural correlates of behavior, but functional fluorescence signals represent altered versions of
the underlying physiological events. Therefore, it is unclear whether or how information metrics can be applied to
functional fluorescence imaging data. Here, we performed an in-depth simulation study to examine the application
of the widely used bits per second and bits per action potential (AP) metrics of mutual information (MI) to functional
florescence recordings. We provide guidelines for how to use information metrics when applying them to function-
al fluorescence and demonstrate their appropriate application to GCaMP6f population recordings from mouse hip-
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Introduction

Neurons encode parameters important for animal be-
havior, at least in part, through the rate of production of
action potentials (APs). Evidence for this can be found
from electrophysiological AP recordings of orientation
tuning in the visual system (Hubel and Wiesel, 2009),
chemical sensing in the olfactory system (Leveteau and
MaclLeod, 1966; Wachowiak and Shipley, 2006), and spa-
tial encoding in the hippocampus (O’Keefe, 1976). Key to
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deciphering the neural code, therefore, is defining metrics
to quantify the relationship between behavioral parameter
spaces and a neuron’s spiking rate. There are many met-
rics used for quantification, and are often used to com-
pare neural responses across conditions or in neurons
with complex responses. The underlying assumptions of
the different metrics then become important factors to
consider when determining which one to use.

Information theory is growing in popularity in the neuro-
science community, largely because it provides a means
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to quantify rate coding with relatively few assumptions.
One useful information theoretic measure is mutual infor-
mation (MI), which is typically measured in bits per unit
time, and describes the increase in predictability of the
neural response when behavioral parameters are known.
Formally, Ml is the information about one variable that can
be extracted from another, such as the information about
behavior that can be derived from observing neural activ-
ity. Ml can be applied to neurons with widely varying re-
sponse properties because it (1) is a nonlinear metric, not
requiring the linearity assumptions of correlation metrics
(Grubb and Thompson, 2003; Kropff et al., 2015; Hinman
et al., 2016); (2) does not assume a response shape, as is
typical with Gaussian field mapping metrics (Soo et al.,
2011; Kraus et al., 2015; Tang, 2016) or metrics using ex-
ponential or polynomial curve fitting (Hinman et al., 2016);
and (3) uses the full time trace or shape of the mean response
profile, rather than defining receptive fields with thresholding
(Niell and Stryker, 2008; Pastalkova et al., 2008; Harvey et al.,
2009).

However, MI can be nontrivial to estimate from neural
and behavioral recordings and its estimation is an on-
going area of research (Kraskov et al., 2004; Gao et al.,
2017; Belghazi et al., 2018; Timme and Lapish, 2018).

Here, we focus on the most widely used estimator of Ml
in neuroscience, the SMGM estimator developed by
Skaggs, McNaughton, Gothard, and Markus (Skaggs et al.,
1993), although as a point of comparison, we also consider
the binned estimator (Timme and Lapish, 2018) and a sepa-
rate technique developed by Kraskov, Stogbauer, and
Grassberger (KSG; Kraskov et al., 2004). The binned estima-
tor estimates the joint probability distribution using a 2D his-
togram of neural response versus behavioral variable; this
transforms continuous variables into discrete values (Timme
and Lapish, 2018). KSG estimates Ml by examining the dis-
tance between data-points in the neural activity-behavioral
parameter space. The SMGM estimator, on the other hand,
relies on the assumption that AP firing follows an inhomoge-
neous Poisson process. The SMGM estimator therefore re-
quires binning of only the behavioral variable(s), in contrast
to the binned estimator. The profile of firing rates versus be-
havioral variable is then used to estimate the Ml.

The relative simplicity of the SMGM estimator has
added to its popularity and widespread use in neuro-
science applications for estimating behavioral information
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contained in single unit AP recordings. This metric has
proven useful in quantifying rate coding in place cells
(Knierim et al., 1995; Markus et al., 1995; Lee et al., 2006;
Poucet and Sargolini, 2013), complex spatial responses
of hippocampal interneurons (Frank et al., 2001; Wilent
and Nitz, 2007), odor sequence cells (Allen et al., 2016),
time cells (MacDonald et al., 2013), head direction cells
(Stackman and Taube, 1998), speed cells (Fyhn et al.,
2002), and face differential neurons (Nguyen et al., 2013,
2014), and has been used across multiple different spe-
cies (Yartsev and Ulanovsky, 2013; Hazama and Tamura,
2019; Mankin et al., 2019). Furthermore, as a single neu-
ron metric, it provides statistical power for comparisons.
Thus, it has been used to quantify differences in rate cod-
ing across different brain regions (Simonnet and Brecht,
2019) and across experimental interventions such as le-
sions (Calton et al., 2003; Liu et al., 2004), inactivations
(Huang et al., 2009; Koenig et al., 2011; Brandon et al.,
2011; Hok et al., 2013), and applications of drugs (Robbe
and Buzsaki, 2009; Newman et al., 2014). Further, it has
been used to examine differences in encoding across dif-
ferent behaviors (Zinyuk et al., 2000; Park et al., 2011;
Aronov and Tank, 2014) and disease states (Zhou et al.,
2007; Gerrard et al., 2008; Fu et al., 2017). SMGM in-
formation is often normalized from measuring bits per
unit time to instead measure bits per AP. This creates
a measure sensitive only to the selectivity of a neuron,
and not its average firing rate. Thus, SMGM is a power-
ful tool for measuring the neural code in electrophysio-
logical recordings of APs.

The power of Ml estimators has yet to be fully exploited
by the neuroscience community. For example, the esti-
mators have not yet been widely used to compare encod-
ing properties of large numbers of genetically identified
neurons, or to quantify information content of other dis-
crete signaling events such as synaptic inputs; both of
which are difficult to study using electrophysiological
methods. In vivo imaging of functional indicators has
emerged as an important tool, largely because it pos-
sesses these capabilities. For example, using fluorescent
calcium indicators, the functional properties of large pop-
ulations of neurons can be simultaneously recorded in ro-
dents (Dombeck et al., 2007; Ziv et al., 2013; Stirman et
al., 2016; Sheffield et al., 2017; Radvansky and Dombeck,
2018; Stringer et al., 2019), zebrafish (Ahrens et al., 2013),
or invertebrates such as Caenorhabditis elegans (Nguyen
et al., 2016) and Drosophila (Keller and Ahrens, 2015;
Mann et al., 2017). Furthermore, in vivo imaging can assure
the genetic identity of the recorded neurons (Khoshkhoo et
al., 2017; Sheffield et al., 2017; Jing et al., 2018a,b,c) and
can access subcellular structures, allowing for functional
recordings from synapses and dendrites using different
functional fluorescent indicators (Sheffield and Dombeck,
2015; Scholl et al., 2017; Sheffield et al., 2017; Jing et al.,
2018d; Marvin et al., 2018, 2019; Adoff et al., 2021).

However, these indicators generate signals that are dif-
ferent from the underlying quantal events. For example,
somatic calcium indicators reveal intensity variations that
are correlated with somatic AP firing rates but are a
smoothed and varying amplitude version of the AP train.
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This transformation from AP train to fluorescence trace is
an active area of research (Dana et al., 2018; Greenberg
et al., 2018; Eltes et al., 201 9), but it is often approximated
by convolving the AP train with a kernel, which defines the
indicator’s response to a single AP. The shape of the ker-
nel is a function of the indicator expression level, intracel-
lular calcium buffering, amount of calcium influx, efflux
rates, background fluorescence, resting calcium concen-
tration, and other factors. When measured in pyramidal
neurons, average kernels typically take the shape of a
sharp increase in fluorescence followed by an exponential
decay to baseline (Yaksi and Friedrich, 2006; Chen et al.,
2013; Park et al., 2013; Dana et al., 2018; Pachitariu et al.,
2018). Therefore, while functional fluorescence imaging
and information theoretic quantification may prove to be a
powerful new combination of tools to study neural corre-
lates of behavior, it is critical to remember that functional
fluorescence signals represent altered versions of the
underlying physiological events.

Caution is then needed when applying information met-
rics to continuous functional fluorescence traces, yet the
imaging community is already beginning to use informa-
tion metrics, particularly SMGM. This metric has been
applied to somatic calcium responses to compare the infor-
mation content of the same neurons across different behav-
ioral epochs (Heys and Dombeck, 2018), across different
populations of neurons in different brain regions (Hainmueller
and Bartos, 2018), across different genetically identified neu-
ral populations (Khoshkhoo et al., 2017), or to examine en-
coding by subcellular structures (Rashid et al., 2020), or to
classify the significance of encoding particular parameters by
individual neurons (Kinsky et al., 2018; Mau et al., 2018;
Rashid et al., 2020).

However, it is essential to recognize some of the as-
sumptions underlying these information metrics are vio-
lated by functional florescence recordings. All three
metrics (SMGM, KSG, and binned estimation) assume
stationarity in the neural response, which is violated by
the elongated time responses and relatively slow fluctua-
tions of the fluorescence intensity of the reporters. When ap-
plied to spiking data, there is also a change in units: rather
than AP counts, functional fluorescence traces are typically
plotted in units of florescence change with respect to baseline
(AF/F). One possible solution to these issues would be to de-
convolve calcium traces to recover APs; however, deconvo-
lution is an active area of research, and the accuracy of these
methods has recently been questioned (Evans et al., 2019).
Ideally, the calcium traces could be used directly to measure
spiking information, without the need for such an in between,
potentially error inducing, step.

Quantifying the effects of the above violations on measure-
ments of information using functional fluorescence record-
ings with an analytical solution is particularly challenging with
behaviorally modulated neural recording data. However,
a more tractable means of quantifying the effects would
be to use a simulation study to measure the induced
biases and changes in measurement quality (Morris et
al., 2019). This strategy makes use of pseudo-randomly
generated AP traces and has the advantage that the
ground truth parameters of the simulations are known,
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while variability because of behavior and other features
can be incorporated (Cohen and Kohn, 2011; Climer et
al., 2013, 2015; Ostergaard et al., 2018).

To provide the field with guidelines for the use of infor-
mation metrics applied to functional fluorescence record-
ing data, we used computational simulation methods to
create a library of ten thousand mock neurons whose spik-
ing output carry an exact, known (ground-truth) amount of
information about the animal’s spatial location in its envi-
ronment. We used real behavioral data (available at https://
doi.org/10.7910/DVN/SCQYKR) of spatial position over
time from mice navigating in virtual linear tracks and then
simulated the spatial firing patterns of the mock neurons
using an inhomogeneous Poisson process framework
(Brown et al., 2003; Paninski, 2004; Climer et al., 2013). We
then simulated fluorescent calcium responses for each
neuron in each session by convolving the AP trains with
calcium kernels for different indicators, primarily GCamp6f
(Chen et al., 2013), and then we added noise. MI metrics
(between spatial location and the neural signals) were then
applied to the spiking or fluorescence traces to quantify
the performance of the metrics for estimating information.
We provide a user toolbox (found at https://github.com/
DombeckLab/infoTheory), which consists of MATLAB func-
tions to generate libraries of model neurons with known
amounts of information, to generate spiking or fluorescence
time-series from those model neurons, and to estimate neu-
ron information from real or model spiking or fluorescence
time-series datasets using the three metrics considered here
(SMGM, binned estimator, KSG). We focused on testing the
performance of the SMGM method, and then compared its
performance to the binned estimation and KSG methods,
which do not have the underlying Poisson assumption re-
quired for the SMGM approach. We also applied a deconvo-
lution algorithm to test its performance. We then
applied this analysis to real datasets of hippocampal
neuron populations from mice navigating in virtual line-
ar tracks. We quantified the spatial information content
of the populations and then performed Bayesian de-
coding of mouse position from different information
containing subsets of this population. Interestingly, we
found that the population quantile with the lowest in-
formation values were still able to decode mouse posi-
tion to the closest quarter of the track. Thus, we
provide new findings about the neural code for space
that were made possible by the information metrics
and guidelines that we introduce here.

The SMGM method applied directly to the mean AF/F in-
tensity map appeared to best recover the ground truth infor-
mation. We provide guidelines for the use of the SMGM
metric when applied to functional fluorescence recordings
and demonstrate the appropriate application of these guide-
lines to GCaMP6f population recordings from hippocampal
neurons in mice navigating virtual linear tracks.

Materials and Methods

Toolbox and data availability
We provide a user toolbox (freely available at https://
github.com/DombeckLab/infoTheory), which consists of

eNeuro.org
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MATLAB functions to generate libraries of model neu-
rons with known amounts of information, to generate
spiking or fluorescence time-series from those model
neurons, and to estimate neuron information from real
or model spiking or fluorescence time-series datasets
using the three metrics considered here (SMGM, binned
estimator, KSG). This toolbox also contains tools to
generate mock neurons using a binned distribution,
avoiding the Poisson assumption of SMGM. Behavioral
data used to generate the random traces is freely avail-
able at https://doi.org/10.7910/DVN/SCQYKR.

Construction of AP trains with known ground truth
information

To construct mock neurons with ground truth informa-
tion, we adapted the differential form of the AP informa-
tion, in bits per AP (Eq. 6). To create a rate map, we first
selected an average firing rate and target ground truth in-
formation. The mean rate (1) was always between 0.1 and
30Hz, the information in bits per AP (/5,) between 0 and
6 bits/AP, and the information in bits per second ([£)
between 0 and 24. To more evenly sample each of
these, we first randomly selected the bits per second
(I£) or bits per AP (I5,) to target. If the information target
was in bits per AP, both the information (/55) and mean
firing rate (1) were chosen uniformly. Because the in-
formation in bits per second /£ = A [§,, the bits per sec-
ond information was not uniformly sampled in this
case. If the target was to be in bits per second, both
the bits per AP (/5;) and SMGM bits per second (/5)
measures were first chosen uniformly. Because the
rate A =[§/[5,, this was not chosen uniformly. This
procedure was repeated to maintain the bounds on A,
resulting in a non-uniform sampling of information. The
final distribution (Fig. 1C) was spread acceptably for
further analysis.

The rate maps were constructed by spline interpolat-
ing across five control points with two anchored at
each end of the track, and taking the exponential for
each point, and then normalizing by the numerically
calculated integral (Fig. 1A,D). To create a map match-
ing the target information, we began with a random
spline. The “y” (relative rate) initial position of each
node was chosen from a standard normal distribution
and the initial “x” (track position) of the three center
nodes was chosen uniformly. The nodes were then
systematically moved using the MATLAB built in opti-
mizer ‘fmincon’ with constraints preventing the cross-
ing of the center nodes and keeping them on the track,
and the ‘OptimalityTolerance’ option set to 0 (Fig. 1A).
This was accomplished using the ‘genExpSpline’ func-
tion in the toolbox.

We then randomly selected behavioral traces (see
below, Behavior) and concatenated sessions until a
total time randomly chosen between 3 and 60 min was
reached (Figs. 1E,F, 2A, 3A). This was accomplished
using the ‘loadBehaviorT’ function in the toolbox. The
track positions were normalized and used to build a
conditional intensity function (CIF) from the rate
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function above. The CIF was normalized to match an
expected mean rate over the entire session, and the
MATLAB built-in ‘poissrnd’ function was used to gen-
erate AP times, sampled at 1kHz. The was accom-
plished using the ‘genSpikeTrain’ function in the
toolbox. Finally, the AP times were binned according
to the counts within mock imaging frames sampled at
30Hz.

Simulated 4F traces

To construct the % traces (Figs. 1E,J,K, 2A, 3A), we first
created a single AP response kernel from the peak-nor-
malized sum of two exponentials:

e—at _ e—bt
DRt

where t is the time since the AP and a and b are chosen

2 2
to minimize (1 — g(T,,Se)) + (0.5 - g(T,,-se+T,a,,)) where

Tiise IS the rise time in seconds and 7 is the half-fall
time in seconds. Deviations in 7,5 and 7¢, from base-
line were also measured. The kernel g(t) was then mul-
tiplied by the indicator height. The kernel parameters
were generated using the ‘fluorescenceKernel’ func-
tion, and evaluated using the ‘doubleExp’ function in
the toolbox.

The GCaMP6f, GCaMP6s, and JRGECO1a heights, rise
and fall times were measured as responses to single APs
in vivo (Kalko et al., 2011; Chen et al., 2013; Dana et al.,
2019): other kernels (Fig. 2H; Extended Data Figs. 2-2,
3-1) were approximated from other experiments pre-
sented in the references (seen in Table 1).

To define the width of the kernel (Figs. 2L-N, 3K-M),
we considered the kernel as a low pass filtered version
of the APs. If we normalize the filter to mean 1, it has

the Fourier transform ( L L )(ﬂ> The kernel

a+2nfi b+2afi)\b-a
width was defined as the —3-dB (50%) cutoff period of

this filter: 1 = \/*aQ*bQJrZV:\A/%M"”sz*b“. For the simula-

tions with different width kernels, a kernel width was
chosen between 0.01 and 10 s, a rise time between
0.001 and 1 s, and a fall time between the rise time and
2 s. Then, a and b were chosen to minimize the
squared error between these three targets using the
builtin MATLAB optimizer ‘fminsearch.’

White noise with a SD of 0.15 £4f was then added to the
mock fluorescence traces.

Nonlinearity

In our linear simulations used throughout this work,
the fluorescence kernels associated with a fast se-
quence of APs were approximated to sum linearly. In
real cultured neurons, a summation nonlinearity has
been observed such that sequences of APs do not
generate a linear summation in AF/F (Dana et al.,
2019). To simulate this nonlinearity, the % trace was
then further transformed as:
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Figure 1. Procedures for generating a library of 10,000 neurons with known amounts of information. A, Five splines with a
gradient of ground truth information (/5,) representing the steps in generating a continuous rate map (A (x)) matching the de-
sired target information, in this case, 2 bits/AP. Red Xs indicate control nodes that were moved to change the shape of the
spline and minimize the squared error to the target information. B, Cross-section of the error surface around the solution
point as a function of the position of node 3, and the trajectory taken by the solver to minimize the error and arrive at the tar-
get. C, Histograms of ground truth information resulting from repeating the procedure in A, B 10,000 times to target a range
of ground truth information values in bits per second (lg). D, Splines representing A (x)) and bits per AP (5, at the solution
point for a low (/5. = 0.04 bits/AP, left) and high (55, 2 bits/AP, right) information neuron. E, Steps to generate mock AP and
functional fluorescence data. (1) An example real behavior trace from a mouse running on a linear track that was used to gen-
erate the simulated spiking. (2) The behavior in combination with the rate maps generated in A-D were used to generate an
instantaneous firing rate trace. (3) The instantaneous rate was used to pseudorandomly generate APs, as shown in this mock
raster. (4) The AP raster was convolved with the GCaMP6f kernel (red, inset), and noise was added to generate a mock ATF
trace. (5) Large numbers of these traces were generated and used to assess the effects of many simulation parameters on
the estimators. F-L, Spiking and fluorescence activity patterns generated from the example simulated neurons shown in D
and using a mean firing rate of 1 Hz. F, Behavioral trace in blue with AP raster shown in red. G, Lap-by-lap raster of the neu-
rons’ firing versus mouse track position. H, Lap by lap binned, firing rates versus mouse track position for the neurons. I, AP
raster (red) and mock calcium traces for the same behavioral period shown in F. J, Lap by lap mean binned fluorescence ver-
sus mouse position for the neurons. K, Binned average firing rate (A;, black) and fluorescence intensity (f;, green) maps for
the two neurons. These maps were used for information analyses.

AF' . AF 6.264 Deconvolution
F TS9N )T 1 +e-3251Re(logio () ) ° Deconvolution was performed using the previously
described FOOPSI algorithm (Vogelstein et al., 2010;
This equation was arrived at by fitting the measured re-  Friedrich et al., 2017). The regularization coefficient was
sponses in Dana et al. (2019; their Fig. 2C), which can be  set at 0.02154, which maximized the correlation between
compared with the nonlinearity used here (Extended Data  the deconvolved trace and the true spike train in a random
Fig. 3-3A). sample of 500 simulated traces: all other parameters were
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Figure 2. Quantification of the precision of the SMGM bits per second metric using APs or functional fluorescence recordings. A, Three
representative mock neurons spanning the range of ground truth information values in bits per second (Ig). From top to bottom for each,
Mouse track position versus time, AP raster, fluorescence calcium trace (green), and firing rate map (A, black) and change in fluorescence
map (f;, green). B-D, The ground truth bits per second values are well recovered when measured from AP traces. B, Information measured
from AP data using the SMGM bits per second metric (/£) versus ground truth information (/). Each dot is a single mock neuron, the gray
dashed line is the unity line (perfect measurement), the pink line is the line of best fit. Red circles show the examples in A. C, Percentage
error for the information measurements shown in B. D, Heat map of percentage error measurements shown in C. Black lines are 2 SDs, the
white line is the mean. E-G, Effects of applying the SMGM bits per second metric to fluorescence traces. E, Information measured from
mock GCaMP6f traces using the SMGM bits per second metric (/£) versus ground truth information (). F, Percentage error for the informa-
tion measurements shown in E. G, Heat map of percentage error measurements shown in F. H, Representative mock kernels mimicking re-
sponses from different indicators. I-K, The effect of kemel height on estimating ground truth information () using the SMGM bits per
second metric (/£). Kernel height for the kernels shown in H are indicated by colored triangles. I, Percentage error as a function of kernel
height. J, Heat map of percentage error measurements shown in I with mean (white) and 2 SDs (black). K, The average percentage error as
a function of kernel height and ground truth information in SMGM bits per second (lf). L-N, The effect of kernel width on estimating ground
truth information (£) using the SMGM bits per second metric (F). Kerel widths for the kernels shown in H are indicated by colored trian-
gles. L, Percentage error as a function of kernel width. M, Heat map of percentage error measurements shown in L with mean (white) and 2
SDs (black). N, The average percentage error as a function of kernel width. Recording density affected the metrics (Extended Data Figure
2-1). Changing the kernel to common indicators yielded qualitatively similar, but quantitatively different results (Extended Data Figure 2-2).
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Figure 3. Quantification of the precision of the SMGM bits per AP metric using APs or functional fluorescence recordings. A,
Three representative mock neurons spanning the range of ground truth information values in bits per AP (/55). From top to
bottom for each, Mouse track position versus time, AP raster, fluorescence calcium trace (green), and firing rate map (A;,
black) and change in fluorescence map (f;, green). B-D, The ground truth bits per AP values are well recovered when meas-
ured from AP traces. B, Information measured from AP data using the SMGM bits per AP metric (/5,) versus ground truth in-
formation (/5,). Each dot is a single mock neuron, the gray dashed line is the unity line (perfect measurement). Red circles
show the examples in A. C, Percentage error for the information measurements shown in B. D, Heat map of percentage error
measurements shown in C. Black lines are 2 SDs, the white line is the mean. E-G, Effects of applying the SMGM bits per AP
metric to fluorescence traces. E, Information measured from mock GCaMP6f traces using the SMGM bits per AP metric (IQP)
versus ground truth information (IEP). F, Percentage error for the information measurements shown in E. G, Heat map of per-
centage error measurements shown in F. H-J, The effect of kernel height on estimating ground truth information (/55) using
the SMGM bits per second metric (IQP). Kernel height for the kernels shown in Figure 2H are indicated by colored triangles.
H, Percentage error as a function of kernel height. I, Heat map of percentage error measurements shown in H with mean
(white) and 2 SDs (black). J, The average percentage error as a function of kernel height and ground truth information in bits
per AP (5,). K-M, The effect of kernel width on estimating ground truth information (/55) using the SMGM bits per AP metric
(I%p)- Kernel widths for the kernels shown in Figure 2H are indicated by colored triangles. L, Percentage error as a function of
kernel width. M, Heat map of percentage error measurements shown in L with mean (white) and 2 SDs (black). N, The aver-
age percentage error as a function of kernel width. Changing the kernel to common indicators yielded qualitatively similar,
but quantitatively different results (Extended Data Figure 3-1). These errors could not be resolved by changing the bin width
(Extended Data Figure 3-2). Addition of a nonlinearity further distorted the measured information (Extended Data Figure 3-3).
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Table 1: Properties of indicator kernels used

Height
Kernel AF/F Rise(s) Fall(s) Source
gCaMP6f 0.190 0.042 0.142 Chenetal. (2013)
jRGECO1a 0.164 0.041 0.207 Kalko et al. (2011)
gCaMP7f 0.560 0.063 0.276 Danaetal. (2019)
gCaMP6s 0.230 0.179 0.550 Chenetal. (2013)
iGluSnfR-A184S 0.300 0.022 0.106 Marvin et al. (2018)

optimized for each trace. Because the example regulari-
zation coefficient provided by Friedrich et al., 2017 was
2.4, we also measured information values at 100 different
values for the regularization coefficient between 0 and 3;
this had little effect on the measured information
(Extended Data Fig. 4-1).

KSG estimator

The previously described second KSG estimator
(Kraskov et al., 2004) was used using the fifth nearest
neighbor distance.

Binned estimators

The binned MI estimators were used (Timme and Lapish,
2018). The activity trace was divided into 10 bins, either
evenly across the span of the activity (uniform binned) or vari-
ably so the bins contained the same number of samples (oc-
cupancy binned). Position was similarly divided into 60 bins.

Gaussian simulations

To compare the analytic approximation to our numerical
method, the numerical techniques had to be applied to
place cells with Gaussian rate maps. The same target in-
formation, firing rates, and behavior were used as for our
original 10,000 simulations with spline rate maps.
However, instead the rate map was chosen as a Gaussian
1 E
with width o:e§<7172/”'09(2)7'09(2#)). For the numeric
simulations, the true amount of information was calcu-
lated using a numeric integrator. The instantaneous rate
was calculated using the normal distribution PDF. This
was normalized and used to generate a spike train and
florescence trace as above.

Bayesian decoding

The Bayesian decoder used here (Fig. 5G,H) was
adapted from a previously described method (Zhang et
al., 1998). Decoding was performed on the likelihood that
a significant transient occurred in a time frame, trained on
the first 80% of the session and tested on the last 20%.
The session was divided into At = 0.1 s bins. The condi-
tional likelihood that an animal is in position x; given the
number of active frames during a time window (n) is

P(Xi\n):Px(X/)(Hf,-?)e =R

J=1

Where px(x;) is the (marginal) probability that the animal is
in the /™ spatial bin during a time sample, f;; is the average

September/October 2021, 8(5) ENEURO.0266-21.2021

Research Article: Methods/New Tools 8 of 24
rate of significant frames by the /' neuron in the i" spatial
bin, n; is the number of significant frames observed during
the time window in neuron j, and M is the total number of
neurons. The decoded position was selected as the one
with maximum conditional likelihood.

Animals

Ten- to 12-week-old male C57BL/6 mice (20-30 g) were in-
dividually housed under a reverse 12/12 h light/dark cycle, all
experiments were conducted during the dark phase. All ex-
periments were approved by the Northwestern University
Animal Care and Use committee.

Behavior

We used a previously described virtual reality set-up
and task (Heys et al., 2014; Sheffield and Dombeck, 2015;
Sheffield et al., 2017), some of the behavior sessions
used here has previously appeared in these studies.
Briefly, water scheduled, head fixed mice were trained to
run on a cylindrical treadmill down a 3-m virtual track to
receive a water (4 ul) reward at the end of the track, and
were subsequently teleported to the beginning of the
track after a 1.5-s delay. Behavioral sessions were in-
cluded if the animal ran at least 20 laps containing a con-
tinuous 40-cm run for which the velocity was over 7 cm/s
during a 5- to 30-min session.

Mouse surgery and virus injected

We performed population calcium imaging of CA1 neu-
rons as described previously (Sheffield and Dombeck,
2015; Sheffield et al., 2017). Briefly, 30 nl of AAV1-
SynFCaMP6f (University of Pennsylvania Vector Core, 1.5
x 10" GC/ml) was injected through a small craniotomy
over the right hippocampus (1.8 mm lateral, 2.3 mm cau-
dal of bregma; 1.25 mm below the surface of the brain)
under isoflurane (1-2%) anesthesia. 7d later, a hippo-
campal window and head plate was implanted as de-
scribed previously (Dombeck et al., 2010).

Two-photon imaging

Imaging was performed as previously described (Sheffield
and Dombeck, 2015; Sheffield et al., 2017). Scanimage four
was used for microscope control and acquisition (Pologruto
et al., 2003). Time series movies 1024 or 512 x 256 pixels)
were acquired at 50 Hz. A Digidata1440A (Molecular Devices)
with Clampex 10.3 synchronized position on the linear track,
reward timing, and the timing of image frames.

Image processing, region of interest (ROI) selection,
and calcium transient analysis

Images were processed as previously described (Sheffield
and Dombeck, 2015; Sheffield et al., 2017), with minor modifi-
cations. Briefly, rigid motion correction was performed using
cross-correlation as in (Dombeck et al.,, 2010; Miri et al.,
2011; Sheffield and Dombeck, 2015), but here using a fast
Fourier transform approximation on the full video. ROls
were defined as previously described (Mukamel et al.,
2009; w=0.6, 150 principal/independent components, SD
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threshold =2.5, SD smoothing width=1, area limits =100-
1200 pixels). % traces were generated by normalizing
around the eighth percentile of a 3-s sliding window.
Significant transients from both experimental and mock flu-
orescence traces were selected by comparing the ratio of
amplitudes and durations of positive to negative going
transients with a false positive rate <0.01% (Dombeck et
al., 2010). Mock traces used the histograms generated
from the mock gCaMP6f traces (Extended Data Fig. 2-3) or
from the specific matching indicator traces (Extended Data
Figs. 2-2, 3-1): experimental data histograms were built
separately. All subsequent analyses were run using these
significant transients.

Behavior analysis

The mean virtual track velocity was defined as the total
virtual track distance covered during the session divided
by the total duration of the session; slow and stop periods
were included in this metric. All other analyses were re-
stricted to long running periods, where the animal ex-
ceeded a virtual track velocity of 4cm/s and ran
continuously for at least 40 cm.

Defining place fields

Place fields were defined by first creating the spatial flu-
orescence intensity map (f;) with the 300-cm track divided
into 60 5-cm bins. This map was smoothed via a 3-bin
boxcar. Transients identified during run periods were
shuffled in order and to random intervals to create 1000
bootstrapped intensity maps. Candidate fields were de-
fined as regions of the original fluorescence map with val-
ues >99% of the bootstrapped maps. Fields were then
retained if they were between 20 and 120 cm wide: signifi-
cant place cells retained at least one field that satisfied
these criteria.

Results

The SMGM information metrics

Here, we review the derivation of the SMGM information
metrics and the underlying assumptions. For illustrative
purposes throughout this manuscript, we use the exam-
ple of spatial encoding in which the firing pattern of neu-
rons carry information about the animal’s location along a
linear track; however, the derivations, equations and con-
clusions generalize to encoded variables over other do-
mains and dimensionalities.

Consider a random variable X representing the posi-
tions an animal might take, with x being its value meas-
ured at one time sample. The positions are subdivided
into N spatial bins, such that x can take on the values
{1,2,...,N}. For our analyses, N = 60. Consider a random
variable Y representing the number of APs a neuron might
fire, where y is the count measured within a time sample.
y can take on the values