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Abstract

Information theoretic metrics have proven useful in quantifying the relationship between behaviorally relevant parame-
ters and neuronal activity with relatively few assumptions. However, these metrics are typically applied to action po-
tential (AP) recordings and were not designed for the slow timescales and variable amplitudes typical of functional
fluorescence recordings (e.g., calcium imaging). The lack of research guidelines on how to apply and interpret these
metrics with fluorescence traces means the neuroscience community has yet to realize the power of information the-
oretic metrics. Here, we used computational methods to create mock AP traces with known amounts of information.
From these, we generated fluorescence traces and examined the ability of different information metrics to recover
the known information values. We provide guidelines for how to use information metrics when applying them to func-
tional fluorescence and demonstrate their appropriate application to GCaMP6f population recordings from mouse
hippocampal neurons imaged during virtual navigation.
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Significance Statement

Functional fluorescence imaging and information theoretic quantification could provide a powerful new combina-
tion of tools to study neural correlates of behavior, but functional fluorescence signals represent altered versions of
the underlying physiological events. Therefore, it is unclear whether or how information metrics can be applied to
functional fluorescence imaging data. Here, we performed an in-depth simulation study to examine the application
of the widely used bits per second and bits per action potential (AP) metrics of mutual information (MI) to functional
florescence recordings. We provide guidelines for how to use information metrics when applying them to function-
al fluorescence and demonstrate their appropriate application to GCaMP6f population recordings frommouse hip-
pocampal neurons imaged during virtual navigation.

Introduction
Neurons encode parameters important for animal be-

havior, at least in part, through the rate of production of
action potentials (APs). Evidence for this can be found
from electrophysiological AP recordings of orientation
tuning in the visual system (Hubel and Wiesel, 2009),
chemical sensing in the olfactory system (Leveteau and
MacLeod, 1966; Wachowiak and Shipley, 2006), and spa-
tial encoding in the hippocampus (O’Keefe, 1976). Key to

deciphering the neural code, therefore, is defining metrics
to quantify the relationship between behavioral parameter
spaces and a neuron’s spiking rate. There are many met-
rics used for quantification, and are often used to com-
pare neural responses across conditions or in neurons
with complex responses. The underlying assumptions of
the different metrics then become important factors to
consider when determining which one to use.
Information theory is growing in popularity in the neuro-

science community, largely because it provides a means
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to quantify rate coding with relatively few assumptions.
One useful information theoretic measure is mutual infor-
mation (MI), which is typically measured in bits per unit
time, and describes the increase in predictability of the
neural response when behavioral parameters are known.
Formally, MI is the information about one variable that can
be extracted from another, such as the information about
behavior that can be derived from observing neural activ-
ity. MI can be applied to neurons with widely varying re-
sponse properties because it (1) is a nonlinear metric, not
requiring the linearity assumptions of correlation metrics
(Grubb and Thompson, 2003; Kropff et al., 2015; Hinman
et al., 2016); (2) does not assume a response shape, as is
typical with Gaussian field mapping metrics (Soo et al.,
2011; Kraus et al., 2015; Tang, 2016) or metrics using ex-
ponential or polynomial curve fitting (Hinman et al., 2016);
and (3) uses the full time trace or shape of themean response
profile, rather than defining receptive fields with thresholding
(Niell and Stryker, 2008; Pastalkova et al., 2008; Harvey et al.,
2009).
However, MI can be nontrivial to estimate from neural

and behavioral recordings and its estimation is an on-
going area of research (Kraskov et al., 2004; Gao et al.,
2017; Belghazi et al., 2018; Timme and Lapish, 2018).
Here, we focus on the most widely used estimator of MI

in neuroscience, the SMGM estimator developed by
Skaggs, McNaughton, Gothard, and Markus (Skaggs et al.,
1993), although as a point of comparison, we also consider
the binned estimator (Timme and Lapish, 2018) and a sepa-
rate technique developed by Kraskov, Stogbauer, and
Grassberger (KSG; Kraskov et al., 2004). The binned estima-
tor estimates the joint probability distribution using a 2D his-
togram of neural response versus behavioral variable; this
transforms continuous variables into discrete values (Timme
and Lapish, 2018). KSG estimates MI by examining the dis-
tance between data-points in the neural activity-behavioral
parameter space. The SMGM estimator, on the other hand,
relies on the assumption that AP firing follows an inhomoge-
neous Poisson process. The SMGM estimator therefore re-
quires binning of only the behavioral variable(s), in contrast
to the binned estimator. The profile of firing rates versus be-
havioral variable is then used to estimate the MI.
The relative simplicity of the SMGM estimator has

added to its popularity and widespread use in neuro-
science applications for estimating behavioral information

contained in single unit AP recordings. This metric has
proven useful in quantifying rate coding in place cells
(Knierim et al., 1995; Markus et al., 1995; Lee et al., 2006;
Poucet and Sargolini, 2013), complex spatial responses
of hippocampal interneurons (Frank et al., 2001; Wilent
and Nitz, 2007), odor sequence cells (Allen et al., 2016),
time cells (MacDonald et al., 2013), head direction cells
(Stackman and Taube, 1998), speed cells (Fyhn et al.,
2002), and face differential neurons (Nguyen et al., 2013,
2014), and has been used across multiple different spe-
cies (Yartsev and Ulanovsky, 2013; Hazama and Tamura,
2019; Mankin et al., 2019). Furthermore, as a single neu-
ron metric, it provides statistical power for comparisons.
Thus, it has been used to quantify differences in rate cod-
ing across different brain regions (Simonnet and Brecht,
2019) and across experimental interventions such as le-
sions (Calton et al., 2003; Liu et al., 2004), inactivations
(Huang et al., 2009; Koenig et al., 2011; Brandon et al.,
2011; Hok et al., 2013), and applications of drugs (Robbe
and Buzsáki, 2009; Newman et al., 2014). Further, it has
been used to examine differences in encoding across dif-
ferent behaviors (Zinyuk et al., 2000; Park et al., 2011;
Aronov and Tank, 2014) and disease states (Zhou et al.,
2007; Gerrard et al., 2008; Fu et al., 2017). SMGM in-
formation is often normalized from measuring bits per
unit time to instead measure bits per AP. This creates
a measure sensitive only to the selectivity of a neuron,
and not its average firing rate. Thus, SMGM is a power-
ful tool for measuring the neural code in electrophysio-
logical recordings of APs.
The power of MI estimators has yet to be fully exploited

by the neuroscience community. For example, the esti-
mators have not yet been widely used to compare encod-
ing properties of large numbers of genetically identified
neurons, or to quantify information content of other dis-
crete signaling events such as synaptic inputs; both of
which are difficult to study using electrophysiological
methods. In vivo imaging of functional indicators has
emerged as an important tool, largely because it pos-
sesses these capabilities. For example, using fluorescent
calcium indicators, the functional properties of large pop-
ulations of neurons can be simultaneously recorded in ro-
dents (Dombeck et al., 2007; Ziv et al., 2013; Stirman et
al., 2016; Sheffield et al., 2017; Radvansky and Dombeck,
2018; Stringer et al., 2019), zebrafish (Ahrens et al., 2013),
or invertebrates such as Caenorhabditis elegans (Nguyen
et al., 2016) and Drosophila (Keller and Ahrens, 2015;
Mann et al., 2017). Furthermore, in vivo imaging can assure
the genetic identity of the recorded neurons (Khoshkhoo et
al., 2017; Sheffield et al., 2017; Jing et al., 2018a,b,c) and
can access subcellular structures, allowing for functional
recordings from synapses and dendrites using different
functional fluorescent indicators (Sheffield and Dombeck,
2015; Scholl et al., 2017; Sheffield et al., 2017; Jing et al.,
2018d; Marvin et al., 2018, 2019; Adoff et al., 2021).
However, these indicators generate signals that are dif-

ferent from the underlying quantal events. For example,
somatic calcium indicators reveal intensity variations that
are correlated with somatic AP firing rates but are a
smoothed and varying amplitude version of the AP train.
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This transformation from AP train to fluorescence trace is
an active area of research (Dana et al., 2018; Greenberg
et al., 2018; Éltes et al., 2019), but it is often approximated
by convolving the AP train with a kernel, which defines the
indicator’s response to a single AP. The shape of the ker-
nel is a function of the indicator expression level, intracel-
lular calcium buffering, amount of calcium influx, efflux
rates, background fluorescence, resting calcium concen-
tration, and other factors. When measured in pyramidal
neurons, average kernels typically take the shape of a
sharp increase in fluorescence followed by an exponential
decay to baseline (Yaksi and Friedrich, 2006; Chen et al.,
2013; Park et al., 2013; Dana et al., 2018; Pachitariu et al.,
2018). Therefore, while functional fluorescence imaging
and information theoretic quantification may prove to be a
powerful new combination of tools to study neural corre-
lates of behavior, it is critical to remember that functional
fluorescence signals represent altered versions of the
underlying physiological events.
Caution is then needed when applying information met-

rics to continuous functional fluorescence traces, yet the
imaging community is already beginning to use informa-
tion metrics, particularly SMGM. This metric has been
applied to somatic calcium responses to compare the infor-
mation content of the same neurons across different behav-
ioral epochs (Heys and Dombeck, 2018), across different
populations of neurons in different brain regions (Hainmueller
and Bartos, 2018), across different genetically identified neu-
ral populations (Khoshkhoo et al., 2017), or to examine en-
coding by subcellular structures (Rashid et al., 2020), or to
classify the significance of encoding particular parameters by
individual neurons (Kinsky et al., 2018; Mau et al., 2018;
Rashid et al., 2020).
However, it is essential to recognize some of the as-

sumptions underlying these information metrics are vio-
lated by functional florescence recordings. All three
metrics (SMGM, KSG, and binned estimation) assume
stationarity in the neural response, which is violated by
the elongated time responses and relatively slow fluctua-
tions of the fluorescence intensity of the reporters. When ap-
plied to spiking data, there is also a change in units: rather
than AP counts, functional fluorescence traces are typically
plotted in units of florescence changewith respect to baseline
(DF/F). One possible solution to these issues would be to de-
convolve calcium traces to recover APs; however, deconvo-
lution is an active area of research, and the accuracy of these
methods has recently been questioned (Evans et al., 2019).
Ideally, the calcium traces could be used directly to measure
spiking information, without the need for such an in between,
potentially error inducing, step.
Quantifying the effects of the above violations onmeasure-

ments of information using functional fluorescence record-
ings with an analytical solution is particularly challenging with
behaviorally modulated neural recording data. However,
a more tractable means of quantifying the effects would
be to use a simulation study to measure the induced
biases and changes in measurement quality (Morris et
al., 2019). This strategy makes use of pseudo-randomly
generated AP traces and has the advantage that the
ground truth parameters of the simulations are known,

while variability because of behavior and other features
can be incorporated (Cohen and Kohn, 2011; Climer et
al., 2013, 2015; Østergaard et al., 2018).
To provide the field with guidelines for the use of infor-

mation metrics applied to functional fluorescence record-
ing data, we used computational simulation methods to
create a library of ten thousand mock neurons whose spik-
ing output carry an exact, known (ground-truth) amount of
information about the animal’s spatial location in its envi-
ronment. We used real behavioral data (available at https://
doi.org/10.7910/DVN/SCQYKR) of spatial position over
time from mice navigating in virtual linear tracks and then
simulated the spatial firing patterns of the mock neurons
using an inhomogeneous Poisson process framework
(Brown et al., 2003; Paninski, 2004; Climer et al., 2013). We
then simulated fluorescent calcium responses for each
neuron in each session by convolving the AP trains with
calcium kernels for different indicators, primarily GCamp6f
(Chen et al., 2013), and then we added noise. MI metrics
(between spatial location and the neural signals) were then
applied to the spiking or fluorescence traces to quantify
the performance of the metrics for estimating information.
We provide a user toolbox (found at https://github.com/
DombeckLab/infoTheory), which consists of MATLAB func-
tions to generate libraries of model neurons with known
amounts of information, to generate spiking or fluorescence
time-series from those model neurons, and to estimate neu-
ron information from real or model spiking or fluorescence
time-series datasets using the three metrics considered here
(SMGM, binned estimator, KSG). We focused on testing the
performance of the SMGM method, and then compared its
performance to the binned estimation and KSG methods,
which do not have the underlying Poisson assumption re-
quired for the SMGM approach. We also applied a deconvo-
lution algorithm to test its performance. We then
applied this analysis to real datasets of hippocampal
neuron populations from mice navigating in virtual line-
ar tracks. We quantified the spatial information content
of the populations and then performed Bayesian de-
coding of mouse position from different information
containing subsets of this population. Interestingly, we
found that the population quantile with the lowest in-
formation values were still able to decode mouse posi-
tion to the closest quarter of the track. Thus, we
provide new findings about the neural code for space
that were made possible by the information metrics
and guidelines that we introduce here.
The SMGM method applied directly to the mean DF/F in-

tensity map appeared to best recover the ground truth infor-
mation. We provide guidelines for the use of the SMGM
metric when applied to functional fluorescence recordings
and demonstrate the appropriate application of these guide-
lines to GCaMP6f population recordings from hippocampal
neurons in mice navigating virtual linear tracks.

Materials and Methods
Toolbox and data availability
We provide a user toolbox (freely available at https://

github.com/DombeckLab/infoTheory), which consists of
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MATLAB functions to generate libraries of model neu-
rons with known amounts of information, to generate
spiking or fluorescence time-series from those model
neurons, and to estimate neuron information from real
or model spiking or fluorescence time-series datasets
using the three metrics considered here (SMGM, binned
estimator, KSG). This toolbox also contains tools to
generate mock neurons using a binned distribution,
avoiding the Poisson assumption of SMGM. Behavioral
data used to generate the random traces is freely avail-
able at https://doi.org/10.7910/DVN/SCQYKR.

Construction of AP trains with known ground truth
information
To construct mock neurons with ground truth informa-

tion, we adapted the differential form of the AP informa-
tion, in bits per AP (Eq. 6). To create a rate map, we first
selected an average firing rate and target ground truth in-
formation. The mean rate (�l ) was always between 0.1 and
30Hz, the information in bits per AP (IEAP) between 0 and
6 bits/AP, and the information in bits per second (IEs )
between 0 and 24. To more evenly sample each of
these, we first randomly selected the bits per second
(IEs ) or bits per AP (IEAP) to target. If the information target
was in bits per AP, both the information (IEAP) and mean
firing rate (�l ) were chosen uniformly. Because the in-
formation in bits per second IEs ¼ �l IEAP, the bits per sec-
ond information was not uniformly sampled in this
case. If the target was to be in bits per second, both
the bits per AP (IEAP) and SMGM bits per second (IEs )
measures were first chosen uniformly. Because the
rate �l ¼ IES=I

E
AP, this was not chosen uniformly. This

procedure was repeated to maintain the bounds on �l ,
resulting in a non-uniform sampling of information. The
final distribution (Fig. 1C) was spread acceptably for
further analysis.
The rate maps were constructed by spline interpolat-

ing across five control points with two anchored at
each end of the track, and taking the exponential for
each point, and then normalizing by the numerically
calculated integral (Fig. 1A,D). To create a map match-
ing the target information, we began with a random
spline. The “y” (relative rate) initial position of each
node was chosen from a standard normal distribution
and the initial “x” (track position) of the three center
nodes was chosen uniformly. The nodes were then
systematically moved using the MATLAB built in opti-
mizer ‘fmincon’ with constraints preventing the cross-
ing of the center nodes and keeping them on the track,
and the ‘OptimalityTolerance’ option set to 0 (Fig. 1A).
This was accomplished using the ‘genExpSpline’ func-
tion in the toolbox.
We then randomly selected behavioral traces (see

below, Behavior) and concatenated sessions until a
total time randomly chosen between 3 and 60min was
reached (Figs. 1E,F, 2A, 3A). This was accomplished
using the ‘loadBehaviorT’ function in the toolbox. The
track positions were normalized and used to build a
conditional intensity function (CIF) from the rate

function above. The CIF was normalized to match an
expected mean rate over the entire session, and the
MATLAB built-in ‘poissrnd’ function was used to gen-
erate AP times, sampled at 1 kHz. The was accom-
plished using the ‘genSpikeTrain’ function in the
toolbox. Finally, the AP times were binned according
to the counts within mock imaging frames sampled at
30 Hz.

Simulated DF
F traces

To construct the DF
F traces (Figs. 1E,J,K, 2A, 3A), we first

created a single AP response kernel from the peak-nor-
malized sum of two exponentials:

gðtÞ ¼ e�at � e�bt

a
b

� � a
b�a � a

b

� � b
b�a

;

where t is the time since the AP and a and b are chosen

to minimize
�
1� gðt riseÞ

�2
1
�
0:5� gðt rise1t fallÞ

�2
where

t rise is the rise time in seconds and t fall is the half-fall
time in seconds. Deviations in t rise and t fall from base-
line were also measured. The kernel g(t) was then mul-
tiplied by the indicator height. The kernel parameters
were generated using the ‘fluorescenceKernel’ func-
tion, and evaluated using the ‘doubleExp’ function in
the toolbox.
The GCaMP6f, GCaMP6s, and jRGECO1a heights, rise

and fall times were measured as responses to single APs
in vivo (Kalko et al., 2011; Chen et al., 2013; Dana et al.,
2019): other kernels (Fig. 2H; Extended Data Figs. 2-2,
3-1) were approximated from other experiments pre-
sented in the references (seen in Table 1).
To define the width of the kernel (Figs. 2L–N, 3K–M),

we considered the kernel as a low pass filtered version
of the APs. If we normalize the filter to mean 1, it has

the Fourier transform 1
a12p f̂ j

� 1
b12p f̂ j

� �
ab
b�a

� �
. The kernel

width was defined as the �3-dB (50%) cutoff period of

this filter: f�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2�b21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4114a2b21b4

pp
2p

ffiffi
2

p . For the simula-

tions with different width kernels, a kernel width was
chosen between 0.01 and 10 s, a rise time between
0.001 and 1 s, and a fall time between the rise time and
2 s. Then, a and b were chosen to minimize the
squared error between these three targets using the
built in MATLAB optimizer ‘fminsearch.’
White noise with a SD of 0.15 DF

F was then added to the
mock fluorescence traces.

Nonlinearity
In our linear simulations used throughout this work,

the fluorescence kernels associated with a fast se-
quence of APs were approximated to sum linearly. In
real cultured neurons, a summation nonlinearity has
been observed such that sequences of APs do not
generate a linear summation in DF=F (Dana et al.,
2019). To simulate this nonlinearity, the DF

F trace was
then further transformed as:
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DF
F

9

¼ sign
DF
F

� �
p

6:264

11e�3:251Re log10
DF
Fð Þð Þ :

This equation was arrived at by fitting the measured re-
sponses in Dana et al. (2019; their Fig. 2C), which can be
compared with the nonlinearity used here (Extended Data
Fig. 3-3A).

Deconvolution
Deconvolution was performed using the previously

described FOOPSI algorithm (Vogelstein et al., 2010;
Friedrich et al., 2017). The regularization coefficient was
set at 0.02154, which maximized the correlation between
the deconvolved trace and the true spike train in a random
sample of 500 simulated traces: all other parameters were
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Figure 1. Procedures for generating a library of 10,000 neurons with known amounts of information. A, Five splines with a
gradient of ground truth information (IEAP) representing the steps in generating a continuous rate map (l ðxÞ) matching the de-
sired target information, in this case, 2 bits/AP. Red Xs indicate control nodes that were moved to change the shape of the
spline and minimize the squared error to the target information. B, Cross-section of the error surface around the solution
point as a function of the position of node 3, and the trajectory taken by the solver to minimize the error and arrive at the tar-
get. C, Histograms of ground truth information resulting from repeating the procedure in A, B 10,000 times to target a range
of ground truth information values in bits per second (IES). D, Splines representing l ðxÞ) and bits per AP (IEAP at the solution
point for a low (IEAP ¼ 0:04 bits/AP, left) and high (IEAP, 2 bits/AP, right) information neuron. E, Steps to generate mock AP and
functional fluorescence data. (1) An example real behavior trace from a mouse running on a linear track that was used to gen-
erate the simulated spiking. (2) The behavior in combination with the rate maps generated in A–D were used to generate an
instantaneous firing rate trace. (3) The instantaneous rate was used to pseudorandomly generate APs, as shown in this mock
raster. (4) The AP raster was convolved with the GCaMP6f kernel (red, inset), and noise was added to generate a mock DF

F
trace. (5) Large numbers of these traces were generated and used to assess the effects of many simulation parameters on
the estimators. F–L, Spiking and fluorescence activity patterns generated from the example simulated neurons shown in D
and using a mean firing rate of 1 Hz. F, Behavioral trace in blue with AP raster shown in red. G, Lap-by-lap raster of the neu-
rons’ firing versus mouse track position. H, Lap by lap binned, firing rates versus mouse track position for the neurons. I, AP
raster (red) and mock calcium traces for the same behavioral period shown in F. J, Lap by lap mean binned fluorescence ver-
sus mouse position for the neurons. K, Binned average firing rate (l i, black) and fluorescence intensity (fi, green) maps for
the two neurons. These maps were used for information analyses.
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Figure 2. Quantification of the precision of the SMGM bits per second metric using APs or functional fluorescence recordings. A, Three
representative mock neurons spanning the range of ground truth information values in bits per second (IES). From top to bottom for each,
Mouse track position versus time, AP raster, fluorescence calcium trace (green), and firing rate map (l i, black) and change in fluorescence
map (fi, green). B–D, The ground truth bits per second values are well recovered when measured from AP traces. B, Information measured
from AP data using the SMGM bits per second metric (ÎEs ) versus ground truth information (IEs ). Each dot is a single mock neuron, the gray
dashed line is the unity line (perfect measurement), the pink line is the line of best fit. Red circles show the examples in A. C, Percentage
error for the information measurements shown in B. D, Heat map of percentage error measurements shown in C. Black lines are 2 SDs, the
white line is the mean. E–G, Effects of applying the SMGM bits per second metric to fluorescence traces. E, Information measured from
mock GCaMP6f traces using the SMGM bits per second metric (ÎFs ) versus ground truth information (IEs ). F, Percentage error for the informa-
tion measurements shown in E. G, Heat map of percentage error measurements shown in F. H, Representative mock kernels mimicking re-
sponses from different indicators. I–K, The effect of kernel height on estimating ground truth information (IEs ) using the SMGM bits per
second metric (ÎFs ). Kernel height for the kernels shown in H are indicated by colored triangles. I, Percentage error as a function of kernel
height. J, Heat map of percentage error measurements shown in I with mean (white) and 2 SDs (black). K, The average percentage error as
a function of kernel height and ground truth information in SMGM bits per second (IEs ). L–N, The effect of kernel width on estimating ground
truth information (IEs ) using the SMGM bits per second metric (ÎFs ). Kernel widths for the kernels shown in H are indicated by colored trian-
gles. L, Percentage error as a function of kernel width. M, Heat map of percentage error measurements shown in L with mean (white) and 2
SDs (black). N, The average percentage error as a function of kernel width. Recording density affected the metrics (Extended Data Figure
2-1). Changing the kernel to common indicators yielded qualitatively similar, but quantitatively different results (Extended Data Figure 2-2).
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Figure 3. Quantification of the precision of the SMGM bits per AP metric using APs or functional fluorescence recordings. A,
Three representative mock neurons spanning the range of ground truth information values in bits per AP (IEAP). From top to
bottom for each, Mouse track position versus time, AP raster, fluorescence calcium trace (green), and firing rate map (l i,
black) and change in fluorescence map (fi, green). B–D, The ground truth bits per AP values are well recovered when meas-
ured from AP traces. B, Information measured from AP data using the SMGM bits per AP metric ( ^IEAP ) versus ground truth in-
formation (IEAP). Each dot is a single mock neuron, the gray dashed line is the unity line (perfect measurement). Red circles
show the examples in A. C, Percentage error for the information measurements shown in B. D, Heat map of percentage error
measurements shown in C. Black lines are 2 SDs, the white line is the mean. E–G, Effects of applying the SMGM bits per AP
metric to fluorescence traces. E, Information measured from mock GCaMP6f traces using the SMGM bits per AP metric ( ^IFAP )
versus ground truth information (IEAP). F, Percentage error for the information measurements shown in E. G, Heat map of per-
centage error measurements shown in F. H–J, The effect of kernel height on estimating ground truth information (IEAP) using
the SMGM bits per second metric ( ^IFAP ). Kernel height for the kernels shown in Figure 2H are indicated by colored triangles.
H, Percentage error as a function of kernel height. I, Heat map of percentage error measurements shown in H with mean
(white) and 2 SDs (black). J, The average percentage error as a function of kernel height and ground truth information in bits
per AP (IEAP). K–M, The effect of kernel width on estimating ground truth information (IEAP) using the SMGM bits per AP metric
( ^IFAP ). Kernel widths for the kernels shown in Figure 2H are indicated by colored triangles. L, Percentage error as a function of
kernel width. M, Heat map of percentage error measurements shown in L with mean (white) and 2 SDs (black). N, The aver-
age percentage error as a function of kernel width. Changing the kernel to common indicators yielded qualitatively similar,
but quantitatively different results (Extended Data Figure 3-1). These errors could not be resolved by changing the bin width
(Extended Data Figure 3-2). Addition of a nonlinearity further distorted the measured information (Extended Data Figure 3-3).
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optimized for each trace. Because the example regulari-
zation coefficient provided by Friedrich et al., 2017 was
2.4, we also measured information values at 100 different
values for the regularization coefficient between 0 and 3;
this had little effect on the measured information
(Extended Data Fig. 4-1).

KSG estimator
The previously described second KSG estimator

(Kraskov et al., 2004) was used using the fifth nearest
neighbor distance.

Binned estimators
The binned MI estimators were used (Timme and Lapish,

2018). The activity trace was divided into 10 bins, either
evenly across the span of the activity (uniform binned) or vari-
ably so the bins contained the same number of samples (oc-
cupancy binned). Position was similarly divided into 60 bins.

Gaussian simulations
To compare the analytic approximation to our numerical

method, the numerical techniques had to be applied to
place cells with Gaussian rate maps. The same target in-
formation, firing rates, and behavior were used as for our
original 10,000 simulations with spline rate maps.
However, instead the rate map was chosen as a Gaussian

with width s ¼ e
1
2

�
�1�2IEAP logð2Þ�logð2pÞ

�
. For the numeric

simulations, the true amount of information was calcu-
lated using a numeric integrator. The instantaneous rate
was calculated using the normal distribution PDF. This
was normalized and used to generate a spike train and
florescence trace as above.

Bayesian decoding
The Bayesian decoder used here (Fig. 5G,H) was

adapted from a previously described method (Zhang et
al., 1998). Decoding was performed on the likelihood that
a significant transient occurred in a time frame, trained on
the first 80% of the session and tested on the last 20%.
The session was divided into Dt = 0.1 s bins. The condi-
tional likelihood that an animal is in position xi given the
number of active frames during a time window (n) is

pðxijnÞ ¼ pXðxiÞð
YM

j¼1

fnji;j Þe
�Dt

XM

j¼1

fi;j

;

Where pXðxiÞ is the (marginal) probability that the animal is
in the ith spatial bin during a time sample, fi;j is the average

rate of significant frames by the jth neuron in the ith spatial
bin, nj is the number of significant frames observed during
the time window in neuron j, and M is the total number of
neurons. The decoded position was selected as the one
with maximum conditional likelihood.

Animals
Ten- to 12-week-oldmale C57BL/6mice (20–30 g) were in-

dividually housed under a reverse 12/12 h light/dark cycle, all
experiments were conducted during the dark phase. All ex-
periments were approved by the Northwestern University
Animal Care and Use committee.

Behavior
We used a previously described virtual reality set-up

and task (Heys et al., 2014; Sheffield and Dombeck, 2015;
Sheffield et al., 2017), some of the behavior sessions
used here has previously appeared in these studies.
Briefly, water scheduled, head fixed mice were trained to
run on a cylindrical treadmill down a 3-m virtual track to
receive a water (4 ml) reward at the end of the track, and
were subsequently teleported to the beginning of the
track after a 1.5-s delay. Behavioral sessions were in-
cluded if the animal ran at least 20 laps containing a con-
tinuous 40-cm run for which the velocity was over 7 cm/s
during a 5- to 30-min session.

Mouse surgery and virus injected
We performed population calcium imaging of CA1 neu-

rons as described previously (Sheffield and Dombeck,
2015; Sheffield et al., 2017). Briefly, 30 nl of AAV1-
SynFCaMP6f (University of Pennsylvania Vector Core, 1.5
� 1013 GC/ml) was injected through a small craniotomy
over the right hippocampus (1.8 mm lateral, 2.3 mm cau-
dal of bregma; 1.25 mm below the surface of the brain)
under isoflurane (1–2%) anesthesia. 7 d later, a hippo-
campal window and head plate was implanted as de-
scribed previously (Dombeck et al., 2010).

Two-photon imaging
Imaging was performed as previously described (Sheffield

and Dombeck, 2015; Sheffield et al., 2017). Scanimage four
was used for microscope control and acquisition (Pologruto
et al., 2003). Time series movies 1024 or 512� 256 pixels)
were acquired at 50Hz. A Digidata1440A (Molecular Devices)
with Clampex 10.3 synchronized position on the linear track,
reward timing, and the timing of image frames.

Image processing, region of interest (ROI) selection,
and calcium transient analysis
Images were processed as previously described (Sheffield

andDombeck, 2015; Sheffield et al., 2017), withminormodifi-
cations. Briefly, rigid motion correction was performed using
cross-correlation as in (Dombeck et al., 2010; Miri et al.,
2011; Sheffield and Dombeck, 2015), but here using a fast
Fourier transform approximation on the full video. ROIs
were defined as previously described (Mukamel et al.,
2009; m=0.6, 150 principal/independent components, SD

Table 1: Properties of indicator kernels used

Kernel
Height
DF=F Rise (s) Fall (s) Source

gCaMP6f 0.190 0.042 0.142 Chen et al. (2013)
jRGECO1a 0.164 0.041 0.207 Kalko et al. (2011)
gCaMP7f 0.560 0.063 0.276 Dana et al. (2019)
gCaMP6s 0.230 0.179 0.550 Chen et al. (2013)
iGluSnfR-A184S 0.300 0.022 0.106 Marvin et al. (2018)
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threshold=2.5, SD smoothing width=1, area limits =100–
1200 pixels). DF

F traces were generated by normalizing
around the eighth percentile of a 3-s sliding window.
Significant transients from both experimental and mock flu-
orescence traces were selected by comparing the ratio of
amplitudes and durations of positive to negative going
transients with a false positive rate ,0.01% (Dombeck et
al., 2010). Mock traces used the histograms generated
from the mock gCaMP6f traces (Extended Data Fig. 2-3) or
from the specific matching indicator traces (Extended Data
Figs. 2-2, 3-1): experimental data histograms were built
separately. All subsequent analyses were run using these
significant transients.

Behavior analysis
The mean virtual track velocity was defined as the total

virtual track distance covered during the session divided
by the total duration of the session; slow and stop periods
were included in this metric. All other analyses were re-
stricted to long running periods, where the animal ex-
ceeded a virtual track velocity of 4 cm/s and ran
continuously for at least 40 cm.

Defining place fields
Place fields were defined by first creating the spatial flu-

orescence intensity map (fi) with the 300-cm track divided
into 60 5-cm bins. This map was smoothed via a 3-bin
boxcar. Transients identified during run periods were
shuffled in order and to random intervals to create 1000
bootstrapped intensity maps. Candidate fields were de-
fined as regions of the original fluorescence map with val-
ues .99% of the bootstrapped maps. Fields were then
retained if they were between 20 and 120 cm wide: signifi-
cant place cells retained at least one field that satisfied
these criteria.

Results
The SMGM information metrics
Here, we review the derivation of the SMGM information

metrics and the underlying assumptions. For illustrative
purposes throughout this manuscript, we use the exam-
ple of spatial encoding in which the firing pattern of neu-
rons carry information about the animal’s location along a
linear track; however, the derivations, equations and con-
clusions generalize to encoded variables over other do-
mains and dimensionalities.
Consider a random variable X representing the posi-

tions an animal might take, with x being its value meas-
ured at one time sample. The positions are subdivided
into N spatial bins, such that x can take on the values
f1;2; :::;Ng. For our analyses, N ¼ 60. Consider a random
variable Y representing the number of APs a neuron might
fire, where y is the count measured within a time sample.
y can take on the values of f0;1; :::;11g. X and Y are
both discrete. If X and Y both obey the assumption that
each time sample is independent (i.e., they are stationary),
then the MI (I, in bits per sample) between X and Y is ex-
pressed as follows:

IðX;YÞ ¼
XN

i¼1

X11

y¼0

pX;Yðxi; yÞlog2

pX;Yðxi; yÞ
pXðxiÞpYðyÞ ; (1)

where pXðxiÞ is the (marginal) probability that the animal is
in the ith spatial bin during a time sample, pYðyÞ is the proba-
bility that the neuron fires y APs in the time sample, and
pX;Yðxi; yÞ is the joint probability that the neuron fires y APs
and is in the ith bin. Recall that pX;Yðxi; yÞ ¼ pYjXðyjxiÞpXðxiÞ,
where pYjXðyjxiÞ is the conditional probability that the neuron
fires y APs given that the animal is in the ith spatial bin. We
can thus rewrite Equation 1 as follows:

IðX;YÞ ¼
XN

i¼1

X11

y¼0

pYjXðyjxiÞpXðxiÞlog2

pYjXðyjxiÞ
pYðyÞ : (2)

With the further assumption that the firing of the neuron
follows Poisson statistics, we can then estimate the MI as
follows: let the AP rate (AP/s or Hz) in a single bin be l i,
and the average across the session be �l . For an arbitrarily
small time window Dt, the probability that an AP occurs in
that window is PrðY ¼ 1jx ¼ iÞ ¼ l iDt, with the probability
that an AP occurs regardless of position as PrðY ¼ 1Þ ¼ �l Dt.
We can thus rewrite Equation 2 as:

IðX;YÞ ¼
XN

i¼1

l iDtpXðxiÞlog2

l i

�l
: (3)

By integrating over 1 s (

ð1
0

IðX;YÞdDt), we obtain the first

key SMGM metric for spatial information as measured by
AP firing, which is in units of bits per second:

ÎEs ¼
XN

i¼1

l ipXðxiÞlog2

l i

�l
: (4)

For notation, we will use a carrot (^) to indicate an infor-
mation value that is measured from experiment, the
superscript (E in this case) to show the source of the data,
and a subscript to show the units/formula used (bits per
second in this case). Thus, ÎEs is the information measured
via electrophysiology in bits per second. This metric is lin-
early dependent on the average firing rate of the neuron,
and this dependence is often removed through normaliza-
tion by the average firing rate to obtain the second key
metric of spatial information as measured by AP firing,
which is in units of bits/(s/Hz), or more commonly, bits per
AP:

^IEAP ¼ 1
�l

XN

i¼1

l ipXðxiÞlog2

l i

�l
: (5)

Therefore, these two key metrics of spatial information
are defined completely by quantities that can be experi-
mentally measured: the mean firing rate ð�l Þ from the AP
counts over the duration of the recording, the AP firing
rate in the ith bin from the average rate map (l iÞ, and the
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probability that the animal is in the ith spatial bin from the
normalized occupancy map (pXðxiÞ). The quantity of and
noise in these measurements affects the quality of the
metric: in particular, undersampling because of low firing
rates or low trial counts induces a substantial positive
bias (Treves and Panzeri, 1995).
In the derivation of these metrics, there are two key as-

sumptions that are violated by functional fluorescence re-
cordings. First, the recordings do not follow Poisson
statistics: instead of discrete counts of APs (y), the func-
tional fluorescence traces consists of a continuous rela-
tive change in fluorescence (DF=F), and instead of a firing
rate map (l iÞ measured in Hz, average intensity maps in
units of DF=F are generated. The stationarity assumption
is also violated: because of the slow decay, a time sample
of the fluorescence traces depend on the previous sam-
ples. The violation of these assumptions by functional flu-
orescence recording will affect the precision and induce
biases in the SMGM information metrics. Since these ef-
fects have not previously been addressed or quantified,
we measured these biases here using a simulation study.

Building a ground truth library of 10,000 neurons with
known values of information
To create a neuron with a known, ground truth informa-

tion value, it was necessary to generate a continuous (i.e.,
infinitesimally small bins) rate map (l ðxÞÞ matching the
desired information. To do this, we first normalized the
track length to 1 and assumed the animal’s occupancy
map to be spatially uniform pXðxiÞ ¼ 1

N

� �
. We then created

an exponentiated cubic spline with five randomly posi-
tioned nodes (Fig. 1A) to build a starting continuous map
of the normalized instantaneous firing rate, l �l ðxÞ, with
the integral normalized to 1. We calculated the ground
truth amount of information in bits per AP as follows:

IEAP ¼
ð1
0

l
�l
ðxÞlog2

l
�l
ðxÞ

� �
dx: (6)

The locations of the five nodes were then systematically
varied (see Materials and Methods) to minimize the
squared error between the value calculated in Equation 6
and a target amount of information (Fig. 1A,B), in the end
resulting in a mean error of 5.1 � 10�9 bits/AP and a mean
absolute error of 1.5 � 10�7 bits/AP. The rate map at this
convergence point was used for further analysis. This pro-
cedure was repeated to generate 10,000 mock neurons
with a range of (known and ground truth) information val-
ues. Note that the value in Equation 5 cannot be higher
than when all the APs arrive in one spatial bin; the rate in
that bin is N�l . If we assume uniform occupancy

pXðxiÞ ¼ 1
N

� �
, then the maximum measurable information

is log2N, in our case, 5.9 bits/AP with N ¼ 60 bins. Thus,
the information values considered here range between 0
and 6bits/AP (Fig. 1C). We chose a mean firing rate ð�l Þ
for the neurons between 0.1 and 30Hz, a range observed
for a variety of different cortical and hippocampal neurons

during behavior (Shafi et al., 2007; DeWeese et al., 2008;
O’Connor et al., 2010; Roxin et al., 2011; Buzsáki and
Mizuseki, 2014). From Equations 4, 5, the ground truth in-
formation in bits per second is IEs ¼ �l IEAP. I

E
s for these

choices resulted in ground truth information values be-
tween IEs ¼ 0 and IEs ¼ 24 bits per second (Fig. 1C).
Example low (IEAP ¼ 0:04 bits/AP) and mid (IEAP ¼ 2
bits/AP) rate maps are shown in Figure 1D.
These rate maps provided a basis for generating mock

AP firing data (and functional fluorescence data, see
below). Under real experimental conditions, recording du-
ration and bin sizes are finite and animal occupancy maps
(pXðxiÞ) are not spatially uniform. These experimental limi-
tations add error to the estimate of a neuron’s ground
truth information value. Therefore, to accurately re-create
these limitations in our simulation study, we used real be-
havior datasets from head-restrained mice running along
a 3-m virtual linear track for water rewards (acquired as in
Sheffield and Dombeck, 2015; Sheffield et al., 2017).
Unless otherwise indicated, all values reported will be the
mean6standarddeviation. We selected at random from a
library of 574 behavior sessions from mice navigating
along familiar tracks and concatenated and truncated
these sessions to create behavior sessions uniformly
sampled up to 60min in duration (average 30:2617:1
min), resulting in an average 132671:2 laps per session
and an average running speed of 19.31 3.87 cm/s (Fig.
1E1). This behavior, the average firing rate (�l Þ, and the
normalized rate map (l�l ðxÞ) from the mock neurons were
used to create an instantaneous firing rate trace (Fig.
1E2), sampled at 1 kHz, from which AP times were gener-
ated assuming Poisson firing statistics (Fig. 1E3). An ex-
ample mock of spiking in response to behavior for low
(0.04bits/AP) and mid (2 bits/AP) information neurons can
be seen in Figure 1F–H. From these spiking responses,
we then generated mock fluorescence traces by convolv-
ing the raster with a double-exponential kernel matching
the rise and fall times for GCaMP6f (Chen et al., 2013; Fig.
1E4) and adding random Gaussian noise to model shot
noise. Mock fluorescence traces for the two example neu-
rons in Figure 1F–H can be seen in Figure 1I,J. The mock
AP and fluorescence traces were used to create session
mean spatial maps, of binned firing rate (l i in Hz) and
change in fluorescence (fi inDF=F), for information analy-
ses (Fig. 1K). By repeating this process, we built a large
dataset of spiking and fluorescence traces, generated
from our library of mock neurons with known amounts of
information and using real animal spatial behavior. With
tens of thousands of these mock neuron recordings, we
could then assess the effects of many simulation parame-
ters on the information values determined from the met-
rics including firing rate, session duration, fluorescence
kernel shape, and ground truth information value.

Quantification of the accuracy and precision of the
SMGMbits per secondmetric using functional
fluorescence recordings
We first applied the SMGM bits per second metric (ÎEs )

to our mock AP recording traces to verify that they can
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recover our ground-truth information values given finite
recording durations and bin sizes, and non-uniform ani-
mal occupancy maps (pXðxiÞ). Figure 2A shows three
mock neurons with ground truth information values of
IEs ¼ 3, 15, and 23 bits per second. When the SMGM bits
per second metric (ÎEs ) was applied to the AP traces from
these example neurons, the information was well recov-
ered, with ÎEs ¼ 2:8, 15, and 24bits per second, respectively.
The results from these examples also held across the full
10,000 mock neuron library (Figs. 2B–D), as a linear fit
(y� intercept ¼ 0:09360:040, intercept p=4.6 � 10�6bits
per second and slope ¼ 0:9760:0030, slope p� 0.01) ex-
plained nearly all the variance (R2 = 0.97), the average error
was 0:2261:25 bits per second (1:060:69% error) and the
absolute error was 0:6461:05 bits per second (8:460:69%
error). There is a substantial positive bias for the lowest firing
rates and smallest number of trials (Extended Data Fig. 2-1A,
B) which has been previously well characterized (Treves and
Panzeri, 1995), with average errors exceeding 110% for
,6min of recording, mean rate under 0.6Hz, and under 11
trials. Thus, the SMGM bits per second metric (ÎEs ) recovers
the ground-truth information well using AP recordings, with
the only error coming from finite recording time and variable
animal behavior.
We next discuss the changes to the SMGM bits per

second metric (ÎEs ) commonly used for application to func-
tional fluorescence traces (Hainmueller and Bartos, 2018;
Heys and Dombeck, 2018), and explore the implications
of these changes. Most simply, the mean firing rate ð�l Þ
and the mean firing rate in a spatial bin (l i) are replaced
by the mean change in fluorescence ð�f Þ and the mean
change in fluorescence in a bin ðfiÞ. Making these substi-
tutions in Equation 4 results in the information as meas-
ured by functional fluorescence:

ÎFs ¼
XN

i¼1

fipXðxiÞlog2

fi
�f
: (7)

The fluorescence map fi differs from the firing rate map l i
in two ways. First, the fluorescence map is approximated
by the firing rate map scaled by a factor c, dependent on
the height and width of the kernel and measured in units

of
DF=F
Hz ; and second, it is smoothed by the kernel (Fig.

1E4). If we discount the latter for a moment and focus on
the scaling, f � cl , we can see that substituting l with
cl in Equation 4 results in ÎFs ¼ cÎEs . The units for ÎFs are no
longer in bits per second, as it has previously been re-
ported (Hainmueller and Bartos, 2018), but are instead in

units of
bitsDF=F
secHz or

bitsDF=F
AP , which are difficult to interpret

(see below, Guidelines for application of information met-
rics to functional fluorescence imaging data). The effect of
smoothing is difficult to analytically since it both alters c
by changing the average intensity and distorts the firing
rate map. Therefore, to fully quantify the impact of con-
volving an AP recording with a functional fluorescence
kernel on recovering ground truth information, we used
our mock fluorescence traces.
We applied a GCaMP6f modeled kernel to the 10,000

mock AP traces to generate 10,000 mock fluorescence

calcium traces. Figure 2A shows the fluorescence
traces generated from three mock neurons with ground
truth information values of IEs ¼ 3, 15, and 23 bits per
second. The effects of the convolution can be seen in
the differences in scaling and shape between the fluo-
rescence maps fi and the firing rate maps l i. When the
fluorescence metric (ÎFs ) was applied to the fluorescence
traces from these example neurons, the information re-

covered was ÎFs ¼ 0:13, 0.47, and 1.1
bitsDF=F

AP , respec-
tively, indicating significant deviation from the ground
truth information values assuming the units are compa-
rable. The results from these examples also held across
the full 10,000 mock neuron library (Fig. 2E–G), as there
was a clear scaling of the ground truth information and
a consistent underestimation with a mean error of
�11:166:7 AU (�96:061:3% error). The best-fit line of
the measured information (ÎFs ) versus the ground truth
information ðIEs Þ had an intercept near 0 (0:002960:0016
bitsDF=F

AP , p = 0.07). The slope of this fit was 0:039612e�4
DF=F
Hz (p� 0.01), which provides a measure of the scaling
factor (c). This error was not corrected for with denser
sampling: it remained consistent even at high firing
rates and many trials (Extended Data Fig. 2-1C,D). In
addition to this scaling effect caused by c, smoothing of
the rate map could induce nonlinearity in the relation-
ship between and IEs . To test for such an effect, we fit
the measured information in Figure 2E with a saturating
exponential and compared the fits using a likelihood
ratio test: the exponential did not significantly improve
the fit (x2

1 ¼ 0:093, p = 0.76), which indicates that
smoothing by the kernel does not induce significant
nonlinearities. c is dependent on the height and width
(the integral) of the kernel and was measured here as

0.039 6 12e-4
DF=F
Hz . The consistent, negative bias ob-

served in estimating information with ÎFs (Fig. 2E) would
be easy to correct for assuming the c factor, and there-
fore the kernel, were similar across all measured neu-
rons. This point is considered further below in the
Guidelines for application of information metrics to
functional fluorescence imaging data. We conclude that
ground truth information, as measured by the fluores-
cence SMGM bits per second metric (ÎFs ), is transformed
into different units and is linearly scaled by a factor c
dependent on the height and width of the kernel.
The amplitude (height) of the change in fluorescence

can vary across indicators and conditions. The height of
the kernel, given a constant kernel width, should linearly
scale c and the error in estimating information with ÎFs . To
explicitly test this prediction, we simulated an additional
5000 fluorescence traces with kernels of varying height
(0–3 DF=F; Fig. 2I–K), but that maintain the same shape
and width (from the GCaMP6f kernel), and then measured
the percent error in estimating information with ÎFs . As ob-
served above for the GCaMP6f example (Fig. 2E–G), the
percent error in estimating information with ÎFs shows little
dependence on ground truth information (Fig. 2I–K).
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However, as a function of the height of the kernel, the per-
cent error (averaged over all ground truth information val-
ues) in estimating information with ÎFs is fit well with an
increasing linear function (intercept = �99.8 6 0.42%, in-
tercept p� 0.01, slope 20.7 6 0.14%/DFF , slope p� 0.01,
R2 ¼ 0:80; Fig. 2I,J). Over the wide array of available
functional fluorescent indicators in use today (Fig. 2H),
this leads to differences in error because of differences
in transient height of the indicator used alone. For the
indicators shown in Figure 2H, there is an average
height of 0.603 6 0.10 SD DF=F : the error spans from
�95.8% for the kernel height reported for gCamp6f
(0.19 DF=F) to �88.2% for gCamp7f (0.56 DF=F). It
should be noted that fluorescence (DF=F) is always re-
ported here as a fractional change, not as a percentage
(% DF=F); if a kernel height of 19% DF=F is used, the
units would again change. Thus, as expected, the per-
cent error in estimating information with the SMGM bits
per second estimator (ÎFs ) scales linearly with the height
of the kernel.
The width of the kernel can vary widely across fluores-

cent indicators (Fig. 2H), with “faster” indicators boasting
shorter rise and fall times. The combined effect of a longer
rise and fall time is to smooth and delay the AP train; in
other words, it acts as a causal low-pass filter. The cutoff
period of this low pass filter provides a measurement of
the effective width of the kernel (see Materials and
Methods). The effect of such differences in kernel shape
on the error in estimating information with ÎFs is difficult
to measure analytically. We therefore simulated an ad-
ditional 5000 fluorescence traces with kernels of differ-
ent kernel widths (but constant height of the GCaMP6f
kernel), resulting in a range of kernel durations (rise
times: 1ms to 1 s, fall times longer than the rise time up
to 2 s), and then we measured the percent error in esti-
mating information with ÎFs . Similarly, as observed above
for the GCaMP6f and varying kernel height examples
(Fig. 2E–K), the percent error in estimating information
with ÎFs shows little dependence on ground truth infor-
mation (Fig. 2N). Interestingly, the percent error (aver-
aged over all ground truth information values) in
estimating information with ÎFs shows a complex nonlin-
ear response as a function of the width of the kernel
(Fig. 2L,M). The error increases up to a kernel width of
;3 s, at which point it saturates at approximately �85%
error. This arises from an interaction between changing
the average value of the original AP trace and flattening
the average fluorescence map (fi). Over the wide array
of available functional fluorescent indicators in use
today, this leads to differences in error because of dif-
ferences in width of the indicator used alone. For exam-
ple, an average error of �97.1 6 0.63% were observed
for iGluSnfR, the shortest indicator considered here at
0.52 s. For gCamp6s, the slowest indicator examined
(2.54 s), the average was �89.6 6 4.6%. To estimate
the percent errors for these five indicators considering
differences in both height and duration, we used these
five kernels to generate mock fluorescence traces from
the 10,000 neurons in Figure 2B–G. The resulting

distributions, estimated c values, and mean and abso-
lute errors can be seen in Extended Data Figure 2-2. In
summary, we conclude that information, as measured

by the fluorescence SMGM bits per second metric (ÎFs ),
is transformed into different units and is linearly scaled
by a factor (c) dependent on the height and width of the
kernel, with c linearly dependent on height and nonli-
nearly dependent on width. The error induced by these
transformations changes substantially over the range of
kernel values of the different functional indicators
widely used today, and therefore these are important
factors to consider when designing and interpreting
functional imaging experiments (for further discussion,
see below, Guidelines for application of information
metrics to functional fluorescence imaging data).

Quantification of the accuracy and precision of the
SMGMbits per APmetric using functional
fluorescence recordings
The SMGM metric is commonly normalized by the

mean rate to obtain a measurement in units of bits per AP.

We thus applied the SMGM bits per AP metric ( ^IEAP ) to our
mock AP recording traces to verify that they can recover
our ground-truth information values. Figure 3A shows
three mock neurons with ground truth information values
IEAP ¼ 0:05, 1.8, and 4.2 bits/AP. When the SMGM bits per

AP metric ( ^IEAP ) was applied to the AP traces from these
example neurons, the information was well recovered,

with ^IEAP ¼ 0:06, 1.8, and 4.2 bits/AP, respectively. The
results from these examples also held across the full
10,000 mock neuron library (Fig. 3B–D), as a linear fit
(y� intercept ¼ 0:08760:029, intercept p= 2.8e-184 bits
per second and slope = 0.93 6 0.0010, slope p� 0.01)
explained nearly all the variance (R2 = 0.99), the average
error was �0.071 6 0.23 bits/AP (3.2 6 5.9% error) and
the absolute error was 0.13 6 0.21 bits per second
(8.1 6 9% error). However, the data were better fit with a
saturating exponential (x2

1 ¼ 1:6e3, p� 0.01) converging
to 5.8 bits/AP as it approached the limit because of the
finite bin count. There is a substantial positive bias for
the lowest firing rates and smallest number of trials
(Extended Data Fig. 2-1E,F) which has been previously
well characterized (Treves and Panzeri, 1995). Thus, the

SMGM bits per-AP metric ( ^IEAP ) recovers the ground-truth
information well using AP recordings (except at the larg-
est ground truth information values), with the primary
error coming from finite recording time and variable ani-
mal behavior.
We next discuss the changes needed to apply the

SMGM bits per AP metric ( ^IEAP ) to functional fluorescence
traces and explore the implications of these changes.
Most simply, the mean firing rate ð�l Þ and the mean firing
rate in a spatial bin (l i) are replaced by the mean change
in fluorescence ð�f Þ and the mean change in fluorescence
in a bin ðfiÞ. Making these substitutions in Equation 5 re-
sults in the information as measured by functional
fluorescence:
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^IFAP ¼ 1
�f

XN

i¼1

fipXðxiÞlog2

fi
�f
: (8)

As discussed above, the fluorescence map (fi) can be
approximated as a scaled version of the rate, that is,
f ¼ cl and �f ¼ c�l . Thus, under this approximation, the c

factors in Equation 8 cancel, leading to ^IFAP equivalent to
^IEAP , with the same units of bits/AP. This, of course,
ignores the fact that the kernel smooths the rate map,
leading to a bias in the metric that is difficult to quantify
analytically.
We then applied the fluorescence SMGM bits per AP

metric ( ^IFAP ) to our 10,000 mock GCaMP6f traces. Figure
3A shows the fluorescence traces generated from three
mock neurons with ground truth information of IEAP ¼ 0:05,

1.8, and 4.2 bits/AP. When the fluorescence metric ( ^IFAP )
was applied to the fluorescence traces in these examples,
the information recovered was 0.04, 1.8, and 3.5 bits/AP,
indicating some deviations, especially for the highest in-
formation neuron. These results held for the 10,000 mock
neuron library (Fig. 3E–G). At low information values, there
was little bias, but at higher information values the infor-
mation recovered was substantially lower than the ground
truth information. The mean resulting error was �0.38 6
0.58bits/AP (�9.7 6 27.8%) and absolute error of 0.39
(12.9 6 26.4%). This error was better fit with a saturating
exponential than a linear fit (x2

1 ¼ 1:6e3, p� 0.01), with
the average error ,5% up to ground truth information of
1.8 bits/AP and ,10% up to 3.0 bits/AP. At ground truth
information values higher than 3bits/AP, the average error
was �1.06 6 0.595 (�22.5 6 9.44%) and absolute error
was 1.07 6 0.589bits/AP (22.6 6 9.21%). This error per-
sisted even with denser sampling: it remained consistent
even at high firing rates and many trials (Extended Data
Fig. 2-1E,F). Thus, the indicator induces relatively little
error at lower information values (,3bits/AP), but the
smoothing effect of the kernel induces a nonlinear, nega-
tive bias to the estimator, particularly at ground truth infor-
mation values over 3 bits/AP.
Although the height of the kernel can vary between dif-

ferent functional fluorescence indicators (Fig. 2H), these
height variations linearly scale the fluorescence map.

Thus, since ^IFAP involves normalization by the mean

change in fluorescence ð�f Þ, ^IFAP should not depend on ker-
nel height. To explicitly test this prediction, we used the
5000 fluorescence traces described in the previous sec-
tion (Quantification of the accuracy and precision of the
SMGM bits per second metric using functional fluores-
cence recordings), with kernels of varying height (0–3 DF/
F), but that maintain the same shape and width (from the
GCaMP6f kernel). Then, we measured the percent error in

estimating information with ^IFAP (Fig. 3H–J). Unlike for the
SMGM bits per second metric, the percent error (aver-
aged over all ground truth information values) in estimat-

ing information with ^IFAP shows little or no dependence on
the height of the kernel (p=0.43), but a nonlinear depend-
ence on ground truth information as in Figure 3E–G, with

no significant difference in the parameters of the saturat-
ing exponential fit (x2

2 ¼ 1:67, p=0.43). Thus, as ex-
pected, the percent error in estimating information with

the SMGM bits per AP metric ( ^IFAP ) does not vary with the
height of the kernel.
With little effect of kernel height on ^IFAP , the width of the

kernel likely drives biases in the metric. We thus used the
5000 fluorescence traces generated from a range of dif-
ferent kernel durations (rise times: 1ms to 1 s, fall times
longer than the rise time up to 2 s, but constant height of
the GCaMP6f kernel) from the previous section
(Quantification of the accuracy and precision of the
SMGM bits per second metric using functional fluores-
cence recordings), and then we measured the percent

error in estimating information with ^IFAP (Fig. 3K–M).
Similarly, as observed above for GCaMP6f and the vary-
ing kernel height examples (Fig. 3E–J), the percent error in

estimating information with ÎFs shows a nonlinear depend-
ence on ground truth information (Fig. 3E–G). The percent
error (averaged over all ground truth information values)
showed a nonlinear response as a function of the width of
the kernel (Fig. 3K,L), with a steep increase in error for ker-
nel widths .;1 s. Even for kernel widths ,;1 s, the per-
cent error was strongly dependent on the ground truth
information value, with steep increases in error for values
more than ;2.5–3bits/AP (Fig. 3M). Thus, as the kernels
gets wider, there is more negative bias at lower and lower
information measured. The resulting errors are thus larger
for wider kernel indicators, for example, with a kernel
width the same as gCaMP6s (2.54s), the error exceeds
�17% even at low (,0.25bits/AP) information, with aver-
age errors of �0.86 6 1.0 bits/AP (�31 6 19% error) and
absolute errors of 0.87 6 1.0 bits/AP (32.6 6 16% error).
In contrast, with a kernel width the same as iGluSnfR
(0.52 s), the average error exceeded 5% at 3 bits/AP and
10% at 3.7 bits/AP with a mean error of �0:5761:00
(�8.0 6 14%) bits/AP and absolute error of 0.41 6
0.56bits/AP (11 6 11%). To estimate the percent errors
for the five indicators shown in Figure 2H, taking into ac-
count differences in both height and duration, we used
the five kernels to generate mock fluorescence traces
from the 10k neurons in Figure 3B–G. The resulting distri-
butions, mean and absolute errors, and error thresholds
can be seen in Extended Data Figure 3-1.
Since the known information values in our library of

10,000 mock neurons were determined using the SMGM
metric, which includes the assumption that neuron firing
follows an inhomogeneous Poisson process, we next in-
vestigated whether the biases observed between AP and

fluorescence metrics (ÎES vs ÎFS and ^IEAP vs ^IFAP ; Figs. 2, 3) in
our mock neuron datasets were also observed in real
neuron recordings (i.e., real spiking that could deviate
from Poisson firing).We therefore measured information
in a real spiking dataset from hippocampal neurons in
rats running on a behavioral track (Chen et al., 2016;
Grosmark and Buzsáki, 2016; Grossmark et al., 2016). We
generated mock fluorescence traces as we did with simu-
lated AP trains from our mock neurons, compared the in-

formation measured from APs versus fluorescence (ÎES vs
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ÎFS and ^IEAP vs ^IFAP ) in the real neuron recordings and found
that the biases were largely consistent with the simulated
mock neuron datasets (Extended Data Fig. 5-1).
In summary, we conclude that ground truth information,

as measured by the fluorescence SMGM bits per AP met-

ric ( ^IFAP ), retains the units and insensitivity to height scaling

of the electrophysiological metric ( ^IEAP ), but is nonlinearly
biased by the smoothing of the fluorescence map dic-
tated by the width of the kernel. The estimation errors
strongly depended on both the width of the kernel and
the information value being measured. Since these pa-
rameters change substantially over the different func-
tional indicators and different neuron types and
behaviors that are commonly used today, they are im-
portant factors to consider when designing and inter-
preting functional imaging experiments (see below for
further discussion).

Nonlinearity introduces further biases
The results presented in the previous two sections rely

on the approximation that DF=F scales linearly with the fir-
ing rate, which is not strictly true in practice (Dana et al.,
2018; Greenberg et al., 2018; Éltes et al., 2019). Calcium
imaging can be more responsive to bursts of APs rather
than isolated spikes, and saturates at high firing rates. As
an example for how to examine how nonlinearities be-
tween DF=F and firing rate could affect the fluorescence

SMGMmetrics (ÎFS and ^IFAP ), we applied a log-sigmoid non-
linearity (Extended Data Fig. 3-3A) to the 10,000 mock
GCaMP6f time-series traces described above, based on
the real behavior of GCaMP6f in cultured neurons (Dana
et al., 2019; see Materials and Methods). While the result-
ing measurements (Extended Data Fig. 3-3) of ground
truth information, as measured by the fluorescence
SMGM metrics, are largely consistent with the results ob-
served when using the linear assumption (Figs. 2, 3),
some quantitative difference can be seen. Thus, even a
relatively simple nonlinearity between DF=F and firing rate
can add distortions to the amount of information meas-
ured using the fluorescence SMGM approach.

Deconvolution may not be sufficient to eliminate
biases
The framework presented here for comparing ground

truth information with information measured with the
SMGM metrics can be extended to test the efficacy of
other strategies for extracting MI. In particular, a perfect
AP inference method would alleviate the problems asso-
ciated with applying the SMGM metrics to functional fluo-
rescence recordings. To test the utility of such a strategy in
measuring information, we applied a popular deconvolution
algorithm, FOOPSI (Vogelstein et al., 2010; see Materials
and Methods), to the same 10,000 mock GCaMP6f time-se-
ries traces described above. Importantly, this deconvolution
algorithm (and other available algorithms) does not recover
traces of relative spike probability or exact spikes times, but
instead produces sparse traces with arbitrary units, that
have non-zero values estimating the relative “intensity” of

spike production over time (d). This signal can be thought of
as a scaled estimate of the number of spikes per time bin,
and thus the average intensity map will have some similar
properties to the florescence intensity maps, that is, we
would expect the intensity maps from deconvolution to ap-
proximate the relative firing rate scaled by some factor c ,
which has arbitrary units.
We then measured information in these deconvolved

d-traces using the SMGM metrics (Îds and ^IdAP ), which are

identical to (ÎFs and ^IFAP ), except SMGM is applied to
d-traces instead of functional fluorescence traces. When
using the SMGM bits per second measure (Îds ; Fig. 4A), we
found a clear scaling of the ground truth information. The scal-
ing factor was very small (c ¼ 1:15e�361:8e�5 AU), result-
ing in low predicted information (mean error �11.46 6.92AU,
mean % error �99.860.38%). This error was larger than
when we measured information directly from the florescence
traces using ÎFs (Fig. 2E; 96.0% absolute error, rank-sum
p�0.01; c=0.0390). It is worth noting that the deconvolved
trace d can be arbitrarily scaled, so in a sense this error is arbi-
trary. However, these are the results from the scaling chosen
by a widely used deconvolution algorithm and the large error
emphasize that the scale of d can have a large effect on the
bits per secondmeasure (Îds ).
Assuming that the intensity map of the deconvolved

d-traces are a scaled version of the true rate maps, we
could measure information using the SMGM bits per AP

metric ^IdAP without changing units (Fig. 4B). Compared
with the SMGM bits per AP metric applied to florescence
(IFAP), on average there was some reduction in the nonli-
nearity at higher ground truth information (IEAP) values

when using ^IdAP , resulting in linear fits closer to the uni-

tary line ( ^IdAPslope ¼ 1:0260:0027; R2 ¼ 0:76 vs ^IFAP
slope = 0.786 0.0011, R2 = 0.93). However, informa-

tion measured with ^IdAP was still better fit with a saturat-
ing exponential (x2

1 = 2.3e3, p ; 0) converging to a
saturation value of 5.51 bits/AP (compared with 5.78

for ^IFAP ), as expected since the algorithm is not ex-
pected to resolve spikes at orders of magnitude short-
er timescales than the kernel. This resulted in a
positive bias at lower levels of ground truth informa-
tion. For ground truth information values below 3

bits/AP, the average error for ^IdAP was 0.5566 0.50 bits/
AP (68.96 104%) compared with �0.0606 0.13 bits/

AP (2.756 0.36%) for ^IFAP . For ground truth information

values above 3 bits/AP, the average error for ^IdAP was
�0.1276 0.76 bits/AP (�1.06 16.8%) as compared

with �1.046 0.59 bits/AP (�0.2269.4%) for ^IFAP .
Overall, there was more error when the SMGM bits/AP met-
ric was applied to deconvolved data compared with when

applied directly to fluorescence traces [ ^IdAP mean absolute

error 0.606 0.47bits/AP (52.76 89.1%) versus ^IFAP was
0.13 6 0.21bits per second (8.1 6 9% error), rank-sum
p�0.01]. Thus, when comparing the recovery of ground
truth information from functional fluorescence traces using
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Method Units Source Mean error Mean abs error Mean % error Mean abs % err C p exponen�al satura�on level 90% satura�on point

SMGM bits/sec bits ΔF/F/AP Skaggs et al, 1993 -11.1 11.1 -96.0 96.0 0.0390 0.760 39.7 2.3e3

SMGM bits/AP bits/AP Skaggs et al, 1993 -0.38 0.4 -9.7 12.9 0.78 <<0.01 5.78 11.5

foopsi+SMGM bits/sec AU Vogelstein et al, 2010 -11.4 11.4 -99.8 99.8 1.15e-3 0.129 0.02 32.0

Foopsi+SMGM bits/ap bits/AP Vogelstein et al, 2010 0.3 0.6 46.3 52.7 1.02 <<0.01 5.51 6.6

KSG bits/sec Kraskov et al, 2004 9.9 11.9 37.9 254.8 1.64 <<0.01 29.2 13.9
Binned MI 

(uniform bins) bits/sec Timm and Lapish, 2018 12.8 14.1 285.7 292.5 1.77 <<0.01 29 8.47
Binned MI 

(occupancy bins) bits/sec Timm and Lapish, 2018 15.0 15.6 322.5 325.5 1.94 <<0.01 32.2 9.26

Figure 4. Alternative techniques for measuring MI from functional fluorescence traces. A–E, top, Information measured from mock
GCaMP6f traces versus ground truth information. The gray line is the unity line, the pink line is the best fit saturating exponential.
Middle, Percentage error for the information measurements shown on top. Bottom, Heat map of percentage error measurements
shown in middle. A, FOOPSI deconvolved traces using the SMGM bits per second metric (^Ids ). B, FOOPSI deconvolved traces using
the SMGM bits per AP metric ( ^IdAP ). The regularization coefficient had little effect on these results (Extended Data Figure 4-1). C, The
KSG measure applied to GCaMP6f traces. D, The binned estimator applied to GCaMP6f traces using uniform bins. E, The binned
estimator applied to GCaMP6f traces using equal occupancy bins. The binned estimators were less distorted on the raw AP traces
(Extended Data Figure 4-2). F, Table of summary statistics for each measure. P exponential is the p value from the x2 test used to
determine whether a saturating exponential fit is better than a linear fit for the measured versus ground truth information plots. An
analytic solution yielded qualitatively similar, but quantitatively disparate results (Extended Data Figure 4-3).
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either direct application of the SMGMmetrics (ÎFs and ^IFAP ) or
the application of the SMGM metrics to deconvolved z-

traces (Îds and ^IdAP ), we found better recovery using the direct

application approach (ÎFs and ^IFAP ).

The KSG and binned estimators are poor estimators of
MI in functional florescence data
In addition to SMGM, the KSG and binned estimation

metrics have been developed for estimating MI between
variables. These other two metrics produce information
measured in bits per second, so they are only comparable
to the SMGM bits per second estimator (ÎFs ). The KSG
metric uses the kth nearest neighbor distances between
points in the neural response and behavioral variable
space to estimate information (Kraskov et al., 2004). The
binned estimation metric uses discrete bins to estimate
the full multidimensional joint probability distribution
(pðX;YÞ in Eq. 1) to estimate MI (Timme and Lapish, 2018).
These two metrics estimate information across time sam-
ples and therefore are dependent on firing rate like the
SMGM bits per second metric considered above. Further,
the binned estimator is sensitive to the precise method
used for data binning, and thus, we have used two com-
monly applied binning methods: uniform and occupancy-
based bins.
We applied the KSG, binned estimator (uniform bins),

and binned estimator (occupancy binned; Materials and
Methods) to the same 10,000 mock GCaMP6f time-series
traces and behavioral data used to assess the SMGM ap-
proach. These methods all behaved similarly when ap-
plied to our simulations (Fig. 4C–E), so they will be
discussed together here. The information values meas-
ured by these techniques correlated with ground truth in-
formation in bits per second (IES). Interestingly, unlike the

SMGM bits per second metric (ÎFs ; Fig. 2), the KSG and
binned estimator results were better fit with a saturating
exponential than with a linear fit (x2

1 ¼ 1:70e4, 3.12e4,
and 3.14e4, respectively, p ; 0). The KSG and binned es-
timator methods overestimated the information at lower
ground truth (IEs ) values and saturated quickly at higher
values. For ground truth information (IEs ) values below
10bits per second, the mean absolute errors were 10.3 6
7.82bits per second (465 6 4390%), 22.2 6 12.6 bits per
second (821.7 6 3353%), and 24.2 6 14.0 bits per sec-
ond (911 6 3926%) for the KSG, binned estimator (uni-
form bins), and binned estimator (occupancy binned),
respectively (Fig. 4F). This is in comparison to the 0.35 6

0.59
bitsDF=F

AP (14 6 103%) mean absolute error found using

the SMGM bits per second metric (ÎFs ) for ground truth in-
formation values,10bits per second. For ground truth in-
formation (IEs ) values .10bits per second, the mean
absolute errors were 13.2 6 8.66bits per second (85.0 6
64.4%), 25.4 6 16.2 bits per second (165.2 6 118.3%),
and 28.9 6 17.34 bits per second (186.3 6 124.9%) for
the KSG, binned estimator (uniform bins), and binned esti-
mator (occupancy binned), respectively. This is in com-
parison to the 0.976 1.15bits per second (5.856 6.73%)

mean absolute errors found using the SMGM bits per

second metric (ÎFs ) for ground truth information values
.10bits per second. Over the full range of ground truth
values, mean absolute errors of 11.9 6 8.42bits per sec-
ond (254.8%), 23.5 6 14.8 bits per second (456.7%) and
26.7 6 16.1 bits per second (509.0%) were found for the
KSG, binned estimator (uniform bins), and binned estima-
tor (occupancy binned), respectively, an order magnitude
larger than the 2.4 6 2.97AU (22 6 27% error) error seen

using the SMGM bits per second metric (ÎFs ). As a control,
we applied the binned estimator s to AP traces and com-
pared the estimated information to the ground truth infor-
mation to verify that the large errors observed (Fig. 4D,E)
were caused when the estimators were applied to fluores-
cence data (rather than simply a difference between the
binned estimator, which do not rely on a Poisson firing as-
sumption, and the ground truth information established
using SMGM, which does rely on a Poisson firing as-
sumption). We found the errors when applying the binned
estimators to AP traces were relatively small [mean abso-
lute error 2.726 3.38bits per second (41.1%) and
2.7063.33 bits per second (41.0%) for the uniform and
occupancy-based binning; respectively; Extended Data
Fig. 4-2]. Therefore, when comparing the recovery of
ground truth information from functional fluorescence

traces using either the SMGM metric ÎFs or the KSG and
binned estimator metrics, we found better recovery using

the SMGM approach (ÎFs ).

An analytic approximation can reproduce some
qualitative, but not quantitative, results of the numeric
solutions
Some of the general features of the relationship be-

tween ground truth information and fluorescence SMGM
metrics can also be seen using an analytic approximation.
For example, if we approximate the rate map as a
Gaussian firing field with mean rate �l , simplify the kernel
approximation to a single exponential with falloff t , as-
sume constant, normalized movement speed v, and as-
sume that the convolution between the kernel and the
mean rate map is nearly Gaussian, we can approximate
the relationship between the bits per second ground truth
information IES and measured fluorescence information IFS
as

IFS � �Avt �l log 4
�IE

S
�l 12pev2t 2

� �

logð4Þ ; (9)

and between the bits per AP ground truth information IEAP
and measured fluorescence information IFAP as

IFAP � � logð4�IEAP12epv2t 2Þ
logð4Þ : (10)

Similar to the numerical solution, the analytic approxi-
mation provided by these equations (Eqs. 9, 10) predict
that the fluorescence bits per second metric is dominated
by a prefactor (Atvl� in the analytical case), and that the
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fluorescence bits per AP metric saturates at larger infor-
mation values. Our numerical solutions provide more ac-
curate measures for the magnitude of these effects, and
for the magnitude of information values themselves, given
that they include the more accurate double exponential
kernel, signal noise, and the realistic nonstationary speed,
position and fluorescence signals. These quantitative dif-
ferences can be seen in Extended Data Figure 4-3, where
we directly compared this analytic approximation to our
numerical approach by simulating 10,000 neurons with
Gaussian rate maps (l ðxÞ) with known (ground truth) in-
formation. We found a significant difference in the slope
of the bits per second estimator (c, 0.041 vs 0.0036 DF=F

Hz
for the numeric vs analytical, respectively), likely because
of the non-stationarities present in behavior and flores-
cence signals. For the fluorescence bits per AP measure,
the analytic approximation predicts a large positive bias
for ground truth values up to ;4bits/AP. This is in con-
trast to the numeric solution, which has ,10% error for
ground truth information values below 3.12bits/AP.

Guidelines for application of information metrics to
functional fluorescence imaging data
Taken together, the above results suggest that across

the information metrics applied directly to functional fluo-
rescence traces, the SMGMmetrics provide the most reli-
able and interpretable information measurements. We
thus suggest the following guidelines for use and interpre-
tation of the SMGM metrics as applied to fluorescence MI
metrics (ÎFs and ^IFAP ) defined in Equations 7, 8.
The SMGM bits per second metric (ÎFs ) is likely attractive

to imaging researchers because the units suggest that
precise knowledge of AP numbers and times are not re-
quired for its use. However, there are several challenges
when applying the SMGM bits per second metric to func-
tional fluorescence imaging data. First, the substitution of
the change in fluorescence map (f) for the AP firing rate
map (l ) introduces a change in units, from bits per sec-
ond to DF

F
bits
AP , which is difficult to interpret and relate back

to bits per second. Second, the transformation of AP firing
rate to change in fluorescence can be approximated by a

c scaling factor (f ¼ cl ), which is measured in
DF=F
Hz , a

quantity that is unknown a priori. If c is not consistent be-
tween the neurons of a population of interest, then the in-
formation values will be scaled differently and cannot be
directly compared (Fig. 2). Since c is dependent on the
width and height of the indicator response to a single AP
(the kernel), it can vary from neuron to neuron based on
difference in indicator expression level, intracellular cal-
cium buffering, and many other factors (Park and Dunlap,
1998; Aponte et al., 2008; Helmchen and Tank, 2015;
Greenberg et al., 2018). More research will be needed to
measure these parameters (Chen et al., 2012, 2013), and
thus c, across neurons. Some results suggest that there
may be non-trivial amounts of variability within a popula-
tions of neurons (Greenberg et al., 2018; Éltes et al.,
2019). With the impact of c on the SMGM bits per second
metric, and the possible variability of c across a

population of neurons, how can researchers properly ex-
tract useful measurements of information using ÎFs ?

Guideline 1
First, we note that if experimental measurements reveal

small and acceptable variations in c across the neurons of
interest, then the information values derived from ÎFs can
be normalized by this factor to recover information values
in units of SMGM bits per second (independent of DF

	
F )

that can be compared across neurons.
Under the assumption of a consistent kernel, approxi-

mations for c for common indicators can be found in
Extended Data Figure 2-2.

Guideline 2
Further, given small variations in c across the neurons

of interest, the ratio of ÎFs between neurons in the popula-
tion provides a meaningful metric for comparisons. For
example, such ratios could be used to divide a population
of neurons accurately into groups based on their informa-
tion values (e.g., three quantiles of information) or com-
pare the information values between different functional
subtypes of neurons (e.g., between place and non-place
cells).

Guideline 3
The metric can still be useful even if experimental meas-

urements reveal large and unacceptable variations in c
across the neurons of interest, or if experimental meas-
urements of c do not exist. In such cases, since it is rea-
sonable to assume that c is consistent in the same neuron
over time, comparisons across the same neuron can pro-
vide meaningful insights by using a ratio of ÎFs measured
(from the same neuron) across different conditions. For
example, quantifying the neuron-by-neuron ratio of ÎFs be-
tween different behavioral states or conditions of an
animal or task, such as between goal-directed versus
non-goal-directed running down a linear track, would
allow researchers to make conclusions such as the fol-
lowing: “The population of neurons in region Z carries X1/
�Y times more information during goal-directed than
non-goal-directed running.”
Therefore, we conclude that with careful consideration

of the (known or unknown) variability of the fluorescence
response kernel (c), ÎFs can be used to extract useful meas-
urements of information, either direct measurements of
information across a population of neurons (with known
and similar c), ratios of information between different neu-
rons of a population (with known and similar c) or differen-
ces across different conditions within the same neuron
(with c unknown or different across neurons).
The SMGM fluorescence bits per AP metric ( ^IFAP ) results

in the same units as the AP-based metric ^IEAP , and there-
fore may provide imaging researchers with information
values that are relatively easy to interpret. However, this
similarity in units is somewhat misleading since the num-
ber and timing of APs are not directly measured with func-
tional fluorescence traces and the asymmetric and
relatively slow dynamics of fluorescence indicators leads
to shifting and smoothing of the AP rate map (l ). This
issue can have the effect of inducing a significant negative
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bias in information measurements, especially at high in-
formation values and with functional indicators with wider
kernels (Fig. 3). This is the most important factor to con-
sider when determining how researchers can properly ex-

tract useful measurements of information using ^IFAP . The
shifting and smoothing of the AP rate map by fluores-
cence effectively leads to crosstalk between adjacent
spatial bins. Therefore, it is critical to consider the size of
the spatial bins in relation to the spatial shift and smooth-
ing induced by the indicator (effectively the kernel plotted
in space, rather than time, using the animal’s average run-
ning velocity to transform from time to space). It is reason-
able then to counteract the spatial shift and smoothing
effect by using larger bin sizes, but this only works up to a
point since larger bins limit the maximum amount of infor-
mation possible to measure and may negatively bias the
information values near this upper limit, even for AP-
based recordings (Fig. 3B–D). Researchers could poten-
tially optimize the recovery of ground truth information by
appropriately selecting bin size for a particular indicator
(see Extended Data Fig. 3-2A,B).
In practice, using gCaMP6f and the rodent spatial be-

havior and spatial bin sizes (5 cm) used here, our analysis
suggests that ^IFAP provides reasonable measurements of
information for neurons with values up to 3 bits/AP (Fig.
3E–G), since this is the point where the absolute error ex-
ceeds 10% [comparable to the mean absolute error when
measuring information from AP data (8.4%)]. Equivalent
thresholds for other common indicators are shown in
Extended Data Fig. 3-1. The error is exacerbated by slow-
er indicators and thus more accurate measurements of in-
formation will result from using the fastest, narrowest
kernel indicators available, assuming signal-to-noise and
detection efficiency are comparable across the different
width indicators.

Guideline 4
We conclude that with careful consideration of the size

of the spatial bins in relation to the spatial shift and
smoothing induced by the indicator, ^IFAP can be used to
extract useful measurements of information, most accu-
rately for neurons with,3bits/AP under recording condi-
tions similar to those considered here.
Previous research quantifying information in bits per AP

using ^IEAP have found that the majority of neurons carry in-
formation in this range (,3bits/AP; Knierim et al., 1995;
Markus et al., 1995; Lee et al., 2006; Poucet and
Sargolini, 2013; Bourboulou et al., 2019), with a few ex-
ceptions (Ji and Wilson, 2007). Although these levels are
dependent on the number of bins and bin dwell time, ^IFAP
should be widely applicable to quantifying information
throughout the brain during behavior.

Example: application of information metrics to
functional fluorescence imaging data from
hippocampus during spatial behavior
In this section, we demonstrate use of the above guide-

lines for proper application and interpretation of the
SMGM fluorescence MI metrics (ÎFs and ^IFAP ) defined in
Equations 7, 8. We applied these metrics to functional

fluorescence recordings (gCaMP6f) from pyramidal neu-
rons in CA1 of the hippocampus acquired during mouse
spatial behavior.
CA1 neurons expressing gCaMP6f (viral transfection,

Camk2a promoter) were imaged with two-photon micros-
copy through a chronic imaging window during mouse
navigation along a familiar 1D virtual linear track, as de-
scribed previously (Fig. 5A,B; Dombeck et al., 2010;
Sheffield et al., 2017; Radvansky and Dombeck, 2018).
Eight fields of view from four mice were recorded in eight
total sessions (recording duration 8.8 6 1.3min, number
of traversals/session: 29 6 2.5, 3.6 6 0.3 laps/min, 3-m-
long track). From these eight sessions, 1500 neurons
were identified from our segmentation algorithm (see
Materials and Methods), and analysis was restricted to
the 964 neurons that displayed at least one calcium tran-
sient on at least 1/3 of the traversals during the session.
Among these 964 neurons, 304 (31.5%) had significant
place fields and were thus identified as place cells (see
Materials and Methods), while the remaining 660 (68.5%)
did not pass a place field test and were thus identified as
non-place cells.
By applying Equation 7 (using 5-cm sized spatial bins),

we found a continuum of spatial information values meas-
ured by the fluorescence SMGM bits per second metric

(^IFs ) across the 964 CA1 neurons, with an average value of
^IFs ¼ 0:1460:0040

bits DF=F
Hz (Fig. 5C). The units for ^IFs make

direct use and interpretation of these values difficult,
however, because these recordings were all from py-
ramidal neurons in a single area, here for illustrative pur-
poses, we will presume that variations in c (discussed
above) across the 964 neurons of interest are small and
acceptable, with the absolute value of c unknown. This
allows for comparisons of information ratios across dif-
ferent subsets of the population. For example, place
cells had 2:860:20 times more information than non-
place cells using the SMGM bits per second metric

(^IFs ¼ 0:1860:0047 for place vs 0.063 6 0.0029
bits DF=F

Hz
for non-place, rank-sum p = 1.7e-63; Fig. 5D–F),
although there was substantial overlap in information
between the populations (see distributions in Fig. 5D
and individual examples in Fig. 5E,F). This also allows
for accurate division of the 964 neurons into three quan-
tiles based on information values, which we use below
for spatial location decoding.
By applying Equation 8 (using 5-cm sized spatial bins),

we found a continuum of spatial information values meas-
ured by the fluorescence SMGM bits per AP metric ( ^IFAP)
across the 964 CA1 neurons, with an average value of
^IFAP ¼ 1:6560:023 bits/AP (Fig. 5C). The units for ^IFAP allow
for direct use and interpretation of these values, and nota-
bly, because most (97%) of the neurons had values
,3bits/AP, a mean absolute error of ,10% can be as-
sumed across the distribution of SMGM bits per AP values.
When applied to the place and non-place cell populations,
we found that place cells had higher information than non-
place cells using the fluorescence SMGM bits per AP metric

( ^IFAP ¼ 1:860:026 and 1.35 6 0.042bits/AP, rank-sum
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p=4.6e-21; Fig. 5D–F). This is consistent with mock fluores-
cence traces generated from real neuron AP datasets
(Extended Data Fig. 5-1B).
As a demonstration of the usefulness of using informa-

tion metrics to analyze large functional fluorescence pop-
ulation recordings, we explored the accuracy of decoding
the animal’s track position using different subsets of neu-
rons. We divided the 964 neurons into nine groups: all
neurons, place cells, non-place cells, three quantiles
based on the fluorescence SMGM bits per second metric,
and three quantiles based on the fluorescence SMGM
bits per AP metric. We then used a Bayesian decoder of
the animals’ position (see Materials and Methods) sepa-
rately for each of the nine neuron groups in each of the

eight sessions (Fig. 5G,H). An individual session decoding
example can be seen in Figure 5G. We quantified decod-
ing accuracy using the absolute position decoding error
(% of track), and pooled this measure across sessions for
each neuron group (Fig. 5H). The means and standard er-
rors for each group are: all neurons (7.33 6 2.5%), place
cells (6.97 6 1.9%), non-place cells (20.9 6 1.8%),
SMGM bits per second Q1 (21.9 6 1.5%), SMGM bits per
second Q2 (13.2 6 2.4%), SMGM bits per second Q3
(8.97 6 2.4%), SMGM bits per AP Q1 (17.6 6 2.7%),
SMGM bits per AP Q2 (17.8 6 3.1%), SMGM bits per AP
Q3 (10.4 6 3.0%). Interestingly, even the lowest quantile
information groups still could be used to determine animal
track location to within ;1/5 of the track. This supports
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Figure 5. Application of SMGM information metrics to functional fluorescence imaging data from hippocampus during spatial be-
havior. A, Example field of hippocampal pyramidal neurons expressing GCaMP6f and imaged during linear track navigation. Active
cell ROIs shown in yellow; traces for green cells shown in B. B, Fluorescence DF/F traces (green) from two neurons in the field
shown in A and the track position during the recording (blue). C, Distribution of information values using the fluorescence SMGM
bits per second metric (ÎFs , top) and the fluorescence SMGM bits per AP metric ( ^IFAP , bottom). The gray line indicates the recom-
mended cutoff for reliability using GCaMP6f. D, Plot of ÎFs versus ^IFAP for each neuron. Place cells indicated in red and nonplace cells
in blue. E, Example non-place cells spanning the information ranges shown in C. Spatial fluorescence map (fi) shown on left, and av-
erage change in fluorescence per track traversal on right. F, Same as E, but for place cells. G, Bayesian decoding of mouse’s track
position using different subpopulations of neurons for one example session. From top to bottom, All active neurons, all nonplace
cells, and place cells, the first through third quantiles of the SMGM bits per second formulation (ÎFs ), and the first through third quan-
tiles of the SMGM bits per AP formation ( ^IFAP ). The white dashed line indicates the ground truth position of the animal, the color map
indicates the decoded position probability (peak-normalized posterior distribution). H, Decoding accuracy (absolute position decod-
ing error in units of % of track) pooled over all sessions for each neuron group indicated in G. Black bars indicate significant differ-
ences by Holm–Bonferroni corrected rank-sum tests (a ¼ 0:05). Consistent results were obtained when measuring information from
real spiking data and simulated florescence traces (Extended Data Fig. 5-1).
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the idea that the hippocampal code for space is carried
by a large population of active neurons (Meshulam et al.,
2016), and not just by a select subpopulation with the
highest information or most well-defined tuning curves.
As could be expected, place cells encoded the position
of the animal better than nonplace cells and better than
the lowest quantile information groups (Holm–Bonferroni
corrected rank-sum, a ¼ 0:05), and neurons in the higher
quantiles provided more accurate decoding. Thus, the flu-
orescence information metrics provide a means to com-
pare the relative contribution of hippocampal neurons
with different information values to decoding animal
position.

Discussion
Here, we performed an in-depth simulation study to ex-

amine the application of the SMGM bits per second and
SMGM bits per AP metrics of MI to functional fluores-
cence recordings. Since these metrics were designed for
AP recordings and since functional fluorescence record-
ings violate some of the assumptions that these metrics
are based on, it was unclear whether and how the metrics
could be used for functional fluorescence recordings. We
created a library of ten thousand mock neurons whose AP
output carried ground-truth amounts of information about
the animal’s spatial location, and by using real behavioral
recording data from mice navigating in virtual linear
tracks, we simulated the spatial firing patterns of the
mock neurons. We then simulated fluorescent calcium re-
sponses for each neuron in each session by convolving
the AP trains with calcium kernels for different indicators,
primarily GCamp6f (although see Extended Data Figs.
2-2, 3-1 for results from other indicators), and then added
noise.
We then derived fluorescence versions of the SMGM

bits per second (ÎFs ) and SMGM bits per AP metrics ( ^IFAP ;
Eqs. 7, 8) and applied them to the fluorescence traces to
quantify the performance of the metrics for estimating in-
formation. We found that ground truth information, as
measured by the fluorescence SMGM bits per second
metric (ÎFs ), was transformed into different units and was
linearly scaled by a factor (c) dependent on the height
and width of the kernel, with c linearly dependent on
height and nonlinearly dependent on width. The error in-
duced by these transformations changed substantially
over the range of kernel values of the different functional
indicators widely used today, and therefore are impor-
tant factors to consider when designing and interpreting
functional imaging experiments. We then found that
ground truth information, as measured by the fluores-

cence SMGM bits per AP metric ( ^IFAP ), retains the units
and insensitivity to height scaling of the electrophysio-

logical metric ( ^IEAP ), but is nonlinearly biased by the
smoothing of the fluorescence map dictated by the
width of the kernel. The estimation errors strongly de-
pended on both the width of the kernel and the informa-
tion value being measured. Importantly, since these
parameters change substantially over the different func-
tional indicators and different neuron types and

behaviors that are commonly used today, they are im-
portant factors to consider when designing and inter-
preting functional imaging experiments. For example,
even for the same indicator, the shape of the kernel is a
function of intracellular calcium buffering, indicator con-
centration, the amount of calcium influx, the efflux rates,
background fluorescence and resting calcium concen-
tration, which can all vary across different cells.
Additionally, the results presented here rely on the ap-
proximation that DF/F scales linearly with the firing rate,
which is not strictly true in practice. We show in
Extended Data Figure 3-3 that even a relatively simple
nonlinearity between DF/F and firing rate can add distor-
tions to the amount of information measured using the
fluorescence SMGM approach. This relationship be-
tween DF/F and firing rate can vary across different indi-
cators and, since the Toolbox can be used to vary this
relationship, users can further explore this source of
bias.
In our approach, the known information values in our li-

brary of 10,000 mock neurons were determined using the
SMGMmetric, which includes the assumption that neuron
firing follows an inhomogeneous Poisson process. It is im-
portant to remember that the SMGM metric, which has
been applied to spiking data extensively over the past few
decades, requires the use of a Poisson estimate of spiking
probability, i.e., the Poisson assumption is built into the
original metric. In practice, even spiking data violates this
and other assumptions of the SMGM metric since real
neurons do not strictly follow Poisson statistics (for exam-
ple, they can display neural hysteresis) and animal behav-
ior is non-stationary. Here, we are building from this
existing framework and adding and testing whether it is
possible to apply the metric to functional fluorescence da-
tasets. Even still, the Poisson assumption could have con-
tributed to some of the biases found when evaluating the
fluorescence SMGM metrics with respect to ground truth
information. We explored this potential source of bias fur-
ther using two different analyses. First, in Extended Data
Figure 4-2, we applied the binned estimators (which do
not rely on a Poisson firing assumption) to AP traces and
compared the estimated information to the ground truth
information (which was established using the SMGMmet-
ric that does rely on a Poisson firing assumption). We
found the errors to be relatively small, particularly in com-
parison to the errors induced by the binned estimators
when applied to fluorescence traces (Fig. 4D,E). Second,
in Extended Data Figure 5-1, we used a real spiking data-
set from hippocampal neurons in mice running on a be-
havioral track (i.e., real spiking neurons that can deviate
from Poisson firing) and generated mock fluorescence
traces from the AP traces. When we compared the infor-
mation measured from the AP traces to the fluorescence
traces, we found biases that were largely consistent with
those observed in Figures 2, 3 from our simulated mock
neuron datasets. Taken together, these analyses indicate
that any biases resulting from the Poisson assumption in
the simulation procedure appear to be small, particularly
with respect to the biases introduced when AP traces are
transformed into functional fluorescence traces. Finally, in
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the Toolbox, we also include code to generate mock
neurons using a binned distribution, avoiding the Poisson
assumption of SMGM. Thus, users can further explore
sources of bias using a different ground truth dataset.
Using our mock fluorescence traces, we also asked

whether an AP estimation method could relieve the biases
in the SMGM metrics. Applying the SMGM bits per

second metric (Îds ) to AP estimation traces from a decon-
volution algorithm (FOOPSI) resulted in a low c value for
recovered versus ground truth information. When the

SMGM bits per AP measure was applied ( ^IdAP ), the result-
ing measurements of information were still nonlinear

(compared with ÎFs ), with a positive bias at lower values of
ground truth information. Overall, applying FOOPSI to flu-
orescence traces led to a poorer recovery of ground truth
information using SMGM compared with direct

application of SMGM to the florescence traces ( ^IFAP ).
Importantly, this result from deconvolution is only specific
to GCaMP6f, and conclusions should not be drawn about
other indicators or situations; users will be able to use the
Toolbox to explore this area further. We also tested other
metrics to measure MI directly from the fluorescence time
traces [KSG, binned estimator (uniform bins), and binned
estimator (occupancy binned)] and found these alterna-
tives produced highly variable, saturating measurements
of recovered versus ground truth information. This was in

contrast to the SMGM bits per second measure (ÎFs ) which
produced a linearly scaled bias with lower error.
Taken together, we find that the SMGM bits per AP

metric can well recover the MI between spiking and be-
havior. The SMGM bits per second metric is scaled such
that comparisons should be limited to within populations
of well characterized neurons or for within neuron com-
parisons, e.g., ratios of information across conditions.
In general, researchers should use caution when apply-
ing measures developed for AP data in fluorescence re-
cordings: there’s no guarantee that the assumptions
that support the measures hold for fluorescence data,
and this can lead to difficult to interpret and biased
results.
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