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Abstract

Although we use our visual and tactile sensory systems interchangeably for object recognition on a daily
basis, little is known about the mechanism underlying this ability. This study examined how 3D shape features
of objects form two congruent and interchangeable visual and tactile perceptual spaces in healthy male and
female participants. Since active exploration plays an important role in shape processing, a virtual reality envi-
ronment was used to visually explore 3D objects called digital embryos without using the tactile sense. In ad-
dition, during the tactile procedure, blindfolded participants actively palpated a 3D-printed version of the same
objects with both hands. We first demonstrated that the visual and tactile perceptual spaces were highly simi-
lar. We then extracted a series of 3D shape features to investigate how visual and tactile exploration can lead
to the correct identification of the relationships between objects. The results indicate that both modalities
share the same shape features to form highly similar veridical spaces. This finding suggests that visual and
tactile systems might apply similar cognitive processes to sensory inputs that enable humans to rely merely
on one modality in the absence of another to recognize surrounding objects.
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Human brains are able to precisely and rapidly identify tactile and visual objects, an ability indicating that we
use visual and tactile information interchangeably to recognize surrounding objects. This study examined
the role of shape features that enable human reliance on visual or tactile sensory modalities for object rec-
ognition and provides evidence that the visual and tactile modalities not only generate two highly congruent
perceptual spaces but also use the same shape features to recognize a novel object. This finding contrib-
\utes to explaining why visual and tactile senses are interchangeable. /

ignificance Statement

Introduction

Our ability to correctly and quickly recognize an object
in both the tactile and visual modalities raises the question
of how humans form representations of their surroundings
using the visual or tactile system, as well as which com-
mon object features play a role in object perceptions to
mediate that interchangeability?
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Shape is a crucial feature for efficiently interacting with
objects in both the visual and tactile domains (Rosch,
1988). While much is known about visual shape process-
ing (Haushofer et al., 2008; Peelen et al., 2014), less
information is available regarding tactile shape process-
ing (Klatzky et al., 1985; Hernandez-Pérez et al., 2017;
Metzger et al., 2019). A series of studies comparing visual
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and tactile perceptual spaces with familiar objects have
revealed that the human perception of familiar objects is
not solely determined by the physical features of objects
but is influenced by high-level cognitive abilities, including
memory (Amedi et al., 2002; Norman et al., 2008; Haag,
2011; Metzger and Drewing, 2019) and prior knowledge
of objects for integrating sensory systems (Ernst and
Bulthoff, 2004). While other studies have used parametric
shape models, such as shell-shaped 3D objects (GaiBert
et al., 2008, 2010a, 2011; GaiBert and Wallraven, 2012), it
is difficult to capture the shape complexity of natural ob-
jects with parametric approaches and avoid possible con-
founds or special cases in object shapes (Haushofer et
al., 2008; Lee Masson et al., 2016). To bridge the gap be-
tween highly familiar and novel 3D objects, we used a vir-
tual phylogenesis (VP) algorithm to simulate the biological
process and create a unique set of novel naturalistic 3D
objects: the so-called digital embryos (Hauffen et al.,
2012).

Although active object exploration leads to faster rec-
ognition (Harman et al., 1999), facilitates visual object
learning (Tsutsui et al., 2019), and benefits the mental ro-
tation of three-dimensional objects (James et al., 2002),
visually active exploration integrates tactile cues regard-
ing object size and texture in addition to visual information
(Savini et al., 2010). To avoid such interaction, recent
studies have displayed 3D objects on 2D screens or have
required the experimenter to rotate the objects (Lee and
Wallraven, 2013). To investigate the visual and touch
senses separately and maintain this separation, the study
by GaiBert et al. (2010b) used a head-mounted display
(HMD) to present virtual 3D objects. Their HMD was set
up in a darkened room that is isolated and greatly dissimi-
lar to real-life conditions. In our current study, a virtual
room was chosen to simulate a natural situation that re-
sembles real-life conditions. We also used virtual reality
(VR) technology to minimize tactile influences during ac-
tive exploration and thus to eliminate the influence of the
experimenter and tactile information in visual exploration
(Van Veen et al., 1998; James et al., 2002).

Recent studies addressing the link between perceptual
spaces from different sensory systems used similarity
judgments (Cooke et al., 2007; Op De Beeck et al., 2008;
GaiBert et al., 2011; Lee and Wallraven, 2013), as well as
multidimensional scaling (MDS; Steyvers, 2002; Cooke et
al., 2005a; Jaworska and Chupetlovska-Anastasova, 2009;
GaiBert and Wallraven, 2012; Lee Masson et al., 2016).
These studies demonstrated that visual and tactile percep-
tual spaces were highly congruent and that physical spaces
derived from adjusting parameters in a parametric model
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can be reconstructed in vision, as well as in touch. Still,
which complex shape features are used by both visual and
tactile modalities to represent objects in the brain in similar
perceptual spaces remains unknown. Further, this study as-
sessed how a combination of shape features affects the
perceived similarity between objects compared with a single
shape feature.

We investigated the role of shape in reconstructing the
same perception of objects in visual and tactile systems
to mediate interchangeability between both modalities.
To this end, we extracted computational features from the
digital embryos created by our VP algorithm to assess the
similarity between visual and tactile perceptual spaces.
Our results show that the visual and tactile modalities not
only generate two highly congruent perceptual spaces
but also share the same shape features to recognize the
novel object. This finding contributes to explaining why
visual and tactile senses can be interchangeable.

Material and Methods

Participants

A total of 50 volunteers (25 female; mean age,
24.3 = 3.7 years; all were right handed) participated in the
behavioral experiments. Twenty-five of them (13 female;
mean age, 23.7 = 2.6 years) participated in the visual simi-
larity judgment experiment, and the remaining 25 (13 fe-
male; mean age, 24.9 = 4.6years) participated in the
tactile similarity judgment experiment. All participants re-
ported normal or corrected-to-normal vision, normal color
vision, no history of severe hand injuries, and no history of
neurologic disorders. All participants were naive to the
purpose of the experiment and provided informed written
consent before starting the experiment. The participants
received 10 €/h for their participation. The local ethics
committee of the Medical Faculty of Ruhr University
Bochum (No. 17-6184) approved all experiments.

Generation of three-dimensional objects

To implement natural object properties and prevent
evoking memories of familiar objects that might influence
perceptual processing, we created naturalistic 3D objects
(referred to as digital embryos) using a VP algorithm
(Brady and Kersten, 2003; Hauffen et al., 2012). Digital
embryos were created from a uniform icosahedron as an
ancestor that was subsequently changed by simulating
the biological process of embryogenesis: cell division, cell
growth, and cell movement (for more details, see http://
hegde.us/digital-embryos/). In the present study, 16 em-
bryos from two categories (eight objects per category) of
the third generation were selected (Fig. 1A). This algo-
rithm benefits from the independent creation of shape
variations within and across generated categories that are
not imposed by an experimenter. In addition, the features
of digital embryos are very similar to those of natural ob-
jects. Since the purpose of the current study was to iden-
tify shape features that were informative for similarity
ratings between objects in both modalities, features such
as weight, color, size, and material were kept constant for
all objects. It is important to note that the overall
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Figure 1. Stimuli generation and task designs. A, Generating object categories using a virtual phylogenesis algorithm starting from
an icosahedron. At each generation G,,, selected embryos procreate, leading to generation G, 1. Simulated embryonic development
processes were applied to a given parent object from G, (circles) to generate two classes of novel objects in Ga: eight G3 siblings
from one parent formed a distinct object category. In total, two object categories from the third generation served as stimuli for the
current study, with siblings 1-8 numbered by the experimenter accordingly within each category. The subjects were unaware of
how the digital embryos were generated and/or categorized. B, The virtual office was furnished with a desk, which was located in
front of the participants. If the participants looked toward their left, bookshelves, a printer, some books, and a monitor on a study
table were visible; toward their right, there was a window with a view of the outside. C, Visual similarity task using virtual reality tech-
nology. D, Tactile similarity experiment using 3D tangible objects generated by a 3D printer. The objects were printed out with two
different colors to be more recognizable for the experimenter. Since participants were unable to see the objects, this color differ-

ence did not affect the experimental results.

appearance of objects within each category was similar
(based on a pilot experiment) and that distinguishing em-
bryos between both categories was not trivial.

In the visual experiment, we presented the stimuli in a
3D virtual reality environment to allow the participants to
perform a natural exploration of objects from every possi-
ble angle without actually touching them. For this pur-
pose, the generated digital embryos were imported into
the Unity game engine 2017.2.0b8 (Unity Technologies)
that delivered the 3D virtual environment wherein the simi-
larity judgment experiment was performed. All virtual
stimuli were given white matte materials.

For the tactile experiment, tangible hard plastic models
of objects were printed using a 3D printer (Replicator 2X,
MakerBot Industries). The printed objects were sanded
with sandpaper to remove any blemish, to produce simi-
larly smooth textures, and to deliver a similar tactile expe-
rience. The dimensions of the printed embryos were
matched with those presented in the virtual environment.

Experimental procedures

A standard similarity rating task based on a Likert-type
scale was designed for both visual and tactile modalities.
Participants were presented with object pairs and asked
to rate the similarity between the two presented objects
on a 7-point scale from completely dissimilar (1) to
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identical (7). As there was no definition for similarity in ei-
ther experiment, the participants were required to select
the features on which they based their ratings.
Furthermore, the participants were not informed that
there were two different object categories. A total of 136
pairs of objects [(16 x (15/2) + 16)] was presented in ran-
dom order. A pilot study (eight participants [n=4, visual
experiment]) was conducted to determine the required
object exploration time in the visual and tactile domains,
as well as the necessary number of repetitions for each
pair. Based on these results and previous studies that
demonstrated that participants’ responses remained con-
stant over repeated stimulus presentations (GaiBert and
Wallraven, 2012), each pair was presented only once in
the main experiment. In addition, during our pilot experi-
ment, subjects needed more time to gather relevant tac-
tile information than visual information; previous studies
of cross-modal perception similarly found that tactile ex-
ploration requires twice as much time as visual explora-
tion (Norman et al., 2004; GaiBert and Wallraven, 2012;
Erdogan et al., 2015). Therefore, we decided on 4 s for
visual exploration and 8 s for tactile exploration.

In both experiments, the response time required to pro-
vide a similarity rating was not restricted. Participants
were instructed to use the full range of the scale during
the experiment and to focus on the object features. After
each pair, verbal responses were recorded by the
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experimenter. There were three optional breaks during
both the visual and tactile experiments. Generally, the vis-
ual and tactile experiments had durations of ~1 and 1.5 h,
respectively.

After performing the task, participants completed a sur-
vey querying the object features that were important for
guiding their respective similarity ratings. The listed fea-
tures included (1) global shape; (2) pattern of branches; (3)
number of branches; (4) size of branches; (5) global pat-
tern; (6) concavity and convexity or curvature; (7) texture;
(8) material; (9) color; and (10) weight.

Visual experiment

The experiment was performed in a virtual office envi-
ronment. The participants sat on a real chair in front of a
virtual desk in a virtual office. Two perspectives in the
office are presented in Figure 1B. The color of the walls,
furniture, and lighting of the virtual room were chosen to
render the details of our stimuli to be easily discernible
for the participants. This virtual environment was dis-
played on an HTC Vive headset (www.vive.com; devel-
oped by HTC and Valve Corporation) with a resolution
of 1080 x 1200 pixels/eye (2160 x 1200 pixels com-
bined), a 110° field of view, at a 90 Hz refresh rate. By
using a Vive wireless controller, participants could virtually
grasp, pick up, and rotate an object freely to investigate it
under different angles. The stimuli were presented at ran-
dom orientations in front of the participants on a virtual
desk.

Since the environment was completely new to the par-
ticipants, they were familiarized with the VR environment,
the proper use of the controller, and the 3D digital em-
bryos before performing the main task. First, participants
were asked to look around the virtual environment to be-
come familiar with the virtual office and thus avoid any
distractions during the main experiment. Second, partici-
pants were asked to visually examine all 16 3D digital em-
bryos presented in random order for up to 8 s each to
become familiar with their shape variations. Before the
main experiment, the participants performed ten train-
ing trials that were excluded from the final analysis. In
each trial of the main experiment, object pairs were pre-
sented in a random orientation in front of the partici-
pants at a fixed location on the virtual table (Fig. 1C).
The participants were given 4 s to explore the first ob-
ject. After a 1 s delay, the second object was presented
for 4 s. Afterward, participants verbally reported the
perceived rate of similarity (between 1 and 7) of the pair
with no time restriction. Rating values were recorded by
the researcher.

Tactile experiment

Blindfolded participants were comfortably seated on a
table with a sound-absorbing surface. They wore sleep
masks during the entire experiment so that they had to ex-
plore the objects tactilely, without vision. As in the visual
experiment, participants were familiarized with the stimu-
lus set before the start of the main experiment and ex-
plored each stimulus for 12 s. The main task was started
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by performing 10 test trials that were not considered for
the final analysis. Participants were allowed to freely ex-
plore and palpate objects with both hands in a natural
way with no restrictions.

Each trial started with an object placed in the hands of
the participant. After a start signal (a beep tone, 5kHz,
300 ms) was played via the speaker, the exploration time
started. A stop signal (same beep tone as at the start of
exploration) played after 8 s indicated the end of explora-
tion time, and the participant was required to put the ob-
ject back on the table. At this moment, the experimenter
replaced the first object with a second, and the explora-
tion began following after the start signal. After 8 s, the
participant was required to put the second object back on
the table immediately after hearing the stop signal and
rate the similarity between them verbally (Fig. 1D).

Statistical analysis
Analysis of the similarity ratings

The ratings of all participants were averaged to obtain
average similarity matrices for both the visual and tactile
modalities. The correlation between the average similarity
matrices of both modalities was calculated to analyze the
degree of similarity between object explorations in the visual
and tactile domains. Similarity matrices were converted to
dissimilarity matrices by subtracting the similarity ratings
from the maximum rating value of 7. To reconstruct the to-
pology of the perceptual spaces, a nonmetric MDS im-
planted in MATLAB (version 2019b; Math Works) was
applied to the visual and tactile group dissimilarity matrices
(Cooke et al.,, 2007; GaiBert and Wallraven, 2012; Lee
Masson et al., 2016). The MDS algorithm represents each
object as a single point on a multidimensional scale. To de-
termine the number of dimensions sufficient for explaining
the data, the stress value was calculated for each dimension
value from 1 to 10 (Cox and Cox, 2001; Steyvers, 2002). A
statistical elbow in the stress plot indicates the number of di-
mensions required to represent the data. As the elbow in the
stress plot represents the adequate dimension, a plateau in
the squared correlation plot (RSQ) values, which are the pro-
portion of variance of the similarity data, illustrates sufficient
dimension to visualize the data (Cooke et al., 2005a, 2006).
An ALSCAL MDS algorithm implanted in SPSS (IBM SPSS
Statistics for Windows, version 26.0) was used to calculate
the RSQ values. The weight of the first dimension was de-
fined as the amount of RSQ for the 1D explanation to evalu-
ate the perceptual significance of each dimension. The
amount added in RSQ at a later dimension was taken as the
weight for the next dimensions. As a further step, we con-
ducted Procrustes analysis using the Procrustes.m function
of MATLAB for both sets of points and performed a linear
transformation (translation, reflection, and orthogonal rota-
tion) to map the spaces onto each other. The resulting nor-
malized residual sum of squared errors (d value) represents
the goodness-of-fit and provides a measure of congruency
between visual and tactile perceptual spaces. Because the
MDS method generates relative positions in space and not
absolute positions, a linear transformation is a valid opera-
tion for these kinds of data (GaiBert and Wallraven, 2012).
Thereafter, to test whether the two categories of objects
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Feature Definition Visual modality Tactile modality
F1 Gaussian curvatures of objects v X
F2 The distances from all vertices to the left of objects v v
F3 The surface area of objects X X
F4 The volume of objects v v
F5 The area of the projection of the object to x—y-plane (top/back view) v v
F6 The area of the projection of the object to x—y-plane (lateral view) X X
F7 The area of the projection of the object to x—y-plane (frontal view) v X
F8 The distances of the left from edges on the x-y-projection v X
F9 The distances of the left from edges on the x-y-projection X X
F10 The distances of the left from edges on the x-y-projection X X
F11 Geometric measure: bounding box size v v
F12 Geometric measure: bounding box diagonal X X
F13 Geometric measure: inertia tensor v v
F14 Geometric measure: principal axes v X
F15 Geometric measure: axis momenta v v
F16 The left of objects X X
F17 Topological measure: the number of faces that constructed objects X v

The first and second columns illustrate 17 extracted shape features. The third column represents the selected feature that demonstrates the lowest d value be-
tween the physical and the visual perceptual spaces. The fourth column shows the selected features that lead to a minimum d value between physical and the

tactile perceptual space.

were represented in the brain as two distinct categories
for visual and tactile modalities, the Euclidean distan-
ces between pairs of objects within each category and
between pairs of objects between different categories
were calculated.

3D shape features extraction and selection

According to our stimulus generation algorithm and
questionnaires, shape features play an essential role in
rating the similarity between object pairs. Thus, in our
second analysis, we investigated which object features
were used to create compatible perceptual spaces for the
visual and tactile sensory modalities. First, all 16 digital
embryos were aligned to a similar orientation. The iterative
closest point (ICP) algorithm is applied to align objects.
The ICP algorithm iteratively applies transformations (a
combination of translation and rotation) to minimize
square errors between corresponding objects (Chen and
Medioni, 1991; Besl and McKay, 1992). For further analy-
sis, we extracted 17 relevant shape features from all 16
aligned digital embryos (Table 1). The Euclidean distance
between the pairs of objects for each shape feature was
calculated to generate the computational dissimilarity
measures.

In line with the results of the questionnaires, one impor-
tant feature was the curvature of the objects. Because the
objects are basically meshes formed by triangles, the
Gaussian curvature (F1) at each vertex was calculated by
computing the curvature tensor and the principal curva-
tures at each vertex of a digital embryo (Shum et al., 1996;
Rusinkiewicz, 2004). Differences between the curvatures
of the vertex of each mesh for all pairs of objects were cal-
culated to perform a shape dissimilarity matrix based on
curvature. The Euclidean distances from all vertices to the
center of an object (F2) provide additional information
about the global curvatures. The surface area (F3) and
volume (F4) of an object indicate its size. The different
views of an object contain sufficient information about the
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shape (F5-F10). 2D projections provide 2D perspectives
of the variance of an object. The 2D projection to the x-y-,
y-z-, and x-z-planes gives a perspective view from the
top, lateral, and frontal sides of the object, respectively.
Geometric measures represent the geometric properties
of an object, such as size, shape, angle, position, and di-
mension. The size and diagonal of the smallest enclosing
bounding box illustrate the size, volume, pattern of
branches, and number of branches (F11-F12).

The mass distribution provides information about the
patterning of the branches of the objects. One possible
way to describe the mass distribution in a rigid body is the
inertia tensor (F13). Previous studies have identified the
informational value of the inertia tensor in the tactile per-
ception of object properties (Pagano et al., 1994; Carello
et al., 1996; Kingma et al., 2002; Cabe, 2019). The eigen-
values of the inertia tensor or principal axis (F14) have
been shown to be related to the perception of an object’s
shape, length, width, height, and heaviness. The eigen-
vectors of the inertia tensor or moments of inertia tensor
(F15) are related to the perception of an object’s orienta-
tion and grasp position (Kingma et al., 2002). To analyze
all geometric measures, we used the 3D mesh process-
ing system Meshlab_64bit (https://www.meshlab.net/;
Cignoni et al., 2008). Furthermore, we used the number
of triangles (F17) that formed the digital embryos as arel-
evant feature for the visual and tactile systems. Based
on the process of the algorithm for generating digital em-
bryos, when fission proceeds, a triangle is split into four
new triangles, indicating that the number of vertices in-
creases. If these vertices are independent, they will
move about in space according to the force applied to
them. From this, we concluded that more vertices leads
to more tiny concavity and convexity on the objects.
These tiny bumps could refer to surface quality or tex-
ture, and they are comprehensible for tactile sense and
even for visual sense.
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Minimum d values for N combination of features (N=1-17)
Fit quality between physical and visual perceptual spaces

Fit quality between physical and tactile perceptual spaces

d=0.158 (F13)

d=0.120 (F2, F13)

d=0.098 (F5, F13, F14)

d=0.072 (F2, F11, F13, F14)

d=0.061 (F2, F5, F11, F13, F14)

d=0.062 (F2, F3, F6, F12, F14, F15)

d=0.053 (F2, F5, F6, F11, F13, F14, F15)

d=0.052 (F2, F3, F4, F8, F11, F13, F14, F15)

d=0.050 (F2, F4, F5, F6, F7, F11, F13, F14, F15)

10 d=0.048 (F1, F2, F4, F5, F7, F8, F11, F13, F14, F15)

11 d=0.050 (F2, F4, F5, F6, F7, F10, F11, F12, F13, F14, F15)
(

©oONOOOR~WN ==

12 d=0.060 (F1, F2, F4, F5, F7, F8, F10, F11, F12, F13, F14, F15)

183 d=0.078; all features were selected except F6, F9, F12, F17
14 d=0.110; all features were selected except F6, F16, F17

15 d=0.167; all features were selected except F10, F14

16 d=0.168; all features were selected except F14

17 d=0.168; all features were selected

d=0.266 (F13)

d=0.215 (F2, F9)

d=0.158 (F2, F4, F13)

d=0.135 (F2, F4, F11, F16)

d=0.126 (F2, F4, F9, F15, F17)

d=0.118 (F2, F4, F5, F10, F11, F17)

d=0.101 (F2, F4, F5, F11, F13, F15, F17)

d=0.110 (F2, F4, F5, F6, F9, F10, F11, F15)

d=0.116 (F2, F4, F7, F10, F11, F12, F13, F15, F16)
d=0.120 (F2, F4, F5, F7, F9, F10, F11, F14, F15, F17)
d=0.132 (F2, F3, F4, F7, F9, F10, F11, F12, F14, F15, F16)
d=0.145 (F2, F3, F4, F6, F7, F9, F10, F11, F12, F14, F15, F17)
d=0.150; all features were selected except F1, F6, F8, F13
d=0.171; all features were selected except F5, F8, F13
d=0.271; all features were selected except F10, F14
d=0.272; all features were selected except F14

d=0.272; all features were selected

The d values in the columns represent the minimum d values between the physical and the visual/tactile perceptual space for a different combination of features.
The best fit quality between physical and visual perceptual spaces occurred when the ten features F1, F2, F4, F5, F7, F8, F11, F13, F14, F15 were selected. On
the other hand, the combination of the seven features F2, F4, F5, F11, F13, F15, F17 lead to the best fit quality between physical and tactile perceptual spaces.
These two modalities share the features F2, F4, F5, F11, F13, F15. (Extended Data Table 2-1).

To evaluate each single feature validity, we defined two
criteria. The first criterion was defined as the mean d value
in fitting the physical map derived from each feature to all
individual subject maps (single-fitting error). The second
criterion was the mean d value in fitting each individual
map to all other individual maps (cross-fitting error).
Cross-fitting error defines how well individual subject
maps are fit to each other. If the single-fitting error gener-
ated by each feature and the cross-fitting error are not
significantly different, it could be considered that the fea-
ture fits the human data well (Cooke et al., 2005a, 2006).
To test perceptual validity, we performed a two-tailed t
test between single-fitting and cross-fitting errors (cor-
rected for multiple comparison).

Further, given that a combination of different features
reconstructs a different perceptual space, and in this
study, the combination of features plays a role, we per-
formed perceptual validity analysis on the combination of
features as well. We evaluated all combinations of fea-
tures listed in Table 2, comparing the mean d value in fit-
ting a physical map derived from each combination to all
individual maps (combination fitting error) with the mean d
value in fitting each individual map to all other individual
maps (cross-fitting error).

To assess which combination of features forms highly simi-
lar veridical spaces in human visual and tactile perception,
different combinations of features were tested to create dif-
ferent physical spaces. There are 131,071 different combina-
tions, ranging from a single feature to combinations of 17
features (17C1 +17C2+17C3+...+17C16+17C17 =217 - 1) The
physical space for each combination was created by apply-
ing an MDS analysis to the dissimilarity matrix obtained from
the pairwise distances of features. For example, there are
136 (17C,) different combinations of two features (F1-F2, F1-
F3, ..., F16-F17). After normalizing the pairwise distance of

September/October 2021, 8(5) ENEURO.0101-21.2021

each feature, an MDS analysis was applied to the average of
two normalized distances of the corresponding features to
form physical spaces. To evaluate the validity of the per-
ceptual space, the goodness-of-fit criterion (d value) as a
linear transformation (translation, reflection, and orthogonal
rotation) was applied to assess the map fitting between
physical spaces and the visual and tactile perceptual
space. A feature combination of F2 and F13 resulted in
highly similar physical and visual perceptual spaces (i.e.,
the best fit of the visual perceptual spaces to the physical
space was achieved using the combination of the distan-
ces from all vertices to the center of the object and its iner-
tia tensor). We repeated these steps for both modalities to
calculate the d values for all possible feature combinations.

Results

Visual and tactile perceptual spaces

One group of 25 participants underwent the similarity
judgment experiment in the visual modality, while another
participated in the tactile modality. The average similarity
matrices across all participants are shown in Figure 2. We
observed a high correlation (r = 0.82; p < 0.001) between
the visual and tactile similarity matrices, which indicates
an equal interpretation of object similarities for both mo-
dalities. Using the average dissimilarity matrices, we ran
an MDS analysis to calculate the stress values for 1-10 di-
mensions for both modalities (Fig. 3A).

To select the number of sufficient dimensions for our
similarity data, we applied the statistical elbow method.
Because human data mostly contain noise, stress values
of zero are not observed in empirical data; moreover, the
lower the stress value, the higher the data dimensionality.
Several studies have shown that a stress value of <0.2 is
sufficient to describe human data faithfully (Clarke and
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Figure 2. Similarity matrices. A, Average group similarity matrix for visual similarity judgment. B, Average group similarity matrix for
tactile similarity judgment. The color codes for the similarity ratings corresponded to the numbers, ranging from 1 (dissimilar, dark
blue) to 7 (identical, dark red). Numbers on the x- and y-axes refer to the digital embryos in each category (eight objects per cate-

gory) according to Figure 1A.

Warwick, 2001; Cooke et al., 2007; GaiBert et al., 2008).
The elbow in the stress plot was visible in two or three di-
mensions (Fig. 3A). Given that the stress values for all di-
mensions were <0.2, one dimension was also sufficient
to visualize perceptual spaces, although the elbow in the
stress plot was visible in two or three dimensions.
Furthermore, the mean weight for the first dimension
across visual group was 0.958, while the mean weight of
the second and the third dimension were 0.018 and
0.015, respectively. Similarly, in the tactile group, the
weight of the first dimension was 0.897, and the mean
weights of the second and the third dimensions were
0.0629 and 0.0256. These results not only prove again the
higher importance of the first dimension for the visual and
tactile modality, but also demonstrate that the second
and third dimensions play a minor role in the data inter-
pretation. Here, for better visualization, we plotted the
visual and tactile perceptual spaces for two dimensions,

although the second dimension was of little importance
in information reconstruction. The MDS output for two
dimensions for both modalities (Fig. 3B,C, Extended
Data Fig. 3-1) showed highly similar perceptual spaces
across the visual and tactile modalities (d=0.136; zero
indicates perfect alignment). These results indicate that,
in the absence of visual perception, tactile inspection is
capable of reconstructing the same perceptual space as
the visual system, and vice versa, even for unfamiliar
objects.

In addition to the highly congruent perceptual spaces of
visual and tactile exploration, the two clusters represent
the two object categories of the VP algorithm. Here it is
important to point out that the participants were not
aware of any of the categories to which the objects be-
longed. For further analysis, we investigated the degree of
cluster definition in both perceptual spaces by measuring
the Euclidean distances between pairs of objects within a

A 02 B C
0.16 .- Visual
§ -a- Tactile
4
= 1 7 4
2 612 S 7 3 5 5 8
538, & 2 §°2 3
4 1 4 7 P 1
12345678910
Dimensions

Figure 3. Two-dimensional visual and tactile perceptual spaces. A, The stress values for both modalities were calculated for 1-10
dimensions. The elbow indicates that two data dimensions are sufficient to explain the visual and the tactile perceptual space. B,
Two-dimensional visual perceptual space (Extended Data Fig. 3-1A,C, one- and three-dimensional visual perceptual spaces). C,
Two-dimensional tactile perceptual space (Extended Data Fig. 3-1B,D, one- and three-dimensional tactile perceptual spaces). The
numbers refer to the object numbers in each category according to Figure 1A. Contrast level codes for different categories; black,

category 1; gray, category 2.
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ent categories (gray bars) for both modalities. Error bars repre-
sent the SEM. **p < 0.0001.

category and pairs of objects between categories. The re-
sults indicate a significant difference between within-cat-
egory distances and between-category distances (visual:
t(118) =23.1, p<0.0001; tactile: t(1 18) = 15.4, p <0.0001;
Fig. 4).

Perceptual validation of computational features

The observed similarity between visual and tactile per-
ceptual spaces raises the question of which stimulus
features contribute to the formation of these highly con-
gruent perceptual spaces.

The average volume of objects within categories 1 and
2 were 8.02 + 0.45 x 8.65 *+ 0.24 x 5.39 * 0.21 cm® and
821 =+ 0.32x876 =* 0.48x544 =+ 020 cm?®
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respectively. There was no significant difference in the
length (t7=0.9167, p=0.3898), width (t7=0.4489,
p=0.6671), or height ({7 =0.5706, p=0.5861) of objects
between the two categories. The average weight of ob-
jects within categories 1 and 2 were 13.62 = 0.52 and
13.5+0.53 g, respectively. There was no significant dif-
ference between the weight of objects in both categories
(t7y=0.4237, p = 0.6845). Therefore, object features such
as weight and size do not contribute to object categori-
zation. In contrast, shape features, such as the number of
branches, size, and pattern, play a major role in object cate-
gorization, as shown by our questionnaire results (Fig. 5).

As can be seen in Table 2, visual and tactile modalities
share the following six common features: the distances
from all vertices to the center of objects (F2); the volume
of objects (F4); the area of the projection of the object to
x-y-plane (F5); bounding box size (F11); inertia tensor
(F13); and axis momenta (F15). Referring to the surface
texture of the objects, the number of triangles (F17) plays
a major role in the tactile modality. Four features exclusive
to the visual modality include Gaussian curvatures of ob-
jects (F1), the area of the projection of the object to the x-
z-plane (F7), the distances of the center from edges on
the x—y-projection (F8), and the principal axes (F14).

To find relevant features, we calculated the physical
space for each possible feature combination (1-17 fea-
tures) using the MDS method. The goodness of fit criteri-
on (d value) was calculated between all physical spaces
and the visual or tactile perceptual spaces (i.e., the higher
the fit, the lower the d value). The minimum d values are
listed in Table 2.

In fitting to the human visual/tactile map, the single-fit-
ting error differed significantly from the mean cross-fitting
error. Note that, although single-fitting errors provided a
poor fit (p < 0.001; Fig. 6A), combination fitting errors pro-
vided better fits (Fig. 6B). Our results indicate that some
features of an object may not be meaningful on their own,

M Visual ETactile

% X

Figure 5. Questionnaires. At the end of each similarity judgment test, participants were asked to rate the importance of features to
determine which features played the main role in their similarity judgments. In addition to the weight, color, material, global pattern-
ing, and texture, we listed further details describing the shape of digital embryos: branch size, branch pattern, number of branches,
global shape, and curvature. The results for both modalities indicated that the shape features played a major role. Features such as
weight, size, and the pattern of branch distributions were significantly more important for the tactile similarity judgment experiment
than for the visual. Bars represent the mean ratings across all participants over the visual (gray) and tactile (black) modalities (0
means no importance; 6 means very important). Error bars represent the SEM. *p < 0.01.
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features. N1-N17 present a combination of features that are listed in Table 2. Asterisks demonstrate that a reconstructed map of a fea-

ture or combination of features is significantly different from perception in human behavior (p < 0.01). MD indicates cross-fitting error.

but their combination creates a meaningful feature that
leads to the correct perception of an object. There are
several feature combinations that are statistically close to
human perceptual maps. Since these combinations
share several common features, we decided to focus
only on the combination of features which caused the
absolute minimum d value to make the comparison
between visual and tactical modalities possible (see
Discussion).

A physical space derived from a combination of 10 fea-
tures showed the best similar fit (minimum d value,
d =0.048) to the mean perceptual space derived from the
human visual system. Moreover, comparing physical
spaces derived from a combination of features to the
stimulus space derived from human tactile perception
showed that a combination of seven features constructed
a physical space with the minimum d value (@d=0.101).
These findings demonstrate that participants use multiple
features rather than single features in their perceptions.
On the other hand, visual and tactile sensory systems
share common features in object identification.

Discussion

The current study addressed the role of shape features
that mediate the interchangeability between visual and
tactile modalities. To this end, we generated a set of
complex, natural digital embryos (3D objects) based on
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a VP algorithm that simulates the biological process of
embryogenesis. These 3D objects were used to perform
similarity rating experiments using visual and tactile
modalities. One objective of the current study was to
provide a more realistic situation in which participants
were confronted with the perception of 3D objects,
while minimizing tactile influences during active visual
exploration and eliminating the influence of the experi-
menter. Moreover, neuroimaging studies demonstrated
that the cortical mechanisms of three-dimensional (3D)
shape processing are different in vision and touch,
while cortical mechanisms of two-dimensional form are
similar (Hsiao, 2008). Hence, to implement the goals
mentioned, the visual experiment used VR technology
to enable active and unconstrained visual exploration
without additional tactile information. In the tactile ex-
periment, subjects explored the same objects as 3D
plastic printouts while being blindfolded. Overall, we
showed highly congruent visual and tactile perceptual
spaces that are most likely based on shared common
features between the spaces.

Seminal studies demonstrate that tactile and visual sen-
sory systems are both accurate in shape discrimination.
Visual perception is based on parallel processing of trans-
forming light from our 3D environment into a two-dimen-
sional retinal image, while tactile perception is serially
developed through an exploratory procedure on 3D ob-
jects (GaiBert et al., 2010a; Klatzky and Lederman, 2011).

eNeuro.org



eMeuro

In our study, object differences were computed using 17
2D and 3D features. Curvature is one of the important fea-
tures that has been shown play an important role for visual
and tactile perceptions (Pont et al., 1997; Barth et al.,
1998; Lim and Leek, 2012). Curvature information plays a
particularly important role to provide the three-dimension-
al information of the surface structure of an object (Todd,
2004; Strother et al., 2015; Yue et al., 2020). fMRI studies
of monkeys and humans demonstrated that the temporal
cortex and retinotopic regions of the visual system are
involved in the processing of curvature information (Yue
et al., 2020). However, curvature information is proc-
essed by cutaneous receptors in the tactile system
(Kappers, 2011) to judge the differences between ob-
jects. Furthermore, the front and back views of objects
are more informative in the visual and touch systems,
respectively (Newell et al., 2001). Our results revealed
that frontal and top/back views played a role in visual
exploration and top/back views played a role in tactile
exploration, consistent with findings by Newell et al.
(2001). In addition, the mass, center of mass, and the
inertia tensor are an important set of physical properties
for visual and tactile perceptions. They describe the
mass distribution, object’s weight, and resistance to
motion changes during viewing or manipulating an ob-
ject. Humans are able to perceive elements of the iner-
tia tensor of the held objects through dynamic touch,
which is a simulation mechanism of muscular sensitivity
to the inertia parameters (Fitzpatrick et al., 1994; Casati
and Pasquinelli, 2005; Mavrakis and Stolkin, 2020).

Among these common features, participants relied on
inertia tensor information during both tactile exploration
and visual inspection. While several studies have proven
the role of inertia tensor in tactile perception (Pagano et
al., 1994; Carello et al., 1996; Kingma et al., 2002; Cabe,
2019), the role of proprioceptive features in visual percep-
tion is unclear. The integration of perception with active
exploration, however, offers a possible explanation: when
participants explore an object in a VR environment using
a controller, they are able to change the object orientation
without any restriction to view objects from all sides;
hence, they can collect inertia information, such as the
length, width, height, and mass distribution of the object,
while rotating their wrists to control the orientation of ob-
jects. Together, our results suggest that the inertia tensor
plays a role in visual and tactile perception if humans ex-
plore objects in a natural, active manner for similarity
judgments and object identification. In addition, global
features related to the size and volume (F2, F4, and F11)
contributed to both modalities: by viewing and grasping
objects with the hands, these features can be obtained
from any object. Furthermore, the top view of the objects
(F5) contained relevant information for both the visual and
tactile senses. Because the top view of objects presents
the largest surface area, it may provide more information
about the shapes of objects.

In contrast, some features were exclusive to the visual
or tactile system. The Gaussian curvature feature (F1),
which describes the convexity and concavity of an object
at the vertices, only played a role in visual perception.
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This finding may be attributed to the following: when hu-
mans explore an object, the overall convexness and con-
caveness of the object can be perceived literally at first
glance by the visual system, whereas the fingertips gather
only limited curvature information related to those parts of
an object that are actually touched; therefore, obtaining
curvature features by touch requires a much higher sam-
ple rate. On the contrary, as a feature that only contributes
to the tactile modality, the number of triangles contained
in the 3D objects describes the surface roughness (i.e., its
texture). Texture and shape are of equal importance dur-
ing tactile conditions (Cooke et al., 2005b, 2007). Notably,
cell division during embryo generation caused tiny varia-
tions in object texture, which may be easily recognized by
the tactile system. We sanded the surfaces of all plastic
objects to minimize this effect but, given the importance
of texture in the tactile modality, even the smallest devia-
tions between objects may provide relevant information.
Cooke et al. (2005a,b, 2006) established a high-level ap-
proach to validate the extracted physical features by
comparing behavioral perceptual spaces with physical
spaces derived from computational measures. They ex-
tracted six features in the first study and eight features in
the second. Half of the features were 2D features and
were related to gray values between objects. Other fea-
tures were extracted from a 3D mesh, such as object pe-
rimeter and curvature. In general, they tested single
features to validate the physical space of a computational
measure. However, in real life the combination of several
features guides human object recognition. For instance,
to identify a walnut, a pecan, a plum, and a cherry, relying
only on the perimeter helps in identifying the cherry. If we
pay attention to bumpiness, softness, and perimeter si-
multaneously, it is possible to identify all of these objects
accurately. To close this gap, in the current study, 17 fea-
tures from a 3D mesh were extracted. We extracted 17
features from different modalities to better describe the
physical properties of objects using both visual and tactile
modalities. However, in our study, features were ex-
tracted from 3D mesh, not from 2D photographs. The
extracted features describe the three-dimensional na-
ture of objects and are similarly comprehensible for
both visual and tactile senses. These features mainly
describe the shape of objects. Most importantly, high-
level and abstract features that participants are not
capable of describing easily have been ignored. In addi-
tion to single-feature comparisons, we used different
feature combinations to detect the optimal combination
to describe the perceptual space of various modalities.
Several feature combinations play a role in recon-
structing human perceptual spaces in visual and tactile
modalities. Although we focused only on the feature
combination that caused the absolute minimum d
value, selecting other feature combinations in the same
range would not contradict the finding of the current re-
search. With a brief reflection on the results (Fig. 6,
Table 2), it is obvious that even nonsignificant feature
combination maps share common features that can re-
construct visual and tactile human perceptual maps.
For instance, the distances from all vertices to the
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**p < 0.0001.

center of objects (F2) is an important feature that plays
a major role in visual and tactile representation, regard-
less of which combination is chosen. This feature pro-
vides some information about global shape, mass
distribution, and pattern of branches. The surface area
(F3), the volume of objects (F4), and bounding box size
(F11) are other features that are mostly involved in both
modalities. These features are recognizable by both
senses, and they describe shape objects as well. The
top/back view of the objects (F5) is also a relevant fea-
ture that in combination with other features leads to
the perception and identification of objects. Inertia
tensor (F13-F15) as a physical-mechanical description
of object properties is associated with the perception
of the shape, length, width, height, heaviness, orienta-
tion, and grasp position of an object. To choose the
same criterion for comparing the visual and tactile
spaces, considering that a low d value close to zero in-
dicates a better fit, we chose the combination with the
absolute minimum d value in both modalities to repre-
sent human perceptual maps.

Overall, our findings raise the question of how the brain
uses shape information from two different modalities to
form highly congruent perceptual spaces. Conceivably,
the brain can form a multimodal perceptual space for rele-
vant features, which is the object shape. This multimodal
perceptual space is accessible to both modalities. For ex-
ample, if a person is trained to categorize objects based
on shape variations either visually or tactually, he or she
can categorize novel objects using visual or tactile in-
formation even in the absence of trained sensory cues
(Yildirim and Jacobs, 2013; Wallraven et al., 2014). This
is presumably because a shared multisensory represen-
tation integrates the sensory information of the shape
independent of the input modality. Corroborating this
assumption, many neuroimaging studies on multisen-
sory perception emphasize a common neural substrate
in visual and tactile shape processing (Amedi et al.,
2001; Op De Beeck et al., 2008; Drucker and Aguirre,
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2009; Lee Masson et al.,, 2016). Amedi et al. (2001)
found a region within the human lateral occipital com-
plex (LOC) that is activated during multimodal object
perception. More recently, Lee Masson et al. (2016)
showed that the lateral occipital cortex, as a multisen-
sory convergence area, becomes activated during
visual and tactile shape processing. These findings
implicate the LOC as a candidate region to encode
the multimodal perceptual space of shape processing
independent of modalities (Lacey et al., 2009). The ex-
istence of such a multimodal perceptual mechanism
might be the main reason why humans can inter-
changeably use visual and tactile modalities because
the acquired object information can be shared or
transferred between modalities.

The sharing of certain common features among sen-
sory inputs is a prerequisite for the integration of sen-
sory information from different modalities (Holmes et
al., 2008). Physically, the adequate stimuli and percep-
tion of photoreceptors and mechanoreceptors differ
significantly from each other. Nevertheless, they both
provide detailed and congruent information about the
perceptual space. Learning, in particular categoriza-
tion, can have a strong influence on the dimensionaliza-
tion of complex objects (Palmeri et al., 2004). Although
previous studies used a parametrically defined complex
object space to determine whether the tactile and visual
modalities are capable of forming a veridical perceptual
space (GaiBert et al., 2008, 2010b; Lee Masson et al.,
2016); the brain does not necessarily need to use all
given dimensions (i.e., object features) to represent the
perceptual spaces. The visual system might rely on a
limited number of independent shape features to distinguish
the shape of objects between categories (Ullman et al., 2002;
Op de Beeck et al., 2003). During visual object exploration,
only the relevant features are enhanced, and irrelevant fea-
tures are suppressed. Because the tactile perceptual system
has much in common with the visual system (Cooke et al.,
2007; GaiBert et al., 2008, 2010a, 2011; Lacey and Sathian,

eNeuro.org



eMeuro

2014), it can be assumed that shape exploration in the tactile
system also uses only a limited number of dimensions. In our
investigation, different combinations of extracted features
were used to find informative shape features that constructed
two veridical physical spaces akin to the visual and tactile
perceptual spaces. Our results indicate that a combination of
10 features forms a physical space with maximal similarity to
the visual perceptual space, whereas a combination of seven
features was capable of describing a physical space that is
highly similar to the tactile perceptual space. Based on the d
values in Table 2, the plot of d values of all possible combina-
tions when fitting the visual and tactile perceptual spaces
with the physical map demonstrates a U-shaped curve
(Extended Data Table 2-1). This U-shaped curve demon-
strated that a single feature/a combination of a few features
led to high d values, and when the number of involved fea-
tures rose, the d values again increased. This is consistent
with the notion that not only do humans use multiple rather
than single features in their perceptions, but also that they do
not necessarily need to use all given dimensions (i.e., object
features) to represent the perceptual spaces (Ullman et al.,
2002; Cooke et al., 2007; Lacey et al., 2014). This finding
shows that relying on a set of fixed dimensions might facilitate
the transfer of knowledge across modalities.

Categorization is an essential ability of the human brain,
as it enables the organism to interact with its surroundings
in such a way as to ensure survival in a dangerous environ-
ment. While several models describe human categorization
behavior (e.g., the prototype theory, exemplar theory, and
decision bound theory; Ashby and Maddox, 2011), they all
share a common feature between them: namely, the similar-
ity of objects. Therefore, similarity is a key component in
identifying and categorizing new objects (GaiBert et al,,
2011). In our current study, perceptual spaces revealed
clear object clusters based on similarity, despite the partici-
pants having no prior knowledge of the categories of the ob-
jects. Shepard (2001) have proposed that objects from the
same category should be locally close in perceptual spaces.
Our results reveal that clusters within perceptual spaces
correspond to different object categories. Furthermore, re-
search by Edelman (1999) claimed that objects from the
same category should be represented in perceptual spaces
within a single cluster. Our results demonstrated that the
distance was lower for pairs of objects with greater similarity
(i.e., same category) and higher for pairs of objects with less
similarity (i.e., different categories; Fig. 4). The role of similar-
ity in forming the basis of perceptual categorization and the
role of shape in the formation of category structure have
been controversial for a long time among cognitive neuro-
scientists (Moore, 2002). Our results support previous find-
ings that similarity plays an important role in categorization.

However, in our study, a VP algorithm was used to cre-
ate a unique set of novel, naturalistic 3D objects and to
avoid possible confounds or special cases in object
shapes. This algorithm benefits from the independent cre-
ation of shape variations within and across generated cat-
egories that were not imposed by an experimenter. In
addition, the features of digital embryos are very similar to
those of natural objects. While these stimuli provide a rich
set of objects with which to investigate the scientific
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questions, there is no underlying parameter space to
identify and control the dimensionality of digital embryos.
This limits restoring the dimensionality of the physical ob-
jects from the MDS output. Given that the purpose of the
current study was to create naturalistic object categories
that differ only in shape, the VP algorithm made it possible
to design our desired objects.

Further, to demonstrate that our methods are reliable
on other stimuli sets, four different random category sets
were created using a VP algorithm. Figure 7 reveals that
our methods were able to discriminate all different cate-
gories well.

Together, our results indicate a link between perceptual
spaces of visual and tactile systems, which suggests that
both modalities use a similar cognitive process to repre-
sent shape information. Elucidating these interactions be-
tween modalities could help to advance understanding of
how humans can interchangeably use different modalities
to interact with their surroundings.
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