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Abstract

Humans can use their previous experience in form of statistical priors to improve decisions. It is, however, un-
clear how such priors are learned and represented. Importantly, it has remained elusive whether prior learning
is independent of the sensorimotor system involved in the learning process or not, as both modality-specific
and modality-general learning have been reported in the past. Here, we used a saccadic eye movement task
to probe the learning and representation of a spatial prior across a few trials. In this task, learning occurs in
an unsupervised manner and through encountering trial-by-trial visual hints drawn from a distribution centered
on the target location. Using a model-comparison approach, we found that participants’ prior knowledge is
largely represented in the form of their previous motor actions, with minimal influence from the previously
seen visual hints. By using two different motor contexts for response (looking either at the estimated target lo-
cation, or exactly opposite to it), we could further compare whether prior experience obtained in one motor
context can be transferred to the other. Although learning curves were highly similar, and participants seemed
to use the same strategy for both response types, they could not fully transfer their knowledge between con-
texts, as performance and confidence ratings dropped after a switch of the required response. Together, our
results suggest that humans preferably use the internal representations of their previous motor actions, rather
than past incoming sensory information, to form statistical sensorimotor priors on the timescale of a few trials.

Key words: learning; prior; probabilistic; representation; saccade; sensorimotor

Significance Statement

Humans can learn statistical regularities and later use them as priors to inform decisions. It remains unclear
what type of representation is used to store and integrate past experience. We designed an experiment
where humans had to combine visual information over multiple trials to locate a hidden target location.
Using computational modeling, we found that participants represented past experience in the form of their
previous decisions, and not directly by memorizing the visual cues. As a consequence of overweighing past
decisions relative to the veridical visual information, gained experience did not generalize across two differ-
ent contexts, albeit they differed minimally with respect to the prior. Hence, the process through which past
experience is learned determines its influence on our decisions.
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Introduction
We often have to make decisions based on sparse and

uncertain sensory information. Previous research has
shown that in these cases humans use Bayesian infer-
ence where the current sensory information (likelihood)
and the previously acquired knowledge (priors) are inte-
grated, each weighted by their respective uncertainty
(Körding and Wolpert, 2004; Wei and Körding, 2010).
While the majority of previous studies have examined
whether the perceptual and sensorimotor decisions follow
the rules of a Bayesian framework (Ernst and Banks,
2002; Körding and Wolpert, 2004), less emphasis has
been placed on understanding how likelihoods and espe-
cially statistical priors are learned and represented in the
first place. A number of elegant recent studies have tried
to bridge this gap by investigating how people learn likeli-
hoods (Sato and Kording, 2014) and priors (Berniker et al.,
2010) to perform Bayesian computations. Interestingly,
the timescale of the two types of learning varied vastly,
with fast learning of likelihood but slow learning of prior
distributions. It remains unknown why such an asymmetry
should exist, as theoretically both types of learning are
equivalent. It has been hypothesized that learning about
the likelihood versus learning about the prior involves dif-
ferent neural mechanisms, potentially hinting to the fact
that their respective distributions might be represented in
different regions of the brain (Vilares et al., 2012) .
Learning of statistical priors is itself not a uniform pro-

cess as it shows dependencies on the specific context
where the learning occurs. In the Bayesian framework,
priors are a form of abstract knowledge (Tenenbaum et
al., 2006, 2011; Battaglia et al., 2013), which can be gen-
eralized across different contexts. However, previous
findings regarding the generalization of statistical priors
have been mixed. Some studies have shown that statisti-
cal learning of priors is very narrow-band and context/mo-
dality specific in perceptual (Frost et al., 2015) and
sensorimotor (Hewitson et al., 2018; Yin et al., 2019) do-
mains, thus preventing learned information to transfer to
different contexts/modalities. Other studies, on the other
hand, provided evidence for generalization (Sato and
Kording, 2014; Kiryakova et al., 2020), although general-
ization, in some instances, seemed to occur differently for
different parameters of a statistical distribution, e.g., the
mean and the variance of a distribution (Fernandes et al.,
2014). The finding that some aspects of learning could
generalize, while others could not, was confirmed by a

recent study showing that, for instance, in Bayesian time
estimation, priors can be generalized across stimuli but
not motor actions (Roach et al., 2017).
Therefore, despite an increasing number of studies

testing generalization and transfer, the exact rules deter-
mining generalizability remain unclear. One potential rea-
son for these seemingly contradictory results is a lack of a
formal definition of what is learned. It has been argued
that when learning is not generalized, a policy (i.e., a spe-
cific rule for action) rather than knowledge (i.e., abstract
and context-independent information) is acquired through
learning (Chambers et al., 2019). However, it is not clear
what features of the learning dynamics determine whether
a policy or knowledge is acquired during encounters with
the learned information.
To investigate learning and generalizability of a prior

distribution, we employed a saccadic eye movement task
similar to the design of a previous study (Dekleva et al.,
2016), where participants had to learn to locate a hidden
target. The location of the hidden target corresponded to
the mean of a circular normal distribution. In each trial, a
visual hint sampled from the underlying distribution was
shown and participants indicated their current estimate
with a saccadic eye movement, looking either toward
(pro-saccade) or to the exact opposite direction of the
estimate (anti-saccade). To successfully estimate the hid-
den target location, participants had to combine informa-
tion across multiple trials. This design allowed us to
investigate whether participants formed their prior knowl-
edge by combining the visual information or by combining
the previous motor actions across time, under different
saccadic response contexts. Our results from two experi-
ments indicate that sensorimotor learning of a spatial
prior in both response contexts is largely guided by previ-
ous motor plans, rather than by previous sensory input in
form of visual hints. Despite the high degree of similarity
of pro-saccades and anti-saccades in their learning be-
havior, suggesting a motor-independent learning algo-
rithm, the learned prior in one context did not generalize
to the other. We propose that the lack of transfer between
the two contexts is a natural consequence of their shared
learning algorithm in which previous motor actions out-
weigh sensory information.

Materials and Methods
In this study, we report the results of two experiments

investigating how a spatial prior is learned under different
oculomotor response contexts. The second experiment
was identical to the first and served as a control for ensur-
ing that participants were aware of how the location of the
learned prior varied across blocks of the experiment (see
the description of experiment 1 and experiment 2). We
therefore describe the methods common to both experi-
ments and mention the differences where they apply.

Participants
In total, 41 participants were recruited for this study; 21

participants (age range 22–38 years, main =26.05,
SD=3.80, 10 females) took part in the first experiment. All
participants had normal (N=9) or corrected-to-normal
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vision (N=12). One participant was excluded from the
data of the first experiment as the postexperiment ques-
tionnaire indicated that the participant had misunderstood
the task. A total of 20 participants (age range 23–38 years,
main = 28.95, SD=5.07, 11 females) took part in the sec-
ond experiment (with no exclusion) and all had normal
(N=16) or corrected-to-normal vision (N=4). Participants
were recruited from the general population of the city of
Göttingen, Germany, using flyer and online advertisement
and received cash financial compensation for their partici-
pation. Participation was voluntary; all participants were
informed about the study procedure and gave written
consent before the test session. The study was approved
by the local ethics committee of the Universitätsmedizin
Göttingen (UMG), under the proposal number 15/7/15.

Experimental setup
The stimuli were presented at the center of a cali-

brated ViewPixx/EEG monitor (VPixx Technologies; di-
mension: 53� 30 cm, refresh rate: 120 Hz) with a
resolution of 1920� 1080 pixels at a viewing distance
of 60 cm. All experiments were scripted in MATLAB,

using Psychophysics toolbox (Brainard, 1997). Eye move-
ments were measured using the Eyelink10001 eye tracking
system (SR Research) in a desktop mount configuration, re-
cording the right eye, with a sampling rate of 1000Hz. A chin
rest was used to stabilize the participant’s head. The EyeLink
camera was controlled by the EyeLink toolbox in MATLAB
(Cornelissen et al., 2002). At the beginning of each experi-
ment, as well as after every 10 blocks of the hidden target
task (see experiment 1), the eye tracking system was cali-
brated using a 13-point standard EyeLink calibration proce-
dure. Calibration was repeated until an average error of
maximum 0.5 degrees of visual angle (dva) was achieved,
and the error of all points was below 1 dva. If the calibration
accuracy dropped during the experiment, e.g., because of
the subjects’ movement, the experimenter recalibrated the
eye tracking system again.

Experiment 1
The experiment comprised two tasks: a calibration task

(to estimate the motor error of pro-saccades and anti-
saccades) and the main task, referred to as the “hidden
target task” (Fig. 1). There were in total four blocks of the

Figure 1. Experimental design of the hidden target task employed to study the statistical learning of a spatial prior in two different
visuo-motor contexts. A, B, Main task of the experiment. A, Participants were told to estimate the location of a hidden treasure on a
ring by observing and combining information provided by the visual hints across trials. The hidden target location was defined as
the mean of a von Mises distribution and the hints, presented at each trial, were samples drawn from this underlying distribution.
Participants had 20 trials to estimate the location of the hidden target, after which a new hidden target had to be found. Participants
used their gaze to indicate their responses. B, Each trial started with a fixation period, after which the hint was presented, and par-
ticipants had to indicate their guess about the location of the hidden target by either looking at it (pro-saccade response) or by
looking exactly opposite to it (anti-saccade response). In half of the trials (i.e., consecutive 10 trials), participants had to use pro-
saccades, and in the other half they used anti-saccades, with a randomized order across blocks. C, D, Calibration task used to
estimate the motoric error of each participant for pro-saccades and anti-saccades. Participants had to directly look either at the lines
(pro-saccade response) or exactly opposite to the lines (anti-saccade response). E, Block-design of the experiment. F, We compared
learning across two levels of difficulty and two different response types. Task difficulty was varied by changing the concentration of
the von Mises distribution (compare Materials and Methods). Finally, we tested whether knowledge could be transferred from one
visuo-motor context to the other. For this, we also varied the order of pro-saccade and anti-saccade responses across blocks.
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calibration task (n=20 trials in each block) and 40 blocks
of the hidden target task (n=20 trials in each block). Each
experiment started with a block of the calibration task fol-
lowed by one training block for the hidden target task
(n=10 trials in this block). The data from this training
phase was not analyzed. Thereafter, the experiment pro-
ceeded to the main task where participants performed 10
blocks of the hidden target task followed by one block of
the calibration task. This sequence was repeated four
times (Fig. 1E).

Hidden target task
Participants were instructed to look for a “hidden treas-

ure” location on a ring with a radius of 7.5 dva, centered in
the middle of the screen (Fig. 1A). The word hidden treas-
ure was used in our instructions to the participants to
make the task more realistic and engaging, however we
will refer to the task as the hidden target task throughout.
Each trial started with a fixation period, where participants
had to fixate for 0.5 s on the white cross (size = 0.1875
dva, color: white, displayed on a half-gray background) in
the middle of the screen (Fig. 1B). After that, a white line
(length =1.125 dva, color: white) was presented and par-
ticipants had 3 s to estimate the hidden target location for
this trial and indicate their guess either by looking at it
(pro-saccade) or by looking opposite of it (anti-saccade)
and fixate their estimated location for 0.5 s. Thereafter,
participants rated their level of confidence in their guess
on a discrete scale from 1 to 6, where 1 means very uncer-
tain and 6 means very certain about the target location. The
confidence rating had to be done within 4 s by pressing the
corresponding key on the keyboard (keys S, D, F, J, K, L cor-
responding to confidence level 1–6, respectively).
Participants were told that they had 20 trials to guess

the location of the hidden target, after which a new hidden
target had to be found. To estimate the hidden target lo-
cation participants had to closely monitor the location of a
line that was presented in every trial and served as a vis-
ual hint. The hidden target location was the mean of a von
Mises distribution and each visual hint was a sample
drawn from this distribution (Dekleva et al., 2016). Hence,
by paying attention to the location of the hint across trials,
participants were able to infer the underlying hidden tar-
get location. Participants indicated their estimates by
looking either at where they thought the hidden target
was located on the ring (pro-saccade), or at a location di-
rectly opposite to it (anti-saccade). Ten consecutive trials
of a block of 20 trials required pro-saccade responses,
and the other 10 anti-saccade responses. Importantly,
the location of the hidden target in a block of 20 trials
stayed the same and did not change after the switch in
the required response type. The type of the required re-
sponse (either pro-saccade or anti-saccade) was visually
indicated by an instruction display presented every 10 tri-
als. Participants were instructed to perform the same type
of response for 10 trials in a row, until the response type
changed.
In total, there were 40 hidden target blocks. The target

location of each block, which is the mean of the von
Mises distribution, was randomly drawn from a fixed set
of 20 locations evenly distributed on the circle. Thus, each

location only appeared twice during the experiment. To
familiarize the participants with the connection between
the hints and the hidden target location, 10 training trials
were performed in the beginning of each experiment.
After the 10 training trials, participants saw all the 10 lines
together on the screen, as well as the correct hidden tar-
get location. Furthermore, after each hidden target block,
participants saw where the actual hidden target location
was, but they did not receive feedback about their per-
formance on a trial-by-trial basis. As such, in our experi-
ments, learning was unsupervised.
Four different experimental conditions, counter-bal-

anced across blocks, were tested. Each block was either
easy or hard, controlled by adapting the concentration of
the von Mises distribution, and either ordered with first
pro-saccade then anti-saccade, or first anti-saccade then
pro-saccade response (Fig. 1F). For the easy task condi-
tion, the concentration of the von Mises distribution (de-
fined by r which is a measure of dispersion, where 1/r is
equivalent to the variance s2

dist of the distribution) was 30
(sdist ;10°), for the hard task condition it was 5 (sdist;26°)
and for the training it was 80 (sdist ;6°). As the concentra-
tions of these distributions are relatively large, we could
treat the von Mises distribution as a normal distribution and
use standard statistics.

Calibration task
The aim of this task was to quantify the participant-spe-

cific motor error of the visually driven pro-saccades and
anti-saccades. Each block of this task consisted of 20 tri-
als, from which the first 10 were pro-saccades and the
last 10 were anti-saccades. On each trial, one out of 10
equally distributed locations on the circle (same circle as
in the hidden target task) were selected and a target line
was presented at that location (Fig. 1C). Participants were
instructed to look either directly at the displayed line (pro-
saccade in the first 10 trials), or directly opposite to where
it appeared (anti-saccades, second 10 trials). Additionally,
it was highlighted that this task is completely independent
of the hidden target task. Each trial consisted of an initial
fixation phase, where participants had to fixate on the
white cross in the middle of the screen for 0.5 s. After that,
a white line appeared and participants had to either look
at it or opposite of it (Fig. 1D). In the beginning of a block
of 10 trials, participants received an instruction display in-
dicating whether they had to perform pro-saccades or
anti-saccades during the upcoming trials.

Successful response
For both tasks, a successful response was defined as

follows. Participants had to move their gaze from the cen-
tral fixation point toward a peripheral location on the ring.
As soon as the gaze moved away from the fixation point
by more than a radius of 5.375 dva, a successful response
was possible. To complete the response, participants fur-
thermore had to hold their gaze on their intended landing
position for 0.5 s. During online measurements, as soon
as the gaze crossed the 5.375-dva threshold, we calcu-
lated the mean and standard deviation of the gaze data in
a moving window of 0.5 s. Whenever the standard devia-
tion of the last 0.5 s of the gaze data fell below 1 dva, the
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gaze shift from the fixation point toward a peripheral loca-
tion was considered as a successful response in that trial.

Experiment 2
The second experiment served as a control that partici-

pants had indeed understood the task structure.
Specifically, we aimed to ensure that participants were
aware that the target location stayed the same across all
20 trials of a block of the hidden target task and did not
change after a switch of response modality in the same
block (i.e., after trial 10). To this end, we used the same
experimental design and procedures as in experiment 1
with the exception of the following modifications: (1) we
slightly modified the instruction slides during the experi-
ment to enforce the notion that all 20 trials within one
block belonged to the same hidden target location and
did not change after a switch in response modality; and
(2) we asked the participants after each block to report
whether they were aware that all 20 trials belonged to the
same hidden target location. They had to press a button
to indicate their response, either yes or no.

Data analysis
Data preprocessing
The recorded raw eye movement data were trans-

formed to MATLAB files by using a MATLAB library for
eye movement analysis (Manohar, 2019). Participants’ es-
timates in each trial were calculated offline by averaging

the eye movement data of the last 100ms, out of the total
500ms necessary for a successful response. No further
post hoc constraints on gaze data were used to identify
successful responses beyond the method used online
and described above (Successful response). The main
eye movement parameter that we analyzed was the angu-
lar distance between the participant’s estimate and the
true hidden target location (Fig. 2A). Failed trials were ex-
cluded from the analysis. A trial could fail because of
three reasons. First, there could have been a disturbance
with the eye tracking system or the participant’s calibra-
tion so that the gaze position was not correctly detected,
which made it necessary to re-calibrate the eye tracker.
Second, the participant could have been too slow to indi-
cate their guess in time (3 s). Third, to exclude erroneous
pro- instead of anti-saccades and vice versa, we analyzed
the distribution of angular errors and found a bimodal dis-
tribution. We set a threshold at 100°, which separated
both modes. Thus, every trial with an absolute angular
error bigger than 100° was categorized as failed because
of the wrong response type. Number of failed trials be-
cause of the first two reasons were 12/800 and 13/800 in
pro and anti of the calibration task, and 150/4000 and
132/4000 in pro and anti of the hidden target task, respec-
tively. Based on the third reason, 59/800 and 43/800 were
marked as failed in pro and anti of the calibration task and
104/4000 and 196/4000 in pro and anti of the hidden tar-
get task. Hence, less than,9% of trials of each condition
were excluded from further analysis.

Figure 2. Participants successfully accumulate information and learn on a short time scale. A, The angular difference between the
participant’s guess and the true location of the hidden target was used to measure learning. B, Example block. To test learning, we
compared the performance in trials 1–5 (first half) to the performance in trials 6–10 (second half). C, The absolute angular error in
the second half is lower than in the first half (paired t test: t=7.25, p, 0.0001, N=20). D, Participants’ confidence is higher in the
second half than in the first half (paired t test: t = �4.39, p=0.0003, N=20). E, The absolute angular error of participants is lower
than the absolute angular error of the visual hints, i.e., participants’ guesses are closer to the center of the von Mises distribution
compared with the presented visual hints (paired t test: t=4.92, p=0.0001, N=20).
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Statistical analysis
Statistical analyses were done using R and Python. To

fit the linear regression models, we either used the lm
function in R or the OLS function from the python package
statsmodels. To evaluate learning we used paired, two-
sided t tests to compare several parameters within a par-
ticipant. In these cases (Fig. 2), the assumption of normal-
ity was tested by applying a Shapiro–Wilk test to the data.
We did not use circular statistics as subjects’ responses
were highly localized on the ring (Fig. 3A,B). Learning was
assessed by measuring the decrease in the absolute an-
gular error between the participant’s estimate and the
true hidden target location across trials.
To compare the performance difference between pro-

saccades and anti-saccades, we calculated a “modality
difference index” (Fig. 3C). For this, we first calculated the
mean of the absolute angular error for pro-saccade and
anti-saccade response trials. The modality difference
index is then given by the difference between the two
means, divided by their sum (calculated per subject). We
started our analysis by only using the data from the first
10 trials of each block (Figs. 1-4). Only when the transfer
between modalities was examined, we used all 20 trials of
each block (Figs. 5, 6).

Theoretical bounds for learning performance
To evaluate participants’ performance, we computed

the theoretical lower bounds on the absolute angular error
they could potentially achieve by using all the information
that was available to them. Participants could use the pre-
viously seen visual hints and the memory of their previous
motor actions (referred to as previous guesses) to infer
the most probable location of the target on each trial.
These sources of information are error prone since on
each trial participants had only seen a limited number of
visual hints (i.e., sampling error) and their previous re-
sponses contained motoric noise. We assumed that
these two sources of error are independent. The error be-
cause of the limited number of visual hints was calculated
as the cumulative mean of all hints seen so far, which rep-
resents an optimal way of combining samples over time
to estimate the mean of a distribution. A constant motor
error, measured for each participant during the calibration
task, was used to represent the motoric noise. The var-
iance of the joint estimate, derived from combining visual
hints and motor actions, was then calculated by adding
the variance of the two sources, based on the assumption
of their independence. To understand how participants
used different sources of information to make decisions
on a trial-by-trial basis, we employed a detailed model-
comparison approach as described below.

Modeling participants’ behavior
We used linear regression models (lm package in R) to

analyze the single subject behavior. To this end, the angu-
lar error of participants’ estimate in a given trial (i.e., their
guess in trial t, Guesst) was fitted by models having a di-
verse set of independent variables as shown in Table 1.
The five single predictor models we tested were (1)

using the visual hint in each trial; (2) using the visual hint in
the preceding trial (t-1); (3) using the cumulative average

of all visual hints so far; (4) using the guess from the previ-
ous trial; and (5) using the cumulative average of all previ-
ous guesses (Fig. 4A; Table 1). The dependent variable
was the angular error of a participant’s estimate in a cer-
tain trial (Guesst). The independent variable was the angu-
lar error of the estimate, given by one of the above-
mentioned strategies. In a second stage, we tested linear
regression models with multiple independent variables.
For this, we included previous guesses from up to three
time steps in the past, as well as the visual hints from the
current and up to three time steps in the past. Our choice
of including three trials in the past was inspired by a naive
model search approach (Extended Data Fig. 4-2), which
indicated that including up to three trials in the past pro-
vided the best fit to the participants’ data. Thus, in our
multipredictor models only the data from trial four to trial
10 was included, allowing all models to be tested on the
same data. Each of the described regression models was fit-
ted to the single subject data using R’s lm package. To com-
pare the models, we calculated BIC, d BIC, and Bayesian
weights (Burnham and Anderson, 2004), to assess the likeli-
hood of each model being the best fit to the data (cf below,
Evaluating model performance). Since these values are nor-
malized, they can be used to determine themodel that on av-
erage best fits the participants’ data.

Evaluating model performance
To compare the different linear regression models pre-

sented above we used a model comparison evaluation
based on Bayesian weights (Burnham and Anderson,
2004). For this, we first calculated BIC values for each
model. Each BIC value was rescaled by calculating DBCI,
which is calculating the difference to the smallest BIC
value in the group of models considered. This forces the
best model to have DBCI =0 and the other models to have
positive values. We then calculated Bayesian weights v ,
as described in (Burnham and Anderson, 2004). The
Bayesian weights of all tested models in Figure 4B sum
up to 1 and define the probability of being the best model,
among the one tested.

Results
To investigate the dynamics of sensorimotor statistical

learning of a spatial prior and its dependence on the re-
sponse modality, we designed an experiment where par-
ticipants had to find a hidden target and indicate their
guess by either a pro-saccade or an anti-saccade.
Participants learned the location of each hidden target
within 20 trials, of which a block of 10 trials required pro-
saccades and the other block of 10 trials required anti-
saccades as the response modality (Fig. 1A). This design
allowed us to probe whether the learning dynamics
shows dependencies on the response modality, hence
being modality specific. We also used another task, re-
ferred to as the calibration task, to estimate each partici-
pant’s motoric noise during the visually driven execution
of pro-saccades or anti-saccades. In contrast to the cali-
bration task, in the hidden target task the main error
source is the uncertainty regarding the hidden target loca-
tion. As the same motor system is used in both the hidden
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target task as well as the calibration task, we assumed that
the motor noise affecting participants’ performance in both
tasks is equal. As the motor noise in the calibration task is not
time-dependent, we assumed that all time-dependent per-
formance improvement during the hidden target task re-
flected statistical learning, defined as the reduction in the
uncertainty regarding the location of the hidden target.

Participants successfully accumulate information and
learn on a short time scale
To establish that participants were in general able

to learn on a short timescale, we initially focused on the
first 10 trials of each hidden target block (Fig. 2B). In this
case, in all 10 trials participants responded by using the
same modality, either exclusively by pro-saccades, or

Figure 3. Similarity of learning curves across response modalities. A, The distribution of the angular error for pro-saccade and anti-
saccade response in the calibration task. B, The distribution of the angular error for pro-saccade and anti-saccade response in the
hidden target task. C, The modality difference index quantifies the difference between the absolute angular error in pro-saccade
and anti-saccade trials. The shaded area indicates the SEM. D, Time course of the absolute angular error for each of the four differ-
ent conditions (two response types � two difficulties). Here and in the following panels, except stated otherwise, shaded areas rep-
resent the SEM (N=20). E, Time course of the confidence ratings for each of the four different conditions. F–J, Participants’
learning curves compared with the lower bound. The lower bound is given by taking the cumulative average of all hints presented
so far and adding the error because of motoric noise, estimated from the calibration task.
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exclusively by anti-saccades. To quantify performance,
we calculated the absolute angular error between the sac-
cade endpoint and the hidden target location (Fig. 2A). By
comparing the average absolute angular error in the first
five trials with the average absolute angular error in the
last five trials, we found that most of the participants were
able to improve their estimates of the target location (i.e.,

their guesses) during this short timescale (paired t test:
t=7.25, p,0.0001, N=20; Fig. 2C). In line with perform-
ance, participants’ confidence about the accuracy of their
guesses increased during the 10 trials (paired t test: t =
�4.39, p=0.0003, N=20; Fig. 2D). Additionally, the abso-
lute angular error of participants’ guesses was lower than
the absolute angular error of the visual hints, meaning that

Figure 4. Learning strategy is similar across response modalities. A, Different predictors used to explain the participants’ single trial
estimates (i.e., angular error). B, Model comparison between various single and multiple predictor models. Shown are the weights
v , which represent the probability that a model is the best among the ones considered. Error bars indicate SEM (N = 20). C, D,
Same as B but performed on two different datasets, one consisting only of pro-saccade response trials (C), the other consisting
only of anti-saccade response trials (D). E–H, Regression weights for a model including participants’ last three guesses and the cur-
rent and last three visual hints. Shaded area indicates SEM (N = 20). E, Regression weights put on the last three guesses. F,
Regression weights put on the current, as well as the last three hints. G, H, Participants put similar weight on guesses and hints in
pro-saccade and anti-saccade response trials (paired t test for previous guess: t = �0.38 p=0.70; paired t test for hint: t = �0.26
p=0.79). The weights put on previous hints and guesses were validated using separate models for hints and guesses (Extended
Data Fig. 4-1). To select the relevant number of time steps in the past to include in the model comparison in B (see Table 1 for
model definitions), we used a stepwise regression approach (Extended Data Fig. 4-2). Results shown in B were validated by varying
the dataset used to fit the models (Extended Data Fig. 4-3), looking at best single subject models (Extended Data Fig. 4-4), and
splitting the data according to task difficulty and response type (Extended Data Fig. 4-5).
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participants’ guesses were closer to the center of the von
Mises distribution compared with the presented visual
hints (paired t test: t=4.92, p=0.0001, N=20; Fig. 2E).
This shows that participants were able to combine infor-
mation across trials and thereby improve their estimates
of the target location, rather than just following the current
visual hint. Hence, we can conclude that participants
showed some form of statistical learning during the first
10 trials of the hidden target task.

Similarity of learning curves across response
modalities
To work out whether statistical learning is similar across

response modalities, we contrasted the learning perform-
ance in pro-saccade versus anti-saccade trials in the hid-
den target task, as well as in the calibration task. First, we
calculated the mean and the standard deviation of the re-
spective angular error distributions, pooled across partici-
pants (Fig. 3A,B; Table 2), as well as the performance

Figure 5. Drop in performance after response switch. A, To test the knowledge transfer hypothesis, we analyzed all trials within a block,
encompassing trials before and after the response switch. We specifically focused on the difference between trial 10 (before response
switch) and trial 11 (after response switch). The same example block as in Figure 2 is shown. B, If knowledge is transferred, we expect
similar performance in trial 11 and trial 10. In contrast, if no knowledge is transferred, we expect similar performance in trial 11 and trial 1.
To analyze the difference because of statistical learning only, we subtracted the motor error estimated from the calibration task to make
pro-saccade and anti-saccade trials more comparable. C, Comparison of performance in trial 10 and 11 for the four different experimen-
tal conditions (difficulty � pro/anti order). Each dot represents one subject and horizontal bars indicate mean and extreme values. D,
Same as C but for comparison between trial 1 and trial 11; ***p, 0.001, **p, 0.01, *p, 0.05, n.s. p. 0.05. E–H, Performance time
course for different difficulty levels and pro-/anti-saccade orders. Dashed colored lines represent performance in trials 1–10. Shaded area
indicates the SEM (N = 20). The results for performance were corroborated by analyzing confidence levels, which showed a similar drop
from trial 10 to trial 11 (Extended Data Fig. 5-1, Fig. 5-2). We tested whether the drop in performance was related to the fact that subjects
might have misunderstood the task. A control experiment (see Materials and Methods, experiment 2) confirmed that although subjects
were aware that all 20 trials belonged to the same hidden target location, they were not able to integrate information across the response
switch (Extended Data Fig. 5-3). Furthermore, we validated that the subtraction of the motor error is plausible and that there is no tempo-
rarily increased motor error after the response switch (Extended Data Fig. 5-4).
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Figure 6 Almost no knowledge transfer between visuo-motor modalities. A, To test whether there is any knowledge transferred
from the experience with one response type to the other, we regressed the current guess against previous guesses/current hint. B,
Participants’ estimates at trial 11 (after response switch) are independent of the estimates at trials 10 (before response switch). In
contrast, at every other time point, participants use previous experience to inform their current guess. Shaded area here and in the
remaining panels indicates the SEM (N = 20). C, At trial 11, participants highly rely on the information coming from the current hint.
D, E, Similar to the lack of transfer from one trial to the next (B), there is also no transfer from trials further in the past across the re-
sponse switch (trials 11–12 for t-2; trials 11–13 for t-3). In B, D, E, non-significant regression weights with a p. 0.05 are shown in
opaque.

Table 1: Overview of the models used to assess sensorimotor statistical learning

Name Equation
1 Hint Guesst ¼ b 01b 1Hintt
2 Prev. hint Guesst ¼ b 01b 1Hintt�1

3 Cum. avg. hint Guesst ¼ b 01b 1CumAvgHintt
4 Prev. guess Guesst ¼ b 01b 1Guesst�1

5 Cum. avg. guess Guesst ¼ b 01b 1CumAvgGuesst
6 Cum. avg. hint1guess Guesst ¼ b 01b 1CumAvgHintt1b 2CumAvgGuesst
7 Hintt:t-3 Guesst ¼ b 01b 1Hintt1b 2Hintt�11b 3Hintt�21b 4Hintt�3

8 Guesst-1:t-3 Guesst ¼ b 01b 1Guesst�11b 2Guesst�21b 3Guesst�3

9 Guesst-1:t-21Hintt Guesst ¼ b 01b 1Guesst�11b 2Guesst�21b 3Hintt
10 Guesst-1:t-31Hintt Guesst ¼ b 01b 1Guesst�11b 2Guesst�21b 3Guesst�31b 4Hintt
11 Guesst-1:t-31Hintt:t-3 Guesst ¼ b 01b 1Guesst�11b 2Guesst�21b 3Guesst�31b 4Hintt1b 5Hintt�11b 6Hintt�21b 7Hintt�3
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measure used here and in the following, the absolute an-
gular error (Table 2).
For both modalities and both task difficulties, the abso-

lute angular error in the hidden target task was higher
than in the calibration task (pro hard: t=13.8, p, 0.0001;
pro easy: t=8.8, p, 0.0001; anti hard: t=14.1, p,
0.0001; anti easy: t=2.9, p=0.0084; paired t test each
with N=20). This makes sense as in the former task the
target location was uncertain whereas in the latter it was
not. Furthermore, the performance in pro-saccade and
anti-saccade blocks was only significantly different during
the calibration task, but not during the hidden target task
(calibration task: t=5.6, p, 0.0001; hidden target task
easy: t=1.7, p=0.1106; hidden target task hard: t=1.8,
p=0.0903; paired t test each with N=20). To quantify this
difference further, we calculated a modality difference
index (described in Materials and Methods), which was
consistently higher in the calibration task compared with
the hidden target task (Fig. 3C). These results provide first
evidence that statistical learning is similar for pro-saccade
and anti-saccade response.
So far, we have shown that the average performance in

the first 10 trials does not seem to depend on the modality
used for indication, pro-saccades or anti-saccades.
Nevertheless, the specific time course of statistical learn-
ing could still be modality dependent. For this, we next
looked at the performance in a trial-dependent manner
(Fig. 3D). As expected from the analysis in Figure 2C, we
observed that the performance is slowly increasing with
each trial, indicating that the participants were using the
information given in each trial to improve their estimate of
the hidden target location. This general behavior was also
reflected in the time course of subjects’ own confidence
(Fig. 3E). In line with the previous, trial-independent analy-
sis, we found that the performance for pro-saccades and
anti-saccades was very similar (Fig. 3D, compare red and
blue). This similarity seemed especially interesting when
compared with the observed difference in motor error
during the calibration task (Fig. 3D, dashed line). In sum-
mary, inspection of the learning curves of pro-saccade
and anti-saccade indication supported our initial results
suggesting that statistical learning is independent of the
response modality.

Performance is mostly suboptimal
Since at each point in time, participants have only seen

a limited number of samples from the underlying

distribution of the target location (in form of visual hints), it
is impossible to correctly estimate the distribution’s
mean, i.e., the hidden target location in our task. In princi-
ple, only for an infinite number of samples, the estimated
mean equals the true distribution mean. For the hidden
target task, this means that participants could only reach
zero absolute angular error if an infinite number of trials
were seen. Taking this into account, we can compare par-
ticipants’ performance to the time course of the theoreti-
cal statistical uncertainty because of seeing a limited
number of samples (i.e., sampling error). This provides a
lower bound g on participants’ performance:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 2

Motor1g 2
Hint

q
; (1)

where gMotor is the motor error measured in the calibration
task and gHint is the absolute angular error related to see-
ing only a limited number of samples (the visual hints).
Comparing participants’ performance to this lower bound
showed that for the first trial in each hidden target block, par-
ticipants performed as well as they possibly can (Fig. 3F–J;
Extended Data Fig. 5-4), independent of the task difficulty or
the used response modality, pro-saccades or anti-saccades.
The fact that the estimated lower bound matched subject
performance in the first trial, where no learning has yet hap-
pened, also supports the plausibility of the assumption that
the motor noise and the statistical noise can be added to de-
rive an estimate of participants’ performance (also see
Extended Data Fig. 5-4). However, beyond the first trial and
as soon as subjects needed to combine multiple samples to
estimate the hidden target location, they performed subopti-
mally in most conditions, as can be seen in the difference of
their estimates to the theoretical lower bound (Fig. 3F–J,
black dashed line is optimal).
Interestingly, we found minor differences in terms of

performance between the four different conditions we
tested (pro/anti � hard/easy). Three out of four conditions
showed clear suboptimal behavior (Fig. 3F,H,J). However,
in the condition where the visual hint distribution was
more concentrated (i.e., the easy condition) and anti-sac-
cades were used as the response modality, performance
was close to optimal (Fig. 3G). As described before, this find-
ing cannot be ascribed to the fact that our estimate of the
motor error was flawed, thereby artificially improving the
measured performance, as the estimate for Trial 1 closely
matched what we observed in participants’ behavior
(Extended Data Fig. 5-4). We suspect that in this condition,
performing an anti-saccade discourages a bias to follow the
visually presented lines too much, and hence can be benefi-
cial in producing optimal performance. Nevertheless, the dif-
ferential learning of pro-saccade and anti-saccade responses
with respect to an optimal lower bound on performance was
not present in the hard task condition (Fig. 3H–J), indicating
that the optimal learning for anti-saccades only occurred
when the visual hints where narrowly distributed.

Learning strategy is similar across response
modalities
So far, we have seen that statistical learning in the pro-

saccade and in the anti-saccade context is similar in

Table 2: Angular error distribution for the calibration and
the hidden target task

Task Modality Mean SD Absolute angular error
Calibration Pro-saccade �0.1° 6.3° 3.5°
Calibration Anti-saccade 0.7° 9.5° 7.1°
Hidden target Pro-saccade 1.1° 16.9° 12.1°
Hidden target Anti-saccade 0.1° 18.4° 13.4°
Hidden target Hints 0.1° 20.6° 14.7°

Mean and SD for distributions shown in Figure 3A,B. The rightmost column in-
dicates the average absolute angular error in each task condition, estimated
from the subjects’ guess, or, for the last row, from the distribution of visual
hints.
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terms of the absolute performance and the shape of the
learning curve. Next, we wanted to test whether partic-
ipants used different learning strategies in the pro-sac-
cade and anti-saccade blocks. The first candidate
strategy would be to only look at the visual hints in
each trial, which would mean that no learning is hap-
pening, and that participants’ behavior is only visually
driven. Instead, the optimal strategy, which would re-
sult in the lower bound we calculated before, would be
to calculate the cumulative average of every hint seen
so far in each trial. Besides considering the hints, visu-
ally presented to the participants, we can also imagine
that the behavior is driven by an internal state that pro-
motes looking close to where one has been looking be-
fore, i.e., to follow previous guesses (Fig. 4A). To test
these different hypotheses, we fit several single pre-
dictor linear regression models corresponding to each
strategy (see Table 1). Through a model comparison
(see Materials and Methods), we found that the best
single predictor model is the cumulative average of
previous guesses (Fig. 4B; Extended Data Figs. 4-3,
4-4). Splitting the data into pro-saccade and anti-sac-
cade blocks and repeating the analysis showed that
the best single predictor model does not depend on
the used response type (Fig. 4C,D). Thus, this provides
another piece of evidence that statistical learning in
the presented task is independent of the response
type.
In a second step, we tested several multipredictor mod-

els to get a more detailed view on participants’ learning
strategy. To determine the number of trials in the past po-
tentially having an influence on the current decision, we
conducted a stepwise linear regression analysis, where all
previous guesses and all presented hints thus far were in-
cluded to estimate participant’s angular error in trial 10
(Extended Data Fig. 4-2). This showed that for most par-
ticipants, models with a low number of predictors per-
formed as well as or better than models including all past
trials (Extended Data Fig. 4-2A–C). Furthermore, we
found that the predictors most often included in the best
model were the current visual hint and the three previous
guesses (Extended Data Fig. 4-2D). Based on these re-
sults, we chose to include information from up to three
timesteps in the past and specifically compared five dif-
ferent options of how previous guesses and presented
visual hints can be combined (Table 1). The model com-
parison revealed that multipredictor models which relied
on combinations of external and internal information, i.e.,
visual hints and previous guesses, performed much better
than models that were based on only one of the two sour-
ces of information (i.e., either the previous three guesses
or the current and previous three visual hints; Fig. 4B).
This was consistent across subjects (Extended Data Fig.
4-4). Again, splitting the data into pro-saccade and anti-
saccade blocks did not affect the main trend (Fig. 4C,D),
nor did splitting the data into hard and easy task difficulty
(Extended Data Fig. 4-5).
Lastly, to find the exact weighting participants put on

their previous guesses and the current and previous hints,
depending on the used response type, we fitted a model

with all three previous guesses, the current and three pre-
vious hints, and the response type as predictors. We
found that participants used external information only
from the current trial, ignoring the hints from previous tri-
als (Fig. 4F). Instead, to combine information across trials
they relied on their internal estimations from the past (Fig.
4E). We obtained similar results when models that only
included either the past guesses or the past visual
hints were tested (Extended Data Fig. 4-1), excluding
the possibility that our results were biased by the in-
herent covariation of previous guesses and previous
visual hints. Including the response type in the model
allowed to estimate separate regression weights for
pro-saccades and anti-saccades. Again, we did not
find any significant difference in the weighting partici-
pants put on their own guesses versus given hints, de-
pending on whether they use pro-saccades or anti-
saccades for response (Fig. 4E–H; paired t test for previous
guess: t = �0.38 p=0.70; paired t test for hint: t = �0.26
p=0.79). In summary, we found that participants used a very
similar learning strategy to solve the task, regardless of the re-
sponse type.

Drop in performance after response switch
Despite the similarity in learning performance and strat-

egy, hinting at a general algorithm used for statistical
learning in our task, it is still possible that learning hap-
pens for each visuo-motor modality in a very specific
manner and that both just look similar in terms of perform-
ance and strategy. In this case, it would not be possible to
generalize between modalities. To test this, we included
trial 11 until trial 20 where participants had to continue
looking for the same hidden target (and were also in-
structed that all 20 trials belong to one hidden target), but
had to use the other visuo-motor modality than in trial 1
until trial 10 (Fig. 5A). We considered two alternative
hypotheses. The first states that participants learn in a
modality-independent fashion and store the acquired
knowledge in an abstract form. This would allow for a
complete transfer of previous experience to the new re-
sponse modality (Fig. 5B, black solid line). The second hy-
pothesis would be that participants perform trial 11 until
trial 20 as if there was no previous experience, which
would suggest a response modality-specific representa-
tion of the learned knowledge (Fig. 5B, gray dashed line).
To test which of the two hypotheses better matched the
data, we compared the performance in trial 10 (last trial
before response switch) to the performance in trial 11
(first trial after response switch; Fig. 5C). Since trials be-
fore and after the response switch were performed using
different response modalities and since pro-saccades
and anti-saccades are associated with different motor er-
rors (Fig. 2), we subtracted the respective motor error
estimated from the calibration task from participants’ ab-
solute angular errors during the hidden target task. This
procedure was validated by demonstrating that the result-
ing estimate closely matched the ground truth statistical
error, which in trial 1 is simply the uncertainty related to
the spread of the visual hint distribution (Extended Data
Fig. 5-4C–F). A repeated measures three-way ANOVA
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was performed on participants’ absolute angular error as
the dependent factor and task difficulty, trial number (10
or 11), and pro-/anti-saccade order as independent fac-
tors. We found significant main effects of difficulty
(p,0.0001) and trial number (p, 0.0001), but the main
effect of pro-/anti-saccade order was not significant
(p=0.291). There were also significant interaction effects be-
tween pro-/anti-saccade order and difficulty (p=0.004), as
well as between trial number and difficulty (p=0.006). Post
hoc paired t tests showed that the performance in trial 11
was overall worse than in trial 10, with a significant drop in
performance in all four conditions (trial 11–trial 10 for pro-sac-
cade first/hard: t=4.05, p=0.0007; for anti-saccade first/
hard: t=3.17, p=0.005; for pro-saccade first/easy: t=3.01,
p=0.007; for anti-saccade first/easy: t=2.20, p=0.04; com-
pare Fig. 5C,E–H). This showed that there is an overall drop in
performance after the response switch suggesting that the
knowledge acquired during the first 10 trials is not fully trans-
ferred to trials after a response switch. The drop in perform-
ance is not likely to be because of a temporarily increased
motor error after a switch in response type, as we did not ob-
serve a similar pattern during the calibration task (paired t test
to compare absolute angular error in trial 20 and trial 11 of the
calibration task: t = �1.5, p=0.15; Extended Data Fig. 5-4A).
These results were corroborated by analyzing confidence rat-
ings, as we also observed a drop in confidence at trial 11
compared with trial 10, in line with our results on performance
(paired t test trial 11–trial 10, t=3.7, p=0.0016; Extended
Data Figs. 5-1, 5-2). Together, these results suggest that
although the learning curves and strategies for pro-saccade
and anti-saccade responses were highly similar (Figs. 3, 4),
there was no full knowledge transfer from one response type
to the other.
To test whether there is at least a minor improvement in

performance related to experiencing 10 trials of the oppo-
site response type, we compared the performance in trial
11 (after the response switch) with the naive performance
in trial 1 (Fig. 5D). We used the same ANOVA analysis as
before, only replacing trial 10 with trial 1. There was a stat-
istically significant effect of difficulty (p, 0.0001), but not
trial number (p=0.103), or pro-/anti-saccade order
(p=0.789). There also was a significant interaction effect
between difficulty and trial number (p=0.003). Post hoc
paired t tests showed that there was a significant im-
provement in performance from trial 1 to trial 11 only in
the hard task condition when pro-saccade response was
followed by anti-saccade response (trial 11- trial 1, t =
�2.28, p=0.034), but not in any other of the remaining
three conditions (hard/anti-first: p=0.207; easy/pro-first:
p=0.168; easy/anti-first: p=0.679). Together, these re-
sults suggest that there is only very limited knowledge
transfer from one response condition to the other, as per-
formance was slightly increased compared with naive lev-
els only in one out of four conditions (hard/pro-first).
As comparing performance before and after the modality

switch necessarily includes the factor that pro-saccades and
anti-saccades have inherently different performance because
of motor noise (compare Fig. 2A,B), we also compared the
performance within the same modality, either pro-saccade or
anti-saccade response, between trial 1 and trial 11. To

analyze whether performance overall improved in trial 11,
compared with 1, we performed a similar repeated measures
three-way ANOVA with modality, difficulty, and trial number
as independent factors. Here, we did not subtract the motor
error, since the effect of trial number was compared within,
and not across response modalities, as previously done. We
found a significant main effect of difficulty (p, 0.0001), but
not modality or trial number, similar to our previous analysis
subtracting the motor error. Additionally, we found a signifi-
cant interaction effect between difficulty and trial number
(p=0.0020). Post hoc t tests confirmed that in only one out of
the four experimental conditions there was a statistically sig-
nificant improvement between trial 1 and trial 11 (trial 11 – trial
10 hard/pro: t = �2.2, p=0.041; hard/anti: t = �1.75,
p=0.097; easy/pro: t = �0.2, p=0.837; easy/anti: t=1.9,
p=0.072). In summary, this analysis confirmed the results we
obtained when comparing pro-saccades and anti-saccades
directly, thus ruling out the possibility that our results are
merely an artifact of subtracting the motor error measured in
the calibration task.

Almost no knowledge transfer between visuo-motor
modalities
As modeling showed that participants relied on their

previous guesses rather than the previously seen visual
hints (Fig. 4E,F), we wished to test whether this is also the
case across the time that a response switch occurs. For
this, we calculated the regression weights on previous
guesses in a time-dependent manner (Fig. 6A). If knowl-
edge is not transferred between different visuo-motor mo-
dalities we would predict: (1) participants highly rely on
the visual hint in trial 11 and do not use previous guesses
to inform their decision; (2) they are also not able to use
previous guesses further in the past, if these guesses
were obtained before the response switch. Our analysis
confirmed these two predictions. We found that partici-
pants did not use their previous guess from trial 10 (before
the response switch) to inform their estimate in trial 11
(after the response switch; Fig. 6B). In contrast, at all
other time points they used previous guesses to inform
their current decision. As participants did not use their
previous experience in trial 11, we expected that they in-
stead highly relied on the hint presented in trial 11.
Regression analysis confirmed this hypothesis showing a
peak at trial 11, similar to the peak at trial 1 (Fig. 6C).
Furthermore, inspired by the initial modeling results on
participants’ strategies (Fig. 4), we tested the influence of
previous guesses further in the past [two trials (Fig. 4D)
and three trials (Fig. 4E)]. Again, we found that there is
mostly no influence across the response switch. In sum-
mary, these analyses showed that participants’ behavior
after a response switch was not guided by previous expe-
rience, obtained in the opposite response condition, thus
suggesting a lack of full knowledge transfer across
conditions.
One possible explanation for these results is that partic-

ipants had difficulties in understanding that the hidden
target location had remained the same across first and
second 10 trials (i.e., between trial 10 and trial 11). To rule
out this possibility, we performed a second experiment
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with an independent set of participants (N=20) where
we further emphasized that the target location was the
same across all 20 trials (for details, see Materials and
Methods). Furthermore, we asked participants at the end
of each block whether they were aware that all 20 trials
performed so far belonged to the same hidden target.
We obtained overall similar results in this experiment
(Extended Data Fig. 5-3), as learning performance, as well
as information transfer and confidence were disturbed
after the response switch between trial 10 and trial 11,
although participants were explicitly instructed that all 20
trials belonged to the same hidden target and were also
aware of this (Extended Data Fig. 5-3B). This ruled out the
possibility that the inability to transfer knowledge between
response modalities is because of a cognitive misunder-
standing of the task.

Discussion
The aim of the current study was to characterize the dy-

namics of prior learning and its dependence on the type
of motor response used to report choices. We found that
participants could learn a sensorimotor prior within a few
trials, with the learning time course being mostly inde-
pendent of the response type (pro-saccades or anti-sac-
cades). By using a model-comparison approach, we
further demonstrated that participants relied more on
their own guesses from previous trials compared with vis-
ual hints provided in previous trials, again, independent of
the response type. This suggests that prior knowledge is
represented in terms of previous motor actions and not in-
coming, external information provided by the visual hints.
To verify this hypothesis, we tested whether participants
could generalize their learned prior knowledge from one
motor context to the other, a switch from pro-saccades to
anti-saccades or vice versa. We found that switching the
response type caused a drop in performance, close to re-
setting to naive levels, indicating that experience from
one response type could not be fully transferred to the
other. This was the case even despite explicit instructions
and participants’ awareness that pro-saccade and anti-
saccade trials belonged to the same hidden target loca-
tion. Our results suggest that humans learn sensorimotor
priors through monitoring their previous motor decisions
rather than external sensory hints. The dependence of
learning on past motor decisions discourages generaliza-
tion of the learned knowledge to conditions where a differ-
ent visuo-motor mapping is needed.
Our findings suggest that prior knowledge is repre-

sented in a motor specific manner during early learning,
which is in line with previous studies reporting motor spe-
cific priors in different paradigms (Roach et al., 2017;
Chambers et al., 2019). We could furthermore identify one
potential reason for why generalization is not possible in
such contexts, as we found that participants do not mem-
orize the external information from previous trials (visual
hints in our case), but instead they memorize their own ac-
tions in each trial (Fig. 4E,F). As our task required an esti-
mation in every trial, indicated by either a pro-saccade or
an anti-saccade, the memory of each trial’s decision was
probably represented as the motor action taken to

indicate the guess. This could also explain why tasks
which do not require an explicit response via a motor ac-
tion are more generalizable (Roach et al., 2017). In these
cases, the memory from previous trials is potentially formed
in a more abstract way, as participants only have to “think”
about their decision, but not perform any specific action. The
finding that prior knowledge is built on internal decisions,
comparedwith external cues, could therefore unify some pre-
vious controversial findings about prior generalization.
Despite the suggested motor-specific formation of prior

knowledge, the algorithm to combine previous experien-
ces to inform the current decision seemed to be similar
for both tested response contexts (Fig. 4E–H). This sug-
gests that there is a general procedure for how humans
combine previous experiences. However, whether prior
knowledge can generalize or not depends on the specific
manner through which previous experience or decisions
are stored in memory (e.g., in terms of motor actions or
more abstract decisions). In other words, although at an
algorithmic level learning is independent of the response
modality, the learned information is stored with a format
that is specific for each modality. This explanation is in
line with the previously proposed dissociation between
learning a policy versus knowledge (Chambers et al.,
2019), and further narrows the space of testable predic-
tions regarding the neural implementation of these differ-
ent types of learning, as the well-described neuronal
machinery of pro-saccades and anti-saccades (Munoz
and Everling, 2004; Ford et al., 2005; Juan et al., 2008)
could allow a characterization of how the two types of
learning occur in the brain, for instance through using
neuroimaging techniques.
Our study is different from previous studies as it does

not test prior learning in a condition where there is also
sensory uncertainty (Berniker et al., 2010; Dekleva et al.,
2016). In these task designs, participants are asked to
perform a task trial-by-trial and are not explicitly told to
combine information across trials. Prior learning in these
cases is therefore implicit and potentially unconscious.
Furthermore, learning is mostly observed by analyzing
how participants combine the noisy sensory information
in a given trial with the formed prior. It is therefore not di-
rectly possible to resolve which of the two is learned, as
observed changes in this combination could potentially
come from a changed likelihood distribution, from a
changed prior distribution, or from changes in both distri-
butions. Because of these limitations, we designed our
task such that the sensory information in each trial is
given by a clearly visible hint. We then explicitly asked the
participants to combine the information across trials to
find the hidden target location. Compared with previous
prior learning studies (Berniker et al., 2010), we could
therefore directly examine the ability to learn statistical
regularities over trials. This more general statistical learn-
ing context has also been studied previously, for example
showing that learning can happen rapidly within a dozen
trials if feedback is provided (Chukoskie et al., 2013).
However, to our knowledge, pure statistical learning, with-
out trial-by-trial feedback, together with generalization
has not been studied in this context.
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The two different task contexts we investigated in this
work are distinct to previous studies, as we did not test
generalization from one effector to another, such as per-
forming a task with the right hand and switching to the left
(Hewitson et al., 2018; Kumar et al., 2020), or switching
from a motor to a perceptual task (Chambers et al., 2019).
Instead, our two contexts represent two distinct cue-ac-
tion mappings, though performed with the same motor
system (oculomotor). By cue-action mapping we mean
that participants had to indicate their guess (the internal
cue) with two different response types, pro-saccades and
anti-saccades (the actions), dependent on the task con-
text. Potentially, generalization could be easier between
different cue-action mappings compared with generaliza-
tion between different effectors or tasks. In fact, previous
studies have shown that probabilistic manipulations em-
ployed in either pro-saccades or anti-saccades affect
both response types, suggesting that some form of statis-
tical information is transferred across the two response
modalities (Liu et al., 2010; Chiau et al., 2011; Pierce et
al., 2015), albeit these studies have employed a task
where statistical uncertainty is relatively low and does not
have to be actively learned. Given the specific design of our
task, we cannot differentiate whether participants form a
motor independent spatial prior, which is aligned to the given
cue-action mapping, or whether they form their prior directly
at the motor level. In both cases generalization would fail,
matching our experimental observation. Potentially, partici-
pants learn a spatial representation in the pro-saccade con-
text, where the correct estimate lies close to their performed
motor action endpoint. Then, in the anti-saccade context,
they do not follow this estimate and solely invert their motor
plan, but instead they form a “pro” representation of the hid-
den target location in this new context, where again the per-
formed motor action endpoint is close to the acquired spatial
estimate. In this interpretation, anti-saccades are not real
anti-saccades, but pro-saccades relative to the participants’
estimate and only visual information is inverted. What speaks
for this interpretation is the fact that participants seemed to
be closer to the optimal learning performance in the anti-sac-
cade condition (Fig. 3F,G), although this was only the case
when the visual hints were narrowly distributed. Interestingly,
the only instances where some degree of generalization
across response contexts was observed (i.e., when perform-
ance after response switch was better than naive levels) oc-
curred when participants performed the hard task condition.
Since higher uncertainty in our task discourages a closemap-
ping between motor actions and visual cues (participants
learn that the actual cue location is not necessarily near the
visual hint), it may instead enable a more context-independ-
ent integration of information and formation of abstract
knowledge, thereby promoting generalization. However, this
abstraction seemed to be incomplete as performance was
still affected by a change in response context.
Previous studies examining the effects of statistical reg-

ularities in the oculomotor system have primarily focused
on how learned statistical information influences saccadic
parameters, whereas the involvement of saccades during
the learning process itself has been largely ignored. One
line of research has investigated how the probabilistic

information related to the frequency of appearance of the
target in one out of a fixed set of possible locations affects
saccadic parameters, both for pro-saccades (Carpenter
and Williams, 1995) and anti-saccades (Koval et al., 2004;
Liu et al., 2010). These studies have reported faster and
more accurate gaze shifts toward high- compared with
low-probability locations, and neurophysiological record-
ings have shown that these behavioral effects are be-
cause of an enhanced buildup of neuronal activity
preceding saccades toward high-probability locations,
observed in the superior colliculus (SC) and frontal eye
fields (FEFs; Basso and Wurtz, 1997; Dorris and Munoz,
1998; Everling and Munoz, 2000; for evidence from
human neuroimaging studies, see also Liu et al., 2011).
Another line of research has investigated how the relative
probabilities of pro-saccade versus anti-saccade re-
sponse types affect saccadic parameters, showing for in-
stance that increasing the relative probability of anti-
saccades versus pro-saccades may eliminate the typical
anti-saccades’ cost (Chiau et al., 2011; Pierce et al., 2015).
The latter probabilistic effects were shown to be associated
with modulations in cognitive control regions of the brain
(Pierce and McDowell, 2016). Both location and response
type probabilistic effects have been reported in settings
where statistical uncertainty is relatively low and does not
have to be actively learned. One novel aspect of the current
study is to test how spatial priors can be learned through eye
movements under more complex settings where the possible
target locations are not fixed, and probabilities could only be
inferred through tracking information over time, which to the
best of our knowledge has not been investigated before.
Furthermore, pro-saccades and anti-saccades in our study
were not tested in terms of how they are affected by the end
result of statistical learning, but were examined with respect
to how they are involved in active accrual of statistical infor-
mation from the environment. Despite these differences, our
findings are overall in line with the general conceptual frame-
work put forward by previous studies, namely that statistical
information is faithfully encoded in the oculomotor system.
Future studies will be needed to elucidate where in the oculo-
motor system neural responses exhibit a similar learning dy-
namic compared with the effects we observed here. We can,
however, speculate that our effects are likely to be reflected
in the same areas where location probability effects have
been previously reported, namely SC and FEF, although the
pattern of learning-related neural modulation might differ
from a simple change in neuronal preparatory responses. Our
findings also inspire future neuroimaging studies that are
shown to be well-suited for differentiation of brain networks
underlying pro-saccades versus anti-saccades (Munoz and
Everling, 2004; Ford et al., 2005; Juan et al., 2008) and can
be extended to contrast brain activations when statistical
learning occurs through pro-saccades versus anti-saccades.
This will allow to elucidate whether a learned statistical prior
in one responsemodality is locally stored in networks special-
ized for that modality, as our findings suggest, or is repre-
sented by a distributed code encompassing brain areas that
underlie both saccadic response types.
Our setup allowed us to simultaneously evaluate partici-

pants’ performance, as well as their confidence in their
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given estimation. Interestingly, confidence also decreased
after the response type switch, suggesting that participants
were aware that they cannot generalize between both con-
texts. On the other hand, a control experiment, where we ex-
plicitly asked participants to indicate after each block
whether they were aware that both response type contexts
belonged to the same hidden target estimation, showed that
that they knew that information could be combined across
both contexts (Extended Data Fig. 5-3B). Together,
these results suggest that participants’ inability to
transfer knowledge from one response context to the
other was not because of conscious misunderstand-
ing, but more likely because of the specific mecha-
nisms of how the prior is formed unconsciously.
Although our results, especially the inability to gen-

eralize across different motor contexts, suggest that
statistical learning is implemented in a low-level,
motor-dependent way (Figs. 5, 6), there might be po-
tentially alternative explanations for why we could not
see generalization in our experiment. In the following
we will discuss these alternative interpretations. One
potential explanation for the lack of generalization
could be an interference between the internal memory
of the target location, which is disturbed by the infor-
mation slide, presented between trial 10 and trial 11,
indicating response switch. Another possibility is that
participants would need to train on our task for more
than one session, such that they can learn to adapt
their way of forming the prior knowledge to something
which allows for generalization across response contexts.
Furthermore, in our experiments learning blocks were short
and participants learned the prior distribution of the target
within only 10 trials. To the best of our knowledge, the
speed with which statistical regularities can be learned and
its relation to the generalization across contexts has not
been extensively investigated in the past. However, a few el-
egant studies have shown that statistical learning can occur
within a similar timescale as investigated here. For instance,
Turk-Browne et al. (2009) showed that learning-related
changes in brain activity start to emerge after the first few
repetitions of visual statistical regularities. It has also been
shown that the mean compared with the variance of prior
distributions can be learned rapidly, within only a few trials
(Berniker et al., 2010). Based on these previous results and
our current findings, we predict that some properties of the
statistical priors can be learned very rapidly in most environ-
ments. However, it is possible that the short timescale of
only 10 trials is not enough to form an abstract representa-
tion of the estimated target location that can be generalized
across different contexts. Potentially, initial learning is
motor-dependent, but over time this is transformed to a
motor-independent knowledge, which can then be trans-
ferred to other motor contexts. We also note that in our ex-
periment, switches in response modality were fully
predictable as they always occurred after the first 10 trials of
each block. This design was employed to reduce partici-
pants’ uncertainty regarding the required response, as pre-
dictable task switches are in general associated with lower
switch costs (Monsell, 2003), and in the specific context of
pro-saccades and anti-saccades it has been shown that

switch costs between response types is minimal when re-
sponse types are predictable, i.e., in blocked compared
with interleaved designs (Zeligman and Zivotofsky, 2017). It
is therefore possible that environments in which changes in
response context occur unpredictably or have to be inferred
from past information (Sherman and Turk-Browne, 2020)
will warrant a more protracted learning of statistical informa-
tion and higher switch costs. Finally, one major reason for a
motor-context dependent learning could be that we did not
provide external feedback to guide the learning process, as
done in some of the previous studies (Chukoskie et al.,
2013). Instead, participants had to rely solely on their internal
feedback, potentially coming from the motor system. Future
studies will be needed to test these possible explanations.
Spatially directed movements such as saccadic eye

movements and reaching are an integral part of our daily
activities and acquired skills (e.g., imagine a cellist or a
tennis player). Both types of movements are profoundly
influenced by statistical priors (Körding and Wolpert,
2004; Brodersen et al., 2008). Furthermore, saccadic eye
movements provide detailed sensory information about a
scene and are tightly linked to the allocation of attention,
hence being instrumental for active vision (Munoz, 2002;
Wurtz, 2015). In comparison to the saccadic eye move-
ment, reaching movements have enjoyed a more rigorous
characterization of the learning dynamics (Berniker et al.,
2010; Fernandes et al., 2014; Chambers et al., 2019; Yin
et al., 2019). Inspired by these studies, we characterized
the dynamics of statistical learning through eye move-
ments, that are a more accessible motor plan to be tested
in the laboratory, and the learned information acquired
through their execution can directly impact the very way
that the brain samples sensory information (Parr and
Friston, 2017).
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