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The Coronavirus disease-2019 (COVID-19) presents a variability of clinical symptoms, ranging from asymptom-
atic to severe respiratory and systemic conditions. In a cohort of patients, the Severe Acute Respiratory
Syndrome Coronavirus (SARS-CoV-2), beyond the classical respiratory manifestations, induces anosmia.
Evidence has suggested SARS-CoV-2-induced anosmia can be the result of neurodegeneration of the olfac-
tory pathway. Neurologic symptoms associated with COVID-19 have been reported; however, the precise
mechanism and possible long-lasting effects remain poorly investigated. Preclinical models are valuable tools
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Significance Statement

The Coronavirus disease-2019 (COVID-19) is characterized not only by respiratory, but also neurologic
symptoms that may persevere even longer than the respiratory condition. However, some questions remain
unanswered. How does the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) enter the
brain? Which brain regions are infected? How does the virus affect our behavioral and sensorial responses?
Can the brain infection induce alterations that last longer? We propose that the zebrafish is a suitable model
to study the effects of SARS-CoV-2 in the brain, especially because of the similarities between the fish’ and
the human brain. Zebrafish is a cheap animal model and several reproducible and fast animal tests can be
\used to investigate its behavioral and sensory functions. /

for describing and testing new possible treatments for neurologic disorders. In this way, the zebrafish (Danio
rerio) organism model represents an attractive tool in the field of neuroscience, showing economic and logistic
advantages besides genetic and physiologic similarities with mammalian, including the brain structure and
functions. Besides, its external embryonic development, high availability of eggs, and fast development allows
easy genetic manipulation and fast replications. In the present review, we suggest that the zebrafish model

can be advantageous to investigate the neurologic features of COVID-19.
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COVID-19 and Society: The Urgent Need
of a Rapid and Fast Animal Model

The novel strain of coronavirus responsible for the
Coronavirus disease-2019 (COVID-19) emerged in
December 2019 in Wuhan, a province in China (Rothan
and Byrareddy, 2020). In a short period, COVID-19
cases have rapidly spread worldwide causing frightful
rates of morbidity and mortality (Jain et al., 2020)
and declared as a global public health threat by the
World Health Organization in March 2020 (World Health
Organization, 2020).

Because of efforts made by different groups of scien-
tists, the etiologic agent of this new pandemic was char-
acterized as a B coronavirus named Severe Acute
Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2),
which is closely related to its previous relative SARS-
CoV, responsible for the SARS outbreak in China during
the early 2000s (Ksiazek et al., 2003). Similar to its “older
cousin,” spike proteins S1 and S2 of the SARS-CoV-2
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use the host angiotensin-converting enzyme 2 (ACE2) as
a receptor (Walls et al., 2020) to initiate its entrance into
the cell. This interaction with ACE2 seems to be primed
by a proteolytic cleavage of the spike (S) protein by the
transmembrane protease serine (TMPRSS2), responsi-
ble for the virus interaction with its target receptor
(Hoffmann et al., 2020; Ou et al., 2020). Moreover, unlike
SARS-CoV, the invasive mechanism of SARS-CoV-2
seems to involve preactivation by furin, a proprotein con-
vertase that reduces the dependence of the novel coro-
navirus on recruiting proteases of the target cells for its
successful entry (Shang et al., 2020).

Early epidemiological studies suggested that most pa-
tients infected with SARS-CoV-2 developed none or mild
symptoms, similar to common flu, caused by influenza vi-
ruses, such as fever, cough, fatigue, rhinorrhea, sneezing,
and sore throat. However, recent evidences showed that
beyond the respiratory system infection, SARS-CoV-2
could also produce a severe syndrome with its collection of
symptoms: severe pneumonia, important damage in the
cardiovascular system, including thrombosis, persistent
anosmia, and in some quite often neurologic symptoms (en-
cephalitis, disturbed consciousness, and cerebrovascular
accident; Duong et al., 2020; Ellul et al., 2020; Mao et al.,
2020; Rothan and Byrareddy, 2020; Wu and McGoogan,
2020; Xu et al., 2020).

A great number of patients with COVID-19 have de-
scribed neurologic complications associated with the viral
infection (Helms et al., 2020; Mao et al., 2020). These
case reports raise questions regarding the SARS-CoV-2
neurotropism, and how it contributes to the postinfection
complications in the CNS (Netland et al., 2008; Huang et
al., 2020; Zhang, 2020). A recent study (Chen et al., 2021)
showed that ACE2, the target for SARS-CoV-2 entrance,
could be identified in different components of CNS
such as neurons, astrocytes, and oligodendrocytes.
Many brain structures exhibited a high expression of
ACE2 including the olfactory bulb, a region that has
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been associated with anosmia (loss of smell sense), a recur-
rent symptom also reported by patients with COVID-19
(Chen et al., 2021). Besides, other neurologic manifestations
have already been identified in patients diagnosed with
COVID-19, such as headache, confusion, and disabling
strokes (ladecola et al., 2020). However, it is not well charac-
terized how the SARS-CoV-2 affects directly the CNS or to
what extent the neurologic disorders are consequences to
secondary mechanisms.

The ACE2 is an enzyme expressed in many tissues, in-
cluding the brain cells (Gheblawi et al., 2020), which can
infer that once in the brain parenchyma, SARS-CoV-2
could be neuroinvasive. Additionally, SARS-CoV-2 is
mainly transmitted through expelled virus-laden droplets,
which can be inhaled by another person, leaving the virus
exposed mainly to epithelium-like tissues throughout the
respiratory tract. In this way, recent evidence suggests
that the virus may enter the brain via the olfactory system
through the nasal cavity, affecting breath control (Li et al.,
2020a). Although other species of virus are capable of
penetrating the CNS (for detailed review, see Koyuncu et
al., 2013) the precise mechanism involved in SARS-CoV-
2 neurologic manifestation remains poorly understood.

Other viruses from the coronavirus family have been
shown to use the olfactory pathway to enter the brain fol-
lowing intranasal inoculation. Perlman et al. (1990) showed
that the Mouse hepatitis virus (MHV), a neurotropic corona-
virus, is detected in brain areas neuroanatomically con-
nected to the olfactory nerve after intranasal exposure to
the virus. Furthermore, surgical bulbectomy prevented the
entry of MHV into the brain via the olfactory pathway
(Perlman et al., 1990). Moreover, in transgenic mice that
express the human ACE2 receptor under the control of the
human cytokeratin 18 (K18) promoter, SARS-CoV, after in-
tranasal inoculation, was rapidly found in the olfactory bulb
and in brain regions that have first or second-order con-
nections with the olfactory bulb, indicating that the virus
enters the brain through the olfactory tract and reaches
connected brain areas through transneuronal spreading
(Netland et al., 2008). A similar mechanism of neuro-propa-
gation from the olfactory bulb to neuroanatomically associ-
ated areas was described for the human coronavirus strain
OC43 (Dubé et al., 2018).

If SARS-CoV-2 uses the olfactory route to enter the
brain and migrates through transsynaptic spreading to
brain regions directly or indirectly connected to the olfac-
tory bulb, the virus can potentially invade the thalamus,
the hypothalamus, cortical regions, the midbrain, and
even the brainstem. This could be related not only to the
neurologic manifestations described in several COVID-19
patients but could also contribute to the respiratory symp-
toms since the neuro-invasiveness of SARS-CoV-2 could
compromise the respiratory center of the brainstem
(Gandhi et al., 2020; Li et al., 2020b; Manganelli et al.,
2020; Dey et al., 2021).

The assumption of the olfactory pathway as the route of
entry for SARS-CoV-2 into the brain is supported by the
expression of ACE2 in the olfactory bulb and in brain re-
gions that are directly connected to the olfactory tract
(Chen et al., 2021). The ACE2 receptor is expressed in
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numerous cell types, including excitatory and inhibitory
neurons, as well as microglia, oligodendrocytes, oligo-
dendrocyte-precursor cells, and astrocytes (Chen et al.,
2021). Moreover, TMPRSS2, a protease that partici-
pates in the cellular transfection of the virion, and neu-
ropilin-1, a signaling molecule shown to increase
SARS-CoV-2 infectivity, are also expressed in the olfac-
tory neuroepithelium (Butowt and Bilinska, 2020;
Matschke et al., 2020; Karuppan et al., 2021).

Histopathological evidence also supports that SARS-
CoV-2 could directly infect cells from the olfactory tract.
Meinhardt et al. (2021) reported the presence of the
SARS-CoV-2 spike (S) protein within neuronal cells in the
olfactory mucosa from patients with COVID-19. They also
found SARS-CoV-2 RNA in the olfactory bulb and in brain
regions that receive projections from the olfactory tract
(Meinhardt et al., 2021). In K18-hACE2 mice, after intra-
nasal inoculation of SARS-CoV-2, the virus was detected
in the brain tissue on day 3 after infection. By day 6 after
the inoculation, SARS-CoV-2 was detectable in the olfac-
tory bulb, cortex, cerebellum, and hippocampus of K18-
hACE2 mice (Kumari et al., 2021).

The SARS-CoV-2 infection has been associated with
brain damage in the olfactory bulb and its neuroanatomi-
cally connected areas. Stoyanov et al. (2020) described
severe neurodegeneration and inflammatory cell infiltra-
tion in the olfactory bulb of two COVID-19 patients. In a
postmortem case series conducted in Germany, neuro-
pathological analysis of glial activation patterns revealed
a high degree of astrogliosis and microgliosis in the olfac-
tory bulb, with low levels of cytotoxic-T cell infiltration
(Matschke et al., 2020). The study also reported activation
of microglial cells and infiltration of CD8-positive lympho-
cytes in the brainstem and a level of astrogliosis in the
frontal cortex of COVID-19 patients (Matschke et al.,
2020). In K18-hACE mice, SARS-CoV-2 intranasal inoc-
ulation triggered an increase in proinflammatory cyto-
kines and chemokines in the brain and induced
neuronal cell death in the hippocampus, cortex, and
cerebellum (Kumari et al., 2021).

Animal models are the founding steps toward a better
understanding of biological processes. Rodents-based
models, such as mice and rats are widely used in biomed-
ical research, but because of their intrinsic phenotype,
their use in COVID-19 is limited. This restriction is associ-
ated with crucial amino acid variations in the primary
structure of the ACE2 receptor (Chan et al., 2020). To cir-
cumvent this limitation, transgenic mice models express-
ing human ACE2 (hACE2) are available, but there are
some limitations regarding their use: (1) there are reports
that SARS-CoV-2 induces mortality on 7 d postinfection
(dpi) limiting their use on long-term experiments; (2) be-
cause of the high demand of research labs, their breeding
and distribution are limited. Other animal models are
being studied, such as ferrets (Kim et al., 2020), golden
hamster (Chan et al., 2020; Sia et al., 2020), and non-
human primates (Bao et al., 2020; Rockx et al., 2020), but
to perform experiments using these animals, several labo-
ratories must adapt their animal housing facilities, and
some of them take several weeks to produce offspring
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(for detailed review of animal models available, see
Johansen et al., 2020).

Since there is an urgency to establish new and effective
experimental models to understand the neurologic com-
ponents associated with COVID-19, our goal with this re-
view is to present evidences supporting the use of Danio
rerio, commonly known as zebrafish, as a powerful tool to
comprehend to which extent the SARS-CoV-2 may affect
and alter the CNS homeostasis.

Zebrafish as a rapid and replicable experimental
model

Zebrafish (D. rerio) is a small teleost that originated from
the South of Asia and is characterized by the blue-black
longitudinal stripes alternating with silver-white stripes
that extend across its body (Lawrence, 2007). After fertil-
ization, a large number of eggs (~100 per day) is gener-
ated. The eggs are transparent, making it possible to
observe the structures of the zebrafish’s organs during
development. They achieve the larval stage from 2 to
3 d after the fertilization period in which the organogen-
esis of many structures is still not complete (Kimmel et
al., 1995; Spence et al., 2007). Its small size, easy main-
tenance in the laboratory, external fertilization, trans-
parency of the embryos, and well-defined stages of
development make the zebrafish an attractive model for
research in many fields (Kimmel et al., 1995; Howe et
al., 2013; Diniz et al., 2015; Kundap et al., 2017; Saad et
al., 2017; Ayala-Nunez et al., 2019). Besides, zebrafish
have genetics and physiologic similarities with mam-
mals, increasing their value as a powerful tool on the
bench side of the scientific methods (MacRae and
Peterson, 2015).

Genetic sequences in zebrafish have been studied
since the 1980s. Njolstad et al. (1988) characterized a ze-
brafish homeobox and found that this sequence shares
similarities that lead to the same encoded proteins as
the murine domain hox-2.17. In the following years, other
zebrafish genes were sequenced and compared with mam-
malian. Several genes showed similarities in the sequence,
expression, and encoded proteins (Njolstad et al., 1988;
Krauss et al., 1991). Postlethwait et al. (1998) mapped 144
zebrafish genes and described large conservation of chro-
mosome segments between zebrafish and mammalian, in-
cluding some human genes. Sahly et al. (1999) described
the expression of eyal that is involved in embryogenesis,
and their results predicted a protein with 84.7% similarities
with its human orthologue. Blaker-Lee et al. (2012) de-
scribed zebrafish genes orthologues with human genes in-
volved in brain disorders.

Howe et al. (2013) accomplished the significant step to
evaluate the homology between human and zebrafish ge-
nomes in 2013. The zebrafish genome comprises around 26
thousand protein-coding genes in 26 pairs of chromo-
somes, while the human genome is composed of between
20-25 thousand genes in 23 pairs of chromosomes (Howe
et al., 2013; International Human Genome Sequencing
Consortium, 2001). The researchers observed that >70% of
human genes have an orthologue in zebrafish. The authors
also found that some human genes have no orthologue in
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zebrafish, even presenting related receptors. These facts
indicate that zebrafish have proteins with similar functions
to human proteins; however, they encoded for different
genes in humans and zebrafish. They also compared the
zebrafish genes with the human genes described in the
Online Mendelian Inheritance in Man (OMIM) database,
which catalog genes involved in morbidity development.
More than 80% of the 3176 genes described have an or-
thologue in zebrafish, allowing the use of zebrafish to in-
vestigate numerous human morbidities (Howe et al., 2013).

Over the years, many authors described genes associ-
ated with CNS development (Mack-Bucher et al., 2007;
Xu et al., 2011; Blaker-Lee et al., 2012; Umans et al.,
2017; Wu et al., 2019), CNS functions (Cocco et al.,
2017; Laboissonniere et al., 2018), neurogenesis (Krauss
et al.,, 1991; Byrd and Brunjes, 2001; GermanA et al.,
2011), suggesting that zebrafish is a suitable model to
evaluate neural disturbance mechanisms, efficacy, and
toxicology of potential treatments. Besides, it is ex-
tremely important to highlight that although both spe-
cies, human and zebrafish, possess a distinct systemic
respiratory mechanism, studies have shown that the
zebrafish swimming bladder (a specialized organ re-
sponsible for a proper buoyancy of teleosts) possesses
anatomic, embryological, and transcriptome resemblan-
ces with human (and other mammals) lungs (Zheng et al.,
2011). Moreover, Jonz and Nurse (2003) showed that the
neuroepithelial cells (NECs) which are involved in respi-
ratory control in mammals, are also present in larval and
adult zebrafish. As indicated by immunolabeling, the
NECs have vesicles containing the neurotransmitter se-
rotonin, which seems to play a role in the respiratory sys-
tem (Jonz and Nurse, 2003). These aspects suggest that
not only the neuroinvasion could be studied (as dis-
cussed below) but also other systemic COVID-19s mani-
festation and complication.

Moreover, using zebrafish is a tremendous advantage
because it has been accepted as an alternative model
since it fulfills the 3R’s principles: reduction, refinement,
and replacement. The current European Union legislation
(European Parliament, 2010) on the protection of animals
used for scientific purposes considers that the early stages
of the development of zebrafish [until 5 d postfertilization
(dpf)] do not need protection since the procedures con-
ducted will not provide suffering. The period before embryos
and larvae reach exogenous feeding is used as criteria by
EU Directive 2010/63/EU to define the period that fish do
not require regulation (Scholz et al., 2008; Beekhuijzen et al.,
2015; Bhusnure et al., 2015). Using zebrafish for research
purposes also contributes to reduction because it allows the
economy of animals of higher orders in many research
steps, such as screening of substances in drug discovery.
Also, because it undergoes the processes of absorption,
distribution, metabolism, and excretion, zebrafish’s use re-
duces the difference in results obtained between in vitro and
in vivo tests (Bhusnure et al., 2015).

Zebrafish’s susceptibility to SARS-CoV-2 infection
In addition to the receptor ACE2, the TMPRSS2, the
proteases cathepsin L, trypsin, and furin were referred
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to mediate the virus’ entry into the cells. Between
the countless human-related proteins that zebrafish
presents, there is also evidence of these enzymes in-
volved in SARS-CoV-2 infection. This information can
be used to design experiments that could help under-
stand the virus infection’s whole process or even study
potential drugs, which target these enzymes.

Cathepsin L is present in zebrafish since the early
stage of development. Expression of the gene catL
can be detected even around 7 h postfertilization
(hpf), and the expression is higher at the hatching
time. Cathepsin L is involved in the development and
hatching processes (Vogel and Gerster, 1997). Dana
et al. (2019) used zebrafish as the in vivo model to en-
sure the efficacy of a selective probe synthesized to
study human cathepsin L. Therefore, cathepsin L was
proposed as a biomarker for chemical exposure by
evaluating its enzymatic activity in zebrafish embryos
(Kaster, 2005).

Trypsin and its receptor Par2 are present in zebrafish. The
receptor Par2 is ubiquitously distributed while the trypsin
was found in higher concentrations in the gill, nasal cavity,
and mouth of embryo-larvae stages of zebrafish. It seems to
play a role in response to injury, protecting the fish from
bleeding (Kim et al., 2009; Xu et al., 2011).

Expression of furin genes was also described in zebra-
fish even in early stages and seemed to be relevant in the
development and immunologic system (Walker et al.,
2006; Ojanen et al., 2015).

The protease TMPRSS2 has only been studied in
zebrafish in its rearranged form TMPRSS2-ERG, a bio-
marker of prostate cancer. However, there is still evidence
that zebrafish have an orthologue to the TMPRSS2 protease
(Bansal et al., 2014; Butler et al., 2017). Ohler and Becker-
Pauly (2011) observed high evolutionary conservation be-
tween the genes encoding TMPRSS4 in zebrafish and hu-
mans. They also demonstrated that the early development
of zebrafish was affected by the TMPRSS4 gene silencing
(Ohler and Becker-Pauly, 2011).

The zebrafish ACE2 receptor region that interacts
with the protein S seems to share 50-64% similarities
with the same human region (Kraus et al., 2020). This
characteristic was explored in a recent preprint paper,
in which the authors showed that an exposure of ze-
brafish larvae to SARS-CoV-2 protein S receptor-bind-
ing domain (RBD) induced augmentation on heart rate
at 5 and 7 dpf. This parameter was normalized after
larvae exposure to captopril, suggesting the participa-
tion of the ACE2 receptor on this cardiovascular pa-
rameter (Kraus et al., 2020). Intriguingly, the authors
also observed that intranasal delivery to RBD resulted
in disrupted integrity of the olfactory system, such as
edema, hemorrhage, and apical loss of olfactory sen-
sory neurons, accompanied by reduced electro-olfac-
togram signal (Kraus et al., 2020).

Modeling zebrafish’s viral infection: a powerful tool to
understand SARS-CoV-2

The zebrafish organism is gaining considerable visibility
as an animal model to study pathogenesis and to screen
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new potential compounds for the treatment of different
bacterial (Takaki et al., 2013) and viral infections (Gabor et
al., 2014) that also affects the respiratory system in hu-
mans. Zebrafish has several components of human im-
munity. The innate immunity is present since the larvae
hatched from the egg, whereas adaptive immunity takes
weeks to fully develop (Lam et al., 2004; Novoa and
Figueras, 2012). Despite the evolutionary distance, there
are several similarities between the human and zebrafish
immune systems; those include cellular components, i.e.,
macrophages, neutrophils, eosinophils, dendritic cells,
and signal transduction pathways to eliminate the in-
truders (Goody et al., 2014).

The innate immune system first recognizes viral infec-
tions through mechanisms that may rely on toll-like recep-
tors (TLRs), among them 3, 7, 8, and 9, retinoic acid-
inducible gene I-like receptors, nucleotide oligomerization
domain-like receptors, and receptors that detect DNA in
the cytoplasm (for more details, see Thompson and
Iwasaki, 2008). Although the exact mechanism responsi-
ble for an immune response toward SARS-CoV-2 is still
under loose, it is conceivable to assume that it interacts
with one or more of these receptors. Elucidating this
piece of the puzzle may help comprehend one of the sig-
nificant complications concerning the COVID-19’s evolu-
tion and mortality.

It is assumed that the exacerbated immune response
toward SARS-CoV-2 elicits a colossal increase in periph-
eral proinflammatory cytokine and chemokine that ulti-
mately can promote organ failure and death, an effect
known as a “cytokine storm” (Mehta et al., 2020; Qin et
al., 2020). In this way and assuming the importance of
generating new rapid models to study this phenomenon
in the laboratory, Kraus et al. (2020) have established ze-
brafish, in different stages of life, as useful models to in-
vestigate the pathophysiological effects of SARS-CoV-2
infection on both olfactory and cardiovascular system.
The study revealed that the immune response of zebrafish
to recombinant protein S parallel those observed in hu-
mans that present a mild-form of COVID-19. More specifi-
cally, the authors observed an increase in mRNA of
antiviral response and proinflammatory cytokines, such
as interleukin-18 (IL-13), tumor necrosis-« (TNFa), inter-
leukin-17 (IL-17), and chemokine ligand 20 (CCL20; Kraus
et al., 2020).

Highlighting the converge immune response of zebra-
fish and humans, Progatzky et al. (2019) elegantly showed
that mimicking viral infection on the upper respiratory
tract through intranasal administration of resiquimod (TLR
7/8 agonist) promoted an increase in proinflammatory cy-
tokines expressions, such as IL-13, type-l interferons
(IFN- a crucial antiviral signaling molecule) and TNF-c.
The study provided insights that zebrafish responses to
resiquimod stimuli were similar to those observed in hu-
mans, both presented an augmentation of TNF-« and
IFN- v in a time-dependent manner, while in mice the lev-
els of TNF-« drastically reduced below basal levels after 1
h. Moreover, the authors also observed that the exposure
to polyinosinic:polycytidylic acid (poly (I:C), a viral double-
strand RNA mimetic) produced an upregulation of genes
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responsible for TNF-q, IL-6, and IFN- y only in mice, while
there was no observable changes neither on humans or
zebrafish after 1 or 8 h exposure (Progatzky et al., 2019).
More intriguing, Gabor et al. (2014) described zebrafish as
a valuable animal model to investigate the infection of dif-
ferent strains of human Influenza A virus (IAV), which simi-
larly to SARS-CoV-2, is characterized as a causative
agent of respiratory disease. The infected animals pre-
sented an increase in viral burden, recapitulating the im-
mune and clinical symptoms of influenza infections in
humans, showing an increased and sustained IFN expres-
sion, edema, and tissue destruction with multiple organ
involvement. Besides, the treatment of infected zebrafish
with Zanamivir, an anti-influenza compound, was able to
reduced mortality and the expression of viral gene prod-
uct, demonstrating the validity of zebrafish as a model to
screen new antiviral compounds for IAV treatment (Gabor
etal., 2014).

Besides its use on cytokine profile to immune chal-
lenges, zebrafish can be genetically manipulated to gain
or loss-of-function of a myriad of proteins and may help
to characterize the SARS-CoV-2 kinetic and dynamic.
These have been applied to understand in vivo viral infec-
tion kinetic, cell tropism, phagocytic behavior, spatiotem-
poral activation of antiviral pathways (Ding et al., 2011;
Palha et al., 2013; Passoni et al., 2017). In this direction,
Ding et al. (2011) investigated whether zebrafish could
be a potential model for Hepatitis C virus (HCV) replication
research. The animals microinjected with NS5B-plasmids
demonstrated viral particles amplified in the liver. Even
without any abnormalities in the development of zebrafish
larvae, the viral amplification induced a similar gene
expression pattern as those observed in human hepato-
cytes (increased expression of Argsyn, Hsp70, Leugpcr,
ScarF2, Rasgbd, and chemokine-1 genes). Beyond the
immune similarities, the administration of anti-HCV drugs,
ribavirin and oxymatrine, was able to reduce the amplifi-
cation rate in infected larvae, demonstrating again the
great potential of this model as a tool for HCV drug
screening (Ding et al., 2011). Another suitable example of
zebrafish versatility to study viral infections was demon-
strated by Passoni et al. (2017) using a transgenic zebra-
fish and genetically modified Chikungunya virus (CHIKV)
and Sinbdis virus (SINV), both pathogens that sometimes
are associated with neuropathies. The study showed that
microinjection of green fluorescent protein (GFP)-ex-
pressing CHIKV and SINV on zebrafish larvae promoted
an increase in GFP intensity in different organs. The au-
thors also observed that SINV possesses a broad organ
tropism as showed by GFP expression on central and pe-
ripheral organs after 1d postinjection. Moreover, this
study has demonstrated, by using a transgenic zebrafish
expressing the red fluorescent protein (RFP) on endothe-
lial cells, that only GFP-CHIKV colocalized with RFP-en-
dothelium after 1 and 2d postinfection, revealing that
CHIKV, but not SINV, infects endothelial cells of the
blood-brain barrier (BBB). Besides, they also studied the
“Trojan-horse” neuroinvasion hypothesis, a secondary
mechanism for CNS entry. By using a transgenic zebrafish
line in which macrophages (including the microglia)
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express mCherry, a red cytosolic fluorescent protein, the
authors showed that neither CHIKV nor SINV use this al-
ternative route for CNS infection. Altogether, these results
aid by unveiling possible tools to understand viruses neu-
roinvasion mechanism on humans (Passoni et al., 2017).

The Zebrafish CNS, Olfactory Pathway,
and Its Possible Relevance in the Context
of COVID-19

Among the preclinical models applied o to study the
physiological and abnormal brain functions, rodents still
are the most employed animals in the neuroscience field.
However, other animal models, like zebrafish, are emerg-
ing as promisor candidates (Keifer and Summers, 2016).

As exemplified in Figure 1, the zebrafish’s brains share
many neuroarchitecture and cellular morphology with
mammals, including humans, characteristics that config-
ure it as a valuable tool to model a wide range of human
brain disorders (Kalueff et al., 2014; Stewart et al., 2014).
Moreover, zebrafish have a very similar neurotransmitter
system when compared with humans. Among the already
neurotransmitters and neuromodulators characterized in
this teleost are the GABA, glutamate, dopamine, nor-
adrenaline, serotonin, acetylcholine, and histamine sys-
tems, which can already be observed at the early stages
of zebrafish embryo and seems to play similar roles to
those observed on mammals (for detailed review, see
Horzmann and Freeman, 2016).

Regarding anatomy and physiology, despite its smaller
cerebral hemispheres, the zebrafish brain presents a
highly conserved organization, keeping important similar-
ities when compared with the human brain. For instance,
zebrafish have all typical sensory functions (vision, olfac-
tion, taste, hearing, and tactile), and of note, all the
sensory pathways share significant homology with hu-
mans (Byrd et al., 1996; Wullimann and Puelles, 1999).
Highlighting similarities with humans’ brain organization,
the BBB is present on zebrafish, which develops on 3 dpf,
and controls small molecules’ permeability (Fleming et al.,
2013).

Like mammals, the adult zebrafish brain is divided into
the forebrain, midbrain, and hindbrain. The forebrain is
the anterior part and includes the telencephalon and dien-
cephalon. The midbrain is the portion between the fore-
brain and hindbrain, divided into optic tectum, torus
semicircularis, torus longitudinalis, and midbrain tegmen-
tum. Besides, the posterior portion of the brain is the hind-
brain, which is composed of the cerebellum and medulla
oblongata (Wullimann et al., 1996; Mueller et al., 2011;
Folgueira et al., 2012). Functional similarities are also ob-
served, for instance, the lateral pallium of zebrafish con-
tains homologous structures to the hippocampus (Fig. 1),
a structure that is derived from the medial pallium and is
closely related to spatial memory (Eichenbaum et al.,
1999; Rodriguez et al., 2002). Besides, the medial pallium
of zebrafish presents an amygdaloid-like function (Fig. 1),
a brain structure involved in the aversive learning in hu-
mans (Martin et al., 2011; Mueller et al., 2011; von Trotha
et al., 2014). Similar to the olfactory system of mammals,
neurons in the olfactory bulb of zebrafish project toward
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Figure 1. Zebrafish versus human olfactory system as one of the possible routes for the entrance of SARS-CoV-2 into the cen-
tral nervous system. The human olfactory neuroepithelium comprehends ACE2-expressing olfactory sensory neurons that com-
municate with mitral cells in the olfactory bulb. The structure and cytoarchitecture of zebrafish’s olfactory neuroepithelia and
olfactory bulb are similar to that found in humans. Moreover, human brain areas present functional and structural correlates in

the zebrafish brain.

the telencephalon and diencephalon (Wullimann and
Puelles, 1999), suggesting that the zebrafish present an
anatomic and functional organization that parallel those
observed on humans (Fig. 1). In this sense, Miyasaka et
al. (2014) used single-neuron labeling analysis in larvae
zebrafish to reveal that axons at glomerular clusters in
the olfactory bulb target the regions of the forebrain
such as the posterior telencephalon, ventral telencepha-
lon, the right habenula, the posterior tuberculum and the
olfactory bulb itself in ipsilateral and contralateral regions.
Noteworthy in the context of COVID-19, the olfactory
system of zebrafish also shares many similarities with
those observed in terrestrial mammals, including humans
(Hildebrand and Shepherd, 1997; Howe et al., 2013;
Saraiva et al., 2015; Fig. 1).

In zebrafish, the olfactory system can be divided into
two main structures: the peripheral organ that organizes
itself in a pair of rosettes on the nasal cavity, and the
superior structure that is represented by the olfactory
bulb and attached structures, responsible for diverse
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behavioral responses (Baier and Korsching, 1994;
Korsching et al., 1997; Friedrich et al., 2013). The odorant
receptors, responsible for the primary signal transduction
in the periphery organ, follow the one neuron — one recep-
tor rule, by which the sensory neurons can express only
one receptor of many existing types. These neurons ex-
pressing the same receptors converge their axons onto a
specific location in the olfactory bulb, and different odors
can activate different types of compromised neurons, en-
coding a specific pattern of activation responsible for sin-
gular odors sensations (Barth et al., 1996; Friedrich and
Korsching, 1997).

Another advantage is that zebrafish’s olfactory system
has a quick development detecting and discriminating
odors between 2 and 4 dpf (Lindsay, 2004; Vitebsky et al.,
2005). Moreover, this teleost also presents anatomically
olfactory components more accessible than other verte-
brates, allowing invasive manipulations with an increased
rate of survival (Baier and Korsching, 1994; Igbal and
Byrd-Jacobs, 2010; Paskin and Byrd-Jacobs, 2012;
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White et al., 2015). Altogether, these characteristics allow
a quick and effective investigation of SARS-CoV-2 infec-
tion both on embryonic and adult olfactory systems.

Zebrafish as a model of neurologic disorders

How SARS-CoV-2 encroaches on the CNS is a question
that remains unexplained. As mentioned, the primary hy-
pothesis is that the virus can reach the neuronal cells
through the olfactory nerves, promoting complications re-
lated to the olfactory perception, such as anosmia (for de-
tailed review, see Lao et al., 2020). Corroborating this
premise, functional analysis using magnetic resonance
imaging of a patient who suffered from COVID-19 anos-
mia and dysgeusia suggested an altered cortical activity
that normalized after resolving these symptoms (Politi et
al., 2020).

Another hypothesis suggests that SARS-CoV-2 can
promote an entry by a hematogenous route, either infect-
ing the BBB cells or camouflaging itself in immune cells to
enter the central nervous system as Trojan horses, both
leading to possible neuroinflammatory boards. This hy-
pothesis is based on the neurovascular symptoms, such
as stroke, that affect many contaminated patients (Kumar
et al., 2020). These possible pathways to SARS-CoV-2
entry in the CNS agree with the secondary neurologic
symptoms presented by the patients, which can range
from simple headaches to hemorrhagic strokes (Berger,
2020; Orru et al., 2020), a serious condition that can in-
crease the risk of death (for more detailed review of
SARS-CoV-2 neuroinvasion, see ladecola et al., 2020).

The zebrafish model shows up great features once it is
already used as a neurologic model for the disorders
studies because of its similarities with the human CNS
and the easy access to the communications routes
among the brain areas, mainly in the embryonic phase
(MacRae and Peterson, 2003). The neurovascular system
can be evaluated in zebrafish and robust protocols and
neuroimages assays that can easily show the dimension
of the stroke-induced (Crilly et al., 2019) and can lead to a
neuroinflammatory correlation process, as happens in
parallel in SARS-CoV-2 infection. Furthermore, transsy-
naptic tracing using viruses to enable gene transfer has
been used in zebrafish to study neuronal connection
(Mundell et al., 2015). In this sense, similar techniques in
addition to fluorescent labeling could be used to evaluate
the spreading of SARS-CoV-2 in the CNS. Beyond that,
the virus’ pathways to entry in the CNS can be easily veri-
fied in the zebrafish model, as already happened with
Chikungunya virus and Sindbis virus through fluorescent
techniques (Passoni et al., 2017), a protocol that may be
applied in COVID-19 research.

More than evaluating the acute consequences of the in-
fection and its correlation with the CNS, zebrafish can
provide long-term results about these consequences. It is
unknown whether and how the interaction with SARS-
CoV-2 and the brain can lead to the worsening of other
preexistent neurologic conditions or precipitate the ap-
pearance of symptoms in people susceptible to neuro-
logic diseases in a long-term manner, either by the
possible capacity of the virus to cause brain injury directly
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or through affecting the people by promoting a stressful
overload because of pandemic era events, like social
distancing.

Anosmia and ageusia, symptoms experience for most
patients infected with SARS-CoV-2, are also reported in
the initial stages of neurodegenerative diseases such as
Alzheimer’'s and Parkinson’s disease (Tarakad and
Jankovic, 2017; Marin et al., 2018). Therefore, the concern
that the new coronavirus can promote a certain degree
of neurodegeneration, or even modulate the CNS homeo-
stasis to lead to a new pathologic state, as happened
with one patient that presents a quick development of
Parkinson’s disease starting after SARS-CoV-2 diagnosis
(Cohen et al., 2020). To evaluate whether these factors
can induce long-term changes, the zebrafish is a valuable
tool since it is an established model to study neurodegen-
eration even in the context of neurodegenerative disor-
ders (Tierney, 2011; Martin-Jiménez et al., 2015), and can
be used to assess infection course and neurodegenera-
tion relationship in a longitudinal way, because of quick
and easy mode to obtain young to aged zebrafish (Kao et
al., 2014). Teleosts also present an interesting great fea-
ture that can serve as an advantage against the rodent
models: the possibility to regenerate the brain tissue (Kizil
et al., 2012; Gemberling et al., 2013).

People who do not suffer from SARS-CoV-2 infection
can experiment with its effect on their brains, even if not
directly. Many studies reveal that pandemic issues tend
to increase mood disorders (such as depression and anxi-
ety) diagnosis worldwide (Tang et al., 2021), a problem
that may have worse consequences in the future. One
manner of studying these consequences is through be-
havioral analysis, an area where zebrafish can get great
importance once it demonstrates a wide range of com-
plex behaviors that can be evaluated and recently gained
notoriety (Jesuthasan, 2012). Moreover, software that an-
alyzes many behavioral types (such as ANY-maze soft-
ware for rodents) can be found for zebrafish (Khan et al.,
2017), which adds to its short development and great re-
producibility and can save even more time and make
searching even easier.

Evaluation of SARS-CoV-2 Neurologic

Alterations through Zebrafish’s Behavior

Behavioral tests have been used in neuroscience, neu-
ropharmacology, and neurotoxicity fields to access nu-
merous CNS disorders. This tool can help to elucidate the
mechanisms involved in pathologies or injuries caused by
chemical exposure and may be conducted with adults
(Abreu et al., 2017; Kundap et al., 2017; Genario et al.,
2020; Mudller et al., 2020) or larvae zebrafish (Vitebsky et
al., 2005; Krishnan et al., 2014; Ko et al., 2019), and may
use the exploratory pattern to stimuli, such as light vibra-
tion and odorants exposure (Kalueff et al., 2013). In this
context, many protocols have been developed and cata-
loged over the past decade; for instance, Kalueff et al.
(2013) clustered 190 distinct behavioral phenotypes
that include anxiety-like, freeze, spasm behaviors, and
seizures.
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In the light of COVID-19 CNS alterations, anosmia may
be evaluated in zebrafish at the behavioral level. In this di-
rection, assessing locomotor activity with adults or larvae
can be used to evaluate the olfactory system function
(Krishnan et al., 2014; Abreu et al., 2017). It has been de-
scribed that anosmia induced by lidocaine and ZnSO4
promoted anxiety-like behaviors in zebrafish (Abreu et al.,
2016, 2017). Also, protocols aiming at evaluating the ol-
faction capacity can include predator responses. These
stimuli can be produced by using the skin of the predator
as stimuli (Volz et al., 2020), skin injury mixture to evoke
stress-related behavior (Diaz-Verdugo et al., 2019), or
water-soluble chemicals such as food preparation, for the
search for food behavior (Braubach et al., 2009; Chen et
al., 2019), amino acids (Krishnan et al., 2014; Wakisaka et
al., 2017), or bile acids (Koide et al., 2009; Wakisaka et al.,
2017). Interestingly, even in the first stages of develop-
ment, it is possible to evaluate zebrafish’s motor activity.
At almost 24 hpf (19-27 hpf), zebrafish have spontane-
ously tail coiling measured by frequency and duration of
occurrence. These assays enable the evaluation of SARS-
CoV-2 infection during development and may shed light
on possible future alterations (Menelaou et al., 2008;
Selderslaghs et al., 2013).

Regarding long-term behavioral alterations promoted
by SARS-CoV-2 that may suggest neurodegeneration,
several reports are evaluating the zebrafish memory per-
formance in a distinct context such as spatial memory
function (Williams et al., 2002), stress-induced memory
impairment (Gaikwad et al., 2011), and scopolamine-in-
duced memory impairment (Richetti et al., 2011).

To model zebrafish into a preclinical and efficient
model of COVID-19 model: exploring the strategies
and tools

The generation of the first transgenic mammal in the
1980s opened a wide venue for this field (Gordon and
Ruddle, 1981). Nowadays, genetic manipulation of ani-
mals is an invaluable tool for understanding human dis-
ease. Although almost 40years have passed since
Palmiter et al. (1992) successfully generated “gigantic”
mice, the steps used to generate transgenic mice are al-
most the same, which involve: (1) constructing a trans-
gene; (2) obtaining fertilized eggs from female mice
donors; (3) microinjections of the transgene material into
the pronuclei/zygote; (4) implanting the modified zygote
into pseudo-pregnant female mice; (5) genotype the
transgene offspring. These several steps and the limita-
tion of offspring generated by each pregnancy lead to
several months of work until a viable transgenic mouse is
established. These limitations and the urgency of viable
tools to understand the behavior of SARS-CoV-2 during
this pandemic raise the undeniable necessity of a rapid
and reliable animal model.

Zebrafish’s genetic manipulation offers an undeniable
resource. The first transgenic zebrafish were obtained in
the 1980s (Stuart et al., 1988) that showed that DNA
transplantation into the zebrafish’s embryo could be inte-
grated and inherited by their germline. Almost a decade
later, two distinct groups successfully created a transgenic

May/June 2021, 8(3) ENEURO.0027-21.2021

Review 9 of 17
zebrafish that expressed green fluorescent protein (GFP)
under promoter-control that conveyed a tissue-dependent
expression pattern (Long et al., 1997; Higashijima, 2008).
These rudimentary protocols highlight the advantages of ze-
brafish over rodents. The former produces hundreds of
eggs that can be fertilized and generated offspring’s in a
shorter period; their eggs are translucent, allowing in vivo
imaging studies during the development of the CNS (Long
etal., 1997).

Nowadays, several techniques have been described to
generate transgenic zebrafish, such as knock-down with
morpholinos, insertion of exogenous DNA with Tol2 trans-
posons, knock-in for fate-mapping studies (Kizil et al.,
2013; Kesavan et al., 2017; Rafferty and Quinn, 2018). To
provide organized information regarding the strains of ze-
brafish, plasmids, and antibodies accessible, online data-
base centers were created, such as the Zebrafish
Information Network (Varshney et al., 2016; Gut et al,,
2017).

Real-time visualization of the zebrafish’s CNS and
SARS-CoV-2

Imaging tools can be very useful for understanding the
possible alterations triggered in the CNS, facilitating, and
improving clinical prognosis. Beyond the conventional im-
munohistochemistry protocols, new strategies allowed in
vivo screening and whole-brain assays in the zebrafish.
These tools can be very important in the characterization
of the neuroinvasion promoted by SARS-CoV-2 (Solomon
et al., 2020).

Some fluorescent markers, like the GFP and the yellow
fluorescent protein (YFP), can be used to label neuronal
projections during zebrafish neurodevelopment. Indeed,
the combined expression of different fluorescent markers
refers to the transgenic technology known as Brainbow,
in which several neurons can be individually labeled
through genetic recombination (Cai et al., 2013). This
technology was recently applied to the zebrafish model
(Pan et al., 2011), giving rise to the successful transgenic
tool named Zebrabow (Pan et al.,, 2013), enabling the
broad study of the zebrafish’s CNS.

Moreover, the functional analyses and activity of neu-
rons can be achieved through genomic tools like the ge-
netically-encoded calcium indicators (Ahrens et al., 2013)
and the optogenetic neuromodulation (Knafo and Wyart,
2015). Both strategies can be easily inserted in the zebra-
fish genome by driving the expression of many protein-
based systems for genome engineering (Kawakami et al.,
2004; Scott et al., 2007), targeting a specific neuronal
population of interest. Unlike other vertebrate models,
using light-sheet microscopy, the whole-brain activity of
larval zebrafish can be rapidly obtained without attaching
any fiber optic cables (Ahrens et al., 2013).

In addition to the techniques for functional analyses in
the brain of zebrafish larvae, there are the fluorescent
false neurotransmitters that are capable of measuring the
in vivo uptake and release of a specific neurotransmitter.
These synapse-markers are based on a fluorescent label
of the synaptic vesicle or the extracellular neurotrans-
mitters (Gubernator et al., 2009).
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Because of the lack of transparency and a larger brain,
imaging the CNS of adult zebrafish is a challenge.
However, methods like the use of different solvents to re-
move the excess of lipids and reduce light scattering
(ErtUrk et al., 2012), allow transforming a fixed and opa-
que organ into a transparent one, enabling an in situ anal-
ysis of the whole adult brain (Susaki et al., 2014). Another
recent protocol applied for imaging the brain of adult ze-
brafish is the contrast-enhanced X-ray micro-computed
tomography, which provides a 3D brain visualization
(Babaei et al., 2016). Furthermore, the optical coherence
tomography enables an in vivo and non-invasive real-time
3D imaging of the adult zebrafish brain anatomy (Rao et
al., 2009).

Molecular and biochemical analysis in the zebrafish
model

As in whole science, molecular biology techniques are
essential in virology research, even more, if we consider
that viruses do not have macro features to be analyzed,
which gives great importance to genomic and proteomic
analysis. Despite being a relatively new model, zebrafish
can supply the molecular research with optimized proto-
cols that ensure not only technical quality but also relative
simplicity, presenting several examples of its use in viral
infection research in zebrafish (Goody et al., 2014).

The Western blotting (WB) technique is one of the most
used techniques to evaluate protein content and can be
performed to verify proteins involved with viral infection
as well as the proteins that lead the immune response to
the viral infection. Furthermore, zebrafish provide a broad
spectrum of possibilities once the protein content can
be measured and compared in different developmental
phases with relative speed. Newly published protocols
also guarantee sample economy and optimized protein
extraction of a single zebrafish larvae or embryo for WB,
which added to the high fertility of zebrafish culminates in
a large amount of sample in short periods (Schnabel et al.,
2019). Besides that, the availability of antibodies specific
to zebrafish samples is increasing.

Despite the utility of WB to provide previously known
protein quantity information, much more unknown pro-
teins can be related to viral infections and disease
progression, further in novel viral infections such as
COVID-19. In this case, zebrafish can be a useful tool in
the research as well, which can involve specifically proto-
cols for proteomics assays that can lead to a protein
screening in diverse scenarios, from electrophoresis to
the mass spectrometry techniques, both in adults and
embryos (Link et al., 2006; Singh et al., 2013).

If the aim of the work concentrates on the genomic
profile, zebrafish can help mainly in the evaluation of viral
infection kinetics studies and genome expression meas-
urements, not only for viral particles or whole-genome but
also for the genes of target-proteins for viruses (Goody et
al., 2014). The evaluation of the RNA content can be a
powerful tool against SARS-CoV-2, once this virus has a
single-stranded RNA, enabling the investigation of a plau-
sible connection between the viral proteins and the ACE2
target-protein in humans. Furthermore, using the reverse
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transcription-PCR quantitative real-time (RT-qgPCR) tech-
nique, ACE2 domains in different neurons and regions in
zebrafish were already identified (Chou et al., 2006).

Besides the aforementioned, biochemical assays com-
prehend the understanding of the chemical reactions that
occur inside the organism. This type of essay allows us to
elucidate the mechanism of action of many substances.
Many procedures to perform the biochemical assays de-
veloped for other species (Ellman et al.,, 1961; Misra
and Fridovich, 1972; Bradford, 1976; Aebi, 1984;
Draper and Hadley, 1990; LeBel et al., 1992; Frasco
and Guilhermino, 2002) has been adapted and used in
zebrafish with great results (Jin et al., 2015; Abe et al.,
2018; Agostini et al., 2018; Maharajan et al., 2018;
Sarasamma et al., 2018, 2019; Bernardo et al., 2019;
Mocelin et al., 2019; Schmitt et al., 2019; Unal et al.,
2019; Walpitagama et al., 2019).

Different enzymes or processes can be studied by bio-
chemical assays in zebrafish and may be used to under-
stand the possible alterations promoted by SARS-CoV-2
at the cellular and tissue level. For instance, some tests
allow the determination of the reactive oxygen species,
the lipid peroxidation, and the activity of the enzymes in-
volved in antioxidant mechanisms, such as superoxide
dismutase, catalase, and glutathione-S-transferase (Diniz
et al., 2015; Jin et al., 2015; Sarasamma et al., 2018).
Besides, some assays enable the measurement of distinct
neurotransmitters activity, such as the choline, GABA,
glutamate, glycine, dopamine, and 5-hydroxytryptamine
(Abe et al., 2018; Agostini et al., 2018; Sarasamma et al.,
2018, 2019; Schmitt et al., 2019; Walpitagama et al.,
2019).

As was previously discussed, some enzymes are in-
volved in SARS-CoV-2 entrance into the cells, such as the
proteases cathepsin L, TMRPSS, trypsin, and furin. These
enzymes could be used as a target for new drug develop-
ment. A methodology to evaluate cathepsin L activity was
already developed and tested in zebrafish (Dana et al.,
2019). It was developed for different purposes, happened
before SARS-CoV-2 was brought to light, but it could be
helpful to assess the efficacy of drugs that target cathep-
sin L.

The “omics-era” and zebrafish

Much of our knowledge about single cells evolved
drastically within the past decades with advanced molec-
ular biology techniques. Nowadays, it is possible to com-
prehend the system-behavior in a single-cell resolution
(Wagner and Klein, 2020).

The advent of omics analysis, which refers to an inte-
grative discipline with the objective of mapping genes and
proteins and comprehends the interactions and relation-
ship among them and the environment surrounding the
cell, has enabled the in-depth knowledge of the different
systems and how diseases may disturb the homeostasis
of these systems (Jehan, 2019; Unterman et al., 2020).

Regarding COVID-19, the omics approach has al-
ready been used to clarify some of the molecular al-
terations promoted by SARS-CoV-2 infection in
humans (Song et al., 2020; Unterman et al., 2020). For

eNeuro.org



eMeuro

instance, lipidomes analysis revealed that some plas-
ma metabolites differed from COVID-19 patients
compared with healthy controls (Song et al., 2020),
and a multiomics single-cells analysis revealed that
worse response to SARS-CoV-2 infection was associ-
ated with predominant interferon type-1 response
across different immune cells accompanied with an
imbalance between innate and adaptive immunity
(Unterman et al., 2020). However, preclinical studies
using the omics approach and SARS-CoV-2 dynamics
still need to be explored.

In this direction, some shreds of evidence strongly
suggest that zebrafish omics may be used to screen
the biological activity of distinct chemical compounds,
testing its teratogenicity and toxicity (Sukardi et al.,
2010; Hung et al., 2012). Also, the proteomics ap-
proach has already been used to understand age-re-
lated neurodegenerative diseases, such as Alzheimer’s
and Parkinson’s (Abramsson et al., 2010; Mushtaq et
al., 2013), alterations on the Rett syndrome model
(Cortelazzo et al., 2017), to demonstrate the similar-
ities between humans and zebrafish plasma composi-
tion (Li et al., 2016) and neutrophils (Singh et al., 2013),
to explore different biomarkers for liver dysfunction
(Ayobahan et al., 2020), to explore the dynamics of ex-
tracellular matrix composition during heart regenera-
tion (Garcia-Puig et al., 2019), and to investigate the
alterations promoted by spring viremia of Carp virus in
the zebrafish (Liu et al., 2020). These pieces of evi-
dence highlight that omics tools may be used for dif-
ferent purposes on the zebrafish model and are a
powerful tool for a better understanding of human dis-
eases with distinct etiology, including COVID-19.

Conclusion

Among all the animal models, zebrafish has proven to
be an essential and powerful tool for human disease
analysis. General attributes, like the low-cost mainte-
nance, external fertilization, a large number of eggs,
rapid life cycle, transparency of the embryos, and the
several available techniques make this vertebrate an at-
tractive model for research. Zebrafish also display ge-
netics and physiologic similarities with mammalian,
including the brain structure and functions, which high-
lights its great potential as an animal model for studying
the neurologic components associated with SARS-
CoV-2 infection. Several of the genetic, behavioral, cel-
lular, molecular, and biochemical approaches already
standardized in other animal models are also applicable
in this teleost. Altogether, those advantages ensure reli-
able, fast, and reproducible results for COVID-19 analy-
sis when compared with other animal models. The goal
of proposing an innovative animal model like zebrafish
to study neurologic components related to SARS-CoV-
2 infection is ambitious but will be of great value for
more robust and effective analysis.

Search strategy
All the relevant articles were identified and collected
from the PubMed database from April 1, 2020, up to
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November 30, 2020. The following search terms were
used (alone or in combination): zebrafish, SARS-CoV-2,
COVID-19, CNS, encephalitis, neurologic disorders,
anosmia, ciliopathy, olfactory system, olfactory bulb, ol-
factory neurons, ACE2, TMPRSS2, immunity, behavior,
genetic manipulation, imaging tools, molecular analysis,
biochemical analysis, omics. The reference list was gen-
erated based on papers relevant to the topics discussed
in this review.
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