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Abstract

Intrinsic brain dynamics co-fluctuate between distant regions in an organized manner during rest, establishing
large-scale functional networks. We investigate these brain dynamics on a millisecond time scale by focusing
on electroencephalographic (EEG) source analyses. While synchrony is thought of as a neuronal mechanism
grouping distant neuronal populations into assemblies, the relevance of simultaneous zero-lag synchronization
between brain areas in humans remains largely unexplored. This negligence is because of the confound of vol-
ume conduction, leading inherently to temporal dependencies of source estimates derived from scalp EEG
[and magnetoencephalography (MEG)], referred to as spatial leakage. Here, we focus on the analyses of simul-
taneous, i.e., quasi zero-lag related, synchronization that cannot be explained by spatial leakage phenomenon.
In eighteen subjects during rest with eyes closed, we provide evidence that first, simultaneous synchronization
is present between distant brain areas and second, that this long-range synchronization is occurring in brief
epochs, i.e., 54–80 ms. Simultaneous synchronization might signify the functional convergence of remote neu-
ronal populations. Given the simultaneity of distant regions, these synchronization patterns might relate to the
representation and maintenance, rather than processing of information. This long-range synchronization is
briefly stable, not persistently, indicating flexible spatial reconfiguration pertaining to the establishment of par-
ticular, re-occurring states. Taken together, we suggest that the balance between temporal stability and spatial
flexibility of long-range, simultaneous synchronization patterns is characteristic of the dynamic coordination of
large-scale functional brain networks. As such, quasi zero-phase related EEG source fluctuations are physio-
logically meaningful if spatial leakage is considered appropriately.
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Significance Statement

Synchrony is suggested as a mechanism for coordinating distant neuronal populations. However, simulta-
neous (i.e., zero-lag) synchronization between remote brain regions in humans is difficult to demonstrate,
because volume conduction in electroencephalographic (EEG)/magnetoencephalographic (MEG) record-
ings causes spurious zero-lag relations. Here, we investigate actual zero-lag relations and systematically
compare them to the residual bias resulting from spatial smoothness of EEG source estimates. We indeed
report simultaneous synchronization between distant brain regions. These synchronization patterns mani-
fest variably in time. We suggest that simultaneous synchronization is relevant when studying the dynamic,
large-scale functional architecture in humans.
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Introduction
Brain activity spontaneously fluctuates during rest,

when no specific task is instructed. Intriguingly, these
fluctuations are correlated between distant brain regions,
forming large-scale functional networks that are assumed
to reflect spontaneous information integration during in-
ternal mentation (Raichle et al., 2001; Greicius et al.,
2003; Smith et al., 2009; Brookes et al., 2011; Engel et al.,
2013), i.e., the basis of thinking. While functional magnetic
resonance imaging (fMRI) was crucial for the discovery
and investigation of resting-state networks, the low time re-
solution of BOLD variations does not allow us to study
the neurophysiological mechanisms leading to these spon-
taneous co-fluctuations of spatially distinct brain areas.
Intracranial local field potential recordings or scalp electro-
encephalography/magnetoencephalography (EEG/MEG)
are adequate for this purpose, as they record neuronal activ-
ity at their inherent time-scale, i.e., in the millisecond range
(Roelfsema et al., 1997; Miller et al., 2009; Baker et al., 2014;
Fox et al., 2018; Vidaurre et al., 2018). Such studies revealed
an essential key neuronal mechanism underlying information
integration between different brain regions: synchrony
(Singer, 1999; Varela et al., 2001). Many studies have dem-
onstrated that neuronal synchronization between brain
areas is an important mechanism for the coordination of
neuronal processing in anatomically distributed neuronal cir-
cuits (Engel et al., 1991; Contreras and Steriade, 1996;
Roelfsema et al., 1997; Destexhe et al., 1999; Womelsdorf
et al., 2007). A fundamental question is whether synchro-
nous co-fluctuations between areas are simultaneous or
time-lagged (Engel et al., 1991; Contreras and Steriade,
1996; Roelfsema et al., 1997; Destexhe et al., 1999; Fries,
2005; Womelsdorf et al., 2007; Siegel et al., 2008; Bosman
et al., 2012; Van Kerkoerle et al., 2014). Because of delays
because of axonal conduction and synaptic transmission,
time-lagged fluctuations are necessarily appearing when the
activation of one region is causally related to the activation
of the other region, i.e., when one area transfers information
to the other. Simultaneity, on the other hand, indicates a
gathering of different brain areas converging into a function-
al unit to collectively maintain certain information without
causal interactions between them. Such communality can
be established spontaneously by dynamic recurrent con-
nections or can be driven by a pacemaker (e.g., the thala-
mus; Vicente et al., 2008; Gollo et al., 2014). Undoubtedly,
both mechanisms (time-lagged and simultaneous fluctua-
tions) take place in the brain to processes, integrate and
maintain information, as numerous intracranial recordings in

animals and humans have shown (Contreras and Steriade,
1996; Roelfsema et al., 1997; Womelsdorf et al., 2007;
Siegel et al., 2008; Hipp et al., 2011). Unfortunately, simulta-
neous activity, which imposes zero-lag-related signals are
primarily ignored in EEG/MEG network analyses to avoid
spurious phase relations resulting from volume conduction
(Nolte et al., 2004; Stam et al., 2007; Hipp et al., 2012;
Marzetti et al., 2013; Colclough et al., 2015). EEG/MEG
source reconstruction (Michel et al., 2004; Michel and
Murray, 2012; He et al., 2018) is, to some extent, able to
overturn volume conduction effects. However, the limited
spatial resolution of EEG/MEG source reconstruction tech-
niques leads to spurious temporal relations (Palva et al.,
2018; He et al., 2019). To correct for these spatial leakage
effects, orthogonalization of source signals is a standard
method. However, this method also discards genuine simul-
taneous dynamics and therefore is insensitive to detect
such.
In this work, we aim to investigate simultaneous synchro-

nization, i.e., quasi zero-lag relations between distant brain
areas using high-density EEG source imaging (Michel et al.,
2004; Michel andMurray, 2012; He et al., 2018). To consider
and correct for spatial leakage effects, we systematically
compare actual with surrogate data having identical spatial
properties in their source reconstruction.
In summary, we demonstrate that physiologically

meaningful quasi zero-lag synchrony between distant
brain areas exists that cannot be explained by spatial
leakage phenomena. We suggest that brief epochs of si-
multaneous synchronization signify functional conver-
gence of distant neuronal population dynamics into
distinct re-occurring states.

Materials and Methods
EEG recordings
High-density EEG was recorded using an electrode net

(Geodesic Sensor Net, Electrical Geodesics Inc.) consist-
ing of 256 electrodes that are interconnected by thin rub-
ber bands. Each electrode includes a small sponge
soaked with saline water to establish direct electrical con-
tact with the participants’ scalp. EEG was sampled at
1 kHz, referenced to the vertex.
Participants (N=18, 306 5 years, seven male) sat com-

fortably in an upright position in a darkened, electrically
shielded room and were instructed to keep their eyes
closed and relax for 4–6 min (5.4260.95) avoiding drows-
iness. The local ethical committee, following the declara-
tion of Helsinki, approved the study. Participants
provided written, informed consent for their participation.

EEG preprocessing
EEG recordings were bandpass filtered between 1

and 40 Hz offline, and electrodes covering cheeks and
nape were excluded. Time epochs contaminated with
apparent artifacts were marked and excluded from fur-
ther analyses. Noisy or bad electrodes were excluded
from independent component analysis (ICA; Jung et al.,
2000), which was used to remove stereotypical artifact
components containing saccades, eye blinks, and
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cardiac artifacts. Afterward, the initially excluded chan-
nels were spline interpolated in space, resulting in 204
channels. The recordings were re-referenced to the
common average and down-sampled to 125 Hz for fur-
ther analysis.

EEG source imaging and functional network
reconstruction
We applied EEG source reconstruction using forward

models based on realistic head geometry and conductiv-
ity data with consideration of skull thickness, i.e., locally
spherical model with anatomical constraints (LSMAC;
Brunet et al., 2011; Michel and Brunet, 2019). The gray
matter was defined based on the MNI anatomic template
model. The inverse solution space consisted of 5004
points equally distributed in this gray matter volume. The
linear distributed inverse solution LAURA (Grave de
Peralta Menendez et al., 2004) was used to calculate the
current density distribution for each solution point at each
moment in time. Dipole orientations were set to the first
left singular vector of the xyz (3D) components in the reso-
lution matrix of each source pointing outside of the brain
to avoid sign ambiguities.
Functional networks were defined as spatial patterns

co-varying with fluctuations in selected regions of interest
(ROIs) defined in an atlas composed of 100 parcels
(Schaefer et al., 2018). We chose the posterior cingulate
cortex (PCC) and the supplementary motor area (SMA) as

two exemplary seed regions based on previous literature
focusing on functionally distinct key regions (Seeley et al.,
2007; Raichle, 2010; Engel et al., 2013). The signal repre-
senting the activities in each ROI was defined as the first
principal component of all dipoles within the given ROI
(Rubega et al., 2019). Then, we calculated their signal en-
velope as the magnitude of the analytic signal using the
Hilbert transform. To capture well-pronounced spatial
patterns that include these key regions, we thresholded
the signal envelope at the mean plus standard deviation
following previous work (Tagliazucchi et al., 2012). The
network patterns were then determined by sites that co-
vary with this seed signal. To illustrate the resulting spatial
patterns, they were spatially thresholded using watershed
transform, and the local maxima positively co-varying
with the respective ROI are shown (Fig. 1).

Surrogate data and spatial leakage estimation
To systematically asses the bias introduced by spatial

leakage we used surrogate data, which we derived from
the actual data. To do so, we temporally shifted the
source reconstructed signals of the actual data randomly
in time for every solution point individually for each sub-
ject. These time shifts were randomly drawn without re-
peating numbers in the range of 1 and N samples, while N
being the total number of samples. That way, the initial
source dynamics of the surrogate data are the same as
the actual source estimates, but the temporal relations

Figure 1. Derivation and characterization of EEG source reconstructed networks. A, The envelope (blue) of source estimated activ-
ity (magenta) is thresholded to define periods of well-pronounced activity within a specific ROI (here PCC). B, Nodes of the network
(red) co-varying with the PCC (net 1) during periods defined as indicated in A and with the SMA (net 2) as seed ROI (magenta)
marked with black arrows. C, Exemplary time course of instantaneous phase locking between lateral posterior regions of net 1,
matching the time period shown in A in magenta; surrogate phase locking is shown in light blue. D, Polar histograms of the group,
displaying the distribution of interhemispheric phase differences between lateral posterior (net 1) and anterior (net 2) regions as illus-
trated in B in blue; surrogate phase differences in red. The radius for each phase bin displays the probability density function esti-
mate of the respective phase differences.
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between solution points are demolished. To introduce
spatial leakage, we then applied the same forward model
as used for analyzing actual data to generate surrogate
EEG. Afterwards, we applied the identical processing
pipeline to this surrogate data, i.e., filtering scalp data and
source estimation using the same inversion kernel as in
the analyses of the actual EEG data. Because we used
identical forward model and inverse method for analyzing
actual and surrogated data, the spatial properties of the
source estimates are the same. That way, there are no ac-
tual correlations between the sources given the intro-
duced random time shifts. Therefore, the resulting
interareal correlation values in the surrogate source esti-
mates are resulting from spatial leakage between selected
areas. This procedure provides bias estimates caused by
spatial leakage for every connectivity metric, i.e., correla-
tion, phase-locking value (PLV) and coherence for each
individual subject. These bias estimates can be sub-
tracted from the metrics of actual data as suggested pre-
viously (Ghuman et al., 2011; Palva and Palva, 2012) and
used for statistical comparison.

Synchrony between network nodes
We investigated the correlation, lag, phase locking and

coherence between network nodes. Between each pair,
we determined the correlation for different lags of the sig-
nals using cross-correlation. To perform frequency-spe-
cific analyses, we applied wavelet transform (Morlet et al.,
1982) for time-frequency (TF) decomposition (1–40Hz, 1-
Hz steps). Parameters for the mother wavelet were set to
the full width at half maximum of 3 s for the Gaussian ker-
nel at a center frequency of 1Hz. At all frequencies, the
number of cycles were kept constant meaning the
Gaussian kernel of the wavelets was scaled accordingly,
i.e., scale expansion factor of 1. PLV and coherence was
computed for every frequency bin and are reported as
magnitudes herein and for the latter as real and imaginary
part of the coherency (Lachaux et al., 1999, 2002) to com-
pare with previous literature (Nolte et al., 2004).
Simultaneous synchrony is indicated as peak correlation
at zero-lag in the cross-correlogram and the real part of
coherency. The time-varying phase in each ROI was com-
puted using Hilbert transform to determine phase dif-
ferences between regions for every time point. The
distribution of these phase differences was illustrated
as polar histograms. The cosine of these phase differ-
ences DU was used as instantaneous measure of si-
multaneous synchronization, which is 1 for zero phase
difference (Deco and Kringelbach, 2016; Cabral et al.,
2017). The duration of phase synchrony, which is cen-
tered around zero phase lag was determined by
epochs of cos(DU) exceeding 0.5. Very short epochs
smaller than 24ms, i.e., three time samples, were not
considered as stable and therefore ignored for com-
puting the average duration. All metrics were statisti-
cally compared with results derived from surrogate
data. Paired comparisons were conducted using the
Wilcoxon signed-rank test, which were Bonferroni cor-
rected for multiple comparisons.

Software accessibility
Code and data supporting the findings of this study are

available on request to the corresponding author. EEG
data analyses were performed using the freely available
toolbox Cartool in combination with custom MATLAB
scripts.

Results
Large-scale brain dynamics form briefly stable
functional networks
We found bilateral, symmetric posterior regions in the

extrastriate cortex and inferior parietal lobe (IPL) to co-
vary with the PCC’s source signal. In contrast, we found
anterior areas of the bilateral prefrontal cortex and the
thalamus to co-vary with the SMA (Fig. 1A,B). To rule out
a potential source imaging bias that might cause these
patterns, we performed the same analyses on the surro-
gate data. Importantly, we found no distant spatial local
maxima forming a network pattern in the surrogate data.
Merely the respectively selected regions were present,
meaning we did not observe co-varying regions using sur-
rogate data (Fig. 6).
The phase relations between nodes of these function-

al network patterns in the real data vary considerably in
time. We observe epochs in which the phase differen-
ces remain small, meaning these two nodes fluctuate
synchronously at these time points (Fig. 1C,D). The du-
rations of these epochs are in the range between 54.1
and 79.1 ms on average depending on the constella-
tion. The durations of all pairs belonging to the same
functional network are significantly longer than respec-
tive periods computed from surrogate data. The de-
tailed duration of each pair and their respective p values
are listed in Table 1.

Simultaneous synchronization is present between
distant neuronal populations
We identified functional network patterns that are com-

posed of distinct nodes that are symmetric in both hemi-
spheres (Fig. 1). This finding already indicates that these
distant regions co-vary on a highly resolved time scale. To
directly test whether the correlation between these nodes
is significantly larger than the spatial leakage bias, we fo-
cused on the analyses of pairwise nodes for each network
pattern. To provide more detail about these interactions,
we investigated different time lags and frequency compo-
nents. For the PCC-based network, we focused on poste-
rior bilateral IPL regions. The cross-correlation between
pairs of these network nodes peaks at zero-lag with val-
ues ranging between 0.1 and 0.28, which is significantly
higher than the spatial leakage bias observed in the surro-
gate data. The detailed values are listed in Table 1.
Interestingly, the interhemispheric zero-lag correlation
was highest in this posterior network. The frequency-spe-
cific PLV reached its maximum for this pair at 11Hz with a
value of 0.34. In this case, the real part of the coherency is
considerably higher than its imaginary part (Fig. 2).
For the SMA-based network, we further examined the

relation of the SMA to regions in the bilateral PFC and to
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the thalamus. The cross-correlation between these re-
gions peaks at zero-lag with a value of ranging between
0.24 and 0.32, which is significantly higher than the
spatial leakage bias observed in the surrogate data. The
frequency-specific PLV reached its maximum at 10Hz
with a value of 0.42 for the interhemispheric PFC con-
nection. Again, the real part of the coherency is higher
than its imaginary part (Fig. 3). These results show that
actual zero-phase relations, indicating simultaneous
synchronization, are present between relatively distant
regions.
For direct visual comparison of actual with surrogate

data we also show the uncorrected metrics overlaid
with the bias estimates in Figures 4, 5. These bias esti-
mates are the higher, the closer a node pair is, but also
the lower the spatial resolution between these areas is.
For example, the zero-lag correlation peak of the sur-
rogate data are higher for the intrahemispheric pairs
(Fig. 4B, top and bottom rows), than the bias of the

more distant interhemispheric pairs (Fig. 4B, middle
row). This is analogously the case for the PLV relations
in Figure 4C. The same applies for comparing the top
three rows in Figure 5C,D for the SMA-based network.
The bias resulting from spatial leakage is maximal be-
tween SMA and the thalamus, which is plausible given
the low spatial resolution in subcortical areas (Fig. 5,
bottom row). In addition, spatial leakage is biasing the
phase distribution of the surrogate data toward zero,
i.e., right in the plots of Figures 4D, 5D. In other terms,
the phase distribution is not circular any more, but bi-
ased because of spatial leakage, which is best visible
in Figure 5D, bottom row (displayed in red). However,
for the actual recordings (displayed in blue), the phase
bin centered around zero exceeds this bias signifi-
cantly (p values listed in Table 1). Moreover, we did not
find any co-varying distant regions in the surrogate
data. These results are relevant for ruling a potential
source imaging bias out (Fig. 6).

Table 1: Correlation, PLV in the a range (8–12Hz), probability density function estimate (pdf) at zero phase difference, and
duration of each pair with respective p values (Wilcoxon sign-rank test, Bonferroni corrected)

r pr PLV pPLV pdfzero pzero Dur (ms) pDur
Left IPL-PCC 0.20 0.0038 0.22 0.0011 0.24 0.0038 69.9 0.0007
Left IPL-right IPL 0.28 0.0007 0.28 0.0007 0.26 0.0007 79.1 0.0007
Right IPL-PCC 0.10 0.0123 0.15 0.0007 0.21 0.0322 66.2 0.0024
Left PFC-SMA 0.24 0.0012 0.34 0.0007 0.30 0.0017 57.1 0.0038
Left PFC-right PFC 0.31 0.0007 0.37 0.0007 0.29 0.0008 54.1 0.0020
Right PFC-SMA 0.26 0.0012 0.34 0.0007 0.32 0.0012 61.9 0.0009
SMA-thalamus 0.32 0.0020 0.34 0.0012 0.39 0.0014 75.8 0.0011

Figure 2. Synchrony between the nodes of the PPC network after subtracting spatial leakage bias. A, Nodes of the network, edges
are indicated as arrows. B, Cross-correlations between these two nodes are respectively maximal at zero lag. C, PLV as function of
frequency, group mean 6 SEM. D, Real and imaginary part of the coherency, group mean 6 SEM.
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Discussion
In this work, we investigate synchronous EEG source

dynamics between distant brain regions. The functional
network patterns we reconstruct revealed spatially well-
separated remote brain regions. Investigating the tempo-
rally highly resolved phase relations indicating long-range
synchronization, we actually observe quasi zero-lag
related fluctuations between these distant regions. By
comparing these results systematically to surrogate data
with identical spatial properties in their source reconstruc-
tion, we demonstrate that the observed effects cannot be
explained by spatial leakage phenomena.

Large-scale brain dynamics form briefly stable
functional networks
In the reconstruction of functional network patterns, we

focused on two key brain regions, i.e., the PCC and SMA.
The PCC-based network is composed of bilateral poste-
rior areas of the extrastriate cortex and IPLs. This network
resembles the posterior subdivision of the default mode
network that was previously reported using MEG

recordings (Hipp et al., 2012; Vidaurre et al., 2018). The
SMA-based network is composed of the bilateral prefron-
tal cortex and the thalamus, which are regions associated
with the anterior part of the control network (Seeley et al.,
2007; Raichle, 2010). We included analyses of thalamic
signals because recent work (Krishnaswamy et al., 2017;
Seeber et al., 2019) demonstrated the detectability of
subcortical activities using EEG source imaging.
However, we did not find a one to one correspondence

between the network patterns we observed herein and
the M/EEG amplitude correlation-based networks
(Brookes et al., 2011; Samogin et al., 2019) that were re-
lated to the well-known fMRI resting-state networks
(Smith et al., 2009; Raichle, 2010). This discrepancy might
stem from the different time-scale of co-variation, i.e., the
temporal precision, and coupling measure, which define
these functional networks. In this work, phase relations
are relevant, since we were aiming for high temporal
precision reflecting long-range synchrony. In contrast,
in fMRI and MEG/EEG amplitude envelope-based
analyses, the temporal alignment on a second scale is
sufficient for capturing correlated activities. Phase

Figure 3. Synchrony between the nodes of the SMA network after subtracting spatial leakage bias. A, Nodes of the network, edges
are indicated as arrows. B, Cross-correlations between these two nodes are respectively maximal at zero lag. C, PLV as function of
frequency, group mean 6 SEM. D, Real and imaginary part of the coherency, group mean 6 SEM.
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coherence and amplitude envelope correlation are two
types of coupling measures suggested to reflect dis-
tinct mechanisms related to different functions (Engel et
al., 2013).
We report the nodes of these network patterns synchroniz-

ing in brief time intervals, typically in the range of 54–80 ms.
These briefly stable epochs and their duration are in good
agreement with previously reported time epochs for the EEG
microstates (Michel and Koenig, 2018) and transient states
derived from MEG recordings using hidden Markov models
(HMMs; Vidaurre et al., 2018). However, the HMM states are
derived from orthogonalized signals (Colclough et al., 2015)
that discard zero-phase relations. EEG microstates are de-
fined as stable topographies. If a particular source network
configuration maintains quasi-zero phase relations for a cer-
tain period, that necessarily leads to a stable topography of
the scalp potential field. Therefore, the brief manifestation of
specific quasi zero-lag-related network patterns we describe
in this work can be seen as the underlying source dynamics
of the microstates.
The temporal dynamics of these briefly stable epochs are

characteristic for metastability, i.e., signified by a counter-
balance between integrated, i.e., synchronous, and segre-
gated epochs (Tognoli and Kelso, 2014; Deco et al., 2015).
In terms of large-scale brain dynamics that means specific
nodes of a network pattern are converging into synchrony,
i.e., quasi zero-lag relationships, for brief epochs. These

integrated, highly synchronous states fall abruptly apart, i.e.,
segregate, before the next integrated state is established. In
that way, it is possible to develop dynamic representations
flexibly since distinct states can be installed in different spa-
tial configurations (Tononi and Edelman, 1998; Deco and
Kringelbach, 2016; Ju and Bassett, 2020).

Simultaneous synchronization is present between
distant neuronal populations
The fact that we observe spatially well-separated, co-

varying sites as network patterns is the first indicator that
these distant regions are functionally related at a millisec-
ond time scale. These distant sites are absent when re-
peating these analyses with surrogate data (Fig. 6). In
addition to this spatial assessment, the functional results,
e.g., PLVs, we describe herein significantly exceed the
bias resulting from spatial leakage, which we derive from
surrogate data. As expected, these bias estimates are the
higher, the closer two areas are and the lower the spatial
resolution at these sites is. Surprisingly, we found the in-
terhemispheric interactions to be higher than the intrahe-
mispheric interactions. Because the distance between
respective regions is larger for the interhemispheric than
the intrahemispheric pairs, this result cannot be an effect
of spatial leakage. These findings together with the cross-
correlation peak at zero lag signify genuine simultaneous
synchronization between these distant regions.

Figure 4. Synchrony between the nodes of the PPC network, uncorrected measures in comparison to spatial leakage bias. A,
Nodes of the network, edges are indicated as arrows. B, Cross-correlation between these two nodes, actual (uncorrected) data are
shown in magenta, bias in surrogate data in red. C, PLV as function of frequency, group mean 6 SEM. D, Polar histograms showing
the distribution of phase differences for actual data in blue and surrogate data in red. The radius for each phase bin displays the
probability density function estimate of the respective phase differences.
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Figure 5. Synchrony between the nodes of the SMA network, uncorrected measures in comparison to spatial leakage bias. A,
Nodes of the network, edges are indicated as arrows. B, Cross-correlation between these two nodes, actual (uncorrected) data are
shown in magenta, bias in surrogate data in red. C, PLV as function of frequency, group mean 6 SEM. D, Polar histograms showing
the distribution of phase differences for actual data in blue and surrogate data in red. For every constellation in this network, the
most frequent phase difference is zero. The radius for each phase bin displays the probability density function estimate of the re-
spective phase differences.

Figure 6. Absence of distant co-varying sites in surrogate data. A, The envelope (blue) of source estimated surrogate data (ma-
genta) is thresholded to define periods of well-pronounced activity within a specific ROI (here PCC). B, No distant local maxima
were identified co-varying with the PCC (net 1), or with the SMA (net 2) marked with black arrows.
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The finding of long-range, simultaneous synchroniza-
tion is in line with previous literature showing physiologi-
cally relevant, zero-lag relations (Engel et al., 1991;
Contreras and Steriade, 1996; Roelfsema et al., 1997) in
animals. Recently, a study using intracranial recordings
showed interhemispheric zero-lag synchronization in the
human brain (O’Reilly and Elsabbagh, 2021). Most of the
previous studies investigating synchrony between distant
areas were focusing on g oscillations (.30Hz) induced
by specific tasks (Engel et al., 1991; Roelfsema et al.,
1997; Womelsdorf et al., 2007; Siegel et al., 2008; Van
Kerkoerle et al., 2014). These g oscillations were found to
facilitate feedforward processing, while mid-frequencies
were related to feedback effects from higher areas (Von
Stein et al., 2000; Bosman et al., 2012; Van Kerkoerle et
al., 2014). Given these differences in task-induced and
resting-state signals, it is plausible that the simultaneous
fluctuations we describe here represent intrinsic syn-
chrony during minimal sensory input. The finding of quasi
zero-phase relations between distant areas might signi-
fy functional convergence in these regions during rest,
in contrast to sensory-driven time-lagged oscillations
induced by a specific task. In that sense, quasi zero-
phase relations in distributed areas might relate to the
representation and maintenance, rather than the proc-
essing of information. This long-range synchronization
is briefly stable, not persistently, indicating flexible spa-
tial reconfiguration pertaining to the establishment of
particular, re-occurring states. Taken together, we sug-
gest that the balance between temporal stability and
spatial flexibility of long-range, simultaneous synchro-
nization patterns is characteristic of the dynamic coor-
dination of large-scale functional brain networks. As
such, quasi zero-lag related EEG source fluctuations
are physiologically meaningful if spatial leakage is con-
sidered appropriately, and should not be excluded in
the analysis of functional connectivity using EEG/MEG
source imaging.
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