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Everyone agrees that we do not yet understand how
brains work, neither well enough to satisfactorily explain
basic functions such as memory nor to design effective
interventions to restore mental health. This is one of the
great scientific challenges of our era, with huge implica-
tions not only for human health but for insight into all ani-
mal life and for the development of future technologies.
How should resources be invested to foster the necessary
leap toward understanding? Given the pressing societal
need and the very high public expectations of neuro-
science, stoked by TED talks, New York Times articles,
and sci fi, the pressures riding on choices of funding tar-
gets are enormous.

Against this background, 2013 was a banner year for
the brain: both the European Union and the United States
agreed to devote unprecedented support specifically to
neuroscience. The European Union funded the billion-dol-
lar Human Brain Project (HBP; Amunts et al, 2016), whose
centerpiece was a team science effort to develop neuroin-
formatics infrastructure and to expand the Blue Brain
Project (Markram, 2006), a high-fidelity biophysically real-
istic computational model of brain tissue. In the United
States, the BRAIN Initiative launched with an initial com-
mitment of $100 million and the appointment of a panel of
respected scientists who met over months to identify
major gaps and promising directions in neuroscience
(Jorgenson et al., 2015). Government agencies then for-
mulated funding opportunities that supported individual
labs or small teams to develop new technologies to re-
cord, stimulate, analyze, and interpret neural activity.
These efforts stimulated brain initiatives in several other
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countries, including Japan, Korea, and China (Huang and
Luo, 2015; Grillner et al., 2016). Almost 10 years later, it is
timely to look back at some of the large-scale neuro-
science efforts of the past decade and the routes they
have promoted toward a better understanding of the
brain.

While bold in conception, the HBP was not the first Big
Neuroscience effort. In 2003, Paul Allen gave $100 million
to establish the Allen Institute for Brain Science.
Community consultation guided this investment toward
the goal of developing an information resource that would
be of broad value to the community to enable and accel-
erate discovery: “a map of the mammalian brain at the
cellular level. Through a collection of gene expression
maps, brain circuitry and cell location, the [Allen Brain]
Atlas will illustrate the functional anatomy of the brain”
(Allen Institute Press Release, 2003; Lein et al., 2007).
While inevitably imperfect, the by now seven Allen Brain
Atlases (of mouse, nonhuman primate, and human brains)
have been cited by thousands of papers. Paul Allen, how-
ever, wanted the Institute to go further: to contribute to
the solution of a neuroscience problem. The problem cho-
sen was vision, with a particular emphasis on the role of
cell types. Launched under the leadership of Christof
Koch in 2012, the MindScope project aimed “to provide a
quantitative taxonomy of cell types and their interconnec-
tions in visual cortex and associated brain regions, to ob-
serve their dynamics under physiological conditions in
behaving mice, to construct cellular models of how their
dynamics and function arise from the structural descrip-
tion, and to understand how this function relates to visual
perception” (Koch, 2012). This effort has resulted in the
most complete characterization to date of cortical and
thalamic neuronal cell types (Tasic et al., 2018), as well as
a large-scale publicly available physiological database of
visual responses to a battery of stimuli (de Vries, 2020),
which has revealed considerable complexity. Hundreds of
papers from within the Institute and dozens from outside
have reported on aspects of these data, along with meth-
odological contributions. Nonetheless, an understanding
of how cells, their connections and activity patterns result
in perception is still elusive.

Since these projects began, the landscape for neuro-
science research has radically transformed. With help
from BRAIN Initiative support (duLac, 2019), the through-
put of calcium imaging has dramatically scaled up, with


https://orcid.org/0000-0001-6779-953X
https://doi.org/10.1523/ENEURO.0131-21.2021
https://www.eneuro.org/collection/epistemological-lessons
https://www.eneuro.org/collection/epistemological-lessons
https://www.eneuro.org/
mailto:fairhall@uw.edu
mailto:fairhall@uw.edu
https://doi.org/10.1523/ENEURO.0131-21.2021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

eMeuro

reports of a million simultaneously recorded neurons (Kim
et al., 2016; Demas et al., 2021), the international consor-
tium-developed Neuropixels probes are revolutionizing
electrophysiology (Jun et al., 2017), a plethora of genetic
mouse lines allow cell type-specific observation and ma-
nipulation (Daigle et al., 2018), and optical sensors now
exist to record spatiotemporal dynamics of multiple neu-
rotransmitter types (Sabatini and Tian, 2020). Assisted by
advances in machine learning, fast tools are now available
to analyze electrophysiological and calcium signals
(Stringer and Pachitariu, 2019; Buccino et al, 2020), con-
nectomic electron microscopy images (Jain et al., 2010)
and behavior (Mathis and Mathis, 2020). New statistical
methods are capable of extracting sophisticated dynami-
cal models from population recordings (Pandarinath et al.,
2018; Urai et al., 2021). Trained artificial neural network
simulations provide an intriguing approach to developing
hypotheses about the dynamics supporting neural func-
tion (Barak, 2017). BRAIN funding has thus helped to sig-
nificantly raise the technological platform for discovery.

On this backdrop, what are valuable targets for future
large-scale spending?

Doing good science is hard. Doing meaningful Big
Science, team science at a large scale with outcomes that
justify large spending, is harder. In neuroscience, unlike
particle physics, there is no definitive experiment to prove
or disprove an overarching fundamental theory (Frégnac,
2017). Thus, it is tempting to propose the collection of an-
other large and complex dataset that will enable discov-
ery, especially given advances in data collection and
analysis. However, there is no agreement on a definitive
dataset that will transform the field.

One current proposal is to derive the complete connec-
tome of a mouse brain at cellular resolution (Abbott et al.,
2020). Prodigious in scale, this project would take advant-
age of advances in tissue slicing technology and machine
learning to recover the geometry and synaptic connectiv-
ity of every neuron in an individual mouse brain. Such a
dataset would provide important information about circuit
structure and statistical properties of connectivity, helping
to constrain models (Litwin-Kumar and Turaga, 2019), but
there are also major caveats (Gomez-Marin, 2021). While
a detailed biophysical model without realistic connections
may not provide insight into brain function, modeling
based on connectivity without information about dynami-
cal properties resulting from variations in ion channel
properties, gap junctional coupling and the effects of neu-
romodulation, all of which can alter effective local compu-
tations, may also be severely limited.

An alternative big data approach is to record a “brain
activity map” (Alivisatos et al., 2012), a survey of brain ac-
tivity during a specific behavior. How should one design
such a study to achieve conclusive understanding? A full
understanding of any aspect of brain function should
bridge multiple levels (Marr, 1982; Fairhall, 2014; Frégnac,
2017): an identification of the algorithms that govern the
process, a description of how that algorithm is imple-
mented by the hardware of neural circuitry, and a low-di-
mensional understanding of the resulting dynamics. This
both underscores the need for, ideally, multiple
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competing theoretical frameworks, and also raises the
question of the level of detail required in the measure-
ments to bridge all the way to implementation. There is no
single “theory of the brain” to test, so one must choose
some specific subsystem, as MindScope has done with
vision. Sensation, cognition and movement are all amena-
ble to theoretical or algorithmic formulations and analysis
that can predict and help to explain aspects of behavior
and, to some extent, of neural processing. By selecting
one function and measuring “everything possible,” one
might hope to discover principles of neural organization
and dynamics that generalize to other problems.

IARPA’s Machine Intelligence from Cortical Networks,
or MICrONS, program (Cepelewicz, 2016) is an attempt to
bridge these approaches. This ongoing $100 million pro-
ject, awarded in 2016, coordinates effort of teams at
Baylor, the Allen Institute, Carnegie Mellon University,
Harvard, and Princeton to reconstruct the connectome of
a section of visual cortex whose activity has been charac-
terized in vivo. By establishing the functional relevance of
specific neurons, this project addresses some of the
criticisms made of both the Blue Brain (Yong, 2019) and
connectomics approaches. Examining the eventual value
and use of connectomic information in this targeted ap-
proach will be an informative test of whether and how de-
tailed structural information can lead to new insights.

Another creative intermediate scale team science ap-
proach is that taken by the International Brain Laboratory
(The International Brain Laboratory, 2017). Neuropixels
probes record of order a thousand neurons and can only
be deployed in a handful of locations in a single animal’s
brain. A consortium of labs thus joined forces in 2018 to
distribute the job of recording many brain areas during a
standardized decision-making behavior. The project in-
cludes a computational team pursuing different aspects
of analysis and theory. This heroic project is making both
methodological and conceptual progress (Aguillon-
Rodriguez et al, 2020; The International Brain Laboratory,
2020) but also underscores the challenges in designing a
suitably complex reproducible behavior and in imple-
menting experimental methods systematically and repro-
ducibly in multiple labs subject to turnover of trained
personnel.

Taken in toto, these examples illustrate several points
about large scale studies. First, we see a pull toward the
collection of static open datasets or development of ge-
neric large-scale models as platforms. Such a route
stands in contrast to the posing and solution of specific
problems. This choice is natural: such contributions can
in principle benefit the community broadly and aid in the
solution to many problems. In some sense they are
“safe,” in that progress is quantifiable in terms of cubic
millimeters or neurons measured or simulated, rather than
in the more nebulous domain of questions answered.
Large-scale projects that instead aim to solve one big
problem are considerably more challenging: they put a
much higher bar on conceptual ingenuity, have murky
milestones with no clear end point and are subject to in-
finitely unfolding complexity. They must also lock in many
experimental parameters at an early stage so that data
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can be collected systematically and reproducibly. This
limits the feedback loop between observation and study
design, reducing the ability either to change direction in
the light of interesting intermediate findings, or to take
rapid advantage of technological improvements. They
may also run the risk of limiting a team’s ability to gener-
ate diverse ideas as the project may settle into a kind of
groupthink.

What might be an alternate paradigm? The BRAIN
Initiative’s key successes have arisen from the funding of
many labs, distributing risk and encouraging an ongoing
competition of ideas. To capitalize on these successes, a
smart use of funds may be the establishment of brain ob-
servatories (Alivisatos et al., 2015; Koch and Reid, 2012).
Proposed models for brain observatories would centralize
large-scale systematic behavioral training, surgery, re-
cording technology and data preprocessing but solicit
proposals for behavioral paradigms and recording loca-
tions from the community. Distributed individuals or
teams would then analyze and interpret the results. This
honors the drive for systematic, reproducible, high quality
data taking advantage of expensive cutting-edge technol-
ogies but harnesses the diverse and evolving wisdom of
the community to solve brain systems. The model allows
for individual innovation, ongoing evolution in questions
asked, nimble experimental design, responsive testing of
a wide variety of ideas, and the continuous updating of
techniques. It could further support the dissemination of
advanced skills and techniques back to participating lab-
oratories, and assume the burden of open data sharing,
so that each experiment would contribute to an organ-
ized, accumulating database, multiplying impact and ac-
celerating discovery. The Allen Institute has piloted a
limited version of such a scheme with its OpenScope
model, which solicited vision-related proposals operating
within currently implemented training and recording pipe-
lines (Allen Institute Press Release, 2018). It is exciting to
imagine the transformational impact of scaling up such a
model to a wide variety of stimuli as well as behavioral
and neural manipulations.

All of the scientists interviewed in Noah Hutton’s inci-
sive documentary, In Silico, said: we know nothing. In
fact, we know a lot, yet we still have many more questions
than answers about brain function. This is inherent to the
fragmented nature of what it means to “understand” the
brain. We may now have reached the right time to capital-
ize on technological advances by creating a cutting-edge
experimental platform that would allow the pursuit of
many questions with the creative input of the entire field,
while bringing to bear the full power of new methods,
large N, reproducibility, and transparency.
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