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Abstract

Children’s sensitivity to regularities within the linguistic stream, such as the likelihood that syllables co-occur,
is foundational to speech segmentation and language acquisition. Yet, little is known about the neurocognitive
mechanisms underlying speech segmentation in typical development and in neurodevelopmental disorders
that impact language acquisition such as autism spectrum disorder (ASD). Here, we investigate the neural sig-
nals of statistical learning in 15 human participants (children ages 8-12) with a clinical diagnosis of ASD and
14 age-matched and gender-matched typically developing peers. We tracked the evoked neural responses to
syllable sequences in a naturalistic statistical learning corpus using magnetoencephalography (MEG) in the left
primary auditory cortex, posterior superior temporal gyrus (pSTG), and inferior frontal gyrus (IFG), across three
repetitions of the passage. In typically developing children, we observed a neural index of learning in all three
regions of interest (ROIs), measured by the change in evoked response amplitude as a function of syllable sur-
prisal across passage repetitions. As surprisal increased, the amplitude of the neural response increased; this
sensitivity emerged after repeated exposure to the corpus. Children with ASD did not show this pattern of
learning in all three regions. We discuss two possible hypotheses related to children’s sensitivity to bottom-up
sensory deficits and difficulty with top-down incremental processing.
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(s )

Language acquisition involves segmenting the continuous speech stream into sounds, syllables, and
words. Learning these units relies on both the properties of the input, as well as emerging high-order cogni-
tive mechanisms that guide learning from the top-down. We examined the neurobiology underlying the inte-
gration of top-down and bottom-up information in statistical speech segmentation in children with and
without autism spectrum disorder (ASD). We offer evidence of neural and behavioral effects of syllable-to-
syllable processing in speech segmentation that differ in typically developing children from children with a
clinical diagnosis of ASD. Our findings inform developmental and cognitive theories of language acquisition
\by examining the computational nature of speech segmentation across different populations of learners. /
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Introduction

Language acquisition involves segmenting continuous
speech into sounds, syllables, and words. By detecting
statistical regularities in the input, learners can incremen-
tally anticipate upcoming information for subsequent
word learning. For instance, after 2 min of exposure to a
foreign language, infants begin to identify statistically fre-
quent syllable sequences and treat those as labels for
novel objects (Hay et al., 2011). Learning the linguistic
units relies on the properties of the input; it is a bottom-up
driven cognitive process. In parallel, experience and high-
order cognitive mechanisms also guide this learning pro-
cess from the top-down (Kuhl, 2004; Werker, 2018).
However, little is known about the neurobiology underly-
ing the integration of bottom-up and top-down informa-
tion in statistical speech segmentation. This is an
important knowledge gap that impedes our understand-
ing of acquisition in typical development and neurodeve-
lopmental disorders that impact language acquisition,
such as autism spectrum disorder (ASD; Tager-Flusberg
et al., 2005). We investigate neural signals underlying sta-
tistical learning in children with and without ASD using
magnetoencephalography (MEG).

Behavioral work suggests that children with ASD may
be as equally equipped as their neurotypically developing
(NT) peers to use statistical patterns to find words in
speech (Obeid et al., 2016). For example, Mayo and Eigsti
(2012) varied the likelihood that syllables co-occur [transi-
tional probability (TP)] in a 21 min long corpus and found
similar segmentation outcomes for children with and with-
out ASD. Scott-van Zeeland et al. (2010) also found com-
parable learning performance between NT and ASD
children after exposure to a continuous speech stream.
Importantly, the groups differed in their neural responses.
With increased exposure to the input, NT children showed
reduced activation in a fronto-temporal-parietal network,
while children with ASD did not show task related
changes in brain activity.

Both prior studies used artificial language materials
which lacked varying prosodic and stress patterns inte-
gral to everyday speech (Johnson and Jusczyk, 2001),
thus, leaving open the question of how individuals would
perform given more natural language input. Indeed, chil-
dren with ASD may struggle to find words in natural
speech for at least two reasons. MEG studies show that
children with ASD have a delayed mismatch response to
speech and non-speech sounds (Roberts et al., 2011) and
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demonstrate atypical responses to irregular speech
sound sequences (Brennan et al., 2016b; Galilee, et al.,
2017). This may indicate potential deficits in bottom-up
early sensory processing of speech. We label this the sen-
sory-differences hypothesis.

In addition, children with ASD have difficulty extracting
global regularities (“weak central coherence”; Frith, 1989) and
allocating attention within sound sequences (Whitehouse and
Bishop, 2008), which may be a disadvantage in the types of
top-down processing necessary for statistical learning. Such
differences are supported by reduced patterns of activation
in a network of fronto-temporal regions associated with typi-
cal language acquisition (Redcay and Courchesne, 2008)
which are more pronounced in children who have poor lan-
guage learning outcomes (Lombardo et al., 2015). We label
this the prediction-differences hypothesis. We propose that
early sensory deficits and/or atypical predictive processing
may lead to difficulties in extracting statistical regularities
from fluent speech.

We asked children to listen to naturally spoken pas-
sages in ltalian with a range of TPs between syllables. We
quantify TP using the information processing metric of
surprisal, defined as the inverse-log of conditional proba-
bility between two syllables (for details, see Materials and
Methods; Hale, 2016). We apply this metric for the first
time to measure syllable-to-syllable prediction in natural
speech with a focus on children with and without ASD. To
tease apart the hypotheses, we track evoked neural re-
sponses for syllables in left hemisphere regions impli-
cated in key steps of speech processing (Hickok and
Poeppel, 2007): early perception in the primary auditory
cortex (LAC), mapping percepts to linguistic units in the
posterior superior temporal gyrus (pSTG), and higher-
order analysis of linguistic regularities in the inferior frontal
gyrus (IFG). Passages were repeated three times to cap-
ture a neural index of learning, defined as change in the
evoked amplitude as a function of surprisal across repeti-
tions. In NT children, we expect to see the index of learn-
ing across all three regions of interest (ROIs). As surprisal
increases, amplitude of the evoked neural response
should increase; this sensitivity should emerge after re-
peated exposure to the passages. Crucially, this effect
may differ between the NT and ASD groups. The sensory
deficit hypothesis holds that ASD individuals will show re-
duced sensitivity to surprisal in early sensory regions,
such as the left LAC and pSTG. The prediction hypothesis
holds that children will show reduced sensitivity to sur-
prisal within higher order regions like the left IFG.

Materials and Methods

Participants

Fifteen children with ASD (1 female, M., = 10.00,
SD =1.16) and fourteen age and gender matched NT children
(Mgage = 10.06, SD =1.46) participated in the study. All children
(age range=8-12years) were prescreened for -eligibility
through a phone interview with a parent or caregiver and
were monolingual English speakers. The study was approved
by all participating institutional review boards, as part of a
larger project assessing language and communication in
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Table 1: Mean (standard deviations) of standardized assessments

NT ASD

N Mean (SD) N Mean (SD) t p g

Gender (M:F) 13:1 14:1
Age (years) 10.00 (1.64) 10.06 (1.47) -0.10
CTOPP phonological awareness (standard score) 14 91.00 (13.36) 15 94.07 (18.99) —0.51 0.617 -0.18
TOPS inferences 14 103.86 (8.57) 11 86.00 (20.07) 2.86 0.012 1.15
TOPS predicting 14 104.07 (11.85) 13 80.54 (17.25) 4.10 <0.001 1.55
CELF formulating sentences (scaled score) 10 14.60 (1.26) 7 8.86 (5.27) 2.83 0.028 1.56
CELF concepts and following directions 13 10.69 (2.29) 13 7.62 (4.77) 2.10 0.051 0.77
NEPSY auditory attention 14 11.14 (1.96) 15 7.47 (4.66) 2.80 0.011 0.98
WASI FSIQ (t score) 13 114.62 (8.17) 13 97.54 (19.23) 2.95 0.009 1.11
BASC (standard score) 14 44.29 (5.47) 15 61.8 (4.57) —-9.32 <0.001 —3.38
SCQ (total score) 14 1.43 (1.95) 15 18.60 (7.53) —8.53 <0.001 —2.98
ADOS total 15 7.90 (2.85)

t statistic and p values are reported for a two-tailed independent samples test. Effect sizes are reported using Hedges’ g.
FSIQ, full-scale IQ measure from the Wechsler abbreviated scale of intelligence-2; CTOPP, comprehensive test of phonological processing; TOPS, test of prob-
lem solving; CELF, clinical evaluation of language fundamentals; NEPSY, developmental neuropsychological assessment; BASC, behavior assessment system

for children; SCQ, social communication questionnaire.

ASD using MEG (Brennan et al., 2016b; Lajiness-O’Neill et
al., 2018; Brennan et al., 2019). Parents and children provided
informed consent and assent and received monetary com-
pensation for their participation.

Inclusion and exclusion criteria

Participants were recruited through local clinics and
communities in southeast Michigan. During prescreening,
caregivers completed the social communication ques-
tionnaire (SCQ; Rutter et al., 2003). The SCQ is a 40-item
caregiver screening to assess communication and social
functioning in individuals who may have an ASD. Items
referenced across the symptomology domains of ASD are
totaled for a single score and a cutoff classification score
of 11 is often used for research purposes (Rutter et al.,
2003). To participate in the current study, ASD-likely can-
didates required a SCQ > 11 (Corsello et al., 2007), and
NT participants required a SCQ < 11.

The behavior assessment system for children (BASC;
Reynolds and Kamphaus, 2002) and the Wechsler abbrevi-
ated scale of intelligence-2 (WASI-2; Wechsler and Hsiao-
pin, 2011) were administered to rule out adaptive and
intellectual deficits consistent with intellectual disability. The
BASC measures general behaviors and emotions of children
such as hyperactivity, aggression, and conduct problems.
The WASI-2 is a brief and reliable measure of intellectual
functioning and includes subtests tapping into verbal, non-
verbal, and general cognition. Inclusion criteria for all partici-
pants included at least low average intelligence [full-scale IQ
(FSIQ) > 80; Wechsler and Hsiao-pin, 2011].

A formal diagnosis of all ASD-likely participants was
based on the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5; American Psychiatric
Association, 2013) diagnostic criteria and the autism diag-
nostic observation schedule (ADOS), administered by a
clinical and research reliable psychologist (Lord et al.,
2012). The ADOS is a semi-structured standardized as-
sessment of communication, play, social interaction, and
restricted and repetitive behaviors. To confirm the diagno-
sis of ASD, the ADOS Module 3 was administered. The
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revised algorithm (see Gotham et al., 2007) was used to
compute individual and a combined total score for subdo-
mains of social interaction, communication, and stereo-
typed behaviors/circumscribed interests. Participants
with ASD had a combined total score above the clinical
cutoff suggestive for autism (Gotham et al., 2007).
Exclusionary criteria for ASD and NTs included any
known history of head injury with loss of consciousness,
other neurologic disorders including active epilepsy/seiz-
ures, environmental deprivation, anxiety disorders or
other forms of psychopathology, and anything that might
interfere with the MEG procedure (e.g., dental braces).
Additional exclusion criteria for NTs included any history
of developmental delay or a first-degree relative with an
ASD diagnosis. Two NT participants were excluded from
analyses because of equipment error during MEG data
acquisition and one ASD participant was excluded be-
cause of an inability to comply with the task demands and
tolerate the assessment procedures. The final group of 29
did not significantly differ in age or gender (see Table 1).

Experimental design

Participants passively listened to ~6 min of a naturally
produced passage in a foreign language (Italian) modeled
after stimuli previously used by Hay et al. (2011; see Fig.
1). The ltalian passage consisted of grammatically plausi-
ble but semantically nonsensical sentences made up of
legal Italian words. To ensure natural production of Italian
pronunciations, a female native ltalian speaker recorded
three different instances of the passage. Each participant
listened to all three versions (three repetitions) presented
via E-Prime Software 2.0 (Schneider et al., 2002). Of inter-
est were the relative distributions and occurrences of
eight key target syllables (fu, ga, me, lo, ca, ne, bi, ci) pre-
sented throughout the passage. A trigger signal marking
the onset of each passage segment was used to pinpoint
the time signature of these syllables, which was then
aligned with the continuous MEG signal.

We tracked the exact timing of the syllable occurrences
and the resulting brain responses given the following
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...unoggettosiabituaallajfu]gadel|ca|neconla|bi|cianti|casenz
19 0 3.0 16 19 1.6 3.7

alu|ciposterioriodecorazio|nehaguidatola|bi|civersoun|me]|loq
0.6 37 19 16 37 0

uandovideun|ca|negio|careconunbam|binoedunalbiglia...
3.1 16 12 0.6 14

| = time locked syllable event with surprisal value below

0, |0, = non-controlled syllable pairs

0, | o, = controlled syllable pairs
Figure 1. Schematic of the experimental stimuli as adapted
from Hay et al. (2011). An excerpt of the ~2-min-long lItalian
passage showing key target (controlled) syllables (red) and non-
controlled syllables (green) pairs. The passage was repeated
three times for a total duration of ~6 min.

methodological manipulation. For each occurrence of a
target syllable, the forward internal TP between its pre-
ceding syllable and the target syllable was calculated [i.e.,
frequency of target syllable given frequency of preceding
syllable; TP = P(o5|o4)]. TP for all target syllables ranged
from 0.028 to 1.00. These TP values were converted to
surprisal [surprisal = -log,(TP)] as prior work on phonolog-
ical and lexical processing has shown that linguistic fre-
quencies affect processing on a logarithmic scale (Hale,
2001, 2016). This yielded a total of 576 surprisal values for
each presentation of the target syllables across the three
repetitions of the passage for each participant (for distri-
butions of surprisal, see Fig. 2). This metric of surprisal al-
lows us to measure, in a continuous way, the information
conveyed by a linguistic event, such as the likelihood of a
particular syllable, based on its given context. Thus, a
context of low syllable-to-syllable TP yields high surprisal
and high syllable-to-syllable TP yields low surprisal.

The surprisal metric taps into the brain’s sensitivity to
statistical regularities at multiple levels of representation
(Hale, 2001; Levy, 2008). Prior work with surprisal has
documented behavioral and neurobiological measures on
adults at syntactic (Monsalve et al., 2012; Frank et al.,
2013; Gwilliams and Marantz, 2015; Willems et al., 2016;
Brennan et al., 2016a; Lopopolo et al., 2017; Gwilliams et
al.,, 2018) and lexical or phonemic levels of processing
(Gwilliams and Marantz, 2015; Lopopolo et al., 2017;
Gwilliams et al., 2018).

The target syllables were drawn from four target words
(fuga, melo, cane, bici) that were systematically placed
throughout the corpus. The component syllables of fuga
and melo (fu, ga, me, lo) appeared nowhere else in the pas-
sage, giving these words a high TP =1.0 (surprisal =0.0).
In contrast, the component syllables of cane and bici (ca,
ne, bi, ci) appeared within the passage another 24 times
each (e.g., taCl, CAro), thus giving them a lower TP =0.33
(surprisal = 1.585). The syllables of these words appeared
36 times within the passage, only 12 of which were in the
target words and the others as initial (e.g., CAdi), medial
(e.g., sindaCAto), or final (e.g., spreCA) syllables. The in-
clusion of these four legal Italian words, comprised of the
key target syllables, allowed us to control and test for sta-
tistical learning effects of relatively moderate and highly
predictive syllable sequences within a continuous and
varied range of syllable probabilities.
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Figure 2. Histogram of the range of surprisal distributions of
surprisal values across all target syllables.

Behavioral measures

After listening to the Italian passages, a statistical
learning post-test was given outside the scanner to ex-
plicitly measure children’s ability to distinguish words
with TP of 1.0 and 0.33 from novel Italian words that did
not occur within the corpus. Children listened to a pair
of words presented via E-Prime Software 2.0. One of
the two words was a bi-syllabic target word from the
passages and the other word (non-target) was one of
four bi-syllabic Italian words comprised of syllable com-
binations that were not included in the Italian corpus
(e.g., mugo, azza, pipa, zebu). However, the component
syllables of these novel words did appear in the Italian
passages (e.g., mu). Children were tested using a two-
alternative forced-choice task by asking, “Which of the
following two words could be a possible word in the lan-
guage you just heard?” Participants were instructed to
press the “1” key if the first word could be a possible
word in the foreign language, and similarly, to press the
“2” key if the second word could be a possible word in
the foreign language. Children completed four practice
trials using common English words (e.g., teacher) versus
nonsense, phonotactically illegal words (e.g., pmfkin) fol-
lowed by 16 trials of the Italian target and non-target pairs of
words.

Standardized measures of language and attention were
also obtained as part of the larger project investigating
language and communication in children with ASD (see
Table 1). For the purpose of this particular study, we sim-
ply report descriptive statistics on a subset of these
measures to note the language and communication skills
of the ASD group studied here, and for discussion in rela-
tion to the previous studies of statistical learning in chil-
dren with ASD (Scott-van Zeeland et al., 2010; Mayo and
Eigsti, 2012). Measures of language include the compre-
hensive test of phonological processing (CTOPP; Wagner
et al., 1999), clinical evaluation of language fundamentals
(CELF-5; Semel et al., 2006), and test of problem solving
(TOPS 3; Bowers et al., 2005) to assess phonological,
syntactical, grammatical, and pragmatic competence, re-
spectively. A test of auditory attention included the
Auditory Attention subtests of the NEPSY developmental
neuropsychological assessment (NEPSY-Il; Korkman et
al., 2007).
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Procedure

Participants completed the neuroimaging portion
(~10min), immediately followed by the behavioral sta-
tistical learning test, and lastly, the behavioral battery
of language and cognitive assessments (60-90 min).
Participants laid supine on a bed with a helmet-shaped
dewar containing 148 magnetometer MEG sensors
placed around their head (4D Neuroimaging). Children
were instructed to keep their eyes open (monitored via
video) and listen to the foreign language while remain-
ing as still as possible. During scanning, the stimuli
were delivered via computer speakers placed at an
aperture in the shielded room; loudness was set at a
comfortable level for each participant.

Data acquisition and processing

Three small electrode coils, used to transmit head loca-
tion information to the neuromagnetometer probe, was af-
fixed to each participant’s forehead with two-sided tape.
Additional localization coils were attached to each preaur-
icular point (PA), anterior to the tragus of the ear on the
two sides of the head. Standard automatic probe posi-
tion routines (4D Neuroimaging Hardware) were used to
locate the five coils placed on the head with respect to
the neuromagnetometer detector coils and to digitize the
shape of the head for co-registration to a standard MRI.
Neuromagnetic fields were recorded with a whole-head
148-chanel magnetometer (WH 2400, 4D Neuroimaging
system). During acquisition, the data were bandpass fil-
tered between 0.1 and 100Hz and digitally sampled at
508.63 Hz. Data were recorded continuously for later
analyses. The onset of each repetition of the Italian pas-
sage was recorded as pulse codes whose strength indi-
cated the type of stimulus on a trigger channel collected
simultaneously with the MEG data. The location of
events on the trigger and response channels were used
to select epochs from —0.3 to 1 s of MEG data around
each target syllable for each 2-min repetition of the pas-
sage. Data analysis was performed using the Fieldtrip
toolbox for EEG/MEG-analysis (Oostenveld et al., 2010).

Extracranial sources of interference were attenuated
by subtracting signals recorded by five gradiometer and
six magnetometer reference channels placed ~15-
20cm from the head. Epochs were filtered using a dis-
crete Fourier transform filter at 60, 120, and 180 Hz with
a 2-s padding and a high pass filter at 0.5 to attenuate
line noise. Trials and channels containing artifacts were
removed based on visual inspection. No >23 channels
of 148 and 106 trials of 576 were removed during artifact
rejection (mean trials removed ASD =50, NT=58). The
two groups did not significantly differ on the total number
of channels (t,7=0.11, p=0.74) or trials (to7=2.07,
p =0.16) removed.

ROls analysis

Source time courses were reconstructed on to a 7- to
11-year-old pediatric template brain (Fonov et al., 2011)
at four ROIs using Montreal Neurologic Institute (MNI) co-
ordinates. Three ROIls were selected a priori based on
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previously reported findings on statistical learning
paradigms in the speech domain with adults (Karuza et
al., 2013), which included left primary auditory cortex
(x = —48, y=18, z=2), posterior region of the left STG
(x=-64,y=-12,z=4), and left IFG (BA 44; x = —52,
y =26, z=—6). We also included a right superior parie-
tal region (x=24, y = —46, z=60) as a control ROI.

Single-trial source-localized time courses were esti-
mated using a linear constrained minimum variance
(LCMV) beamformer (Van Veen et al., 1997). The LCMV
beamformer forms a linear combination of the external
field measurements to monitor the activity at a single
brain location, while optimally suppressing all other
noise and other source contributions to the MEG data.
The beamformer filter was estimated using a sensor co-
variance matrix based on the average of all epochs per
participant. MEG sensor averages were then projected
through the filter for each location, yielding source time
courses in three dimensions for each ROls. The root-
mean-square (RMS) time course within three 100-ms
time bins (Teinonen et al., 2009): 200-300, 250-350, and
300-400 ms following syllable onset, at each location,
per participant, per trial, for each repetition of the pas-
sage was entered into the statistical analysis. Time win-
dows of interest were chosen based on two related
accounts: first, prior work shows consistent modulation
of the evoked response between 200 and 500 ms during
statistical segmentation of a syllable stream (Sanders et
al., 2002; Cunillera et al., 2006); second, theoretical
frameworks of speech perception suggest that temporal
sampling of the speech stream for syllables occurs over
longer intervals, roughly 150-300 ms, and that this time
window carries syllable-boundary and syllabic-rate cues
as well as other prosodic and stress cues relevant for the
type of perceptual processing assessed here (Naatanen
and Picton, 1987; Poeppel, 2003; Hickok and Poeppel,
2007; Giraud and Poeppel, 2012).

Statistical analysis

To test for a neural index of learning, we measured the
relative change in evoked response amplitude as a
function of surprisal across the repeated passages. A
linear mixed-effects model was fit using the Imer func-
tion in the Ime4 package in R (Bates et al., 2015) with
passage repetition, ROI, group, and time window as
categorical variables and surprisal as a continuous vari-
able (all as fixed effects). Variation among participants
was taken into account by including individuals as a
random effect intercept; p values were computed via
the Satterthwaite approximation using the ImerTest pack-
age in R. Statistical inference was based on F tests of main
effects and higher order interactions using the anova func-
tion in R. We excluded 54 trials from statistical analyses cor-
responding to target syllables with only one occurrence (i.e.,
a trivial case of TP =1.0, surprisal = 0).

Additionally, a Bayesian multilevel model was fit using
the brms package (Burkner, 2017) with the same parame-
ters as mentioned above. Models were fit using two
chains of 1000 warm-up iterations and 2000 sampling
iterations. Prior distributions on all terms were the default
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Figure 3. Proportion of correct responses to high and low TP
target words in comparison to novel lItalian words, calculated
out of 16 trials from 14 NT and a subset of 12 ASD children
who completed the behavioral learning test. Error bars repre-
sent standard error.

values from brm(). To report on the key manipulations of
interest (e.g., change in evoked response as a function of
surprisal for third repetition between NT and ASD groups),
we extracted the mean B coefficient and the 95% credi-
ble interval (Cl) for the slope of the amplitude over surpris-
al as sampled from the posterior distribution of the model.
All model terms had a R-hat value <1.01.

For behavioral responses on the statistical learning
task, the proportion of correct responses was calcu-
lated out of 16 trials from 14 NT and a subset of 12 ASD
participants who completed the task (three ASD chil-
dren did not complete the postscan behavioral test be-
cause of computer error and/or inability to comply with
the task demands).

Code accessibility

The brms model output described in the paper is freely
available online at Open Science Framework, https://osf.
io/zbvhc/.

Results

Statistical learning behavioral results

Performance on the ltalian behavioral test is shown in
Figure 3. A two-way ANOVA [group (NT, ASD) x TP (high,
low)] revealed there was a significant main effect of group
(F1,48y=24.3, p<0.001, npz = 0.34). NT children
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outperformed children with ASD in correctly identifying
both the high TP (t24)=2.78, p=0.002, Cohen’s d=0.97)
and low TP (o3 =4.33, p=0.001, d=1.28) words from
novel ltalian words, as revealed by independent sample t
tests. There was no group by TP interaction effect
(F1,48=0.95, p=0.33, an = 0.02). In both groups, there
were no differences in accurately identifying high TP from
low TP words in comparison to novel Italian words (no
main effect of condition; F(; 4=0.02, p=0.89, 71,° =
0.00). Therefore, accuracy on all trials were averaged as one
and counted as total proportion of correct responses for
each group and tested against chance (i.e., 0.5). One-sam-
ple t tests showed that NT children had above-chance
accuracy in identifying the target-words [M (SD)=0.68
(0.17); t13)=3.93, p=0.002, d =0.13], whereas children
with ASD performed below chance in accurately identi-
fying the target words [M (SD)=0.40 (0.14), t++1) =
—2.71,p=0.02,d = —1.23].

MEG results

Figure 4 shows the linear effect of evoked response am-
plitude as a function of syllable surprisal for each group,
ROI, and passage repetition. These plots are averaged
across time windows for ease of visualization (the statisti-
cal results, summarized below, showed no higher-order
interactions with time). ANOVA results are reported in
Table 2.

A neural index of learning would be reflected by an in-
crease in the amplitude of the evoked response as a func-
tion of surprisal and passage repetition. We tested
whether this interaction effect differed across groups,
ROls, and time windows. We found a key four-way inter-
action showing surprisal by passage repetition varied by
group and ROI (p =0.001, np2 = 0.95). This interaction re-
flects the fact that a positive slope for the effect of surpris-
al emerged in the third repetition for NT participants but
not for ASD participants. The pattern of positive slope in
the third repetition in the NT group is consistent across
the left LAC, pSTG, and IFG regions and differs for the
right parietal region.

We further break-down this interaction effect. In LAC
(Fig. 4A), for the NT group, the effect of evoked response
amplitude across surprisal (slope of blue lines) shows a
positive incline in the third passage repetition relative to
the first two passage repetitions (8 = 4.53, Clgso, = [2.85,
6.21]). This pattern of data differs for the ASD group
where we observe a flat trend in passage repetition three
in the LAC (B = —1.66, Clgse, = [—2.86, —0.44)), relative to
the first two passage repetitions. In LSTG (Fig. 4B), for the
NT group, the blue line is overall flat for the first two repeti-
tions and shows a positive trend in the third passage rep-
etition. Meanwhile, the ASD group’s blue lines reflect a
slight negative trend in the first and third repetitions and a
positive trend in the second repetition. In the LIFG (Fig.
4C), we again observe overall flat blue line for the NT
group in passage repetition one and a positive trend in the
second and third repetitions; no such pattern is observed
for ASD across all three repetitions. In the right superior
parietal, as expected, we observe no learning response
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Figure 4. Linear effect of evoked response amplitude (averaged across time windows) as a function of syllable surprisal for each
group and ROI across the first, second, and third passage repetitions (light blue to dark blue lines). Gray shading represents SE.

across passage repetitions in both NT and ASD groups
(Fig. 4D).

The ANOVA showed a marginally significant three-way
interaction of surprisal by repetition by group effect
(p=0.046, np2 = 0.82). Additionally, we observed several
significant two-way interactions: the effect of surprisal
varied across ROl (p <0.001, n,° = 0.96), brain activity
across the three repetitions varied by ROIs (p =0.001, npz
= 0.95), the effect of surprisal varied by group (p =0.032,
npz = 0.77), and brain activity at the three ROIs varied by
group (p=0.001, 77p2 = 0.94). We also observed several
lower-order significant effects including main effects of
surprisal (n,° = 0.94), passage repetition (n,° = 0.94) and
ROls (77p2 = 1.0; all p<0.001). The main effect of time
window (7,? = 0.64) and group (7,2 = 0.01) were not sig-
nificant. The five-way interaction between surprisal, time
window, repetition, ROIs, and group was not significant.

Discussion

The present study used surprisal to investigate the neu-
ral mechanisms underlying speech segmentation in typi-
cal development and in children with ASD. Speech
segmentation, foundational to language acquisition, re-
quires the integration of top-down and bottom-up cogni-
tive processes. To this end, we proposed two possible
hypotheses as to why children with ASD might struggle to
use distributional cues to find words in speech: a sen-
sory-differences hypothesis that suggests potential defi-
cits in the bottom-up early sensory processing of auditory
input, and a prediction-differences hypothesis related to
potential deficits in the high-order analysis of concaten-
ated input. To investigate these two hypotheses, we used

November/December 2020, 7(6) ENEURO.0069-19.2020

MEG to examine the functionality of the left primary audi-
tory cortex, left posterior STG, and left IFG region during a
passive language listening paradigm. Our key interest
was a neural index of learning, measured as an increase
in the amplitude of the evoked response as a function of
surprisal. We expected this interaction to emerge with re-
peated exposure to the language paradigm. Critically, we
tested whether neural responses differed across groups
and ROlIs. We observed the neural index of learning in typ-
ically developing children, but not in the children with
ASD, across all three ROls. These data speak to two com-
peting hypotheses.

First, prior literature on speech and sound processing
have shown that children with ASD present with low-level
auditory processing deficits, such as disruptions or delays
in early neural responses to both verbal and non-verbal
acoustic stimuli (Bomba and Pang, 2004; Jeste and
Nelson, 2009; Edgar et al., 2014, 2015). In fact, the set of
children with ASD in this sample previously showed atypi-
cal responses to phototactically illegal, in comparison to
legal, sequences (Brennan et al., 2016b). Our LAC and
pSTG results are consistent with the sensory-differences
hypothesis that suggests a possible disruption in initial
acoustic processing may have led to difficulties in extract-
ing speech sound patterns from natural fluent speech
(Roberts et al., 2010, 2011).

Second, research into the development of auditory
pathways in ASD show atypical development of white
matter and cortical function within the auditory and lan-
guage systems (Berman et al., 2016), such as delayed
STG auditory 100-ms responses (Roberts et al., 2010)
and atypical hemispheric lateralization of auditory re-
sponses (Stroganova et al.,, 2013). These patterns of
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Table 2: Results of an ANOVA comparing mean amplitude
across group (ASD and NT), syllable surprisal, passage rep-
etitions, ROIs, and time windows

Main effects df, residual F p

Surprisal 1,137925 21.89 0.000
Time window 2 1.21  0.298
Repetition 2 11.44 0.000
ROI 3 64184 0.000
Group 1,27 0.01  0.921
Two-way interaction
Surprisal x time window 2 0.19 0.823
Surprisal x repetition 2 0.70 0.494
Time window x repetition 4 0.13 0.971
Surprisal x ROI 3 9.82 0.000
Time window x ROI 6 0.47 0.827
Repetition x ROI 6 4.32 0.001
Surprisal x group 1 459 0.032
Time window x group 2 0.03 0.966
Repetition x group 2 1.81 0.164
ROI x group 3 6.95 0.001
Three-way interaction
Surprisal x time window x 4 0.13 0.972
repetition
Surprisal x time window x ROI 6 0.06 0.999
Surprisal x repetition x ROI 6 0.85 0.531
Time window x repetition x ROl 12 0.07  0.999
Surprisal x time window x group 2 0.29 0.752
Surprisal x repetition x group 2 3.09 0.046
Time window x repetition x group 4 0.22 0.926
Surprisal x ROI x group 3 0.68 0.566
Time window x ROI x group 6 0.02  0.999
Repetition x ROI x group 6 0.44 0.853
Four-way interaction
Surprisal x time window x 12 0.09 0.999
repetition x ROI
Surprisal x time window x 4 0.17  0.955
repetition x group
Surprisal x time window x 6 0.13 0.992
ROI x group
Surprisal x repetition x 6 4.32  0.001
ROI x group
Time window x repetition x 12 0.04 0.999
ROI x group
Five-way interaction
Surprisal x time window x 12 0.11  0.999

repetition x ROI x group

responses in auditory processing may be because of the
documented deficits of orienting attention (Whitehouse and
Bishop, 2008). ASD children in this study showed a varied
pattern of neural responses to syllable sequences as com-
pared with neurotypical peers, within and across all three
ROls. Specifically, the IFG results are in line with the predic-
tion-differences hypothesis. Prior work has suggested that
the language network’s feed-forward mechanisms of high-
er-order computations might be particularly impaired in
those with ASD and poor language learning outcomes
(Courchesne and Pierce, 2005; Redcay et al., 2008). While
speculative, such impairments have the potential to propa-
gate extraction and integration learning deficits in ASD, es-
pecially in the beginning phases of learning.

Behavioral measures of statistical learning suggest
that ASD children could be as sensitive to statistical
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regularities as their typically developing peers (Haebig et
al., 2017), across paradigms with (Scott-van Zeeland et
al., 2010) and without (Mayo and Eigsti, 2012) additional
cues to segmentation. In the present study, most of the
ASD children were unable to identify the target syllable
pairs heard within the novel fluent speech relative to a foil.
Performance for this group of children with ASD was sig-
nificantly below chance, suggesting that some learning
may be happening within the 6-min exposure. The pattern
of data suggests that children with ASD were able to rec-
ognize some syllable components that were part of words
used in the postscan behavioral test, but not the syllable
sequences that formed the target words. One interpreta-
tion of these findings is consistent with to our second hy-
pothesis relating to higher-order analysis of linguistic
events. Children with ASD may have been sensitive to the
frequency of syllables presented but failed in the appro-
priate grouping of syllable sequences given the distribu-
tional cues. This is an interesting finding that warrants
further investigation.

Our NT and ASD children did not differ in their phono-
logical competence, although they differed on measures
of attention, syntax, and pragmatics. Children with ASD
showed normative performance on the phonological
awareness tasks that ask children to segment and manip-
ulate word sounds (e.g., elision, CTOPP), but poorer per-
formance on syntax tasks (e.g., formulating sentences,
CELF-4) that tap into children’s knowledge of language
structure. Observed differences in neural learning pat-
terns within left hemisphere regions and poor statistical
learning performance in ASD may be revealing of ASD
children’s underlying difficulty in extracting linguistic
structure or sequence learning that extends beyond proc-
essing of single speech sounds. However, exploratory bi-
variate correlations between language and attention
measures with experimental task performance indicated
no meaningful trends (r=0.01-0.37). The sample size sig-
nificantly limits our ability to examine the links between
the current paradigm and children’s language or cognitive
skills. In future work, we aim to take a closer look at defin-
ing subpopulations of children with ASD and their learning
outcomes.

The ltalian statistical learning paradigm, adapted from
Hay et al. (2011), maintained virtually all complexities
found in natural speech with the exception that the transi-
tional probabilities between syllable sequences were pre-
cisely manipulated in a subset of words. By specifically
examining prediction-based processing demands with
the measure of surprisal, we were able to assess the com-
putational nature of statistical learning across a range of
unexpectedness values. This allowed us to control and
test for statistical learning effects of relatively moderate
and highly predictive syllable sequences within a continu-
ous and varied range of syllable probabilities. Prediction
has been implicated as an important component of early
learning (Romberg and Saffran, 2013), and some suggest
prediction plays a major role in the underlying impairments
observed in ASD (Sinha et al., 2014). This hypothesis sug-
gests that tracking of statistical regularities in ASD might
compare to neurotypical peers when the environment is
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relatively stable, and perhaps with longer exposure time
(e.g., 21 min in Mayo and Eigsti, 2012). However, when
tasks involve varying distribution of events (e.g., range of
probabilities), integration of new events with prior experien-
ces may be more difficult for children with ASD, resulting in
learning differences between the two groups.

The use of a naturalistic language paradigm, combined
with MEG imaging, is one of the key innovations of this
study. Previous studies of speech segmentation that vary
the type and number of speech cues available to learners
have found differences in the neural activity across ma-
nipulations, despite participants’ inability to behaviorally
detect differences between conditions. This has been
documented in a sample with typically developing chil-
dren (McNealy et al., 2010; Scott-van Zeeland et al., 2010)
and adults (McNealy et al., 2006) using fMRI. Scott-van
Zeeland et al. (2010) found that both children with and
without ASD were at chance in their behavioral learning
performance. Importantly, they differed in their neural re-
sponses. First, the authors found that patterns of brain ac-
tivity in the fronto-temporo-parietal network changed with
the increase in the number of cues to word boundaries,
but only in the group of typically developing children.
Second, the authors observed a lack of frontal lobe en-
gagement during task of speech processing in children
with ASD. Lastly, children with more severe communica-
tive deficits showed fewer changes in brain activity with
increased exposure to speech. Our results parallel these
findings and provide corroborating support for the hy-
potheses that integration of top-down and bottom-up
cognitive processes are involved in successful speech
segmentation, which may be impaired in children with
ASD. In the present study, we found no evidence of a tim-
ing effect in relation to early speech processing in the au-
ditory cortex and later analysis in higher-level auditory
and speech processing regions. This an interesting null
result that warrants further investigation with a more gran-
ular experimental design.

The use of the beamforming method for localization in-
troduces some limitations, such as possible differences in
the quality of fit between ASD and NT groups. Thus, we
cannot rule out an anatomic-based explanation of our re-
sults. However, we have two reasons to think such an ex-
planation is not likely. First, potential anatomic differences
in ASD and NT may be smaller than the spatial specificity
of the beamformer. Second, the anatomical differences in
the left hemisphere between ASD and NT groups pointed
out by Berman et al. (2016) emerge at later ages than the
8- to 12-year-old range studied in our sample. To test this
reasoning in future studies, we could measure the statisti-
cal fit of the beamforming method across the two groups
or acquire individual MRI anatomical scans for each partici-
pant to estimate source localizations with more precision.

In sum, the present study offers novel evidence investi-
gating the neural mechanisms underlying statistical learn-
ing using a naturalistic language paradigm, in typical
development and in children with ASD. Results show neu-
ral and behavioral effects of speech segmentation specif-
ic to syllable-level surprisal, extending previous work by
examining statistical learning from two perspectives —
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input-driven auditory processing and higher-order predic-
tive processing. These findings offer insight into the cog-
nitive mechanisms foundational for language acquisition
and helps inform our understanding of development
across different populations of learners.
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