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Abstract

Magnetic resonance spectroscopy (MRS) can be used in vivo to quantify neurometabolite concentration and
provide evidence for the involvement of different neurotransmitter systems (e.g., inhibitory and excitatory) in
sensory and cognitive processes. The relatively low signal-to-noise ratio of MRS measurements has shaped
the types of questions that it has been used to address. In particular, temporal resolution is often sacrificed in
MRS studies to achieve a signal sufficient to produce a reliable estimate of neurometabolite concentration.
Here we apply novel analyses with large datasets from human participants (both sexes) to reveal the dynamics
of GABA1 and Glx in visual cortex while participants are at rest (with eyes closed) and compare this with
changes in posterior cingulate cortex from a previously collected dataset (under different conditions). We find
that the dynamic concentration of GABA1 and Glx in visual cortex drifts in opposite directions; that is, GABA1

decreases while Glx increases over time. Further, we find that in visual, but not posterior cingulate cortex, the
concentration of GABA1 predicts that of Glx 120 s later, such that a change in GABA1 is correlated with a
subsequent opposite change in Glx. Together, these results expose novel temporal trends and interdependen-
cies of primary neurotransmitters in visual cortex. More broadly, we demonstrate the feasibility of using MRS
to investigate in vivo dynamic changes of neurometabolites.
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Significance Statement

Using large datasets of magnetic resonance spectroscopy acquisitions from human participants, we de-
velop novel analyses to investigate the temporal dynamics of neurometabolite concentration in visual cor-
tex. We find that, while participants are at rest, the concentration of GABA1 and Glx drifts in opposite
directions; that is, GABA1 decreases while Glx increases over time. Further, we find that the concentration
of GABA1 predicts that of Glx 120 s later, such that a change in GABA1 is correlated with a subsequent op-
posite change in Glx. We show that these phenomena are regionally localized to visual cortex.

Introduction
Magnetic resonance spectroscopy (MRS) can be

used in vivo to measure the concentration of neurome-
tabolites within the brain. The blood oxygenation level-
dependent (BOLD) signal measured using functional
magnetic resonance imaging (fMRI) can provide evi-
dence of neural activity; however, MRS can provide
evidence that can be used to distinguish between dif-
ferent types of activity (e.g., excitatory and inhibitory).
For the purpose of understanding neural mechanisms,
identifying the involvement of neurotransmitter sys-
tems that support sensory/cognitive processes can be
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more informative than locating regions of neural
representation.
Previous work using MRS to understand the role of dif-

ferent neurotransmitters in normal brain function has fo-
cused on neurometabolite activity in visual cortex; in
particular, the function of g-aminobutyric acid (GABA)
and glutamate (Glu), the primary inhibitory and excitatory
neurotransmitters in the central nervous system, respec-
tively. A consistent finding from these studies is that Glu
increases in visual cortex in response to visual stimula-
tion, which has been interpreted as increased involvement
of this neurotransmitter during the processing of visual
stimuli (Mangia et al., 2007; Lin et al., 2012; Schaller et al.,
2013; Bednarõík et al., 2015, 2018; Ip et al., 2017;
Kurcyus et al., 2018). The findings relating to GABA have
been less consistent. One study found less GABA in visual
cortex during visual stimulation compared with baseline
(Mekle et al., 2017), while other studies have not repli-
cated this result (Mangia et al., 2007; Schaller et al., 2013;
Bednarõík et al., 2015, 2018; Kurcyus et al., 2018).
The classic “static” fMRS approach (i.e., comparing the

average neurometabolite concentration during one exper-
imental condition with another) has implicated GABA and
Glu in visual processing. However, the information pro-
vided using this approach is severely limited. In particular,
by reducing the measure of neurometabolite concentra-
tion to a single estimate averaged across a viewing condi-
tion, dynamic changes in concentration that occur under
different states of visual processing are obscured. By
contrast, establishing the temporal dynamics in neurome-
tabolite concentration will reveal the timing and magni-
tude of change in different neurotransmitters and novel
relationships between neurotransmitters. This information
is essential for a comprehensive understanding of the role
of neurotransmitters in visual processing, but, more
broadly, it may inform our understanding of the balance
between excitation and inhibition, which is thought to be
a key factor in multiple neurologic and psychiatric ill-
nesses (Bradford, 1995; Rubenstein and Merzenich,
2003; Kehrer et al., 2008).
The temporal resolution of MRS is highly restrained by

the signal-to-noise ratio of measurements acquired using
the technique. Although the duration that restricts the
temporal resolution of MRS (i.e., the relaxation time) can
be similar to that of fMRI (i.e., ;2 s), to yield a reliable
measurement of neurometabolite concentration from
within the brain, multiple transients must be combined to
reach a sufficient signal-to-noise ratio (Mikkelsen et al.,
2018). For example, it is common to combine between
200 and 300 transients (;10min) to produce a single
measure of neurometabolite concentration (Kurcyus et
al., 2018; Rideaux and Welchman, 2018). Here we over-
come the signal-to-noise limitation of MRS by applying
temporal analyses of neurometabolite concentration to a
large dataset of participants. We measure the dynamic
concentration of GABA and Glx in visual cortex of partici-
pants while at rest (with closed eyes). We assess the re-
gional specificity of temporal dynamics by comparing
these results with data from posterior cingulate cortex
(Mikkelsen et al., 2017, 2019). To observe the temporal

dynamics of neurometabolites, we analyze the data in two
ways. We first take a moving average of an;6min period,
to reveal low-frequency trends in the data (Chen et al.,
2017; Rideaux et al., 2019). Next, using a new technique,
we combine data across participants (rather than time),
which allows us to track the concentration of neurometa-
bolites with relatively high temporal resolution (12 s) over
a 13min period.
Based on previous empirical evidence, we may expect

Glx to decrease and GABA to increase under conditions
of no visual stimulation. By contrast, our analyses reveal
the opposite pattern of results: Glx increases while GABA
decreases (in visual, but not posterior cingulate cortex).
These results are broadly consistent with findings from
visual deprivation studies (Boroojerdi et al., 2000; Lunghi
et al., 2015) and may provide a link between the conflict-
ing results from MRS studies that use relatively short peri-
ods of visual deprivation compared with those with longer
periods. Further, we expose large changes in GABA and
Glx, previously obscured by averaging over long dura-
tions, and reveal a striking relationship between GABA
and Glx in visual cortex: a change in GABA predicts the
opposite change in Glx;120 s later.

Materials and Methods
Participants
Fifty-eight healthy participants with normal or cor-

rected-to-normal vision participated in the experiment.
The mean age was 24.4 years (age range, 19.4–40.5
years; 31 women). Participants were screened for contra-
indications to MRI before the experiment. All experiments
were conducted in accordance with the ethical guidelines
of the Declaration of Helsinki and were approved by the
university ethics committee, and all participants provided
informed consent.

Data collection
Participants underwent an MR spectroscopic acquisi-

tion targeting visual cortex. During the acquisition, the
lights in the room were turned off and participants were
instructed to close their eyes. To compare these data with
those measured from another brain region, we reanalyzed
previously gathered MR spectroscopic data targeting
posterior cingulate cortex (Mikkelsen et al., 2017, 2019).

Data acquisition
Magnetic resonance scanning targeting visual cortex

was conducted on a 3 T Siemens Prisma equipped with a
32-channel head coil. Anatomical T1-weighted images
were acquired for spectroscopic voxel placement with an
MP-RAGE sequence. For the detection of GABA1 and Glx,
spectra were acquired using a MEGA-PRESS sequence
(Mescher et al., 1996, 1998): TE=68ms; TR=3000ms;
256 transients of 2048 data points were acquired in 13min
experiment time; a 14.28ms Gaussian editing pulse was
applied at 1.9 ppm (ON) and 7.5 ppm (OFF). Water sup-
pression was achieved using variable power with opti-
mized relaxation delays (Tká�c and Gruetter, 2005) and
outer volume suppression. Automated shimming followed
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by manual shimming was conducted to achieve ;12Hz
water linewidth.
The “Big GABA” dataset comprises a collection of MRS

datasets collected by different groups using the same pa-
rameters on GE, Phillips, and Siemens scanners. This da-
taset was acquired separately for a previous study and
targeted posterior cingulate cortex; thus, here it was
reused as a region specificity control for the main visual
cortex data. A detailed description of the data acquisi-
tions for the Big GABA dataset can be found in studies by
Mikkelsen et al. (2017, 2019). To summarize the proce-
dure, magnetic resonance scanning targeting posterior
cingulate cortex was conducted on 3 T Siemens, GE, and
Phillips scanners equipped with 8-, 32-, or 64-channel
head coils. Spectra were acquired using a MEGA-PRESS
sequence: TE= 68ms; TR=2000ms; 320 transients of ei-
ther 2048 or 4096 data points were acquired in a 12min
experiment time; a 15ms Gaussian editing pulse was ap-
plied at 1.9 ppm (ON) and 7.5 ppm (OFF). Note that, unlike
the data collected in visual cortex, data collected in pos-
terior cingulate cortex was not water suppressed, which
can negatively impact the accurate quantification of other
metabolites (e.g., sideband artifacts; for a review of issues
relating to water suppression, see Dong, 2015). The Big
GABA dataset comprises subdatasets collected by differ-
ent research groups at different facilities. The following
subdatasets from the Big GABA dataset were used in the
current study: G4, G5, G7, G8, P1, P3, P4, P5, P6, P7, P8,
P9, P10, S1, S6, and S8 (the letters in the subdatasets
refer to the scanner make and the numbers refer to the
group that collected the data). Each subdataset (e.g., G4)
comprises data from between 8 and 12 participants; in
total there were data from 196 participants. With the ex-
ception of G1 and G6, this includes all of the publicly
available Big GABA datasets. We used the macromole-
cule unsuppressed transients from these datasets for
closer comparison with visual cortex data, and we

excluded data from G1 and G6 as these had fewer
transients.
Spectra were acquired from a location targeting visual

cortices (i.e., V1/V2; Fig. 1a), and posterior cingulate cor-
tex (Fig. 1b); note that the posterior cingulate cortex data
were acquired from the (previously described) publicly
available Big GABA dataset. The voxel targeting visual
cortex (3� 3 � 2 cm) was placed medially in the occipital
lobe; the lower face aligned with the cerebellar tentorium
and was positioned so as to avoid including the sagittal
sinus and to ensure that it remained within the occipital
lobe. The voxel targeting posterior cingulate cortex (3� 3
� 3 cm) was positioned in the medial parietal lobe and ro-
tated in the sagittal plane to align with a line connecting
the genu and splenium of the corpus callosum. The coor-
dinates of the voxel location were used to draw a mask
on the anatomic T1-weighted image to calculate the vol-
ume of gray matter, white matter, and cerebrospinal fluid
(CSF) within each voxel. Segmentation was performed
using the Statistical Parametric Mapping toolbox for
MATLAB (SPM12; http://www.fil.ion.ucl.ac.uk/spm/).

Data processing
Spectral quantification was conducted in MATLAB

using GANNET version 3.1 (Edden et al., 2014) and in-
house scripts. Frequency, phase, area, and full-width at
half-maximum (FWHM) parameters of the creatine (Cr)
peak at 3.0 ppm were estimated by fitting a Lorentzian
peak to the data and individual spectra with parameter es-
timates .3 SDs from the mean were omitted from further
analysis; the remaining spectra were frequency and
phase corrected using these parameters. To ensure spec-
tral alignment between transients across time and partici-
pants, spectra were aligned such that the Cr peak was
centered at the same frequency (3.0 ppm). Total creatine
(tCr) and total N-acetylaspartate (tNAA) signal intensity

Figure 1. Data acquisition. a, b, MRS voxel placement for visual (a) and posterior cingulate (b) cortices on a T1-weighted structural
image and probabilistic partial volume voxel maps following tissue segmentation for a representative participant. Corresponding tis-
sue proportions of gray matter (GM), white matter (WM), and CSF are shown. c, d, Average spectra across all subjects for visual (c)
and posterior cingulate (d) cortices; the number of subjects comprising each average spectrum is shown, and gray shaded regions
indicate SD. Note the nonuniform baseline in d, which resulted from the incomplete removal of the water peak (which was sup-
pressed in the visual but not in the posterior cingulate cortex data) in the difference spectra; importantly, this nonuniformity was
modeled and removed during neurometabolite quantification.

Research Article: New Research 3 of 11

July/August 2020, 7(4) ENEURO.0082-20.2020 eNeuro.org

http://www.fil.ion.ucl.ac.uk/spm/


were determined by fitting a single Lorentzian peak to the
mean OFF spectra at 3.0 and 2.0 ppm, respectively. ON
and OFF spectra were subtracted to produce the edited
spectrum (Fig. 1c,d), from which GABA1 (GABA and
coedited macromolecules; 3 ppm) and Glx [a complex
comprising Glu and glutamine (Gln); 3.8 ppm] signal inten-
sity were modeled on single- and double-Gaussian
peaks, respectively. All neurometabolite signal intensities
were calculated as the area of the fitted peak or peaks.
Data in which the FWHM of any of the quantified neuro-

metabolites (tCr, tNAA, GABA1, or Glx) was .3 SDs from
the mean across each dataset (e.g., visual/posterior cin-
gulate cortex) were omitted from further analysis. This re-
sulted in omission of data from one participant in the
visual cortex dataset and three participants in the poste-
rior cingulate cortex dataset.
Intensities of GABA1, Glx, and tNAA were normalized to

the commonly used internal reference tCr (Jansen et al.,
2006), yielding relative concentration values (i.e., GABA1:
tCr, Glx:tCr, and tNAA:tCr; Fig. 1e). The tCr signal is ac-
quired within the same MEGA-PRESS transients as the
target neurometabolites. Thus, normalization of GABA1,
Glx, and tNAA to tCr minimizes the influence of changes
that occur during the acquisition, which alter the entire
spectrum (e.g., changes in signal strength, line width,
chemical shift displacement, or dilution associated with
changes in blood flow; Ip et al., 2017). For correlational
analyses reported in Table 2, a CSF tissue correction
(Harris et al., 2015) was applied to the neurometabolite
measurements with the following equation:

Ctisscorr ¼ Cmeas

1� fcsfð Þ ; (1)

where Ctisscorr and Cmeas are the tissue-corrected and un-
corrected neurometabolite concentrations (e.g., GABA1:
tCr), respectively, and fcsf is the proportion of CSF within
the voxel. All other analyses report concentrations as a
proportion of their initial magnitude, and thus do not re-
quire tissue correction.

Low-resolution dynamic analysis
For the low-resolution dynamic analysis of the visual

cortex data, we used a sliding window (width, 128 transi-
ents; step size, 2 transients) to measure average neuro-
metabolite concentration as it changed over the course of
the scan (256 transients/768 s). This window size was
based on previous work using this analysis on similar data
(Rideaux et al., 2019). For the posterior cingulate cortex
data (320 transients/640 s), we matched the duration of
the sliding window width to that used for the visual cortex
data by including more transients (width, 192 transients;
step size, 2 transients).
To determine whether the average change in neurome-

tabolite concentration was significantly different from
zero, a two-sided t test (a, 0.05) was performed at each
time point. That is, for each brain region, each t test in-
cluded a single estimate from each participant, which cor-
responded to the participant’s change in neurometabolite
concentration at that time. As multiple tests (65) were
conducted for each neurometabolite, to reduce the

likelihood of spurious significant differences in the time
course, a cluster correction was applied at the group
level, where time was the clustered dimension. Clusters
were defined by the sum of their constituent t values and
compared with a null hypothesis distribution of clusters
produced by shuffling the time labels (5000 permuta-
tions); positive and negative t value clusters were treated
separately. Clusters below the 95th percentile of the null
hypothesis distribution were disregarded.

High-resolution dynamic analysis
The temporal resolution of MRS is severely limited by

the signal-to-noise ratio of individual spectra. That is, to
achieve the signal-to-noise ratio required to yield an accu-
rate neurometabolite measurement, many individual
spectra must be combined. To achieve a sufficiently high
signal in the low-resolution dynamic analysis, we com-
bined multiple spectra (128) within the same subject. This
method produces a dynamic trace for each participant;
however, the smoothing produced by the sliding window
approach may obscure both the true magnitude of meta-
bolic change over time and dynamic changes occurring at
higher frequencies. Thus, to achieve higher temporal re-
solution, we averaged individual ON and OFF spectra
across participants to produce a single trace, with no
smoothing, for each condition. As in the low-temporal re-
solution analysis, we matched the temporal resolution be-
tween datasets in the high-temporal resolution analysis
(12 s) by using a resolution of four and six transients in the
visual and posterior cingulate cortices, respectively.
To test for predictive relationships between GABA1 and

Glx, we ran a cross-correlation analysis between the
above-mentioned high-resolution neurometabolite traces.
We tested for relationships in both directions; that is,
whether GABA1 concentration predicts Glx concentration
and vice versa. The neurometabolite traces comprise a
limited number of time points (visual cortex, 64; posterior
cingulate cortex, 53), and there is an inverse relationship
between the lag separating the neurometabolites and the
number of time points included in the cross-correlation
analysis. This results in less reliable correlation values at
lags close to the maximum duration of the neurometabo-
lite traces due to insufficient sample sizes. To avoid these
unreliable correlations, we only included lags with a mini-
mum of 25 time points in the analysis (Bonett and Wright,
2000). This yielded a total of 40 correlations for each pre-
dictive direction between GABA1 and Glx in visual cortex
and 29 for posterior cingulate cortex. Given that multiple
tests were conducted, to reduce the likelihood of spurious
significant correlation values in the cross-correlation anal-
yses, a cluster correction was applied. Clusters were de-
fined by the sum of their constituent t values and
compared with a null hypothesis distribution of clusters
produced by shuffling the time labels (5000 permuta-
tions); positive and negative t value clusters were treated
separately. Clusters below the 95th percentile of the null
hypothesis distribution were disregarded.

Significance testing
The significance of differences between data from dif-

ferent voxel locations was assessed using the
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independent-samples t test, and the significance of
changes in neurometabolite concentration (from zero
change) was assessed using the one-sample t test; all
tests were two sided and used an a=0.05. The normality
assumption was tested with the Shapiro–Wilk test of nor-
mality. For data in which the assumption of normality was
violated, significance was assessed using the Wilcoxon
rank-sum test. The significance of correlations between
neurometabolite concentrations was assessed using the
Pearson linear correlation and the Pearson linear partial
correlation; all tests used an a=0.05.

Results
Spectra quality
Table 1 shows the average FWHM, frequency drift and

fit error for measurements taken from visual and posterior
cingulate cortices. For each subject, the FWHM was cal-
culated from the average spectra [i.e., spectra averaged
across all transients (256 of 320)]. Frequency drift was cal-
culated as the SD of the position of the Cr peak across in-
dividual OFF spectra, before alignment; the frequency
drift values shown in Table 1 reflect the average SD
across participants. The fit errors for GABA1, Glx, tNAA,
and tCr were divided by the amplitude of their fitted peaks
to produce normalized measures of uncertainty. The aver-
age fit error for each neurometabolite was relatively low
(Mullins et al., 2014; Table 1). Comparison between data
from visual and posterior cingulate cortices revealed high-
er FWHM estimates for all quantified neurometabolites in
visual cortex (GABA1: t(248) = 16.80, p=8.4� 10�43; Glx:
z=9.24, p=9.4� 10�20; tNAA: z=2.06, p=0.040; tCr:
z=7.07, p=1.5� 10�12). This suggests that shimming
may have been more effective in the posterior cingulate
dataset; however, differences in voxel size, voxel tissue
composition, and the number of transients collected
may have contributed to this difference. We also found
that frequency drift (z= 5.16, p= 2.5� 10�7), and fit er-
rors for GABA1 (z = 2.59, p= 0.010) and tNAA (z= 4.89,
p= 1.0� 10�6) were higher in the visual cortex dataset.

By comparison, fit error was lower in visual cortex for Glx
(z = �5.15, p= 2.6� 10�7) and tCr (z = �10.92,
p= 9.3� 10�28).

Static analysis
Figure 2 shows the distribution of gray matter, white

matter, and CSF voxel composition across participants
for the visual and posterior cingulate cortex datasets. We
found that visual cortex voxels were composed of less
gray matter (t(248) = 7.53, p=9.3� 10�13) and more CSF
(z = �6.27, p=3.6� 10�10) than those from posterior cin-
gulate cortex; no significant difference was found be-
tween white matter (t(248) = 0.27, p=0.787). We quantified
the concentrations of GABA1, Glx, and tNAA using the
classic static approach, in which all transients are aver-
aged together to extract a single estimate. After applying
a CSF tissue correction, we compared the average neuro-
metabolite concentration across participants between
visual and posterior cingulate cortices. We found lower
concentrations of GABA1:tCr (t(248) = �6.53, p=3.7 �
10�10) and Glx:tCr (z = �9.33, p=1.0� 10�20) in visual
cortex, but a higher concentration of tNAA:tCr (t(248) =
4.62, p=6.1� 10�6; Fig. 2).

Low-resolution temporal dynamics of GABA and Glx
Using a sliding temporal window analysis, we quantified

the change in the concentration of GABA1 and Glx meas-
ured from MRS voxels targeting visual and posterior cin-
gulate cortices over the course of 13 and 12min periods,
respectively. We found that in visual cortex, GABA1 sig-
nificantly decreased (maximum difference = �5.0%, t(56) =
�3.25, p=0.002), while Glx significantly increased (maxi-
mum difference= 2.7%, t(56) = 3.74, p=4.4� 10�4) over
the course of the period (Fig. 3a). By comparison, we
found that in posterior cingulate cortex there was no sig-
nificant change in either GABA or Glx (Fig. 3b). The
FWHM of the neurometabolite peaks indicates that spec-
tra from posterior cingulate cortex had better signal qual-
ity; further, this dataset contained more than three times

Table 1: Measures of spectral quality and fit error

Location
FWHM (Hz)

Frequency drift (ppm SD)
Fit error (%)

GABA1 Glx tNAA tCr GABA1 Glx tNAA tCr
VC 24.9 6 1.7 17.8 6 0.4 8.4 6 0.9 8.5 6 0.7 0.0088 6 0.0044 7.6 6 2.1 1.3 6 0.3 3.3 6 0.3 3.6 6 0.2
PCC 20.5 6 1.7 16.8 6 0.7 8.2 6 0.8 7.6 6 0.7 0.0065 6 0.0061 6.9 6 1.7 2.1 6 1.5 3.1 6 1.3 4.5 6 0.5

Values indicate across-subject averages 6 SD. PCC, Posterior cingulate cortex; VC, visual cortex.

Figure 2. Static analysis. Distribution of gray matter (GM), white matter (WM), and CSF voxel tissue proportions, and neurometabo-
lite (GABA1, Glx, tNAA) concentrations across participants for visual and posterior cingulate cortices. Neurometabolite concentra-
tions are tissue corrected and expressed as a ratio to tCr. Triangles indicate distribution means.
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as many participants as the visual cortex dataset. Thus, it
seems unlikely that the neurometabolite drift we observed
in visual cortex was also present in posterior cingulate
cortex, but that we failed to detect it because of poor sig-
nal quality or lack of statistical power. A more parsimoni-
ous explanation is that the neurometabolite drift in visual
cortex was regionally specific. Given that we referenced
GABA1 and Glx to tCr, a possible concern is that the
changes in neurometabolite concentration observed in
visual cortex reflect changes in tCr, as opposed to
GABA1 or Glx. However, this is unlikely as we did not find
any change in tNAA concentration, for either visual or
posterior cingulate cortices, which was also referenced
for tCr (Fig. 2a).
We next assessed whether the fit error of the GABA1,

Glx, tNAA, and tCr peaks changed over the course of the
acquisition. For visual cortex, there were no significant
changes in the fit error of the tNAA or tCr peaks. However,
there were significant increases in fit error for GABA1 be-
tween 360 and 394 s, and for Glx between 564 and 576 s. A
possible concern is that the changes we observed in the
concentrations of GABA1 and Glx in visual cortex were due
to reduced neurometabolite quantification accuracy (i.e., in-
creased fit error). To test this possibility, we assessed the in-
terindividual relationship between change in fit error and
change in neurometabolite concentration, for GABA1 and
Glx in visual cortex. We found no evidence for a relationship
between fit error and concentration for either neurometabo-
lite (GABA1: n=57, Pearson r=�0.14, p=0.308; Glx:
n=57, Pearson r=0.06, p=0.676), indicating that change in
quantification accuracy does not explain the neurometabo-
lite drift we observed in visual cortex. For posterior cingulate
cortex, we found no dynamic change in fit error for any of

the neurometabolites, with the exception of the GABA1

peak, where there was a window between 196 and 208 s in
which the fit error was significantly reduced.
Another possible concern is that changes observed in

the difference spectra over time are related to scanner
field drift due to gradient cooling (Lange et al., 2011) or
participant motion (Bhattacharyya et al., 2007). In particu-
lar, if the scanner field drifts, the position of the editing
pulse relative to the GABA and Glx peaks changes. This
may change the efficiency with which the peaks are edited
and thus their magnitude in the difference spectrum. As the
frequency drift of the visual cortex spectra was higher than
that in posterior cingulate cortex, where we did not observe
any change in neurometabolite concentration, this may ac-
count for the changes in neurometabolite concentration ob-
served in visual cortex. As a test of this possibility, we
measured the negative tNAA signal in the difference spectra
using an inverse Lorentzian. Like the magnitude of the
GABA1 and Glx peaks, the magnitude of the negative tNAA
signal reflects the efficiency of the editing pulse. Thus, if
scanner drift is responsible for changes in the magnitude of
the GABA1 or Glx peaks, we would expect to see corre-
sponding changes in the amplitude of the edited negative
tNAA signal. However, we found no evidence for change in
the amplitude of the edited negative tNAA signal over time.
As a further test of this possibility, we assessed whether
there was an interindividual relationship between the degree
of frequency drift and change in either GABA1 or Glx. If
scanner drift produced the change in neurometabolite con-
centration we observed in visual cortex, we would expect
these measures to be positively correlated. By contrast, we
found no relationship between frequency drift and either
change in GABA1 (n=57, Pearson r=�0.10, p=0.457) or

Figure 3. Low-resolution temporal dynamics of neurometabolites in visual and posterior cingulate cortices. a, Top, Individual traces
showing change in GABA1, Glx, and tNAA (all referenced to tCr) measured from an MRS voxel targeting visual cortex. Bottom,
Same as top, but averaged across participants. b, Same as a, but from a voxel targeting posterior cingulate cortex. Shaded regions
indicate SEM, and horizontal colored bars at the top and bottom of a indicate (cluster-corrected) periods of significant difference
from zero. Note, the scale of change was smaller for tNAA:tCr than the other two neurometabolites, so it is closely overlaid with the
dashed “zero” line.

Research Article: New Research 6 of 11

July/August 2020, 7(4) ENEURO.0082-20.2020 eNeuro.org



Glx (n=57, Pearson r=0.06, p=0.662). These results indi-
cate that scanner drift did not contribute to the changes in
neurometabolite concentration.

Correlational analyses of static and low-temporal
resolution measurements
For each voxel location, we assessed whether there

were interindividual relationships between different static
neurometabolite concentrations or changes in concentra-
tion. For static measurements, we averaged across all
256 of 320 transients. The results of the analysis are
shown in Table 2. For static neurometabolite concentra-
tions, we found a positive relationship between Glx and
tNAA measured from visual and posterior cingulate corti-
ces. We also found a positive correlation between GABA1

and tNAA in visual cortex, and between GABA1 and Glx in
posterior cingulate cortex. By contrast, the only relation-
ship between changes in the metabolite concentration
found was for GABA1 and tNAA in posterior cingulate
cortex.

High-resolution temporal dynamics of GABA and Glx
To assess high-temporal resolution dynamics of neuro-

metabolites, we next combined transients across sub-
jects, rather than across time. In visual cortex, we found
that the change in GABA1, relative from the first measure-
ment, was primarily negative and ranged from 615%
from the average concentration, while the change in Glx
was primarily positive and ranged from 610% (Fig. 4a).
These results are consistent with those from the previous
analysis, except the higher temporal resolution obtained
with the current approach revealed considerably larger
changes in neurometabolite concentration than the previous
estimates, which were likely obscured by smoothing
measurements across the temporal window. In poste-
rior cingulate cortex, we found that the changes in both
GABA1 and Glx were primarily negative and similar in
amplitude (Fig. 4b).
While GABA and Glu are thought to support opposing

mechanisms in the CNS (i.e., inhibition and excitation), it
seems reasonable to expect interactions between GABA
and Glx, which comprises both Glu and Gln. For exam-
ple, Gln is a primary source of GABA synthesis (Paulsen
et al., 1988; Patel et al., 2001; Rae et al., 2003). Indeed,
we found that the static concentration of GABA1 and Glx
were positively related in posterior cingulate cortex.
However, we found no evidence for a relationship be-
tween the overall changes in these neurometabolites in
either the visual or posterior cingulate cortex (Table 2).
One reason for this may be that the relationship

between these neurometabolites may only be ob-
served at a high temporal resolution, but not averaged
across a 6min period. To test this hypothesis, we used
the high-resolution neurometabolite measurements to
perform cross-correlation analyses on GABA1 and Glx
concentrations.
For visual cortex, we found that the concentration of

GABA1 predicted that of Glx between 108 and 132 s later
[n(time points) = (55, 54, 53), Pearson r = (�0.36, �0.31,
�0.39), p = (0.008, 0.024, 0.004); Fig. 4c]. This relation-
ship was negative, that is, a positive/negative change in
GABA1 predicted a later change in Glx in the opposite di-
rection. By contrast, we found no periods of latency in
which Glx predicted the concentration of GABA1. For
posterior cingulate cortex, we found no periods of latency
in which there was a significant relationship between
GABA1 and Glx (Fig. 4d).
A possible concern is that the relationship between

GABA1 and Glx was influenced by their common refer-
ence neurometabolite (tCr). In particular, as both GABA1

and Glx were referenced to tCr, the relationship between
them could be explained by an autocorrelation in the con-
centration of tCr. However, we found the same pattern of
results when tNAA, rather than tCr, was used as a refer-
ence neurometabolite (Fig. 5a). Another possible concern
with this new analysis is that the signal-to-noise ratio is
insufficient to yield valid measurements (e.g., due to re-
duced neurometabolite quantification accuracy). To as-
sess the validity of the measurements, we compared the
average FWHM and fit error of peaks produced in the
high-resolution analysis with those produced in the low-
resolution analysis. For visual cortex, we found no evi-
dence for a difference in FWHM for any of the target neu-
rometabolites (GABA1: z = �0.06, p=0.948; Glx: t(119) =
�5.08, p=1.4� 10�6; tCr: z = �1.10, p=0.270). By com-
parison, fit error was lower for all target neurometabolites
(GABA1: z=2.38, p=0.017; Glx: z=4.21, p=2.5 � 10�5;
tCr: t(119) = 2.24, p=0.027) modeled in the high-resolution
analysis. Similarly, for posterior cingulate cortex, we
found no evidence for a difference in either FWHM
(GABA1: z=1.62, p=0.105; Glx: t(119) = 1.76, p=0.080;
tCr: z=1.71, p=0.087); however, while we found no evi-
dence for a difference in fit error for GABA (z=1.32,
p=0.187) and Glx (z =�0.55, p=0.581), fit error was high-
er for tCr (z = �2.34, p=0.019) in the high-resolution anal-
ysis. With the exception of the fit error of the tCr peak in
posterior cingulate cortex, these results support the valid-
ity of the signal strength and quantification accuracy in
the high-resolution analysis.
To further assess the validity of the measurements, we

attempted to reproduce the results from the low-

Table 2: Correlation coefficients between neurometabolites measured from visual and posterior cingulate cortices

Location
GABA1

and Glx
GABA1

and tNAA
Glx
and tNAA

DGABA1

and DGlx
DGABA1

and DtNAA
DGlx
and DtNAA

VC �0.16 0.33p 0.33p 0.06 0.10 �0.17
PCC 0.25ppp 0.50ppp 0.17p 0.03 �0.18p 0.04

Correlation coefficients are Pearson linear partial coefficients after controlling for the common reference neurometabolite tCr. All neurometabolites are referenced
to tCr and are tissue corrected. PCC, Posterior cingulate cortex; VC, visual cortex.
pp, 0.05; pppp, 0.001.
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resolution analysis by applying a sliding window to the
high-resolution neurometabolite trace. If the high-resolu-
tion measurements are valid, we would expect to find cor-
respondence between the average results from the low-
resolution analysis and those produced by applying a slid-
ing window to the high-resolution measurements. For vis-
ual cortex, we found a high correspondence between the
measurements produced by the two analyses for both
GABA1 (n=33, Pearson r=0.995, p=3.9� 10�33; Fig. 5b,
top) and Glx (n=33, Pearson r=0.995, p=5.5� 10�32).

These results further validate the results of the high-reso-
lution analysis in visual cortex. For posterior cingulate cor-
tex, we found a correspondence between GABA1

measurements (n=22, Pearson r=0.655, p=9.3� 10�4;
Fig. 5b, bottom), but not Glx measurements (n=22,
Pearson r=0.182, p=0.418). The weaker correspon-
dence for data from posterior cingulate cortex may indi-
cate that the measurements produced by the high-
resolution analysis in this region are less reliable.
However, it is also likely because there was less variability

Figure 4. High-resolution temporal dynamics of neurometabolites in visual and posterior cingulate cortices. a, b, Changes in
GABA1 and Glx concentrations, proportional to the average, measured from voxels targeting visual (a) and posterior cingulate (b)
cortices. Semitransparent lines indicate raw concentration estimates; for illustrational purposes, opaque lines indicate data
smoothed using a window of eight time points. c, d, Cross-correlations between GABA1 and Glx concentrations measured from
voxels targeting visual (c) and posterior cingulate (d) cortices. Lag values indicate the duration between when the GABA1 measure-
ments were acquired and the Glx measurements were acquired. Correlations at negative lags indicate that GABA1 concentration
predicts Glx concentration, and correlations at positive lags indicate that Glx predicts GABA1 concentration. Vertical lines indicate
95% confidence intervals; cluster-corrected correlations that are significantly different from zero are highlighted in green. All values
are referenced to tCr.

Figure 5. Controls for high-resolution analyses. a, Cross-correlations between GABA1 and Glx, referenced to tNAA, measured from
voxels targeting visual cortex. Vertical lines indicate 95% confidence intervals; cluster-corrected correlations that are significantly
different from zero are highlighted in green, correlations at negative lags indicate that GABA1 predicts Glx, and correlations at posi-
tive lags indicate that Glx predicts GABA1. b, Comparison between results from the sliding window method used in the low-tempo-
ral resolution analysis (dashed lines) and sliding window applied to results from the high-resolution analysis (solid lines) for visual
(top) and posterior cingulate (bottom) cortices.
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in neurometabolite concentration in the low-resolution
analysis of posterior cingulate cortex; thus, unlike in visual
cortex, there may be insufficient variability to cross-vali-
date between the two measurements.

Discussion
MRS can be used in vivo to quantify neurometabolite

concentration and provide evidence for the involvement
of different neurotransmitter systems (e.g., inhibitory and
excitatory) in sensory and cognitive processes. In MRS
studies, temporal resolution is typically sacrificed to
achieve a signal-to-noise ratio sufficient to produce a reli-
able estimate of neurometabolite concentration. Here we
use novel analyses with large datasets to reveal the dy-
namics of GABA1 and Glx in visual and posterior cingu-
late cortices. We use a sliding window approach to show
that when participants are at rest with their eyes closed,
the concentration of GABA1 and Glx in visual cortex drifts
in opposite directions; that is, GABA1 decreases while
Glx increases over time. We then use a new method of
combining MRS measurements across subjects, as op-
posed to time, to produce a high-temporal resolution
index of neurometabolite concentration. Using this ap-
proach, we find that in visual cortex a change in the con-
centration of GABA1 predicts the opposite change in Glx
;120 s later (e.g., an increase in GABA1 predicts a later
reduction in Glx).

Dynamic response of GABA and Glx in visual cortex
Several studies have investigated GABA and/or Glx/Glu

concentration in visual cortex in response to different
viewing conditions. Mekle et al. (2017) found an ;5% re-
duction in GABA concentration in response to visual stim-
ulation. By contrast, while Kurcyus et al. (2018) reported
that GABA was 16% lower when participants had their
eyes open with no visual stimulation compared with when
they had their eyes closed, they, like others (Mangia et al.,
2007; Schaller et al., 2013; Bednarõík et al., 2015, 2018),
found no evidence for a difference in GABA in response to
visual stimulation. Based on these somewhat inconsistent
findings, one may infer that visual stimulation, or merely
having the eyes open, leads to a reduction in the concen-
tration of GABA in visual cortex. Extending this rationale,
one could predict that closing the eyes should produce an
increase in GABA. By contrast, we found the opposite re-
sult: during a 13min period of resting in which partici-
pants’ eyes were closed, the concentration of GABA1 in
visual cortex reduced on average by 5%. These results
are consistent with previous work showing that monocu-
lar deprivation leads to reduced GABA concentration
(;8%) in visual cortex, but not posterior cingulate cortex,
relative to a predeprivation baseline measurement (Lunghi
et al., 2015). Thus, our finding that GABA is reduced when
both eyes are closed may indicate that visual deprivation,
either monocular or binocular, evokes a reduction in the
concentration of GABA in visual cortex.
Previous observations of Glu concentration in visual

cortex have been more consistent; several studies have
shown Glx/Glu concentration increases (2–4%) in re-
sponse to visual stimulation (Mangia et al., 2007; Lin et

al., 2012; Schaller et al., 2013; Bednarõík et al., 2015,
2018; Ip et al., 2017; Kurcyus et al., 2018). By contrast,
here we found that Glx increased when participants’ eyes
were closed. Increased Glu in visual cortex, evoked by
visual stimulation, has been linked to increased blood ox-
ygenation level-dependent responses (Ip et al., 2017).
Here we measured Glx, a complex comprising Glu and
Gln, and previous 7 T MRS work suggests that visual
stimulation evoked changes in Glu, but not Gln, in visual
cortex (Schaller et al., 2013; Bednarõík et al., 2015, 2018).
It is possible that the increase in Glx we found here, which
occurred in the absence of visual stimulation, was driven
by an alternative mechanism, one that is unrelated to
BOLD activity and/or reflects changes in Gln rather than
Glu. More work is needed to disambiguate changes in
neurometabolite concentration that occur in visual cortex
at different time scales and under different viewing condi-
tions. For instance, future work could combine fMRI and
MRS measurements to test whether the phenomenon ob-
served here is related to BOLD activity (Ip et al., 2017).
Additionally, future work could use a within-subject de-
sign to compare different voxel locations, and, separately,
to assess Glu and Gln concentration drift.
Although the average concentrations of GABA1 and

Glx drift in opposing directions, there were some partici-
pants who showed the opposite change in neurometabo-
lite drift. One possible explanation for this is that the
concentrations of these neurometabolites oscillate at a
relatively slow frequency (e.g., wavelength = 15min), and
entering a state of rest (with eyes closed) introduces the
linear trend of neurometabolite concentration change in-
dicated by the average, which is summed with the larger
oscillatory changes. If such oscillatory behavior was oc-
curring, it would be unlikely to be detected in the high-re-
solution analysis, as troughs/peaks would be obscured
by phase differences between participants. Another pos-
sible explanation for the variability between participants is
that it relates to their state of wakefulness during the
scan. Although subjects reported not falling asleep, it
seems likely that some may have been more alert than
others during the scan, and this may be related to the
concentration drift observed in visual cortex. We do not
have the data to examine this possibility; however, future
work could concurrently collect metabolite concentration
and a physiological marker of wakefulness (e.g., EEG) to
assess this possibility.
Continuous unidirectional neurometabolite drift is not

sustainable (i.e., neurometabolite concentration must main-
tain some degree of homeostasis). Thus, it seems likely that
the change in concentration induced by resting only contin-
ues for a fixed period of time before stabilizing and possibly
returning to “baseline” levels. Indeed, this appeared to
occur for Glx, where there is no additional increase after
;500 s, and the decrease in GABA1 appears to lessen
after 400 s. Future work is needed to further understand dy-
namic neurometabolite activity over longer periods of time.
To produce a high-temporal resolution measure of neu-

rometabolite concentrations, we applied a novel ap-
proach in which we combined MRS transients across
subjects, rather than time. This approach yields a single
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measurement of neurometabolite concentration as a
function of time; thus, we cannot test the statistical signifi-
cance of the changes observed. However, it is reasonable
to assume that the changes estimated using sliding win-
dow or static approaches underestimate the true magni-
tude of change, due to averaging. The measurements
produced here by combining transients across subjects
provide an indication of the true magnitude of change in
GABA1 and Glx during the scan: up to 30% for GABA1

and 20% for Glx.

Dynamic relationship between GABA and Glx
A common finding among studies of GABA and Glu in

visual cortex is that these neurometabolites change in op-
posite directions, and not in the same direction (Mekle et
al., 2017; Kurcyus et al., 2018; Rideaux et al., 2019). This
pattern would suggest an interdependence between the
two neurometabolites. Given that Gln is a primary source
of GABA synthesis (Paulsen et al., 1988; Patel et al., 2001;
Rae et al., 2003), one may expect that a change in the
concentration of GABA may result in a corresponding
change in Glx, or vice versa. In line with this, our high-
temporal resolution analysis of the data revealed a striking
cross-correlation between these neurometabolites in vis-
ual cortex. Specifically, we found that the concentration
of GABA1 predicts the concentration of Glx ;120 s later.
This relationship, which accounts for up to ;20% of the
variance of Glx, is obscured by conventional approaches
of MRS analysis; indeed, we found no evidence for a rela-
tionship between the overall changes in GABA1 and Glx.
A limitation of MRS is that it measures the total concen-

tration of neurometabolites within a localized region and
cannot distinguish between intracellular and extracellular
pools of GABA. It is generally thought that intracellular ve-
sicular GABA drives neurotransmission (Belelli et al.,
2009), whereas extracellular GABA maintains tonic corti-
cal inhibition (Martin and Rimvall, 1993). Synthesis of in-
tracellular GABA from Gln via the GABA–Gln cycle occurs
on the scale of milliseconds, so it seems unlikely that this
metabolic association could explain the predictive rela-
tionship between GABA and Glx concentration 120 s
later. Instead, this relationship may reflect changes in the
level of extracellular GABA, followed by relatively sluggish
changes in the concentration of Glu to maintain the bal-
ance of inhibition and excitation.

Clinical relevance
An imbalance between excitation and inhibition, in par-

ticular between Glu and GABA, is thought to underlie a
range of neurologic and psychiatric disorders including
epilepsy (Bradford, 1995; Olsen and Avoli, 1997), autism
(Rubenstein and Merzenich, 2003; Chao et al., 2010;
Markram and Markram, 2010; Vattikuti and Chow, 2010),
and schizophrenia (Kehrer et al., 2008). Here we demon-
strated that it is possible to use MRS to measure changes
in neurometabolite concentration at relatively high tempo-
ral resolution, and, in the process of doing so, we revealed
a novel predictive relationship between GABA1 and Glx in
visual cortex of healthy human participants. More broadly,

this method could be used to reveal other trends and rela-
tionships between neurometabolites that have thus far
been obscured by the classic static measurement ap-
proach. Uncovering the dynamics of the excitation–inhibi-
tion balance in this way may be instrumental in
understanding unhealthy brain function. However, a ca-
veat to this approach is that it requires a relatively large
amount of MRS data. Here, we used a large number of
subjects to meet this requirement; however, this may not
be appropriate for clinical studies in which suitable sub-
jects are more difficult to recruit. In this case, a modified
event-related version of the method used here may be ef-
fective (Branzoli et al., 2013). That is, events (e.g., a 2min
stimulus presentation) could be repeated multiple times
over a long period, separated by baseline resting inter-
vals. Transients could then be aligned according to the
time course of the event and averaged together. This
would provide the same signal-to-noise improvement
reached in the current study, while requiring fewer
participants.

Conclusion
The relatively low signal-to-noise ratio of MRS meas-

urements has shaped the types of questions that the
technique has been used to address. Here we overcome
this limitation by combining data from large cohorts to ex-
amine the dynamics of GABA and Glx concentrations in
visual cortex. Through use of existing and novel analyses,
we reveal opposing dynamic shifts in GABA and Glx in
visual cortex while participants are at rest. Further, we
demonstrate a predictive relationship between GABA and
Glx in visual cortex. This study exposes temporal trends
of primary neurotransmitters in visual cortex, and more
generally, these findings demonstrate the feasibility of
using MRS to investigate in vivo dynamic changes of
neurometabolites.
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