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Visual Abstract

Compare paw positions in real time

Left paw
y position at t,
y position at t,

Threshold: |y position at t, - y position at t | >= 5 pixels
If threshold met: Trigger feedback (latency of 30-45 ms)

Here, we describe a system capable of tracking specific mouse paw movements at high frame rates (70.17 Hz)
with a high level of accuracy (mean=0.95, SD < 0.01). Short-latency markerless tracking of specific body
parts opens up the possibility of manipulating motor feedback. We present a software and hardware scheme
built on DeepLabCut—a robust movement-tracking deep neural network framework—which enables real-time
estimation of paw and digit movements of mice. Using this approach, we demonstrate movement-generated
feedback by triggering a USB-GPIO (general-purpose input/output)-controlled LED when the movement of one
paw, but not the other, selectively exceeds a preset threshold. The mean time delay between paw movement
initiation and LED flash was 44.41ms (SD=36.39ms), a latency sufficient for applying behaviorally triggered
feedback. We adapt DeepLabCut for real-time tracking as an open-source package we term
DeepCut2RealTime. The ability of the package to rapidly assess animal behavior was demonstrated by rein-
forcing specific movements within water-restricted, head-fixed mice. This system could inform future work on

(s )

We present a software and hardware scheme modified from DeepLabCut—a robust movement-tracking
deep neural network framework—which enables real-time estimation of paw and digit movements of mice.
Coupled to the body part tracking is the ability to rapidly trigger external events such as rewards on the de-
tection of specific behaviors. This system lays the groundwork for a behaviorally triggered “closed loop”
brain-machine interface that could reinforce behaviors and deliver feedback to brain regions based on pre-
\specified body movements. /
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a behaviorally triggered “closed loop” brain-machine interface that could reinforce behaviors or deliver feed-
back to brain regions based on prespecified body movements.

Key words: closed loop; movement tracking; real-time tracking; DeepLabCut

Introduction

The accurate quantification and manipulation of behav-
ioral dynamics of animals is important for understanding
the neural basis of motor function (Jin and Duan, 2019;
Moreira et al., 2019). Real-time movement tracking is a
challenging computer vision problem that is crucial for con-
structing precise movement-triggered feedback systems
and brain—-machine interfaces needed for mechanistic stud-
ies of animal behavior. Furthermore, real-time movement
tracking and feedback would enable rapid reinforcement of
user-defined behaviors of interest. Significant progress in
the development of movement-tracking technology enables
accurate pose estimation in humans (Insafutdinov et al.,
2016) and animals (Mathis et al., 2018) without the need to
manually label large datasets as inputs for training. In partic-
ular, with regard to tracking animal movement, the approach
presented by the DeeplLabCut toolbox of Mathis et al.
(2018) generalizes well across morphologically diverse ani-
mals. Traditional methods of tracking movement are often
based on large databases of stereotyped movement data,
such as those used by Insafutdinov et al. (2016), for pose es-
timation. In contrast, the DeepLabCut approach (Mathis et
al., 2018) enables users to generate models that can be
more sensitive to movements of a variety of animals using a
smaller dataset. While DeeplLabCut is a robust tool for pose
estimation (Mathis et al., 2018), it has primarily been used
for post hoc analysis of behavior and not in real time. A cus-
tomizable framework for real-time tracking of specific body
parts in target subjects would have many applications in
psychiatry, rehabilitation engineering, and other fields where
closed-loop feedback is used. An interesting application
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and future work direction would be to investigate cortical re-
gions involved in the coordination and planning of move-
ments when used in combination with optogenetics (Ayling
et al., 2009; Guo et al., 2015; Mathis et al., 2017). In addition
to rapid feedback, real-time analysis would permit behav-
ioral reinforcement by coupling specific movements to
reward.

To use high-resolution video and markerless pose esti-
mation as an input for real-time feedback, we require a ro-
bust system that can process and track individual body
parts with low latency. However, the majority of low-la-
tency real-time tracking systems are based on blob de-
tection algorithms (de Chaumont et al., 2019; Kim et al.,
2018), or rely on post hoc classification of movement
(Gabriel et al., 2019) or highly specialized behavioral are-
nas that collect data through multiple modalities (Moreira
et al., 2019). Such methods, while often less computation-
ally intensive than pose estimation algorithms, are better
suited to whole-body tracking than body part tracking.
The few markerless tracking systems that do exist typi-
cally require extensive, specialized body part detection
logic (Sehara et al., 2019; Mathis and Mathis, 2020), ren-
dering them relatively inflexible across different animals.
As such, while previous approaches to real-time tracking
are effective for examining social interactions or holistic
body movements, they are typically unable to selectively
discern small-scale movements, such as whisker, digit, or
nose movements. We present adaptations to DeepLabCut
(Mathis et al., 2018) to leverage it for real-time movement
tracking and analysis based on the conditional movement
of individual body parts in head-fixed mice with latencies
that averaged 44 = 36 ms (study 1). Additionally, we vali-
date our real-time feedback system by using it to train a
group of water-restricted, head-fixed mice to make user-
defined forepaw movements (study 2).

Materials and Methods

Animal protocols (A13-0336 and A14-0266) were ap-
proved by national use guidelines. Animals were housed
in a vivarium on a 12 h day/light cycle (7:00 A.M. lights
on). For head fixation hardware surgery (Silasi et al.,
2016), animals were anesthetized with isoflurane (2% in
pure O,) and body temperature was maintained at 37°C
using a feedback-regulated heating pad monitored by a
rectal thermometer while they received a cranial window.
Mice received an intramuscular injection of 40 ul of dexa-
methasone (2 mg/ml) and a 0.5 ml subcutaneous injection
of a saline solution containing buprenorphine (2 ug/ml),
atropine (3 ug/ml), and glucose (20 mwm), and were placed
in a stereotaxic frame. After locally anesthetizing the scalp
with lidocaine (0.1 ml, 0.2%), the skin covering the skull
was removed and replaced by dental cement (Ayling et
al.,, 2009; Hira et al., 2009; Silasi et al., 2016). A metal
screw was attached to the chamber for future head fixa-
tion during experiments. At the end of the procedure, the
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Figure 1. Automated labeling of paws using DeeplLabCut for
near real-time tracking. A) A comparison of human labels
(circles) and DeepLabCut’s automated labels (crosses) for both
paws across four different mice in the testing set of the model.
B) The loss of our model converged near zero after approxi-
mately 30,000 iterations.

animal received a second subcutaneous injection of sa-
line (0.5 ml) with 20 mm glucose and recovered in a
warmed cage for 30 min.

For the first study, head-fixed mice (male) were stabi-
lized by attaching a skull-mounted screw to a pole
mounted on a baseplate while the body was resting in a
tube (Silasi et al., 2016). We attach an LED to this pole so
that it is visible in the video recording of the mouse, ena-
bling ground-truth validation of the behavioral feedback
paradigm by quantifying the resulting light flash.

For a second study investigating our system’s ability to
automatically reinforce mice for making specific move-
ments, mice (male, n=8) underwent head-bar surgery
and were trained to learn a movement-related task under
a head-fixed condition. Before starting the behavioral
training, ad libitum access to water was stopped. Mice
were handled daily and received 1 ml of water per day
until they reached ~85% of initial weight (typically 5-7d
after the start of water restriction). During the handling
period, mice were habituated to the experimental
setup. The duration of head fixation was progressively
increased at a rate of 5min/d. Handling and head re-
straining were performed with care taken to minimize
the discomfort of the animals. For the task, these mice
were head fixed and positioned as in the first study. In
addition to the setup described in the first study, a
waterspout was placed ~3 mm in front of the mouse’s
mouth, such that the mouse could only acquire water
after making a movement with its paw that was quanti-
fied by real-time tracking.

Training movement-tracking models. We use DeeplLabCut
2.0.6 (Mathis et al., 2018) as the basis for our movement-
tracking framework. A general model of mouse paw
movement was trained based on ResNet-50 by labeling
200 frames selected using k-means clustering (Nath et al.,
2019) to sample a variety of movement dynamics from
one video of each of the 10 mice recorded (N =10 videos).
These videos were recorded using an Omron Sentech
STC-MCCM401U3V USB3 Vision camera through the
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StCamSWare software (Omron Sentech) at a resolution of
256 x 256 pixels. To generate this model, we labeled the
tips of all eight toes on both forepaws in videos of mice re-
corded in a similar environment and lighting conditions as
the environment for the final behavioral trials for each
mouse. We trained our model for 35,000 iterations, with a
95% train—test split (Fig. 1). All image processing, track-
ing, and LED output were conducted on an ASUS All
Series computer running Windows 8.1 with 64 GB of
RAM, 3.4 GHz, and an Nvidia Titan Xp GPU.

Real-time tracking. We stream a video of each mouse
(N=10) to the desktop computer using an Omron
Sentech STC-MCCM401U3V USB3 Vision Camera
(Omron Sentech) at a resolution of 256 x 256 pixels for
130 s (Fig. 2A).

To allow the frame rate and computations of
DeepLabCut to stabilize, we run the movement analysis,
but do not save the analysis or provide feedback, for the
first 10 s of each trial; as such, we record 120 s of move-
ment and feedback data for each trial. This 10 s buffer pe-
riod allows a large number of threads that are necessary
for rapid computations to start. The base version of
DeepLabCut is optimized to process existing video
frames within batches at a high speed. When tracking and
reinforcing animal behavior in near real time, we do not
have the luxury of letting several frames pool into a batch
before conducting simultaneous pose estimation and be-
havioral feedback on all frames in the batch, as this would
delay feedback to the animal that is dependent on the
pose estimation. As such, we prioritize faster processing
of smaller batches to rapidly deliver feedback to the ani-
mal based on a guaranteed comparison between consec-
utive frames. The best strategy we were able to find to
accomplish this rapid processing is the simultaneous cre-
ation of numerous parallel threads that take in video input,
estimate the pose of the animal, and output the feedback
signal. For every batch of two frames from the camera,
our system creates four threads (Fig. 2). These threads
are shut down once they are finished; however, for the
first 10 s, the number of threads created exceeds the
number of threads being destroyed. After the first 10 s,
threads are created and destroyed at a relatively stable
rate, easing computational load and improving the stabil-
ity of the frame rate. We found that 10 s was the minimum
buffering time required to achieve a stable frame rate for
the rest of the task.

To test the performance of the tracking and feedback at
various frame rates, we set the input frame rate of the
camera to 90 Hz for 13 trials, 180 Hz for 13 trials, 200 Hz
for 13 trials, 220 Hz for 7 trials, 270 Hz for 14 trials, 300 Hz
for 11 trials, 320 Hz for 9 trials, and 360 Hz for 1 trial (Table
1). We varied the frame rate of the camera from 90 to
360 Hz and assessed the specificity of tracking. A range
of frame rates was tried with some higher frame rates
showing errors, and 200 Hz offered an optimal compro-
mise between tracking efficiency and trigger latency. Two
trials—one recorded at 220 Hz and one recorded at 360 Hz
—were excluded because of program runtime issues
leading to mean delays of >500 ms. One trial recorded at
270Hz was excluded because the mouse did not move
enough to exceed the minimum movement threshold,
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Figure 2. Outline of the acquisition and processing pipeline for selective paw tracking and behavioral triggering. A) Frames are ac-
quired from the camera in batches of two at a time, to enable the direct comparison of movement from one frame to the next. The
two frames are passed to a processing thread B) using Python’s _thread library to allow this batch of two frames to be processed
simultaneously with the other frames. C) The frames are analyzed for locations of the body parts identified in the user-trained
DeepLabCut machine learning model using GPU acceleration, outputting the coordinates of the paw positions. D) The positions of
each of the four paws on the mouse’s toes are averaged across each paw; this averaged paw position is used to compare the paw
position between the first and second frames of the two-frame batch. If the absolute vertical movement of the left paw equals or ex-
ceeds 5 pixels while the vertical movement of the right paw does not exceed 10 pixels, a signal is sent to the GPIO breakout board
to trigger the LED. While each frame — labelled with the predicted body part locations — is saved in a separate thread E) to limit com-
putational load on the main thread, the LED feedback itself is sent in another thread F) to ensure that the feedback can be delivered
asynchronously relative to the rest of the code. G) The LED, which is attached to the head-fixing pole above the mouse’s head, is il-
luminated, demonstrating the procedure of feedback to the animal. On training trials, a water reward is also delivered to the animal
at this time.

resulting in no triggers above criterion for this trial. There
were 27 ftrials in which the mouse briefly engaged in
grooming behavior; while this resulted in behavioral trig-
gers being sent, it did not affect the tracking accuracy or
delay of feedback. The shutter speed of the camera was set
to one-five hundredth of a second for all trials. We use the
pysentech library (https://github.com/derricw/pysentech) to

Table 1: A data table for all trials run in the first study

allow Python to interface with the camera. As each video
frame arrives on the computer, we convert it to an 8 bit un-
signed byte format and pass it to the pose analysis function
in DeepLabCut in a batch of two consecutive frames, in a
separate thread for each batch (Fig. 2A). This function re-
turns the predicted positions of each toe on the left paw of
the mouse. In an additional thread (Fig. 2E), we render these

Input frame rate Mean output frame rate  SD output frame rate Mean delay SD delay Mean SD

(Hz2) (Hz2) (Hz) (ms) (ms) accuracy accuracy n
90 46.95 1.53 34.34 5.94 0.97 0.01 13
180 68.13 5.10 39.85 42.97 0.94 0.02 13
200 70.17 7.07 32.56 10.70 0.95 0.00 13
220 69.31 0.33 33.82 15.10 0.95 0.03 6
270 80.83 18.27 55.93 55.69 0.94 0.01 13
300 91.45 5.27 60.62 77.71 0.94 0.01 11
320 109.76 49.24 53.28 43.80 0.93 0.04 9

Input frame rate, the streaming frame rate set in the software for our camera, representing the frame rate of the camera without any additional analyses; mean
output frame rate, the mean number of frames per second processed by our system across all recordings at each input frame rate; SD output frame rate, the SD
in the number of frames per second processed by our system across all recordings at each input frame rate; mean delay, the mean amount of time, in millisec-
onds, between the system receiving a frame that contains a left paw movement exceeding 5 pixels of vertical movement and the system sending a signal to the
breakout board to trigger the LED to provide feedback for that movement; SD delay, the SD, in milliseconds, of the delay discussed above; mean accuracy, the
mean output of the sigmoid function by TensorFlow for all body parts for all trials at each frame rate; SD accuracy, the SD of the output of the aforementioned
sigmoid function; n, the number of trials recorded at each frame rate.
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coordinates onto the newly analyzed frame using opencv2
(https://opencv.org/) to enable visual inspection of tracking
quality.

Real-time feedback. In order to deliver feedback based
on specific paw movements, we define a target paw
movement to reinforce. We operationalize this paw move-
ment as a difference in the average vertical position of the
four estimated toe positions on the left paw of the mouse
from one frame to the next that is greater than a minimum
threshold but smaller than a maximum threshold that we
define. These thresholds ensure that small shifts in the
mouse paw, or large errors in tracking, do not result in er-
roneous feedback to the animal. We chose to track the
vertical movement of the left paw of the mouse because
this movement approximates a reaching activity, which is
an example of a movement that could be conditioned
using our feedback paradigm. Based on the frame resolu-
tion and the paw movements of our mouse, we set the
minimum threshold as 5 pixels of vertical movement of
the left paw of the mouse, and the maximum threshold as
100 pixels of vertical movement of this paw (to prevent
feedback being delivered if the tracking erroneously
jumps across the screen). To help ensure that the feed-
back was selective for left paw movement, no feedback
was delivered if the right paw of the mouse exceeded 10
pixels of vertical movement, regardless of left paw move-
ment (Fig. 2D). We set the right paw movement limit
threshold as twice as large as the threshold for the left
paw because we found that the initial group of mice that
we assessed was prone to making more spontaneous
right paw movements than left paw movements. A strict
restriction of 5 pixels on both paws (right paw no more
than 5 pixels and left paw at least 5 pixels) was associated
with an overall decreased number of triggers as even
small, unreinforced right paw movements often occurred
at the same time as left paw movements. Importantly, the
software we provide is flexible, and the criterion can be
set to reflect the movement of any set of tracked points. If
the vertical movement of the left paw from one frame to
the next is between 5 and 100 pixels inclusive, we give
visual feedback using a trigger set by the pyftdi library
(https://github.com/eblot/pyftdi) to turn on a red LED on
the head-fixing pole for 200 ms over USB via an Adafruit
FT232h Breakout Board (Adafruit Industries; Fig. 2G). As
a further safeguard against erroneous triggering of feed-
back, this feedback is triggered only if DeepLabCut deter-
mines that the body part prediction accuracy for that
frame (quantified as the output of the TensorFlow sigmoid
function) is >0.20. Last, to ensure that feedback is not
continuously delivered to the mouse in the event of re-
peated paw movement above threshold, we set a refrac-
tory period of 300 ms after each trigger during which no
trigger is delivered regardless of movement dynamics (for
three mice across 21 trials).

In a second study, we validated the ability of our
method to assess and reinforce a user-defined behavior
in real time. Mice were presented with alternating baseline
and training trials (n=115 baseline; n = 115 training)
across 5d. Each of these trials had the same length,
structure, and computational analyses of behavior used in
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the first study. Mice were cued to training trials by the illu-
mination of a green LED located ~20 mm to the left and
above the head of the mouse, for the duration of the trial.
On training trials, the mouse received water for 150 ms
from the waterspout in front of its mouth if it made a crite-
rion forelimb movement (>5 pixels of vertical movement
of the left paw while simultaneous movement on the right
paw was <10 pixels). In this study, the mouse was not re-
warded for making right paw movements exclusively, and
making a right paw movement following a left paw move-
ment increased the probability of not receiving a reward.
The use of the criterion of the 10 pixel right paw move-
ment limit increased the ability of our system to reward
selective left paw movements. This water reward was ac-
companied by the illumination of a red LED located ~20
mm to the left and above the head of the mouse for
200 ms. In comparison, on baseline trials, the mouse did
not receive feedback for making a criterion forelimb
movement, and the green LED did not illuminate for the
length of the trial. However, the red LED continued to
flash when the mouse made the criterion movement. In
order to have a consistent ground-truth measure of the
mouse making the reinforced movement, trials were re-
corded using the same methodology as outlined in the
first study. All trials in the second study were recorded at
200 Hz, as this was the frame rate that offered the best
combination of a high frame rate and low feedback la-
tency in the first study (Table 1).

Data availability. We provide a Python script to enable
real-time tracking within the existing DeepLabCut 2 work-
flow, and a modified set of pyftdi classes to allow interfac-
ing between Python and the general-purpose input/
output (GPIO) board. This code is freely available online at
https://github.com/bf777/DeepCut2RealTime. We also
provide a MATLAB script to enable automatic analysis of
behavior videos collected in real time. This code is freely
available online at https://github.com/DongshengXiao/
RealTimeTracking. We provide copies of this acquisition
and analysis software online as Extended Data 1 and 2
files.

Results

Behavioral model

The behavioral model that we trained to predict the move-
ments of the mouse in DeeplLabCut had a root mean
squared error of prediction of 2.17 pixels for the training
data and 2.37 pixels for the test data when using a standard
scene that averaged 44 x 44 mm (visualized in Fig. 1A).

Real-time tracking

We recorded a total of 81 trials across nine mice, with
each trial being 130 s in length. A total of 78 trials across
these nine mice were analyzed (for exclusion explanation,
see Materials and Methods). We quantified the behavioral
tracking quality of each trial by calculating the average
frame rate over 120 s (after the conclusion of the 10 s buffer
period), and the average accuracy of each prediction in
each frame being correct as measured by the TensorFlow
sigmoid function as implemented in DeepLabCut. The
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Figure 3. Selective paw movements tracked with short latency and coincident with behavioral feedback triggering. A) Magnitude of
movement in the vertical direction for the mouse’s left and right paws across one trial, recorded with an input frame rate of 220 Hz
and having an output frame rate of 70 Hz. The dotted vertical lines represent times in the trial when the mouse’s left paw move-
ments exceeded the threshold, triggering feedback via the LED. B) Detail of the mouse’s vertical paw movements over a period of
280 frames. The solid black lines indicate the time at which the frame during which the mouse’s movements crossed the threshold
was sent from the camera; the red region and lighter grey line represent the time between frame acquisition and the LED being trig-
gered as feedback. C) Magnitude of movement in the vertical direction for the mouse’s left and right paw for each trigger in the trial
depicted in A), averaged for each frame before and after the trigger. Each solid blue line represents a single trigger at the actual
time of the trigger, depicting the delay between the time at which the frame containing the above-threshold movement was received
and the time at which the command was sent to activate the LED trigger. D) Dynamics of output frame rate for each second during
the trial; the background curve is a Loess curve showing the smoothed average frame rate at that moment. E) Time of each behav-
ioral trigger during the trial, plotted against the delay between the time at which the frame containing the above-threshold
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continued

movement was received and the time at which the command was sent to activate the LED trigger. Note: For all plots with movement
distance in mm, this distance in mm was calculated by measuring the width of the floor of the mouse’s tube and cross-referencing
this distance with the width of the floor of the mouse’s tube in a frame recorded from this trial, in pixels. For plot C) the time elapsed
in milliseconds is an approximate measure because of slight variations in the number of frames processed per second across the

trial (as highlighted in D).

mean tracking accuracy across all trials was 0.95
(SD=0.01). Input frame rates were much higher than the
output frame rates, suggesting that some frames were
dropped. For example, an input frame rate of 200 Hz would
yield an output rate of the frame rate of 70 Hz. While the
dropping of frames is concerning, we do record the frame
times for the reconstruction of time courses. Lower frame
rates of 90 Hz dropped fewer frames, leading to an output
frame rate of ~45Hz (Table 1).

Real-time feedback

To evaluate the delay between frame acquisition and
the LED flash that signaled a movement that reached cri-
terion, we record the time at which the frame was sent
from the camera, the time at which the feedback criterion
was met, and the time at which the LED turned on based
on the collected video that contains the behavioral video
of the mouse. Plotting the movement of the left and right
paws for trials where trigger conditions were met indi-
cated—as expected—a preference for left paw over right
paw movement (Fig. 3). Importantly, the LED trigger was
delivered within ~40ms of the left paw crossing the
threshold, which was estimated to be a 0.85 mm move-
ment. We quantified the feedback latency as the average
delay between frame acquisition and feedback delivery
on trials. This delay was measured by time stamps from
Python where movement of the left paw exceeded the
minimum threshold and was below the maximum thresh-
old while—simultaneously—movement in the right paw
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was below the maximum threshold for that paw. Across
all trials, the mean delay between movement initiation and
LED illumination across trials (N=9 mice, 78 trials) was
44.41 ms (SD = 36.39 ms). Summary data broken down by
input frame rate are outlined in Table 1. We depict typical
behavioral reinforcement of the mouse in Movie 1.

In order to provide a second ground-truth measure of
feedback latency and verify these delay values, we re-
corded a second set of trials (N=>5) with a 200 Hz frame
rate in which the LED illumination was readily visible within
the video frame, offering a visual indicator of the feedback
onset. We used MATLAB (version 2014b; MathWorks) to
define a region of interest surrounding the LED in each re-
cording and quantified each LED illumination as a change
in pixel value >3 SDs from the mean background. As an in-
creased number of frames were dropped within the first
800 frames of each trial (~4 s; Fig. 3) we quantified the
LED illumination time after the 800th frame. We then quan-
tify ground-truth latency as the time between the start of
the frame on which a significant movement was detected
and the point at which the LED illumination crosses the cri-
terion value discussed above. The mean ground-truth la-
tency calculated through this method was 35.90 ms; the
mean latency calculated through the time stamps in the
code was 32.40 ms. We found no significant difference be-
tween the ground-truth latency and the time-stamp latency
(tw=0.76, p=0.54). The average waveform of the LED
flash for an example trial is given in Figure 4A; the overall
waveform for the LED flash is plotted alongside behavioral
triggers in Figure 4B.

LED flashes compared to trigger time
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Figure 4. Example of contrast changes from LED flash during one trial. A) Example of contrast changes from LED flash during one
trial. Y axis represents magnitude of contrast level in a user-defined region of interest surrounding the LED relative to baseline, aver-
aged across all trials in which contrast increased by at least three standard deviations above baseline. B) Example of all contrast
changes from LED flash during one trial. Y axis represents magnitude of contrast level in a user-defined region of interest surround-
ing the LED relative to baseline, averaged across all trials in which contrast increased by at least three standard deviations above
baseline. Each blue tick (“trigger”) represents a time at which the mouse made a vertical left-paw movement greater than or equal
to 5 px while the right paw did not move more than 10 px vertically.
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Movie 1. This video presents a recording of a mouse’s behavior
during a training session on the fifth and final day of training. It
was created from frames automatically labelled with the posi-
tion of each digit on each forepaw that were saved during the
session, displayed at a frame rate of 30 Hz for clarity. The
frames represent 2.90 s of real time recording (at an average
frame rate of 65.76 Hz). The lower of the two LEDs in the top
right of the image illuminates at the same time as the delivery of
a water reward through the spout in front of the mouse’s
mouth. When there is a set of movements in rapid succession,
the LED does not flash for every single movement because it
operates with a 300 ms refractory period. This period ensures
that the mouse is not reinforced for making a very large quantity
of small movements as opposed to discrete, larger movements.
[View online]

For our second study, in which we reinforced mice for
making movements that exceeded the criterion discussed
for the first study, we analyzed 5 d of training from seven
mice. Although we had eight mice total, we excluded one
mouse from our analyses as that mouse did not run on all
5 d. We analyzed a total of 102 baseline and 102 training
trials (21 trials of each type per day except on the second
day of training, where there were 18 trials of each type).
For the summary data for the second study (Table 2), we

Table 2: A data table for all trials run in the second study
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only excluded one training trial of one mouse that did not
make any movements above criterion. Comparing the av-
erage number of movement triggers made for baseline
and training trials allowed us to quantify the overall suc-
cess of our automated reinforcement paradigm at moti-
vating the forelimb movement behavior of the mouse (Fig.
5A). Based on paired-sample t tests with Bonferroni cor-
rection for multiple comparisons between training trials
for each day and training trials on the first day, the aver-
age number of above-threshold movements was signifi-
cantly greater in training trials on the third, fourth, and last
days of training compared with training trials on the first
day of training (Fig. 5A). There were no significant differ-
ences in above-threshold movements between baseline
trials for each day and baseline trials on the first day.
Based on paired-sample t tests with Bonferroni correction
for multiple comparisons between training trials for each
day and baseline trials for each day, there was a signifi-
cant difference in above-threshold movements between
training and baseline trials on the third day. In order to fur-
ther validate the selectivity of our system for left paw
movement, we evaluated the number of right paw move-
ments >10 pixels (the maximum criterion for right paw
movement to receive a reward) for each frame immedi-
ately following a successful left paw trigger (Fig. 5B).
Based on paired-sample t tests Bonferroni correction for
multiple comparisons, we found no significant differences
between days or between baseline or training trials in the
number of right paw movements >10 pixels immediately fol-
lowing above-threshold left paw movements. Across all trials,
the average number of these right paw movements >10 pix-
els was lower than the average number of immediately pre-
ceding left paw movements >5 pixels.

Animals were reinforced based on the average move-
ment of all four digits of their paws. However, we also in-
vestigated whether the movement of each individual digit
aligned with this average movement. As a follow-up anal-
ysis, we evaluated the number of left paw digit move-
ments >5 pixels (Fig. 6A) as well as the number of right
paw digit movements >10 pixels (the maximum criterion
for right paw movement to receive a reward) for each digit
individually (Fig. 6B). Overall, we found a similar pattern of
vertical movements across each digit to the mean move-
ment of each paw (Fig. 5), suggesting that individual digits
could potentially also be useful as targets for behavioral
reinforcement. Additionally, we conducted ANOVAs for

Input frame Mean output SD output
Day rate (Hz) frame rate (Hz) frame rate (Hz)
1 200 65.00 0.53
2 200 66.70 18.26
3 200 66.05 0.65
4 200 65.89 0.57
5 200 65.76 0.54

Mean delay SD delay Mean SD

(ms) (ms) accuracy accuracy n
37.00 10.30 0.99 0.00 21
39.50 10.81 0.94 0.01 20
29.69 7.01 0.90 0.04 24
31.03 7.50 0.95 0.02 24
30.96 8.34 0.95 0.03 21

Input frame rate, the streaming frame rate set in the software for our camera, representing the frame rate of the camera without any additional analyses; mean
output frame rate, the mean number of frames per second processed by our system across all recordings at each input frame rate; SD output frame rate, the SD
in the number of frames per second processed by our system across all recordings at each input frame rate; mean delay, the mean amount of time, in millisec-
onds, between the system receiving a frame that contains a left paw movement exceeding 5 pixels of vertical movement and the system sending a signal to the
breakout board to trigger the LED to provide feedback for that movement; SD delay, the SD, in milliseconds, of the delay discussed above; mean accuracy, the
mean output of the sigmoid function by TensorFlow for all body parts for all trials at each frame rate; SD accuracy, the SD of the output of the aforementioned

sigmoid function; n, the number of trials recorded at each frame rate.

May/June 2020, 7(3) ENEURO.0096-20.2020
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Figure 5. Average number of real-time behavioral triggers on baseline and training trials. Error bars represent standard errors of the
mean. A) Average number of triggers represents the average number of times, per trial, that animals made a left paw movement
greater than or equal to 5 pixels while not simultaneously making a right paw movement greater than 10 pixels. B) Average number
of triggers represents the average number of times, per trial, that animals made a right paw movement greater than 10 pixels on the
frame immediately after the animal made a left paw movement greater or equal to 5 pixels (while not simultaneously making a right
paw movement greater than 10 pixels). On training trials, each trigger was associated with a water reward and flash of the red feed-
back LED. On baseline trials, each trigger was only associated with a flash of the red feedback LED. We used paired-samples t-
tests that were Bonferroni corrected for multiple comparisons to evaluate between-day differences in average trigger count during
training on the first day to average trigger counts across all training sessions on all other days. We also used these tests to evaluate

within-day differences in average trigger count between training and baseline trials on each day.

each digit on training and baseline trials, and found no
significant difference between digits on the number of
movements above criterion on baseline or training trials
on each day, on either forepaw.

As an alternative analysis that does not rely on frequent-
ist statistics, we used the Data Analysis with Bootstrap
Estimation in R (dabestr) package (Ho et al., 2019), rec-
ommended by Calin-dJageman and Cumming (2019), to
conduct a set of estimation statistical analyses. Bootstrap
resampling is a robust statistical method that allows for
more precise conclusions about patterns of data (Calin-
Jageman and Cumming, 2019). Our analyses present the
bootstrapped 95% confidence interval surrounding the
mean difference between the number of above-threshold
movements on baseline and training trials on each day
(Fig. 7A); the mean difference between the number of
number of above-threshold movements during training tri-
als on each day to training trials on the first day (Fig. 7B);
and the corresponding mean difference comparisons for
baseline trials on each day (Fig. 7C). The 95% confidence
interval for the mean difference between the number of
above-threshold movements on baseline and training tri-
als on each day does not cross 0 (Fig. 7A). As such, we
can say that each animal makes more above-threshold
forepaw movements during training trials compared with
baseline trials. Furthermore, the 95% confidence intervals
for the mean difference between the number of above-
threshold movements during training trials on each day to

May/June 2020, 7(3) ENEURO.0096-20.2020

training trials on the first day do not cross 0 for training tri-
als for days 3, 4, and 5 (Fig. 7B). Therefore, we can also
say that the animals overall make more above-threshold
forepaw movements after 2 d of training (Fig. 7B) while
not making more of these movements on progressive
baseline trials (Fig. 7C).

Discussion

We demonstrate a robust real-time tracking and feed-
back paradigm implemented in Python that can deliver
feedback based on individual body part movement with a
short delay between movement initiation and LED illumi-
nation. Generally, we observed that this delay resulted in
the LED being illuminated while the movement that trig-
gered the LED was still in progress (Fig. 3B8,C). This rela-
tively fast feedback based on specific body movements
in near real time suggests that our interface could be
adapted to provide any type of feedback that is driven
by a GPIO signal, including delivery of a water reward or
an optogenetic pulse. Additionally, our feedback sys-
tem, given a robust behavioral model, enables sensitiv-
ity to the movements of a single body part, as
demonstrated by the system delivering feedback when
the left paw moves independently of the right paw. Last,
we demonstrate the ability of our system to condition
and reinforce user-defined behaviors using a water re-
striction paradigm.
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Figure 6. Average number of reaches above threshold on baseline and training trials by digit. A) The average number of vertical left-
paw digit movements >5 px by digit on training and baseline trials. B) The average number of vertical right-paw digit movements >
10 px by digit on training and baseline trials. Digits are numbered from the rightmost to leftmost digit (from the mouse’s perspective)
on each forepaw. We used ANOVAs to evaluate differences in the average number of vertical left-paw digit movements >5 px on
training and baseline trials per day, and for the average number of vertical right-paw digit movements > 10 px on training and base-

line trials per day.

Real-time feedback system

Our conclusion is that input frame rates of 200Hz are
optimal for analysis and feedback generation. Increased
work on code stability may enable the use of higher-input
frame rates, allowing for the measurement of more rapid
behaviors. The difference between the input frame rate—
the frame rate set on the camera—and the output frame
rate—the rate at which frames were processed by our sys-
tem—likely differs because of the added computational
load that DeeplLabCut places on the acquisition and anal-
ysis system. The most significant factors affecting this
frame rate appeared to be (1) the method by which we
saved the labeled frames (saving frames asynchronously,
as opposed to in the same thread as the threshold com-
putations, provided an improvement of 20-50Hz at all
frame rates tested); and (2) the capabilities of the USB
port to which the camera was connected (connecting the
camera to a faster USB 3.0 port provided an improvement
of 20-50 Hz at all frame rates tested). We were also able

May/June 2020, 7(3) ENEURO.0096-20.2020

to minimize this computational load by running the
DeepLabCut pose estimation framework while not saving
the outputs for a period of 10 s at the beginning of each
trial (Fig. 3D). We believe that providing this buffer period
has the effect of allowing Python libraries and the com-
plex neural network architecture of DeepLabCut to load.
A number of factors potentially affected the quality of
the tracking. First, deviations from the lighting conditions
of the videos on which we trained our models occasional-
ly resulted in the tracking of spurious body parts (e.g., the
ear) or arbitrary points. In particular, regions of the video
with high contrast relative to the intended body parts oc-
casionally became the focus for tracking, especially when
lighting conditions were incorrect. This may be a function
of how the scoremap calculations that are involved in
pose estimation are conducted within DeeplLabCut
(Mathis et al., 2018). Some lighting changes between the
training data and the streamed video were inevitable; we
attempted to mitigate these changes by keeping the
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Figure 7. Estimation statistics for the mean difference in trigger count between training and baseline trials on each day and between
training trials on each day. A) Slopegraph of mean difference in trigger count by animal between training and baseline trials, and the
bootstrapped 95% confidence interval around the mean difference. B) The bootstrapped 95% confidence intervals around the
mean differences in trigger count on training trials on each day minus the trigger count on training trials on day 1. C) The boot-
strapped 95% confidence intervals around the mean differences in trigger count on baseline trials on each day minus the trigger

count on baseline trials on day 1.

location of the mouse and the lighting in the room where
the experiments took place the same as in the training
videos. However, by training our behavioral model for
>30,000 iterations across a video dataset that encom-
passed a wide variety of behaviors, our model became
very accurate in distinguishing one paw from the other
without the need for additional postprocessing. In fact, a

May/June 2020, 7(3) ENEURO.0096-20.2020

high level of accuracy was generally maintained even dur-
ing grooming behaviors, when the forms of the paws were
obscured. This suggests that variations in camera setup
and lighting conditions can be compensated for with a
well labeled and trained behavioral model. Second, hard-
ware limitations may also have contributed to increases in
the delay. Although our camera was connected to a USB
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3.0 port, we conducted a small number of trials (N=4)
with a different, faster USB 3.0 port on the computer to
compare performance with each port on the computer.
Although trials in which the camera was connected to this
faster port produced a higher output frame rate for each
level of the input frame rate, this solution resulted in a less
stable frame rate, leading to much higher delays at frame
rates >180Hz. Third, although the pyftdi library provides
a low-level interface between a computer and an LED, the
breakout board is connected via USB 2.0, which presents
a hardware bottleneck compared with the USB 3.0 tech-
nology used for our camera. However, the delay between
the movement trigger and the LED activation (measured
as the difference in time between the computer time
stamp recorded when the left paw movement criterion
was reached and the time stamp recorded when the sig-
nal was sent to turn on the LED) was very small
(mean=0.31ms, SD=0.13ms) and therefore effectively
inconsequential to feedback delivery. Additionally, the
mice engaged in grooming behaviors during a number of
trials (as discussed earlier). However, while this presented
a challenge to the tracking accuracy of our model—as
grooming behaviors were not greatly represented in the
training dataset—both the tracking accuracy and the be-
havioral feedback remained robust even during these pe-
riods of grooming.

We should caution that the method by which accuracy
is quantified (the TensorFlow sigmoid function, which re-
flects a comparison between the video stream of the
mouse and the input data provided to the DeeplLabCut
movement-tracking model) is not a ground-truth measure
of accuracy. However, this method of quantifying the
tracking accuracy has been validated against ground-
truth human ratings by the developers of DeeplLabCut
(Mathis et al., 2018). Further progress in increasing the
operational speed of DeepLabCut can likely be made by
streamlining the lower-level analytical operations of
DeepLabCut and the threading strategy used. Because
the unstable frame throughput rate in the first 10 s of each
trial tended to lead to large delays between frame acquisi-
tion and LED illumination early in the recording session,
we note that a 10 s buffer period (Fig. 3), during which
DeeplLabCut conducted pose estimation while no data
were saved, was generally necessary to allow the frame
throughput rate of our system to stabilize. Additionally, at
high-input frame rates (generally >200Hz), at the time
when the system began to save the data (after the 10 s
buffer), a number of frames would be dropped during a
period of ~1 s after data saving began. This period of
time is the transition period from data not being recorded
to the initiation of data recording, which likely causes a
spike in computational load that stabilizes within 1 s. We
attempted to minimize the number of dropped frames in
this period by adjusting the wait period after the end of
the 10 s buffering period and before the initiation of data
recording. A 100 ms wait period minimized the number of
frames dropped during the transition period. We quanti-
fied the number of dropped frames by counting the num-
ber of data placeholders in our data structure that lacked
data; placeholder rows that lacked data were presumed
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to be dropped frames. If a movement occurred during this
period of frame drops, the delay was generally well above
average. However, we found that this frame drop gener-
ally has little bearing on the delay for the rest of the re-
cording session. Additionally, as we have time-stamp
data for each frame start, behavioral trigger, and LED/
water release time, we do not rely on the number of
frames in a given trial for analysis.

The most critical consequence of dropped frames
would be inappropriate timing for the delivery of feedback
to the animal. To address this issue, our system makes a
decision about whether or not to provide feedback based
on two frames of data that are consecutively received
from the camera are analyzed together. If a frame is
dropped from the camera, these two frames may not be
chronologically consecutive. However, our stable frame
rate suggests that frames are dropped at a consistent rate
(Fig. 3E). Specifically, the SD of the time difference be-
tween frames was very low (SD=4.16ms) across all
N =806,153 batches of two frames collected on training
and baseline trials outside of the buffer period. According
to the Nyquist-Shannon sampling theorem (Shannon,
1949), to capture all the behaviors of the animal, our
frame rate would need to be at least double the frequency
of the fastest movement that we are sampling. Given that
our average frame rate for our second study was
65.59 Hz, we would be able to sample movements at fre-
quencies of up to 32.80 Hz. In a study of mouse locomo-
tion and whisking movement, the maximum stride
frequency attained by the mouse was 3-4Hz, and the
peak whisking frequency was 15-20 Hz (Sofroniew et al.,
2014). These movements are among the fastest that a
mouse can perform—faster than the forepaw movements
that we measured in our study—and yet they would theo-
retically be detectable by our system at the output frame
rate of ~65Hz given that they are <32.80Hz. As such,
despite the frame loss, our paradigm should be able to
capture a wide variety of desired forepaw movements.

Further optimizations to the code would require deeper
investigation into the most computationally intensive as-
pects of DeeplLabCut; an especially important area to
focus on would be parallelization of pose estimation oper-
ations in DeepLabCut. The occasional instabilities of the
frame rate in our program, which necessitated the addi-
tion of the buffer period, may suggest that DeepLabCut
prioritizes fast processing of frames over processing
these frames at a stable rate, especially in the first few
seconds of the operation of the code. These instabilities
may also arise from the creation of a large number of
computational threads with no corresponding destruction
of finished threads at the start of the task.

We have demonstrated the applicability of our system
to tracking forepaw movements in head-fixed mice.
However, our software paradigm could be adapted to
track and reinforce a variety of different behaviors in near
real time (e.g., reaching movements, running on a trans-
parent belt, reaching for pellets or levers). This would en-
tail training a model to track these behaviors using the
user-friendly interface of DeepLabCut, then making minor
modifications to conditional statements in our code to ad-
just the threshold for movement to be reinforced. In its
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current state, our system can drive any output that can be
triggered by a GPIO logic signal, be it an LED flash, water
pump activation, food pellet release, or electrode stimula-
tion. While we have focused only on head-fixed behaviors,
the video-based nature of our system means that the ani-
mal needs not be head-fixed for accurate movement
tracking and reinforcement to occur. The only require-
ment is that the model tracking the behavior of the animal
be well labeled and trained so as to accurately capture a
variety of movement dynamics. One challenge that must
be considered in adapting the approach to a freely mov-
ing animal would be ensuring that the target body parts
can be reliably tracked and are not occluded as the animal
transitions to various view angles.

Our motor movement tracking and feedback paradigm
could enable new forms of noninvasive closed-loop feed-
back work that uses motor movements in place of (or aug-
menting) neural recordings to train animals on a task.
Further directions for this research may combine move-
ment tracking with two-photon microscopy to investigate
whether DeeplLabCut can be used to condition motor be-
haviors in mice through closed-loop feedback in near-real
time, with the potential goal of understanding and localiz-
ing motor memory (Fu et al., 2012; Gilad et al., 2018).
Additionally, passing our pose estimation through a pre-
defined behavioral state space (Berman et al., 2014) may
enable us to evaluate and provide feedback based on
more complex behaviors, opening the door to real-time
reinforcement of sophisticated motor activities. We have
released the code for implementing our movement track-
ing and feedback system as a Python script that integra-
tes with DeeplLabCut version 2 or later. With minor
modifications to the logic by which the feedback is trig-
gered in the code, our system could be adapted to track
virtually any user-defined body part or animal that is de-
fined in a DeeplLabCut model. Future developments of
this system would benefit from the inclusion of a more
nuanced behavioral classifier that is trained to identify
and trigger feedback based on complex behavioral dy-
namics and movement trajectories. Such a classifier
could open the door to the rapid training of even complex
behaviors in animals.

Validation through behavioral task

In order to demonstrate the utility of our real-time feed-
back system in a real-world context, we used our system
to automatically reinforce water-restricted mice for mak-
ing forelimb movements. Mice made significantly more
left paw movements during training trials on later training
days than on the first day (Figs. 5A, 7B), while the number
of left paw movements remained stable across all base-
line trials (Figs. 5A, 7C). These movements were generally
not accompanied by large right paw movements (Fig. 5B),
demonstrating the selectivity of our system for reinforcing
the movement of a specific paw. Furthermore, these
movements were deployed consistently across the whole
paw (Fig. 6). Additionally, all mice made more movements
satisfying the criterion on training trials (where they were
reinforced) than on baseline trials (Fig. 7A). Conceivably, it
may be easier to train the mouse to make a highly
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stereotyped behavior as opposed to merely giving the ani-
mal a specific criterion for the extent of their movement.
The fact that our system was nevertheless able to rein-
force a wide range of movements allows for greater train-
ing flexibility than a conventional behavioral
reinforcement paradigm such as a lever press in an oper-
ant chamber. With minor modifications to the Python
script driving the behavioral feedback, we could set up
our system to reinforce a wide variety of user-defined be-
haviors in many different animals. For example, our sys-
tem could be used to efficiently train a rodent in a
stereotyped motor behavior to promote the recovery of
motor function poststroke.

Conclusion

This project could form the basis for future work on
closed-loop behavioral reinforcement systems that in-
clude brain stimulation (Paz et al., 2013; Prsa et al., 2017)
and could be used to explore the basis of various move-
ment-related and somatosensory activities in the brain
(Stubblefield et al., 2013). Such exploratory research
could contribute to more advanced and effective biofeed-
back that leverages both neural and non-neural move-
ment data, adding greater diversity to the types of
information signals. With additional reductions to the la-
tency of our system, this work could inform brain-ma-
chine interfaces, enabling direct reinforcement of animal
behavior based on movement dynamics.
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