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Abstract

Within neuroscience, models have many roles, including driving hypotheses, making assumptions explicit, syn-
thesizing knowledge, making experimental predictions, and facilitating applications to medicine. While specific
modeling techniques are often taught, the process of constructing models for a given phenomenon or question
is generally left opaque. Here, informed by guiding many students through modeling exercises at our summer
school in CoSMo (Computational Sensory-Motor Neuroscience), we provide a practical 10-step breakdown of
the modeling process. This approach makes choices and criteria more explicit and replicable. Experiment design
has long been taught in neuroscience; the modeling process should receive the same attention.

Significance Statement

Modeling in neuroscience is often perceived as a mysterious process and is hard to teach. Here we provide
the first how-to-model guide that breaks down the modeling endeavor into a step-by-step process.

Introduction

The development of models is an integral part of neuro-
science and related disciplines, such as psychology, kine-
siology, and cognitive science. Models can provide
unique and useful insights. For example, computational
models are used to compactly describe large amounts of
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data. Models are often used to obtain causal claims about
the relation between neural properties and behavior. They
make predictions and can thus allow more targeted ex-
periments. Models allow virtual experimentation, making
it easier to get intuitions. Models also force scientists to
make their assumptions explicit, which makes scientific
communication more precise. Finally, models can lead to
applications across science, health care, and technology
(e.g., one can plan interventions by simulating their impact
on brain and behavior). Model-driven approaches thus
accelerate progress across clinical and basic research.
There are countless models in neuroscience, and for
each modeling technique we can find an article describing
how it is constructed. For the more popular techniques,
we can find textbooks that describe the mechanics of
constructing and testing models, pitfalls, tips and tricks
usually tailored to the particular types of data, and ques-
tions that made the technique popular. However, when
approaching new questions, new data types, or different
scientific goals and objectives, it is unclear how to start.
Confronted with a phenomenon and a scientific goal,
every researcher is faced with a difficult set of questions.
Which concepts should we use? Which mathematical
framework (i.e., technique)? Which code? What should
the overall logic be? All these questions are currently un-
articulated and hidden in the scientific training process,
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and students implicitly learn approaches across neuro-
science through imitation and mentoring. While this can be
an effective way of transmitting modeling techniques for
ongoing questions, it is an ineffective way to train students
to innovate, competently address new problems, or syn-
thesize and extend methods. Instead, there should be a
clearly structured thought process that clearly identifies
how the phenomenon along with the goals of modeling
give rise to the ultimate models. What is missing is a proce-
dure by which we can address a phenomenon with model-
ing in a way that brings us closer to our scientific goals.

We have observed many students learning how to build
models during our 8 year experience with CoSMo (summer
school in Computational Sensory-Motor Neuroscience;
www.compneurosci.com/CoSMo) where we taught stu-
dents from senior undergraduates to seasoned researchers
how to model. Through teaching and project work, we have
tried to convey to them the process of constructing models
from scratch. All three of the authors are also building mod-
els, and importantly we cover a broad range of types of
modeling. This includes machine learning, Bayesian model-
ing, linear systems modeling, realistic muscle modeling,
spiking neural networks, and single-cell models. In addition,
we have brought dozens of leading computational neuro-
scientists as guest lecturers in the course, providing us with
template examples of a broad array of successful modeling
approaches applied to a diverse set of phenomena and
questions. As such, we feel that we have experienced the
model construction process in a uniquely cross-cutting
way. While the modeling process is complex and multifac-
eted, we believe it can be formalized and made explicit.

Here, we propose a pipeline to modeling that breaks
the whole enterprise down into a series of (sometimes in-
terdependent) decision processes. Note that the ap-
proach outlined here is not the only way to approach the
modeling exercise; rather, it represents one possible sys-
tematic, step-by-step approach that—if conducted care-
fully—should leave little room for failure. By using this
approach, we have directed hundreds of CoSMo students
in small groups through the full “from scratch” modeling
process to successful conclusions in just 2 weeks.

10 steps to modeling

We will suppose that the modeler knows the phenom-
enon of interest, and has data or specific observations
that need to be explained. A good modeling approach
needs a good phenomenon to describe. Below, we will
highlight a modeling process that consists of 10 main
steps, grouped into the following four sections (Fig. 1):
framing the question; implementing the model; model
testing; and publishing the model. Throughout the discus-
sion, we will use a common example phenomenon that
will be well known to most of our readers: Assume that we
did not have clocks and ignored that they once existed.
Now imagine what an archeologist finding a clock (such
as the one in Fig. 2) would go through to find out what it
was for. Similar to the Antikythera mechanism (https://en.
wikipedia.org/wiki/Antikythera_mechanism), we would
have to build a model to explain certain aspects of the ob-
served clock behavior. As such, the clock device in analogy
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Figure 1. The modeling exercise. Models interact with experi-
ments through the generation of novel model-based experimental
predictions. Experimental data will in turn provide new unex-
plained data and hypotheses that call for new or refined models.
Note that modelers do not necessarily need to test their own ex-
perimental predictions or collect their own unexplained data; but
good modelers should interact with experimentalists. Many good
experiments come from modelers annoyingly asking for data.

to the brain computes something and we are trying to figure
out what it is. We will discuss how we might model the
movement of “hands” across the markings of an analog
clock. We will go through all the modeling steps as part of a
modeling process with which we could address the move-
ment of the digits of the clock. With this example, we will be
able to highlight all 10 steps of the modeling process.

Framing the question
Step 1: finding a phenomenon and a question to ask about
it

The starting point to all models is a question related to a
phenomenon of interest. Thus, the first practical step for
the modeler is to build a list or table of the critical observa-
tions (Table 1) that define the interesting aspects of the
phenomenon—what sets it apart from other things or for
which we lack good explanations. For the movement of
the clock, the distinguishing features for us are as follows:
they are precise, they are circularly periodic, and multiple
hands have nested periodicities. These periodicities are
approximate multiples of another precisely timed phe-
nomenon—the rotation of the earth. Defining the precise
phenomenon is critical to asking a good question.

Once we have characterized the phenomenon, we need
to define a meaningful modeling question. It helps to get
clarity on the type of question we are asking: are the char-
acteristics that define the “what” of the phenomenon well
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Figure 2. Mechanical watch. Even knowing what it does, its
inner workings are far from trivial. Imagine an archeologist find-
ing one of those and not knowing what this is for.

formed, or do we need to better describe the data? Do we
want to ask “how” something works? Or are we interested
in “why” the phenomenon exists in the first place? The
observations about the clock can lead to different types
of questions. What is the relation between the gears and
the movement of the arms? How do the gears produce
the observed pattern of arm motions? And why would
anyone build such a mechanism (Table 1)? None of these
questions is inherently more or less interesting; they could
all represent legitimate goals for a model builder (Kording
et al., 2018). However, a clear choice of such a goal is es-
sential to allow meaningful models. Clearly specify your
goal at the outset, to yourself and in all your communica-
tion about the modeling project.

Once we have a general phenomenon and question in
mind, we can demarcate which aspects of the data our
model should capture. Without an exact question, chances
are high that one will get lost in the vast oceans of the un-
known. This leads to our first dictum of modeling: begin-
ning with the question, write everything down in a precise
way! Imprecise questions lead to rapid failure. “Model a
clock” would be a bad definition of a goal; after all, it does
not identify key observations or criteria for success or fail-
ure. The question “How do the angles of the hands predict
the time of the day?,” on the other hand, would be a well
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defined question. It both specifies the phenomenon (time
of day relation) and implies criteria for success (low var-
iance at predicting the time of the day).

At this step, it is also helpful to identify aspects of ob-
servations that the model will not address to answer the
question [e.g., we may decide that we do not (for the cur-
rent model) care about the mechanisms in the clock]. By
focusing on distinguishing features of the phenomena to-
gether with intuitions about the factors that should be in-
cluded in an explanation, the model is focused both on a
concrete question and on an appropriate level of abstrac-
tion. By maintaining focus, we avoid the inevitable “mis-
sion creep” that results from having a fuzzy question;
fuzzy questions inevitably pull researchers toward at-
tempting to answer a much larger family of apparently re-
lated questions. Having focus also provides a natural
Occam'’s razor quality to our models. Through focus, our
models address the knowledge gap central to the ques-
tion while minimizing the complexity of the approach.

As part of the objective, the model evaluation method
must also be defined. This leads to our second modeling
dictum: “Know when to stop!” A well defined modeling
goal must have a well defined stopping criteria, or else we
will suffer endless mission creep. We should be able to
answer the following questions. When are we satisfied
with the new model? What would it mean for a model to
be better than another model for our criterion? These are
difficult questions, but there are clear desiderata that
good evaluation criteria should adhere to. The evaluation
must ensure the model incorporates the critical observa-
tions. The evaluation must make the model connect with
actual or potential data. In the clock example, we might
wish to reproduce the observed periodicity with a low
error. Or we might want to provide an explanation of why
there are so many gears and what they are good for.
Thinking about a specific experiment that could poten-
tially answer the questions posed is often tremendously
useful to ensure that these desiderata are satisfied. It pro-
vides a specific, tangible, and intuitive instantiation of an
abstract question. Moreover, it inherently provides a
benchmark goal for the model to be designed. Indeed, the
model should be able to simulate this exact experiment to
provide a model-based answer. In the clock, removing a
gear or changing a gear ratio could be a good experiment
to test the role of gears. Being able to simulate results
from a hypothetical experiment or real experiment thus
becomes part of the modeling objective.

Finally, it is also important to determine precise evalua-
tion criteria based on well defined qualitative and/or quan-
titative properties the model should exhibit. This is crucial

Table 1: Example of critical, distinguishing observations of the clock

Question-
answer What How
Phenomenon
1 Tick/s Loud for 100 ms then silent for 900 Whatever that thingamajig is called
ms
Gears exist Notches on circles More notches = slower rotation
1 Rotation/h  Periodicity

ring

Why
Timekeeping. Duh.

Translate faster rotation / slower rotation

120 notches on hour ring, 2 on second Because an hour is a useful division of

the day
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because data derived from experimental observations is
naturally variable, and thus determining criteria that allow
us to judge the performance of the model is important to
ultimately determine when the modeling exercise is ac-
complished. For example, is the goal to reproduce gener-
al trends/tendencies, or is a detailed match of model and
data of importance? Are there certain specific experimen-
tal effects or relationships that the model must repro-
duce? How will performance be measured? For example,
if the clock is really meant for timekeeping, then a model
of the clock should match its periodicity very closely (i.e.,
within measurement noise). We will further elaborate on
the model evaluation in the Model testing section (Steps 8
and 9). Establishing the evaluation method right from the
start will ensure a fair, critical evaluation of the modeling
effort and a timely finalization of the model.

In our experience, Step 1 is the most difficult for both
novice and experienced researchers. It is the step that re-
quires the most thought, and it is a step often revisited for
refinement after realizing that the subsequent steps are
not working.

Step 2: understanding the state of the art

Before diving into the modeling itself, it is obviously es-
sential to survey the literature. This survey serves to pro-
vide additional information about the phenomenon, if
there is controversy or specific conditions under which it
occurs, and provides background on the set of questions
that have already been addressed. From a modeling per-
spective, it provides insight into the types of abstractions
and approaches that might have already been used. What
has already been done in terms of modeling? Are there
previous models that one can use as a starting point?
What hypotheses have other researchers (theoreticians
and experimentalists alike) emitted regarding the phe-
nomenon in question? Are there any alternative and/or
complementary models or explanations? In the clock ex-
ample, we may know the elementary theory from school
that if we have a gear with N cogs and another with K
cogs, then it translates the rotation speed as N/K. This
second step will ensure that no important aspects (theo-
retical and experimental) related to the model are acci-
dentally omitted. It will also provide the specific datasets
and/or alternative models to compare the new model
against. In addition, this review might provide insight as to
the specific evaluation criteria (e.g., root mean square fit
error) that are typically used in the field. A literature survey
should thus always be conducted prior to building a new
model.

It is also important to gain an intuitive and practical
understanding of previously proposed models and theo-
ries. Such an understanding can only be obtained by reim-
plementing previous models and exploring their potential
and limitations in a hands-on fashion. Exploring previous
models familiarizes the researcher with specific ap-
proaches, toolkits, and mechanisms that have previously
been proposed. Exploring strengths and weaknesses of
existing models will help identify and justify the need for a
new model. Step 2 can be characterized as a foraging task
where the researcher better characterizes the phenomen-
on, the explanatory gap, and gathers together a set of
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possibly useful ingredients into the modeler’s workshop,
such as concepts, methods, and mechanism.

Finally, the literature review should also allow determi-
nation of the skill set needed in order to understand previ-
ous modeling endeavors. This could result in the need to
learn new skills, whether or not those skills will also be
helpful for building the new model. Thus, a good under-
standing of the state of the art of a field is instrumental to
understanding previous models and proposing a new
model in the light of previous work. However, our ques-
tion-centric approach eschews premature adoption of
any of these approaches. Instead, we advocate evaluat-
ing previous approaches through the lens of the focused
question and its basic ingredients.

Step 3: determining the basic ingredients

After defining phenomena and objectives, we can now
become a bit more specific. Every modeling effort starts
with an intuition that will provide an inventory of specific
concepts and/or interactions that need to be instantiated.
What variables and/or parameters in the question and in-
ventory are needed in the model? Are those constants or
do they change over, for instance, space, time, or condi-
tions? Are there any concepts (e.g., value, utility, uncer-
tainty, cost, salience, goals, strategy, plant, dynamics) that
need to be instantiated as variables? Can these variables
be observed/measured directly or are they latent (internal)
variables in the model? In order to instantiate latent varia-
bles, they should be related to potential measurements,
whether practically possible or not. In our clock example,
the angular speed of the gears (latent variable) might mat-
ter in determining the movement of the arms (observed),
and we know it is constant for a given gear but different
across gears. What details can be omitted (e.g., materials
the clock is made of)? What are the constraints, initial con-
ditions? How are these variables expected to interact? For
example, there is a specific relationship between gear
speeds in the clock that is constant and determined by the
fraction of number of cogs. What should be the inputs (po-
tentially under experimental control) and outputs (that
could be measured; i.e., outputs should typically be the
same as the data the model addresses) of the model?
Answering these questions will set up the elements that
are required in the model as well as the specific conditions
that have to be satisfied by the model.

A second much more difficult to acquire—but crucial—
set of instruments for the modeler is a library of potential
explanatory mechanisms. Such a library is usually col-
lected over time by hands-on exploration of different
models, approaches, pieces of math, and algorithms.
This goes hand in hand with building an intuition for a re-
search field through exploratory data/model analysis and
careful reading of the relevant literature. An intuition is
then formed as a result of experiences with different
model classes and data. For the clock example, models
that produce oscillatory behavior (i.e., periodicity) might
be of particular interest. We claim that there is no way
around this learning by doing the step (and regular catalo-
guing of this explanatory set should be a priority for the
community). But as a result, the potential required explan-
atory mechanisms will also help in providing specific
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concepts and interactions that need to be instantiated.
Once the model ingredients and potential mechanisms
have been identified, specific hypotheses can be ex-
pressed in mathematical language.

Step 4: formulating specific, mathematically defined
hypotheses

Contrary to the question asked in Step 1, hypotheses
propose a specific relationship that could explain a given
phenomenon. To formulate a hypothesis in modeling
terms, we need to map our intuitions and proposals about
mechanisms and variables into precise mathematical lan-
guage. In this sense, a model is a mathematical quantifica-
tion of verbal hypotheses. The first step in achieving this is
to relate the ingredients identified in Step 3 by quantifying
specific hypotheses. For example, the 60:1 ratio of perio-
dicities between the smaller hands of the clock corre-
sponds to tracking seconds/minute. These hypotheses
can be expressed in terms of relations between variables
and restate the original question from Step 1 in the form of
relations between variables, mediated by hypothesized
mechanisms and interactions. Thus, these hypotheses are
the ones that are identified from the original question and
ask: what is the model mechanism expected to do? How
are the different parameters expected to influence the
model results? Answering these questions with words/sen-
tences will set the modeler up to start expressing relation-
ships between parameters and variables in mathematical
language.

Going back to our clock example and supposing we do
not know what this device is for, a series of hypotheses can
be emitted related to the what, how, and why questions.
First, we can hypothesize that the gears will lead to different
arm speeds. Second, it is the exact gear ratio that is of im-
portance, and this gear ratio is determined by the dynamics
of the spring-balance wheel system. Third, we can hy-
pothesize that clocks are there as timekeeping machines.
For all of these hypotheses, we have made use of our inven-
tory of observations about the movement of the arms, the
gears, the spring, and the balance wheel. We also need to
keep in mind the use of the clock (i.e., people use the clock
for scheduling purposes and to regulate/coordinate human
behavior. These verbal hypotheses represent the starting
point for mathematical abstraction, identifying key compo-
nents and concepts needed for each question.

Once the hypotheses are spelled out, variable names
should be assigned so that hypotheses can be expressed
succinctly in those terms. What mathematical relation-
ships are expected? It is good to be explicit here: for ex-
ample, y(f) = f(x(f), k), but z(f) does not influence y. Can we
hypothesize anything about the form of f? One advantage
of this explicit mathematical notation is that it is also
made clear that x, y, and z change over time, while k is a
constant. Constraints, initial conditions, and any other
known or expected relationships can be expressed in a
similar way. In our clock example, we can first write that
angular velocity of the slowest hand is vx = f(r,v0), where r
is the gear ratio and vO is the resulting speed of the
spring-balance wheel system driving the gears (latent
variable); we hypothesize f to be linear. We can further
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write a relationship for the gear ratio r and hypothesize
that the gear ratio between two arms determines their rel-
ative angular speed. Let z(t) be the angle of the fastest
hand, y(f) the intermediate, and x(f) the slowest hand.
Then we hypothesize vy = r * vx, thus the angular position
y(t) = r = x(t) + constant mod 2 * pi, and as above, y(f) is
not influenced by Zz(t), rather the converse is true. The
spring—balance wheel system should act like a harmonic
oscillator determining vO [i.e., vO=1f(m,k) where m is the
mass of the balance wheel and k is the spring constant].
Formulating hypotheses for the why question is also pos-
sible. If it is indeed a timekeeping machine used to organ-
ize human activities (as opposed to a similar looking
astronomical position tracker such as the Antikythera
mechanism, for example), then there should be a correla-
tion between different peoples’ behavior that is based on
their consultation of the clock (and no correlation if it was
an astronomical or other device). In that case, we could
write that the clock-based behavioral event times Ti be-
tween different people should be highly correlated (i.e.,
Ti = f(Tj) for j # i, where f is expected to be linear and with
a slope of 1. The resulting mathematical relationships
constitute the first step of abstraction that will determine
the model approach and identify the model ingredients
needed. In addition, these hypotheses will later be eval-
uated against model behavior. Last, translating the specific
hypotheses into mathematical language will ultimately also
help in “selling” the model to the research community.
Indeed, the more precise the hypotheses, the better the
modeling approach can be justified.

Finally, it should be noted that Steps 1-4 are linear in an
ideal case scenario, but often need to be conducted itera-
tively (Fig. 3). Indeed, every step has the potential to
unmask a weak, imprecise, already answered, not interest-
ing, or too ambitious question. In that case, the original
question has to be modified, adapted, clarified, or changed
altogether, after which all following steps require reconsid-
eration. This can also happen at later stages during the
modeling exercise, but if Steps 1-4 are conducted prop-
erly, this should be much less likely to happen. We are now
at the point where the practical modeling can begin.

Implementing the model
Step 5: selecting the toolkit

Once the modeling goals are set and the hypotheses
are quantified, the most appropriate modeling approach
to address the question needs to be selected. It is impor-
tant to state that different model toolkits can potentially
provide an answer to the same question asked. But not all
toolkits are equivalent; quite the opposite. Indeed, differ-
ent toolkits afford answering different types of questions,
such as being able to extrapolate versus finding mecha-
nistic reasons for a given phenomenon. Important consid-
erations are: what modeling tools should be used (e.g.,
mechanics) and what level of abstraction (e.g., what is the
purpose of this device) is appropriate? Based on the hy-
potheses and goals, this should now be relatively easy to
do. In the clock example, we might not care about the ma-
terial properties of the gears but only the number of teeth
in the gears. We also cannot lump all gears together
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Figure 3. Iterative view of the first steps of the modeling exercise. Consecutive thought processes often identify lack, omissions, im-
precisions, and uncertainties that require the modeler to go back and refine their thoughts. This is true when framing the question
and independently applies during model implementation. Note that these two processes are serial. One should not start the imple-
mentation process without having fully satisfied all model framing criteria and steps. Solid arrows denote direct transitions/depend-
encies; dashed arrows stand for iterative reconsideration. Once a phenomenon/question is identified, required ingredients and
literature review are conducted, which ideally leads to a potential experimental test. If no such test can be found, maybe the ques-
tion needs reformulating. One should be able to identify specific hypotheses; otherwise there is a lack of specificity/precision in the
question that needs to be revisited. Toolkit selection, drafting, and implementation of the model involve iterative unit testing. Unit
testing can identify pitfalls in drafting or even in the choice of the toolkit (less frequently) that require adjustment of the model plan.

because they activate different arms. As a general rule,
the model should stay as high-level/abstract as possible,
but be as detailed as necessary (Occam’s razor; Feldman,
2016; Seiradakis and Edmunds, 2018). The choice of a
modeling toolkit then allows the production of a real
model.

Determining which toolkit to use can be far from trivial
and requires prior knowledge about the toolkit. As a
guideline, a good question to ask is how flexible the toolkit
is in terms of behavior. There is no “right” tool, and often
there is more than one option to choose from. Tools
should interface with data that the model is trying to ad-
dress. For example, if data consist of changing time se-
ries, then the toolkit has to have a dynamic component
that can reproduce those time-dependent signal changes.
If we are interested in understanding the spring-balance
wheel and gear mechanism of the clock, we might turn to-
ward mechanical finite element toolkits to understand
how the physical properties of these elements influence

January/February 2020, 7(1) ENEURO.0352-19.2019

the functioning of the clock; or we could just care about
the resulting clock arm dynamics and use higher-level ki-
nematics tools instead. Toolkit selection supposes a
good knowledge of what the strengths and limitations of
each available toolkit are. Preference should be given to
toolkits that have more flexibility, span a wider range of
behaviors, and are potentially lumpable (i.e., can be re-
duced in size by using techniques such as population
averaging or state-space reductions; e.g., neural net-
works span a large range of behaviors but lumping is
hard). On the other hand, linear systems theory lumps well
but does not have the same level of detail as neural net-
works (but see Eliasmith and Anderson, 2004 for one par-
ticular way to do that). In summary: knowledge is key.
Choosing the toolkit also means determining how the
model will be solved (i.e., simulated). For example, can an
analytical solution be computed or is numerical integra-
tion of equations required? If numerical integration is
needed, what is, for example, the temporal or spatial
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resolution? In the eye movement literature, many models
make use of the Laplace transform of dynamical systems;
this would require learning about the Laplace formalism
and how to use it. Here, we will assume that a way to
solve the equations of the chosen toolkit can be found.
This requires, of course, knowledge about the appropriate
fields of physics, mathematics, or computer science, if
applicable, and it is very difficult to succeed as a modeler
without such an appropriate background.

Step 6: planning the model

We are now ready to start building up the model. This is
the point where diagrams are drawn, sketches can be
made, equations are formalized and preliminary pieces of
code are written. The goal of this step is to put all the
components of the hypothesized relationships and ex-
planations in place. As the most important rule, the model
should always be kept as simple as possible! It is advised
to start with a first draft of the model on paper. All toolkits
allow for a graphical representation to be built, but the na-
ture of these drawings can be quite different. For exam-
ple, a mechanical model of the clock (Fig. 4A,B) will look
different from a dynamical systems description (Fig. 4C)
of the clock movements, including potentially different in-
puts (such as in Fig. 4), latent variables, constants, initial
conditions, and outputs. Draw out the model components
and how they connect to each other/influence one anoth-
er. This flow diagram (Fig. 4B,C) will help to organize the
equations. It will allow explicit indication of which varia-
bles “flow” from one model component to the next. This
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model diagram will set up the basic components that are
expected to be required in the model.

Now each model box, icon, or flow can be considered
individually, and its internal workings should be drafted in
terms of mathematical equations. These should be explic-
it equations that can later be implemented in simulation
programs. In case of the clock example, the gear train
box might be subdivided into one functional box for each
gear in the flow diagram determining the equations of mo-
tion of the gear and relating the input of the boxes (the an-
gular velocity of the previous gear) to the output (angular
velocity of this gear). It can require extensive work to iden-
tify the appropriate mathematical relationships, equa-
tions, and formalisms. But at this stage, filling the boxes,
quantifying the icons, and/or specifying the interactions
between them should be relatively easy since the basic
input and output variables of the subsystems of the model
have already been defined and the modeler’s goal is thus
“only” is to relate those variables. It is important to keep in
mind here that a model must include a way to relate
model variables to measurements. Otherwise, the model-
ing exercise will typically feel pointless. Ultimately, the
drafting process will result in a first model on paper that is
ready to be implemented and might become a model dia-
gram in a subsequent publication.

Step 7: implementing the model

The model is now ready to be implemented. This means
that computer simulations can be set up and run and/or
analytical solutions can be found. Each box, icon, or flow
relationship identified in Step 6 should be implemented
separately and tested or understood individually before
connecting it into the overall model. This “unit test” proce-
dure will ensure the functionality of the individual compo-
nents before evaluating the more complex behavior of the
full model.

Individual model components can then be combined. If
there are any alternatives or uncertainties, it is advised to
start with the easiest implementation of the model or of
part of the model and to test its functionality along the
way. A general guideline is to build up the model step by
step and test its function at each step. Starting with a sim-
ple version of the model and progressively adding all the
elements will not only produce an understanding of what
simpler models can do, but also minimize errors in con-
struction. Moreover, playing with all the components of
the model on implementation time can provide deep in-
sights into the way they actually work. In our clock exam-
ple, there are gears for rewinding the spring mechanisms
of the clock. Those gears can be modeled, but they will
not influence the movement of the arms (unless the spring
is loose, of course). Thus, these rewinding gears are not
crucial for the timekeeping function of the clock mecha-
nism and can be left out if that kind of understanding is
our goal. Answering the question of why a certain model
component is crucially needed will ultimately allow justify-
ing the model architecture during the publication process.
This process should be continued until the model has
been fully implemented.

Once we have implemented a model, we want to make
sure we properly understand our own implementation.

eNeuro.org



eMeuro

This makes it necessary to deeply analyze its behavior
(Otto and Day, 2011). We should plot model behavior as a
function of model parameters. We can analyze model sta-
bility/equilibrium points. We can ask how similar the
model performs to known models (e.g., those that can be
analytically solved). Each modeling toolkit usually comes
hand in hand with a set of model analysis tools; details
about the latter can be found in the specific toolkit litera-
ture. All of these steps may help us in finding mistakes in
our model implementation.

Model testing
Step 8: completing the model

One of the hardest questions in modeling is to decide
when to stop improving the model and call it final.
Referring back to the goals (Step 1) and hypotheses
(Step 4) is crucial here. Does the model answer the origi-
nal question sufficiently (i.e., with enough detail to ad-
vance knowledge in the field of study)? Equally
importantly, does the model satisfy the evaluation crite-
ria that have been determined prior to building the
model? Does it speak to the hypotheses, either confirm-
ing or invalidating them? In other words, can the model
produce the parametric relationships that have been hy-
pothesized in Step 47? If the answer to all these questions
is “yes,” then the modeling exercise might be done. If the
original goal has not been met, then the modeler may
need to get back to the drawing board.

We need to be mindful on finishing a project when the
time has come. On the one hand, we can usually improve
model fits; on the other hand, we do that at the risk of
overfitting the data we have. Occam’s razor might help
here to determine whether it is worth considering more
complicated models with more parameters that are per-
haps irrelevant or uninterpretable in order to obtain a bet-
ter fit to the data. The cost of such more complicated
models is always the reduced explanatory power. This is
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mathematically quantified in measures such as the Akaike
information criterion, as explained in the following step.

Step 9: testing and evaluating the model

In Steps 1 and 4, we set up goals/hypotheses and objec-
tives for our modeling approach. Once we have imple-
mented and tested the model, we can now evaluate how
well we did in the modeling approach. How to evaluate
how well a model did supremely depends on the nature of
the goals. For example, if we only care about the relation
between the second and the minute digit of the clock, then
explaining their relative movement well would be sufficient.
If we want to answer to why clocks exist, our answer would
have to look very different. The objectives we defined fur-
ther up determine how exactly a model is to be evaluated.

However, many different modeling approaches are
aimed at describing data. This generally leads to a statisti-
cal problem—how can we ask which model better de-
scribes the data. Statistics has given us many tools to ask
this question. These range from the mean squared error,
to methods that correct for the number of free parameters
(e.g., the Akaike information criterion) to the ability to pre-
dict new and unseen data. Model comparison is a center-
piece in the modern modeling enterprise. Indeed, model
comparison is useful to compare a new model against ex-
isting precursors/alternatives. It is also often useful to
build a class of models instead of just creating one specif-
ic instance, in which case model comparison is often
used as a means of selecting the best model among the
class of models proposed.

Finally, it is important to ask questions about generaliz-
ability. The model explains the phenomenon we set out to
describe. But knowing this is not enough. Will the model
also adequately describe similar situations? Can what we
learned from one clock generalize to others? Without
quantifying generalization, it is unclear how valuable a
model is, and no modeling study should be finished with-
out asking the generalization question.

Debunking myths:

is not a good idea.

- Models are not built to win a beauty contest but to explore the unknown.
- Modeling is not a grade school art show: multiplying evaluation criteria to find one in which your model succeeds

- The model that best fits your data may not be the best model (e.g., because of overfitting and limits to your data).
- Modeling is not a fashion show: models should not be judged in terms of fashionable concepts and mechanisms.
- Models are not your children. Even if you have created them, diapered them, and trained them, do not be a par-
ent protecting your model at all costs, but accept if they fail. After all, it’s meant to fail!l The question is how much
can we learn from it and how much can it advance knowledge until it fails.

- Do not be a model bigot. You should not just hate a model because it uses a different language than you would use.
Understand what they say first! Irrational toolkit preference is inappropriate and hinders knowledge advancement.
Do not judge the mechanic by their toolkit but by what she/he can do with it!

Publishing
Step 10: publishing models

Once everything has been done right, the model has
been built, simulations are running, and satisfactory
results have been obtained, the goal is to communi-
cate those findings through a scientific publication.
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This is a tricky exercise in itself, and it is worth spend-
ing a few words highlighting aspects that will much im-
prove the likelihood of acceptance. In addition, this
section should be a guideline equally for authors and
reviewers so that model evaluations can be as fair as
possible.
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Model publishing essentially comes down to conveying
each of the previous nine steps to the audience in a struc-
tured fashion (Otto and Day, 2011; Kording and Mensh,
2016). The introduction section should describe the phe-
nomenon/question that the model addresses (Step 1),
provide relevant background information from the litera-
ture review (Step 2) and maybe introduce some of the in-
gredients needed (Step 3) as well general hypotheses
(Step 4). Methods will detail all model ingredients (Step
3) and hypotheses (Step 4), justify the choice of the tool-
kit (Step 5) to answer the question asked and meet the
goals. The final graphical draft of the model (Step 6) typi-
cally becomes the first detailed figure implementation
(Step 7) as well as the procedures of model testing and
evaluation (Step 9), which will also be detailed in the
Methods section. Results will summarize model perform-
ance (Step 8) and provide the testing and evaluation sta-
tistics (Step 9) along with answering the original question
(Step 1) and speaking to each of the specific and general
hypotheses (Step 4). Thus overall, following the 10 steps
of modeling also streamlines and simplifies the publish-
ing step, especially if detailed notes have been taken all
along the way.

Finally, there are a series of important guidelines to re-
spect when publishing models:

® Know the target audience. Write in a way that your au-
dience can understand. In most cases, the target audi-
ence should be experimentalists!

® |n order for a model to receive the appropriate appre-
ciation, it is absolutely crucial to clearly describe what
the goals, hypotheses, and performance criteria were
(Kording et al., 2018)!

® A model should always be graphically represented
(Rougier et al., 2014) if at all possible.

® Show model behavior in parallel (i.e., side by side or
superimposed) with the data that the model was de-
signed to explain. This is a powerful way to prove to
the research community that the model mechanisms
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have been correctly interfaced with the produced
behavior.

® Publish the model code. Clean up the code and make
it readable and understandable to others. Ideally, the
published code should reproduce all figures of the re-
sults in the article. Publishing the code hugely in-
creases the usefulness of the model for science (Prli¢
and Procter, 2012). Consider ModelDB (https://
senselab.med.yale.edu/modeldb/) or similar reposito-
ries to publish your model.

® Publish the data that you fit your model to in one of the
relevant databases (e.g. crcns.org, figshare, OSF.io).

Discussion

We have argued that following these 10 simple steps
should leave modelers with little room for failure. As men-
tioned before, we have successfully applied this pipeline
to 2-week-long, small-group, model-building exercises at
CoSMo. It is worth pointing out that this success occurred
irrespective of model type or class (i.e., it worked for mod-
els ranging from neural networks to first principle deriva-
tions of normative behavior, and from model-driven data
analysis to pure theory). Of course, for each type of ques-
tion/model, the extent and practical implementation of the
different how-to-model steps might looks different and be
more or less extensive. However, importantly, all steps
tend to apply to all types of modeling approaches.

What is a good model?

Consider that you have done everything right, as out-
lined in the 10 easy steps to modeling. You framed the
question precisely, had specific testable hypotheses,
choose the right toolkit, implemented the model, fit it to
data, selected the right number of parameters/the best
model, cross-validated your results, and compared your
best model to alternatives from the literature. Does that
mean your model is a good model? In fact, what are the
criteria of a good model?

“All models are wrong, but some are useful” (Box, 1976)

“The words true model represent an oxymoron” (Anderson and Burnham, 2002)
“Everything should be made as simple as possible, but no simpler” (Einstein)

There are many potential criteria motivating the develop-
ment of a model, and many of them are valid criteria in
judging whether the goals have been achieved (Kording et
al., 2018). Criteria could be: explain data, interface with
data, generalizes within sample/out of sample, robustness,
reproducibility, bridging fields, across-fields predictions,
interpretability, inspires experiments, clinical relevance, fal-
sifiability, mechanistic insight, people care (funding), new
predictions, technological applications, intervention/policy
implications, nonarbitrary structure (elegance), subsumes
previous models/data (unification), self-consistency, plau-
sibility of hypotheses, simplicity, computing efficiency, re-
alism, and normativity. Evidently, not all models satisfy all
those criteria; in fact, satisfaction of any single criterion
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might be sufficient to consider the model as being of value.
The precise choice of the evaluation criterion should be
dictated by the modelers stated goals and the consensus
of the field on how to evaluate such a goal is met.
However, one universally important aspect about modeling
is the subsumption principle (i.e., a good model should
capture all existing phenomena in a domain, not just the
data in front of the modeler).

Depending on the model criteria (see above), questions,
and goals, a different model toolkit might be chosen to ex-
plain the same phenomenon. This is because different
toolkits allow the answering of different types of questions
and the achievement of different modeling goals (Kording
et al., 2018; Blohm et al., 2019). As a result, models vary
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greatly along many dimensions, such as granularity
(David Marr’s computational, algorithmic, and physical/
implementation levels), generality (Peter Dayan’s and
Larry Abbott’s descriptive, mechanistic, and interpretive
models), or scale (physical extent of the system modeled).
Depending on where is a model is situated in this high-di-
mensional model space, there are typically different con-
straints, scopes, and evaluation criteria for a model. It is
thus useful to know where a model is situated in this
space as it constrains the goals and defines the limitation
of a model (Blohm et al., 2019).

Good modeling practices

Meaningful model development in neuroscience should
go hand in hand with good modeling practices. For exam-
ple, iteratively modifying the model structure to obtain a
better fit to the data are often done; however, this is not
always advised because changing the model structure
might imply changing the hypotheses on the fly, which is
essentially HARKing (“Hypothesis After Results” justifica-
tion). Furthermore, preregistration might prevent some of
the biases in model comparison that stem from research-
ers’ motivation to show that their new model fits data bet-
ter than previous models. Following our 10 simple rules in
the correct order (Fig. 3) guards against this (often invol-
untary) fallacy. We strongly advise not making any
changes to the model hypotheses and structure after
Steps 1-6 have been completed. One good way to stay
honest would be to preregister (Nosek et al., 2018) the
model plan, outlining the hypotheses and test strategies
developed in Steps 1-6. This does not prevent research-
ers from performing crucial adjustments to their models if
initially hypothesized models fail to produce the expected
result. Crucially though, preregistration “forces” authors
to report the iterative adjustments, allowing the commu-
nity to benefit from the insights gained throughout the
process. For example, one could imagine a situation
under which the hypothesized purpose of the clock would
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be to predict the movement of the stars; knowing this is
wrong would help the community move forward in under-
standing the clock. Note that preregistering the modeling
study in itself is to be considered separately from prereg-
istering potential experimental predictions that result from
the model. In summary, we suggest that preregistration of
modeling efforts would lead to a cleaner, more compre-
hensive and reproducible model-building process in
which logical steps and reasoning are clearly outlined and
reproducible.

There might be limitations to when a modeling study
should be preregistered. The above procedure might be
most suitable when a model is a specific implementation
of a hypothesized mechanism to explain previously de-
scribed phenomena for which there are data. It might
make less sense when the modeling effort consists in de-
veloping new theoretical tools or general theories (e.g., a
new machine-learning approach or a new principled way
of learning). However, we would argue that these excep-
tions are rather rare in neuroscience research compared
with the abundance of models that directly target data.

Conclusion

This 10-step pipeline has been proven to remove some
of the apparent arbitrariness of the neuroscientific model-
ing process and to provide teachable instructions on how
to succeed in modeling. Indeed, modeling currently looks
much like a fashion show with the whims and trends dic-
tating what is hot. This arbitrariness in the modeling ap-
proach may also lead to misguided model judgments. We
emphasize that modeling is not a beauty contest; models
need to be judged based on their well defined goals, not
their appearance or fashionability. To allow fair judgment,
authors have the responsibility to clearly lay out their
thought process. While this 10-step guide is tailored to-
ward the neuroscience community, it should help achieve
this goal throughout life sciences and beyond.

Example box
Modeling eye movements

an example illustrating our 10 steps “how to model.”

to novel specific data from oculomotor nuclei.

degree of regularity of their velocity profile.
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David A. Robinson is generally considered the father of quantitative oculomotor research. Here, we will use one of
his most influential modeling studies (Robinson, 1973: Models of the saccadic eye movement control system) as

- Step 1: In general, Robinson asked whether we can understand the neural organization that controls saccadic
eye movements by establishing relationships between computations in an abstract controller and the activity in
subcortical brain areas, such as motor nuclei. In doing so, he is really addressing two different questions. (1) Are
eye movements expressible as the result of an abstract controller (causal question)? And (2) is the neural activity
compatible with latent variables in an abstract controller (explanatory question)? For the latter, Robinson referred

- Step 2: Robinson grounds his model in the literature, using a previously published and highly influential model of
the extraocular muscle and eye ball mechanics (Robinson, 1964) as a starting point for his oculomotor controller.
He could also rely on electrophysiological recordings in oculomotor neurons (Robinson, 1964, 1970) as well indi-
rect evidence for a neural integrator in the eye premotor circuitry (Skavenski and Robinson, 1973). Finally, he ob-
tained crucial intuitive insight from the stereotypical nature of saccadic eye movements, specifically the high

- Step 3: Since Robinson was interested in producing eye movements to a target, model input is an abstract
motor goal and model output is eye position (Fig. 5). How did Robinson choose the right variables? How did he
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Figure 5. Updated version of Robinson’s simple saccade model (Scudder, 1988). Saccade target shift (AT) is compared to an
internal estimate of saccade progression computed through the resettable neural integrator [N/, suggested by Scudder (1988),
not Robinson] to provide a motor error (err). Based on circumstantial evidence, Robinson’s insight led him to postulate the
pulse generator (PG) to provide a desired eye velocity drive (vx). This pulse command was scaled to match the eye plant dy-
namics (gain, T4) and provided the saccade drive. However, Robinson recognized that viscoelastic forces would pull the eye
back to primary position if not actively compensated for. This is how he proposed the neural integrator (;—) to provide a tonic
drive that overcomes the viscoelastic forces. Tonic and phasic drives add up and are sent to extraocular muscles of the eye
plant that he modeled as a second-order system to move the eye (E). Red labels are mappings of individual computations to
specific brain areas. CBLM, Cerebellum; BG, basal ganglia; SC, superior colliculus; MLF, medial longitudinal fasciculus; MVN,
medial vestibular nucleus; NPH, nucleus prepositus hypoglossi; MN, motor neurons. Gray boxes indicate Robinson’s innova-
tions. Black box denotes a later modification of Robinson’s model by Scudder (1988), included here for correctness.

make sure that these variables were compatible with the phenomenology in terms of magnitude, resolution (level
of detail), and timescale? It was known from oculomotor neuron electrophysiology that the eye plant needed a
pulse and a step command to overcome elastic and viscous forces, respectively. Robinson’s model needed to
generate such neural commands as latent variables and used a neural integrator to produce the step from a pulse.
Finally, he needed a pulse generator that was able to convert a motor error (or goal) into a pulse that could then
drive the saccade. He was only interested in reproducing average population firing rates, not single action poten-
tials. He also only considered eye movements starting from the primary eye position (Fig. 5).

- Step 4: Robinson hypothesized that saccades result from a pulse input to the ocular plant. He also hypothesized
that a neural integrator existed and that it integrated a scaled version of the pulse command. Pulse and step com-
mands should then be added up again at the level of the motor neurons (Fig. 5).

- Step 5: Robinson used linear control systems theory as a toolkit to address his question because he believed
that the brain needed to implement some natural neural control law and he knew that any such dynamical system
could be locally well approximated by a linear system (see goals, Step 1). In choosing this toolkit, he hoped to
span all three levels of Marr from computational (i.e., overall system behavior describing eye movements) to algo-
rithmic (i.e., how this behavior could be implemented most efficiently) to physical (i.e., neural population coding of
the individual components of his model).

- Step 6: Robinson drew a draft diagram of the model given his knowledge and hypotheses (Fig. 5). He could then
fill in the boxes using linear control theory language. For example, his hypotheses allowed him to write down a po-
tential premotor circuit transfer function. He also already knew the transfer function of the eye plant from his previ-
ous work. Finally, he needed a pulse generator. Since little was known about it, he chose what he thought was the
simplest arrangement reproducing the correct saccade dynamics. Note that Robinson also chose all his latent vari-
ables in his model to represent observable firing rates of real neural areas.

- Step 7: Robinson’s first model was elegant in that it used known physiology to produce saccadic eye movements
in a seemingly simple fashion. However, he knew that this model was unlikely to be able to reproduce other as-
pects of saccades or their neural control, such as saccades to moving targets. He (and other authors) therefore in-
crementally expanded his model in follow-up studies to include missing aspects.

- Step 8: Robinson considered his task achieved when his models were able to qualitatively reproduce the specific
data he set out to model. He thereby answered his two initial questions: that latent variables in his model are in-
deed consistent with oculomotor electrophysiology; and that linear control systems theory could accurately cap-
ture the control of eye movements of the brain, at least in the brainstem.

- Step 9: Robinson only carried out qualitative model evaluations. This included comparing model and real eye
movement behavior as well as comparing model predictions of latent variables to neuronal recordings. Nowadays,
reviewers would probably encourage him to provide more quantitative comparisons with eye movement data as
well as a critical evaluation of his models with other existing ones, but scientific standards were different in 1973.
However, his model made very interesting predictions regarding the presence of a common neural integrator for all
eye movements as well as a phasic (pulse) motor command. Since Robinson’s eye plant model in 1964, he also
believed that principles of linear control theory can be used to describe all eye movements, which led to half a
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century of extremely fruitful theoretical and experimental work (breadth of application). As a result of his model-
driven approach, the eye movement system is now arguably the best understood neural system.

- Step 10: Robinson published his manuscript in a journal called Kybernetik (nowadays Biological Cybernetics),
which is mostly targeted toward engineers trying to understand biological systems. He clearly laid out his goals,
described all details of his approach, and related his findings to experimental data. But, enough said; we encour-
age the reader to generate his/her own opinion by reading Robinson’s article.
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