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Abstract
Literally hundreds of statisticians have rightly called for an end to statistical significance testing (Amrhein et al.,
2019; Wasserstein et al., 2019). But the practice of arbitrarily thresholding p values is not only deeply embedded
in statistical practice, it is also congenial to the human mind. It is thus not sufficient to tell our students, “Don’t
do this.” We must vividly show them why the practice is wrong and its effects detrimental to scientific progress.
I offer three teaching examples I have found to be useful in prompting students to think more deeply about the
problem and to begin to interpret the results of statistical procedures as measures of how evidence should
change our beliefs, and not as bright lines separating truth from falsehood.
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Introduction
Humans are natural born categorizers. We instinctively

take continuous variables and draw (often) arbitrary
boundaries that allow us to put names to groups. For
example, we divide the continuous visible spectrum up
into discrete colors like “red,” “yellow,” and “blue.” And
the body mass index (BMI) is a continuous measure of a
person’s weight-to-height ratio, yet a brief scan of the
Internet turns up repeated examples of the classification
shown in Table 1.

In some cases, such as for color, certain categories
appear to be “natural,” as if they were baked into our
brains (Rosch, 1973). In other cases, categorization is
related to the need to make decisions, as is the case for
many medical classifications. And the fact that we com-
municate our ideas using language—words being dis-
crete entities—surely contributes to this tendency.

Nowhere is the tendency more dramatic—and more
pernicious—than in the practice of null hypothesis signif-
icance testing (NHST), based on p values, where an arbi-
trary cutoff of 0.05 is used to separate “truth” from
“falsehood.” Let us set aside the first obvious problem
that in NHST we never accept the null (i.e., proclaim
falsehood) but rather only fail to reject it. And let us also
ignore the debate about whether we should change the
cutoff to something more stringent, say 0.005 (Benjamin
et al., 2018), and instead focus on what I consider to be
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Significance Statement

I offer specific teaching examples to help students properly think about p values and interval statistics.

Table 1: Classification of BMI

BMI Category
�18.5 Underweight
18.5–24.9 Normal or healthy weight
25.0–29.9 Overweight
���30 Obese

Source: Centers for Disease Control and Prevention.
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the real problem: the cutoff itself. This is the problem I
refer to as “black/white thinking.”

Because this tendency to categorize using p values is
(1) natural and (2) abundantly reinforced in many statistics
courses, we must do more than simply tell our students
that it is wrong. We must show them why it is wrong and
offer better ways of thinking about statistics. What follows
are some practical methods I have found useful in class-
room discussions with graduate students and postdoc-
toral fellows in neuroscience.

Example 1
In class, I start with an example of a statistical error that

is known to be extremely common in the neuroscience
literature (Nieuwenhuis et al., 2011). I took the numbers
directly from the classic article by Gelman and Stern
(2006) that has one of my all-time favorite titles: “The
Difference Between ‘Significant’ and ‘Not Significant’ is
not Itself Statistically Significant.” In this made-up exam-
ple (Fig. 1), we compare two drugs being tested for their
efficacy in increasing the time a genetic mouse model of
amyotrophic lateral sclerosis can remain on a rotating rod.
Drug A, on average, increases performance by 25 s with
an SE of 10 s—what most people would categorize as a
“statistically significant effect” (p � 0.012). Drug B, on the
other hand, is not even close (effect size, 10 � 10 s; p �
0.32).

Before showing the data for the direct contrast in Figure
1 (A–B), I ask the class the simple question of whether,
based on the data shown on the left part of Figure 1, we
can conclude that drug A is “significantly better” than
drug B at increasing performance. I encourage them to
first discuss the question with their immediate neighbors,
and then I ask them to vote “yes” or “no,” either with a
show of hands or, if available, some form of a clicker
response. In general, the vast majority of the class votes
yes, but there is always some visible trepidation (e.g.,
sheepish hand raising), since the students figure that
there must be a trick if I am asking them something so
apparently obvious.

I then display the contrast shown on the right side of
Figure 1 as “A–B.” A direct comparison of the two drugs
reveals a difference of 15 s with an SE of 14, and a
corresponding p value of 0.29. So I ask them, “How can

this be? One drug ‘works’ and the other drug does not, so
there must be a difference, right?” This generates some
murmuring among the class, and this is an excellent
opportunity for a discussion of “What’s going on here?” At
some point, I usually interject that, given any two drugs
with any two nonequal p values, I can set a criterion that
makes one of the drugs “work” and the other not. This
helps point out the arbitrary nature of any p value cutoff
and the major error of interpreting the failure to reject the
null hypothesis (H0) for one of the drugs as not working,
as well as the important idea that we want to make our
inference about differences between the drugs based on
the difference A–B.

I close off this example by displaying the title of the
article by Gelman and Stern (2006), and I encourage the
students to repeat the title as a mantra each night before
they go to bed and each morning when they awake for the
next 2 months. And I add in a favorite quote from Rosnow
and Rosenthal (1989): “That is, we want to underscore
that, surely, God loves the 0.06 nearly as much as the
0.05. Can there be any doubt that God views the strength
of evidence for or against the null as a fairly continuous
function of the magnitude of p?” (emphasis added). As
this quote is bang on and moderately funny, it puts a
memorable cap on the exercise.

Example 2
From Figure 1, there is an easy segue to the second

concept I find useful, that of the “counternull,” first de-
scribed by Rosenthal and Rubin (1994). To do this, I
simply replace the SE bars with 95% confidence intervals
(CIs; Fig. 2), which clearly shows why the null was not
rejected for drug B: the 95% CI contains the null value of
zero. But Rosenthal and Rubin (1994) would also have us
consider the point that is equally distant from the mean
but on the opposite side: this is the value they refer to as
the counternull. Simply put, it is that value of the effect
size (in our example, a performance increase of just �20
s) that is supported by exactly the same amount of evi-
dence as the null value.

I like this statistic, because it gets the students thinking
about more of the confidence interval than just whether or

Figure 1. Efficacy of two different drugs in increasing the time
that mice can remain on a rotating rod. For each drug, the mean
effect and the associated SEs are shown. The dashed line
represents the null value of no difference. Example taken from
Gelman and Stern (2006).

Figure 2. Same data as for Figure 1, except that SE bars have
been replaced with 95% confidence intervals. The counternull is
the value of the effect size that is equidistant from the mean (vs
the null), but on the opposite side. See Rosenthal and Rubin
(1994).
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not it contains the null value (i.e., NHST). I ask them,
would an effect size of this magnitude be of behavioral
significance? If so, we might not be so quick to give up on
drug B. We can certainly see that there is a broad range of
plausible effect sizes that would be beneficial (as well as
some that would be detrimental).

This also presents a good opportunity to start a discus-
sion about how one might decide which of two drugs to
take. Is statistical significance a good criterion? By simply
rescaling the axes, one could show a strongly significant
effect for a change in performance that would be negligi-
ble in terms of behavioral benefit—so the actual effect
size, and not just its p value, matter. And what if we were
told that drug A has a high incidence of toxic side effects?
Or that it needed to be taken by a twice-daily intravenous
injection?

One additional issue that can be brought up here is how
we write statistical results in our articles. If we banish from
our students’ lexicons the phrase “statistically signifi-
cant,” what do we give them as a replacement? My
practice is to encourage them to always include a point
estimate of the effect size, generally the mean, along with
a 95% confidence interval—a practice that is increasingly
recommended by neuroscience journals (Calin-Jageman
and Cumming, 2019), including eNeuro. In certain cases
where the null value is included within the 95% CI, it might
be useful to include the counternull, particularly when its
magnitude would represent an important biological effect.

Example 3
My third example is taken from an interesting article by

Johnson (2013a), and it is designed to nudge the students
toward a Bayesian perspective (Fig. 3).

In this example, we are given a single datum, namely
that X � 2 and are asked to make an inference about the
distribution from which it was drawn. A good Frequentist
(Fig. 3A) would look at the probabilities under H0 and
determine that she should reject H0 for X � 2 or 3, as this
would give a p value of �0.01. However, a Bayesian
would compare the values in the red box of Figure 3B and
realize that, for X � 2, H0 is eight times more likely than
HA (a Bayes factor). In fact, a simple calculation using
Bayes’ rule (which I do on the whiteboard) and assuming
that the two hypotheses are a priori equally likely, reveals
that the posterior probability that H0 is true is 0.89, al-
though our Frequentist has confidently rejected it at p �

0.01 (“highly significant!”). This effectively creates a ten-
sion between what common sense tells us is the better
approach and what the students have long held to be the
right way to think.

Apart from this heavily rigged example, why is a Bayes-
ian perspective helpful in combating black/white thinking?
Well, the spirit of Bayesian data analysis is exactly what
we want to inculcate in our students: using our experi-
mental data, via the likelihood, to inform us how much we
should change our beliefs. It encourages the better inter-
pretation that the results of experiments should change
our beliefs about hypotheses in a continuous way and not
be used to draw sharp lines between truth and falsehood.
This is not to say that Bayesian thinking is a panacea—
one can create thresholds with Bayes factors as surely as
one can with p values, and it is the threshold setting that
is the problem. So what I try to communicate to my
students is that we will continue to publish and perish in a
largely Frequentist world for some time (Efron, 2013), but
it behooves us all to be more Bayesian in spirit. And it
even appears that Bayesian analyses may be on an up-
ward trend in the neurosciences (Boekel et al., 2015).

Finally, the introduction of Bayes’ rule allows us to
address another critical shortcoming of NHST by consid-
ering priors. While this is a thorny topic when approached
broadly, a narrower consideration of the prior probability
of H0 is useful when considering, for example, “ground-
breaking experiments” that are proffered with no more
evidence than “p � 0.05.” I introduce this problem with
my favorite xkcd cartoon [Fig. 4 (see https://xkcd.com/
1132/)].

If we start with the belief that it is extremely unlikely for
the sun to explode in any small interval of time, then we
will not be persuaded by such flimsy evidence as p �
0.03. This is a nice illustration of the LaPlacian notion that
extraordinary claims require extraordinary evidence. From
this perspective, the exercise of converting p values to
minimum Bayes’ factors (Goodman, 2001) and then ap-

Figure 3. Each table shows the probabilities with which a ran-
dom variable, X, can take on values of 1, 2, or 3 under two
different hypotheses. A, The red box shows the Frequentist
perspective in which only the H0 probabilities are considered
and the most powerful test is to reject H0 for X � 2 or 3. B, A
more Bayesian perspective is shown. Example is from Johnson
(2013a), who apparently borrowed it from Berger and Wolpert
(1988).

Figure 4. The importance of the prior probability of H0 when
evaluating p values. Source: xkcd (https://xkcd.com/1132/).
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plying Bayes’ rule to different scenarios of prior probabil-
ity (Nuzzo, 2014) can be eye opening for the students. A p
value just under 0.05 does not push us as far away from
H0 as we would like to think it does (Johnson, 2013b).

And in the spirit of closing with a memorable quote, I
share a favorite exclamation of one of my early mentors,
David Hubel, whenever I approached him with some claim
that struck him as highly implausible: “That’s the kind of
result you wouldn’t believe even if it were true!” For some
time, this statement bothered me a lot—was this great
scientist scoffing at evidence?—until I realized that it
reflected a Bayesian perspective combined with a char-
acteristically deep awareness of the brittleness of a p
value criterion for “truth.”

Discussion
There is a broad consensus among statisticians that sig-

nificance testing based on p values is bad statistical prac-
tice. Moreover, this consensus has existed for many years
(Wasserstein et al., 2019). So why does the practice persist
so stubbornly? I have argued that it is not just inertia in the
teaching and practice of statistics, but that it also stems from
our natural proclivity to sort continuous data into clean
classes to which we can give names—what I have called
black/white thinking. Because of this tendency, we need to
work harder and be more creative in teaching our students
better ways of thinking. I have offered here several specific
teaching examples (including PowerPoint slides; Extended
Data Fig. 1-1) that I have found useful in this regard. I hope
they will be added to by others.
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